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Abstract

Tetrabromobisphenol A (TBBPA) is the largest brominated flame retardant which can be released 

to environment and cause long-term hazard. In this work, we developed a rapid and highly 

sensitive fluorescence enzyme-linked immunosorbent assay (FELISA) for monitoring of TBBPA 

in soil samples. TBBPA specific nanobody derived from camelid was fused with alkaline 

phosphatase to obtain the bi-functional fusion protein, which enable the specific binding of 

TBBPA and the generation of detection signal simultaneously. The assay showed an IC50 of 0.23 

ng g−1, limit detection of 0.05 ng g−1 and linear range from 0.1 to 0.55 ng g−1 for TBBPA in soil 

samples. Due to the high resistance to organic solvents of the fusion protein, a simple pre-

treatment by using 40% dimethyl sulfoxide (DMSO) as extract solvent can eliminate matrix effect 

and obtain good recoveries (ranging from 93.4% to 112.4%) for spiked soil samples. Good 

relationship between the results of the proposed FELISA and that of liquid chromatography 

tandem mass spectrometry (LC-MS/MS) was obtained, which indicated it could be a powerful 

analytical tool for determination of TBBPA to monitor human and environmental exposure.
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1. Introduction

Tetrabromobisphenol A (TBBPA) with high global production (over 200000 t a year) 

(Honkisz and Wojtowicz, 2015) is the most ubiquitous brominated flame retardants (BFRs) 

in industry and commerce to reduce fire-related injury. However, as an additive flame 

retardant, TBBPA often is simply blended with polymers and more easily leached out of 

products into the environment during production, usage and disposal. There is evidence of 

association with particles and bioaccumulation (Howard and Muir, 2010; Liu et al., 2016). 

TBBPA is now detectable in environmental media such as soil (Lu et al., 2018; Sun et al., 

2014), dust (Barghi et al., 2017), sediment (Cheng and Hua, 2018), water (Chokwe et al., 

2017), aquatic organisms (Ashizuka et al., 2008; de Jourdan et al., 2013), human being 

blood (Lu et al., 2017) and breast milk (Antignac et al., 2009; Shi et al., 2009). Highly 

industrialized countries were observed relatively high TBBPA levels in environmental 

monitoring such as China, Germany, Japan, Korea, the UK and the USA (Abdallah et al., 

2008; Fromme et al., 2014; Wang et al., 2015). Even though the threshold reference value of 

TBBPA suggested by the US Environmental Protection Agency is 1 × 106 ng kg−1 of bw day
−1. More and more studies indicated that TBBPA exposure might induce various detrimental 

effects to mammals, such as neurotoxicity (Alzualde et al., 2018; Cannon et al., 2019), 

hepatotoxicity (Parsonsa et al., 2019) and reproductive toxicity (Linhartova et al., 2015; 

Zhang et al., 2018). People are exposed to TBBPA daily. The potential toxicity of TBBPA 

has led to concern for public health. Therefore, it is essential to establish approaches to 

monitor TBBPA exposure.

For reducing the risks of TBBPA exposure to consumers, great efforts have been expended 

on TBBPA detection. Among the numerous methods, immunoassays due to their 

advantageous properties such as high throughput, simplicity and straightforward readouts 

have been widely applied for ordinary analysis for large numbers of samples. In the 

construction of immunoassays, the single variable domains of heavy chain (VHH) antibodies 

derived from camelids and sharks, also named as nanobodies, offer advantages with a small 

size of 15000 molecular weight, low cost, high solubility, stability and high expression in 

microbial systems, make nanobody an alternative to conventional antibodies (monoclonal 

antibodies, polyclonal antibodies and single-chain variable fragments) (Bever et al., 2016). 

With the rapid evolution of antibody engineering and the gene recombinant techniques, 

antibodies being fused with enzymes as homogeneous probes are used instead of the 

secondary antibodies with chemically-coupled enzymes like horseradish peroxidase (HRP) 

and alkaline phosphatase (AP). Furthermore, many published studies confirmed that enzyme 

linked immunosorbent assays (ELISA) which depend on fluorescence as signal output can 

improve the sensitivity of assays compared with the routine absorbance (Huo et al., 2018; 

Lassabe et al., 2018; Zhang et al., 2018). However, a few fluorescence assays have been 

reported for small molecules detection with VHH-AP fusion protein currently.

