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38 The Double-edged Sword of Reverse Triggering: Impact on

the Diaphragm

Reverse triggering is a term coined for the unique rhythmic
pattern of patient-ventilator interaction observed in deeply
sedated, critically ill patients with acute respiratory distress
syndrome, in which the ventilator’s mechanical inflation
triggers inspiratory muscle effort (1). The rhythmic pattern is
commonly phase locked at 1:1, in which one inspiratory muscle
effort is triggered or preceded by one mechanical inflation,
although other patterns (e.g., 1:2, 1:3, 2:3, or chaotic pattern)
may occur. Reverse triggering essentially results from the
entrainment of respiratory rhythms originating from the central
neural oscillators within the respiratory pattern generator in
response to external stimulus (2). The stimulus can be in the
form of positive pressure ventilation (1); limb somatic afferents
(3); locomotor (3), exercise (4), or music (5) rhythms; or
arterial carbon dioxide tension (6). Respiratory entrainment in
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response to mechanical inflation has been observed in humans
both under anesthesia (7) and in states of wakefulness and
sleep (8), as well as in anesthetized animals (9). In anesthetized
animals, the Hering-Breuer reflex, which prevents overinflation
of the lung via slowly adapting receptors, rapidly adapting
receptors, and vagal-C fibers, all appear to be implicated in
respiratory entrainment as vagotomy abolishes the respiratory
rhythm (9). However, in humans, vagal feedback is not
essential for respiratory entrainment (8), whereas
mechanoreceptors in the upper airway, lung, chest wall, and
diaphragm may be involved in the generation of respiratory
entrainment in response to mechanical inflation (10). Spinal
respiratory rhythm generator mediated via spinal reflexes also
may be involved in respiratory entrainment; reverse triggering
recently was reported in patients who have suffered brain
death and are on mechanical ventilation (11, 12).

The prevalence of reverse triggering in critically ill
patients with (13) and without (14) acute respiratory distress
syndrome, especially those who are under deep sedation and
are receiving volume or pressure assist—control mechanical
ventilation, is fairly high (~45%). Some reverse-triggered
breaths can induce breath stacking, resulting in increased
inflation volume and augmented transpulmonary pressure,
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which are counterproductive to protective ventilation strategy.
In the absence of breath stacking, the inspiratory muscle effort
generated may be sufficient to induce pendelluft, resulting in
regional stress in the dependent lung (15). However,
inspiratory muscle effort during the machine exhalation phase
theoretically may attenuate strain in the dependent lung.
Depending on the magnitude of inspiratory muscle effort
generated, reverse triggering may cause injury to the
diaphragm muscle or, alternatively, protect the diaphragm
from muscle atrophy when application of mechanical
ventilation is prolonged.

In this issue of the Journal, from their colossal study in a
porcine model of lung injury, Damiani and colleagues (pp.
663-673) reported three novel observations (16): I) The
development of reverse triggering allowing assessment of
inspiratory muscle efforts on diaphragm structure and function.
An animal model of reverse triggering will facilitate evaluation of
the temporal relationship of phases of ventilator inhalation
(concentric contraction) and exhalation (eccentric contraction)
to inspiratory muscle efforts. Furthermore, the model is also key
for systematically studying the role of ventilator settings (rate,
VT, flow rate, and positive end-expiratory pressure) in mitigating
or eliminating the harmful consequences of reverse triggering. 2)
Reverse triggering associated with high inspiratory muscle effort
(=300 cm H,0/s) induced diaphragm muscle injury and
impaired diaphragm muscle function. 3) Reverse triggering with
low inspiratory muscle effort (<150 cm H,O/s) protected
diaphragm muscle function.

Caveats to the study of Damiani and colleagues (16),
however, are as follows: I) The study lacked control animals
without lung injury that were treated with the same ventilator
settings with and without the occurrence of reverse triggering. It is
unclear whether the lung injury itself caused systemic
inflammations that affected diaphragm muscle function, which
then confounded the effect of reverse triggering (17). 2) The study
lacked end-expiratory lung volume measurement. The dependence
of muscle force production on its length—force relationship is well
known in physiology. Changes in end-expiratory lung volume can
potentially occur when a strong inspiratory muscle effort induces
pendelluft in the dependent lung region (15). Setting a high
respiratory rate in the reverse triggering group may induce
intrinsic positive end-expiratory pressure, further shortening the
fiber length of the diaphragm muscle. 3) Unexpectedly, alterations
in diaphragm muscle function were discernible at 3 hours. This is
in contrast to the study of Jaber and colleagues (18), in which
researchers applied controlled mechanical ventilation to smaller
piglets (15-20 kg) for both 3 hours and 3 days.
Transdiaphragmatic pressure remained intact in the group on
short-term ventilation, whereas it did not in the group on long-
term ventilation. 4) Evidence of diaphragm muscle injury was
found by means of only light microscopy, which did not detect
the disruption of sarcomeres and damage to mitochondria.