Herein, based on previously prepared anti-TBBPA VHH (Wang et al., 2014), we clone the 

VHH gene into the expression vector pLIP6/GN, which contained the AP gene to produce 

the anti-TBBPA VHH-AP fusion protein. The VHH can specific bind TBBPA in samples 

while the AP is able to catalyze 2′-[2-benzothiazoyl]-6′- hydroxybenzothiazole phosphate 

(BBTP) to generate fluorescence. Therefore, one-step fluorescence enzyme-linked 
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immunosorbent assay (FELISA) was developed and applied to determine TBBPA in soil 

samples. The assay conditions were well optimized to obtain optimum performance. 

Recoveries test was performed and the results were validated with standard LC-MS/MS.

2. Materials and methods

2.1. Chemicals and Reagents

The synthesis of haptens of TBBPA and production of VHH against TBBPA were described 

in previous report (Wang et al., 2014). The pLIP6/GN vector containing AP gene used was a 

gift from Dr. Frédéric Ducancel from Pharmacology and Immunoanalysis Department, 

CEA/Saclay, Gif-sur-Yvette, France. The restriction enzymes SfiI and NotI and T4 DNA 

ligase were obtained from Thermo Fisher Scientific (Thermo, USA). The chemically 

competent cells of E.coli BL21 (DE3) pLysS and His-tag antibody-HRP were from 

Transgene Biotech (Guangzhou, China) was used for expression of the antibody fusion 

protein. The fluorescent substrate (2′-[2-benzothiazoyl]-6′-hydroxybenzothiazole 

phosphate, BBTP) was obtained from Promega (WI, USA). Standards were purchased from 

TCI Co. Ltd. (Tokyo, Japan) and other TBBPA analogues were purchased from 

AccuStandard (New Haven, CT). All other reagents were of analytical grade and purchased 

from Qixiang Technology Co., Ltd. (Guangzhou, China).

2.2. Construction of the recombinant plasmid

VHH genes of TBBPA with complementary SfiI and NotI restriction sites were amplified by 

PCR (forward primer: 5’-

ATATGGCCCAGCCGGCCCACCATCACCATCACCATCAGGTGCAGCTCGTGG AG-3’; 

reverse primer: 5’-ATAAGAATGCGGCCGCGTCTTGTGGTTTTGGTGTCTTG-3’). The 

purified PCR products after digesting with SfiI and NotI were purified again and subcloned 

into the pLIP6/GN using T4 DNA ligase. Then, the chemically competent cells BL21 (DE3) 

pLysS were transformed with recombinant anti TBBPA VHH-AP plasmid by heat shock at 

42 °C for 90 s and grown on LB plates overnight at 37 °C. The positive clones were selected 

for sequence identification.

2.3. Expression and purification of the anti-TBBPA VHH-AP fusion protein

The positive clone with the correct sequence was induced to express anti-TBBPA VHH-AP 

fusion protein, which was cultured in SB medium with 100 μg mL−1 ampicillin at 37 °C 

until the OD600 reached the value of approximately 0.4–0.8. Then 1 mmol L−1 of IPTG was 

added to induce protein expression. After incubation overnight at 37 °C with shaking at 250 

rpm, bacteria were pelleted by centrifugation at 13523 g for 20 min at 4 °C. The fusion 

protein was extracted from cell periplasmic using cold osmotic shock method (Olichon et 

al., 2007) and then purified with Ni-NTA resin by using 200 mmol L−1 imidazole in 0.01 

mol L−1 PBS for elution and stored at −20 °C after dialysis against 0.01 mol L−1 PBS. The 

12% SDS-PAGE and western blotting were both applied to identify the resulting anti-

TBBPA VHH-AP fusion protein.
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2.4. One-step FELISA performance

The anti-TBBPA VHH-AP fusion protein was characterized by FELISA, which was 

performed on the 96-well black opaque microplates (Scheme 1). Frist, the coating antigen 

(shown in Fig. S1) was diluted with the carbonate buffer (100 μL per well) and incubated 

overnight at 37 °C. After washing twice with PBST (200 μL per well). Blocking solution 

(120 μL per well, 0.01mol L−1 PBS with 2% skimmed milk) was added to each well for 3 h 

at 37 °C. The 50 μL TBBPA standard solutions and the diluted VHH-AP fusion protein (50 

μL) in PBST were pipetted into the wells of the plates. After 30 min of incubation, the plates 

were washed five times again with PBST. And then 100 μL of AP fluorescent substrate 

BBTP was added and incubated at 37 °C for 15 min. The fluorescence intensities of the 

emission wavelength at 555 nm were measured under the excitation wavelength of 435 nm. 

We utilized the inhibition to characterize the binding ability of fusion protein. (Inhibition = 

[1 − (F/F0)] × 100, where F0 and F were defined as the fluorescence in absence and in the 

presence of TBBPA, respectively).

2.5. Optimization of FELISA conditions

To achieve highly sensitive detection for TBBPA, several experimental parameters which 

could affect the FELISA performance were optimized. There involved the concentration of 

anti-TBBPA VHH-AP fusion protein and coating antigen, the effects of organic solvents 

(5%, 10%, 20%, 40% and 60% of MeOH, DMSO) and the value of pH (4–11). For each 

optimized condition, the inhibition curves (n=3) with TBBPA as competitor analyte were 

established. The value of the concentration of the TBBPA leading 50% inhibition (IC50) was 

the primary criteria for evaluating assay performance. Furthermore, the lower IC50 equates 

to the higher sensitivity of the assay. In order to achieve short time-consuming of assay 

procedure, we also explored shortened incubation times of fusion protein and antigen.

2.6. Sample preparation and analysis

TBBPA (logkow 3.2–6.4) was used as flame retardant in plastics and can be easily released 

to the environment and distribute into soil, during their production and usage processes. 

Considering this, the surface soil (0–5 cm deep) sample near the plastics factory was 

selected for TBBPA pollutants detection. Blank soil samples were evaluated by liquid 

chromatography tandem mass spectrometry (LC-MS/MS) to ensure TBBPA-free, which was 

used as a negative control. For soil sample preparation, initially, the samples were heated at 

50 °C for 12 h, and then sieved through 50-mesh screen. A dry weight (dw) of 1.0 g soil was 

spiked with a range concentration of TBBPA (52.4, 65.5, 81.9, 102, 128, 160 and 200 ng g
−1) and added 2.5 mL of 40% DMSO in 0.01mol L−1 PBS for the extraction. After 

sonication for 30 min and the tube was centrifuged at 8000 g for 10 min and the supernatant 

was collected. The extracts were filtered through a 0.22 μm filter and then used for analysis 

(when needed the extract can be diluted with 40% DMSO in 0.01mol L−1 PBS). The LC-

MS/MS was applied to verify the accuracy and reliability of the proposed FELISA. As a 

reference method in accordance with the Chinese national standards, chromatography was 

achieved using gradient elution with the mixture of the 20 mmol L−1 ammonium acetate (A) 

and acetonitrile (B): 0–3 min, 10% B; 3–6 min, 10% to 90% B; 6–15min 10% B. The 

injection volume was 5 μL with the flow rate 0.35 mL min−1. Analytes were determined by 
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ESI-MS/MS in the negative mode. Other parameters were as follows: Heat block 

temperature: 450 °C; Drying gas flow: 15 L min−1; Nebulizer gas flow: 3 L min−1; 

Detection voltage: 2.22 kV; DL temperature: 280 °C, CID gas, 230 kPa. The parent ion and 

the daughter ion of TBBPA was m/z 542.70 and m/z 446.00, respectively, which were used 

for quantitation. The calibration curves ranged from 20 and 400 ng mL−1 (R2=0.991). Limit 

of quantification was 1.2 ng mL−1 (S/N=3).