How can we translate the observations of Damiani and
colleagues (16) to the management of critically ill patients with
reverse triggering? Despite the previously mentioned limitations,
this study sheds light on the potential harm of high inspiratory
muscle efforts on diaphragm function, and hence it is important
to, first, identify the presence of reverse triggering, particularly
that which results in strong inspiratory muscle efforts, and

Editorials

second, to assess whether modifications of usual supportive
treatments (sedatives, opiates, and ventilator settings) change the
frequency of reverse triggering. Automated detection of reverse
triggering from airway pressure and flow can aid in the care of
critically ill patients on mechanical ventilation (19) with the goal
of eliminating breath stacking. However, further studies must be
performed to determine whether the elimination of reverse
triggering associated with high inspiratory muscle effort in
critically ill patients with acute respiratory distress syndrome will
reduce the duration of mechanical ventilation, length of stay in
the ICU, and mortality. [
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8 FocuSSced on the Target in Systemic Sclerosis—Interstitial Lung

Disease
Another Arrow in the Quiver?

Systemic sclerosis (SSc) is a challenging clinical entity associated with
significant morbidity and mortality (1). SSc is characterized by
endothelial dysfunction with small vessel vasculopathy, which leads to
inflammation and fibrosis of the skin and internal organs, including
the lungs (2). Pulmonary manifestations of SSc (pulmonary
hypertension and interstitial lung disease [ILD]) account for the
majority of deaths in these patients, and ILD alone accounts for a
third of the mortality observed in one study of patients with SSc (3).
SSc-ILD is a heterogenous disorder with unpredictable clinical
course, but in many cases, there is a progressive phenotype typified by
a decline in lung function, worsening quality of life, and death (4).
Previous randomized controlled therapeutic trials have
demonstrated preservation and improvement of lung function in
patients with SSc-ILD (Figure 1) (5-8). Briefly, in 2006,
cyclophosphamide was shown to improve FVC compared with
placebo in the initial SLS (Scleroderma Lung Study) (7). In SLSII,
mycophenolate mofetil (MMF) was compared with
cyclophosphamide, and the study demonstrated improvement in
FVC during the intervention period with both therapies but a
more favorable toxicity profile in those randomized to MMF (6).
In the SENSCIS (Safety and Efficacy of Nintedanib in Systemic
Sclerosis) trial, nintedanib, an antifibrotic medication approved
for the treatment of idiopathic pulmonary fibrosis, was found to
slow the decline in FVC over time compared with placebo in a
study that allowed for background immunosuppression (5).
More recently, the focuSSced trial investigated tocilizumb in SSc,
including those with ILD (8). In this 48-week, placebo-
controlled, randomized, double-blind study, the primary
endpoint (delta in modified Rodnan skin fibrosis score [mRSS])
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was not significant between treatment and placebo groups (8).
However, a prespecified secondary endpoint analysis revealed
preservation in FVC% predicted with tocilizumab compared with
placebo at 48 weeks (—0.4 vs. —4.6 change in FVC% predicted),
findings that were consistent among patients with SSc with
radiologic evidence of ILD (8).

In this issue of the Journal, Khanna and colleagues (pp.
674-684) report the results of the 48-week open-label extension
period of the focuSSced trial (9). Patients randomized to placebo
(PBO) in the initial 48 weeks were transitioned to treatment with
tocilizumab (TCZ) for 48 weeks (PBO-TCZ arm), and those
patients on tocilizumab in the initial treatment arm continued
therapy (Cont-TCZ arm, total of 96 weeks for treatment arm).
Patients with SSc were given weekly subcutaneous injections of
tocilizumab (162 mg), and the long-term safety and efficacy of
tocilizumab was assessed.

From the original randomized cohort, 82/105 from the placebo
arm and 85/105 from treatment arm continued into the open-label
extension. Of these patients who entered the extension period, 10
withdrew for adverse effects (1 =4) or patient decision (1= 6).
Importantly, of the subjects who entered the open-label extension, the
majority (114 out of 181) had ILD on their baseline high-resolution
computed tomography scans. Both arms of the open-label extension
period had similar preservation of FVC% predicted as that seen in the
treatment arm of the parent randomized controlled trial (RCT)
among those with SSc, and the findings were consistent among those
with SSc-ILD (PBO-TCZ: 0.9 [—0.8, 2.7], Cont-TCZ: —0.4 ml [—2.3,
1.3]; for reference, the results from the parent RCT at 48 weeks were
TCZ: —0.4 versus PBO: —4.6 [FVC% predicted at 48 weeks]). These
findings support the durability of the effect of tocilizumab on FVC
decline in SSc-ILD. The open-label extension period reported similar
adverse effects as those observed in the parent RCT and were
consistent with the known safety profile of tocilizumab.

The role of an open-label extension trial design is threefold.
Primarily, this trial design allows patients randomized to placebo
access to the study drug after the initial randomization period ends.
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