3. Results and discussion

3.1. Expression, purification, and identification of the anti-TBBPA VHH-AP fusion protein

According to the description in the experimental section, the VHH gene was inserted into 

the expression vector pLIP6/GN to express the anti-TBBPA VHH-AP fusion protein. The 

positive recombinant plasmid containing the gene of the anti-TBBPA VHH-AP fusion 

protein was obtained and confirmed by DNA sequencing (amino acid sequences were shown 

in Fig. S2). Then the recombinant plasmid was transformed into chemically competent cells 

(E. coli BL21 (DE3) pLysS). Fig. 1 showed that the anti-TBBPA VHH-AP fusion were 

expressed and extracted efficiently with sucrose osmotic pressure method and can be 

purified by using the Ni-NTA affinity chromatography, which existed in a sharp and clear 

protein band on SDS-PAGE gel and western blotting. The collected pure the anti-TBBPA 

VHH-AP fusion protein with an initial concentration of ~15 mg L−1 that completely 

satisfied follow-up application. Moreover, the pLIP6/GN we applied has presents two 

mutations at the catalytic site. As a result, the catalytic activity of the alkaline phosphatase 

produced by this system was improved 35-fold than that of wild-type alkaline phosphatase 

(Dong et al., 2012; Muller et al., 2001).

3.2. Optimization of the FELISA

Generally, the performance of the immunoassay is significantly influenced by the assay 

conditions. In our work, initially, the checkerboard titration method was applied to screen 

the optimal working concentrations of the the coating antigen and the VHH-AP fusion 

protein. As shown in (Table S1), the highest inhibition (TBBPA, 1 ng m L−1) was achieved 

when the concentration of coating antigen and fusion protein were at 100 ng m L−1 and 0.14 

μg m L−1, respectively. For suitable buffer optimization, because the TBBPA is a highly 

lipophilic analytes, which should be solubilized completely in the organic solvents such as 

dimethyl sulfoxide (DMSO) and (methanol) MeOH. Besides, it was reported that single 

domain antibodies often show an excellent resistance in organic solvents (Liu et al., 2014; 

Zhang et al., 2018). Considering these two issues, serial concentrations of TBBPA standards 

prepared by varied MeOH (Fig. 2A)/DMSO (Fig. 2B) concentrations (0, 5%, 10%, 20%, 

40% and 60%) were used to construct FELISA inhibition curves for TBBPA. Fig. 2B shows 

that the lowest IC50 (0.09 ng m L−1) observed at 0.01 mol L−1 PBS with 40% DMSO, so the 

0.01 mol L−1 PBS containing 40% DMSO was chosen assay buffer for further studies. 

According to the previous report (Huo et al., 2018), the value of pH is also an important 

factor for immunoreactions. Different pH values (pH 4.0–11.0) were evaluated (see Fig. 2C, 

D). In test, optimal time was observed 6 and 8 with sensitivity decreasing outside at this 

range. Hence, the best performance was obtained in 0.01 mol L−1 PBS (40% DMSO, pH 

7.0). Furthermore, as Fig. 2E shown, a 30 min incubation time was enough for binding 
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reaction of VHH-AP fusion protein and antigen, which indicated that based on the anti-

TBBPA VHH-AP fusion protein, the assay time is extremely shortened compared with 

classic ELISA.

3.3. Sensitivity and specificity of the FELISA

Considering the overall data, the TBBPA standard curve (Fig. 2F) in working buffer was 

constructed following the same procedure as described above. The concentration of anti-

TBBPA VHH fusion protein binding to TBBPA causing half-maximum inhibition (IC50) 

was 0.09 ng mL−1, and the limit of detection (LOD, 10% inhibited binding, IC10) was 0.02 

ng mL−1, and the linear working range (IC20~IC80) from 0.04 to 0.22 ng mL−1 (y=

−0.73157lgx-0.31592, R2=0.989), which were all calculated by the formula of FELISA 

standard curve.

Cross reactivity experiments were conducted to determine the specificity of the FELISA for 

TBBPA compared to the structurally related TBBPA congeners. Therefore, 2, 2’, 6, 6’-

tetrabromobisphenol A diallyl ether, bisphenol A, BDE-47, BDE-99, tetrabromobisphenol A 

bis(2-hydroxyethyl) ether and hexabromocyclododecane were selected as inhibitors under 

the same experimental conditions. Additionally, the CRs of anti-TBBPA VHH fusion protein 

for TBBPA and its analogues were evaluated on the basis of IC50 with following formula: 

CR(%)=IC50 (TBBPA, ng mL−1)/IC50 (TBBPA analogues, ng mL−1)×100%. The results 

(Fig. 3) revealed that the negligible CR (<0.1) was observed with all the other analogues 

which suggesting that VHH-AP-fusion protein based FELISA is highly selective for 

TBBPA. The acceptable specificity of this assay makes it valuable for broad application.

3.4. Stability of anti-TBBPA VHH–AP fusion protein

The thermal stability study of anti-TBBPA VHH-AP fusion protein was investigated by 

simultaneously testing the effects of different temperature on the binding activities with 

coating antigen. As shown in Fig. S3A, the binding activities of the VHH-AP fusion protein 

was decreased as temperature increased from 37 to 87 °C. And the fusion protein retained 

around 37.5 % binding activity after incubating at 67 °C for 40 min. The result demonstrated 

the anti-TBBPA VHH fused the AP showed poorer thermostable than VHH of TBBPA 

studied before (Wang et al., 2014), which is may be influenced by the thermal denaturation 

of AP and the irreversible refolding process (Liu et al., 2013). Apart from thermo stability, 

the stability at 25 °C was also measured. In terms of result (Fig. S3B), the VHH-AP-fusion 

protein exhibited superior stability in 25 °C for 35 days. The expected results illustrated that 

the AP fusion protein only made little influence on the native activity of antibody, when 

fused with a single domain antibody, which might be due to antibody protein maintaining its 

original refolding way.

3.5. Sample analysis and validation

The matrix effect is a crucial factor that must not be ignored which often determines the 

accuracy and sensitivity of immunoassays for sample analysis. TBBPA is soluble in organic 

reagents. Therefore, an organic solvent is necessary to apply especially in the sample 

extraction progress. Consequently, the representative sample were spiked with different 

concentrations (52.4, 65.5, 81.9, 102, 128, 160 and 200 ng g−1) of TBBPA and extracted as 
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described above and analyzed in triplicate. As expected, no significant matrix interference 

was observed, when the extracting solution was 2.5-fold diluted. The calibration curve for 

sample (Fig. S4) is consistent with that in 0.01 mol L−1 PBS containing 40% DMSO. 

Furthermore, the average recoveries of TBBPA via the FELISA for the samples spiked were 

in a range of 93.4%−112.4% and the coefficient of variance (CV) ranged from 1.6% to 8.1% 

(see Table 1). For evaluating the accuracy and the precision of FELISA, the LC-MS/MS was 

applied to test same samples. Meanwhile, the acceptable recoveries of the LC-MS/MS from 

100.2% to 110.0% with the coefficient of variation of 4.0%−7.4% (Table 1) were obtained. 

As shown in Table 1, the t test results showed that the P values of each spiked levels were 

above 0.05, indicating that no significant difference were encountered between the two 

methods. The results also indicated that simple ultrasonic extraction and dilution with 

DMSO is a reasonable pretreatment approach for TBBPA determination in soil via the 

FELISA, which exhibited a good correlation with the result of LC-MS/MS (R2=0.95, Fig. 

4). In addition, to further assess the applicability of proposed FELISA with this fusion 

protein, we measured the soil samples from the six different companies which produced 

plastic materials in Guangzhou, China and analyzed them by the FELISA and LC-MS/MS in 

a blind fashion. As presented in Table 2, No.4 sample showed strong positive by the 

proposed FELISA (not quantitative due to exceed of upper quantitative limit), which was 

detected containing 176 ng mL−1 by LC-MS/MS. The detection results obtained from the 

FELISA and LC-MS/MS were in good agreement with each other, which further indicated 

the developed FELISA based on anti-TBBPA VHH-AP fusion proteins could become an 

effective tool for TBBPA analysis in soil samples.

4. Conclusions

In conclusion, we successfully demonstrated a new type and reliable FELISA based on the 

anti-TBBPA VHH-AP fusion protein for screening TBBPA in soil samples. Compared to 

conventional ELISA applying monoclonal antibodies, FELISA is a more economical 

strategy, which can be attributed to the fact that fusion protein retained both specificity and 

affinity of VHH, catalytic activity of alkaline phosphatase and was less expensive to prepare. 

It could also be easily expressed in E.coli using simple genetic approaches resulting high 

yield. Moreover, because the alkaline phosphatase was directly linked to the anti-TBBPA 

VHH rather than by a chemical labeling method. The inactivation or activity decrease of 

antibody was avoided. Furthermore, FELISA avoids the number steps like secondary 

antibody incubating and relevant washing, which resulted in the assay procedure time 

reducing. For actual soil samples detection, the results of proposed method shows good 

correlation with that in LC–MS/MS. Overall, the FELISA based on the VHH-AP fusion 

protein can serve as an ultra-sensitive, simple, accurate and rapid analytical tool for 

monitoring the TBBPA in soil, which provide an alternative strategy for other lipophilic 

small molecule contaminants analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A bifunctional nanobody-alkaline phosphatase fusion protein for TBBPA was 

produced.

• One-step fluorescence enzyme-linked immunosorbent assay for TBBPA was 

developed.

• The assay can determine TBBPA with highly sensitivity and simple 

pretreatment.

• The results were validated by standard LC-MS and showed good accuracy.
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Fig. 1. 
Characterization of anti-TBBPA VHH-AP fusion protein by SDS-PAGE and Western 

blotting analysis based on anti-His antibody. (A) SDS-PAGE lane 1, purified anti-TBBPA 

VHH, lane 2, purified anti-TBBPA VHH-AP fusion protein. (B) Western blotting lane 1, 

purified anti-TBBPA VHH; lane 2, purified anti-TBBPA VHH-AP fusion protein.
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Fig. 2. 
Effects of MeOH (A), DMSO (B), pH (C, D), and different incubation time on the 

performance of VHH-AP fusion protein based FELISA (E); Standard competitive inhibition 

curve (F) for TBBPA analysis under the optimized conditions. The error bars represent the 

standard deviation (n = 3).
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Fig. 3. 
Cross-reactivity of related analogues in the anti-TBBPA VHH-AP fusion protein based 

FELISA. (The percentage of CR was calculated using the following equation: CR (%) = 

[IC50 (TBBPA, ng mL−1)/IC50 (cross-reactant, ng mL−1)]*100.)
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Fig. 4. 
Correlations of analysis of samples spiked with TBBPA between FELISA and LC-MS/MS 

(n=3).
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Scheme 1. 
Schematic illustration of the anti-TBBPA VHH-AP fusion protein based FELISA method 

for quantitative detection of TBBPA.
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Table 1

Results of spiked soil sample analyzed by FELISA and LC-MS/MS (n =3).

TBBPA spiked 
(ng/mL)

FELISA (Mean± 

SD
b
, ng/mL)

Recovery (%) CV
c
 (%)

LC-MS/MS (Mean± 
SD, ng/mL) Recovery (%) CV

c
 (%) P value

0 ND
a ND ND ND ND ND ND

52.4 50.1±4.1 95.6 8.1 58.2±3.9 110.0 6.7 0.068

65.5 61.2±2.1 93.4 3.4 70.0±5.2 106.8 7.4 0.073

81.9 80.7±5.0 98.5 6.2 84.2±4.5 102.8 5.3 0.420

102 115.2±5.7 112.4 4.9 103.2±6.3 101.1 6.1 0.071

128 141.9±9.5 110.8 6.7 130.6±6.9 102.0 5.2 0.171

160 155.3±2.6 93.9 1.6 169.9±6.7 106.2 4.0 0.065

200 189.6±8.5 94.8 4.4 200.4±9.5 100.2 4.7 0.109

a
ND = Not detectable

b
SD=Standard deviation

c
CV= Coefficient of variance.
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Table 2.

Comparison of the blind analysis results for TBBPA content in soil samples from the six different companies 

by FELISA and LC-MS/MS (n=3).

Sample FELISA (ng mL−1)

Mean ± SD
a

LC-MS/MS (ng mL−1)
Mean ± SD

NO.1
ND

b ND

NO.2 ND ND

NO.3 ND ND

NO.4
Positive

c 176.7±4.5

NO.5 ND ND

NO.6 ND ND

a
SD, standard deviation

b
ND, not detectable

c
Positive, signal value exceeds upper quantification limit.
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