
UC San Diego
Technical Reports

Title
DGMonitor: a Performance Monitoring Tool for Sandbox-based Desktop Grid 
Platforms

Permalink
https://escholarship.org/uc/item/93x1x3m8

Authors
Cicotti, Pietro
Taufer, Michela
Chien, Andrew

Publication Date
2003-10-24
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/93x1x3m8
https://escholarship.org
http://www.cdlib.org/


DGMonitor: a Performance Monitoring Tool for

Sandbox-based Desktop Grid Platforms

P. Cicotti1;2, M. Taufer1, A. Chien1,
1 Department of CSE 2 Dipartimento di Informatica

University of California, San Diego Universita di Bologna, Italy

taufer, achien@cs.ucsd.edu cicotti@cs.unibo.it

Abstract

Accurate and continuous monitoring and profiling are important issues of performance

tuning and scheduling optimization. In desktop grid systems based on sandboxing techniques

these issues are particularly challenging because (1) subjobs inside sandboxes are executed

in a virtual environment and (2) sandboxes are usually reset to an initial (empty) state at each

subjob termination.

To address this problem, we present in this paper DGMonitor, a monitoring tool to build

a global, accurate and continuous view of real resource utilization for desktop grids based on

sandboxing techniques. Our monitoring tool provides unobtrusive and reliable performance

measures, uses a simple performance data model and is easy to use. Our work demonstrates

that DGMonitor can easily take over the monitoring of large desktop grids (up to 12000 work-

ers) maintaining low load in terms of resource consumption due to the monitoring process (less

than 0.1%) on desktop PCs.

Although we use DGMonitor with the Entropia DGrid platform, it can be easily integrated

in other desktop grids and its data can be used as an information source for existing informa-

tion services for performance tuning and scheduling optimization.

Keywords: Performance monitoring and profiling, desktop grids, sandboxing techniques,

distributed computing.

1



1 Introduction

A wide range of high-performance computing applications are ported to widely distributed com-

pute environments like desktop grid systems. Desktop grid computing, exploiting unused resources

in the Enterprise and across the Internet, can deliver massive compute power for the study of com-

plex and compute-demanding problems in a variety of different scientific fields.

System performance on desktop grids is still an open issue. To address efficient usage of net-

worked resources (distributed compute and communication resources) and shorten turn-around

times of distributed applications, new information services for performance tuning and scheduling

optimization are under investigation [10, 11, 7]. In general, for distributed systems, information

services need to know and use the resource properties in a continuous, global view rather than

in an isolated way. Moreover, any possible optimization requires knowledge of the real resource

availability.

Accurate monitoring and profiling tools should provide information services with an unobtrusive,

continuous and application independent overview of the real performance behavior for a large

number of monitored nodes. In desktop grid environments this is challenging because the desktop

PCs frequently leave and join the desktop grid system making it difficult to locate all the monitored

nodes at any time. Monitoring and profiling desktop grid systems based on sandboxing techniques

is even more challenging because the compute environment for such systems is virtual (and so is

the information about the resource availability). Moreover, sandboxes are usually reset to an initial

(empty) state at each subjob termination, making it impossible to do any continuous monitoring

from inside the sandbox [4]. The numerous advantages of using desktop grid systems based on

sandboxing techniques in terms of security and unobtrusiveness makes these systems more and

more attractive. Besides security and unobtrusiveness, the interest for accurate system performance

measures is also raising in importance, but still no specific performance tool for sandbox-based

desktop grids has been developed yet.

As our contribution to the performance issue raised above, we present in this paper the architec-

ture of DGMonitor, a monitoring tool to build a global, consistent and complete view of resource

utilization for desktop grids based on sandboxing techniques. Our monitoring tool uses a simple

performance data model, provides unobtrusive and reliable performance measures and is easy to

use. To evaluate the quality of our DGMonitor, we address and analyze three critical issues of

monitoring tools on distributed systems using Entropia DCGrid as a representative of desktop grid

systems based on sandboxing techniques. First, we study the scalability of DGMonitor in terms

of number of monitored desktop grid PCs and show how our tool can easily take over the moni-

toring of large desktop grids. Second, we quantify the overhead in terms of resource consumption

on desktop PCs due to the monitoring process. Third, we look at both the portability and inter-

operability of the DGMonitor components addressing possible integration of our tool in existing

information services.

The rest of the paper is organized as follows: In Section 2 we present the features and the benefits

of sandboxing techniques and introduce Entropia DCGrid as a representative of desktop grid sys-

tems based on such techniques. In Section 3, we describe the architecture of DGMonitor. Section 4

addresses respectively system metrics, measuring techniques and communication policies used in

DGMonitor for efficient resource monitoring. Section 5 describes how we guarantee unobtrusive-

ness, Section 6 addresses the system monitoring control and Section 7 shows how to reconstruct

global performance view from the local, collected data. In Section 8, we measure scalability and

overhead of our monitoring tool while in Section 9 we address its portability and interoperability.

In the end, in Section 10 we look at some relevant related work and conclude.

2



2 Desktop Grid Systems

Desktop grids are an emerging category of systems for distributed computing based on desktop

PCs. In general, a central scheduling system is used to submit subjobs to the grid. The distributed

computation takes place on PCs that dynamically join and leave the grid delivering computational

power for limited amounts of time. Among the requirements of these systems, security and unob-

trusiveness are fundamental keys in guaranteeing desktop grid users that their processed informa-

tion is safe and providers of the PCs that no malicious action is being taken against their system

integrity and data privacy.

2.1 Sandboxing Techniques

Security mechanisms in desktop grids move away from complex authentication mechanisms to

self-defense mechanisms based on sandboxing techniques. Sandboxes are virtual, homogeneous

environments on top of real, heterogeneous distributed environments. Such a virtual environment

acts as an intermediate layer between the subjobs and the operating system increasing the portabil-

ity of applications, improving security and providing flexible resource control policies. Running

applications inside sandboxes can enforce both qualitative and quantitative control of the desktop

resources [3] making not possible for a monitoring tool to measure real system performance from

inside such a virtual compute environment. Sandboxes are based on different techniques which

range from interceptions of system calls (e.g. using ptrace on Unix/Linux or dll injection in Win-

dows) to resource control mechanisms at the OS level. Sandbox systems like Subterfuge [2] and

User Model Linux [9] are ptrace-based models, Linux Security Module [5] is based on kernel-

based models.

2.2 Entropia DCGrid

Entropia DCGrid [4] is a representative of Enterprise desktop grid systems based on sandboxing

techniques. Entropia DCGrid enables users to run any Win32 application without modifications

or special system support. We have chosen Entropia DCGrid because of its reliable and robust

sandbox implementation. The current version of Entropia DCGrid supports sandboxes on top of

Windows ME/XP/2000/9x.

On the Entropia DCGrid platform, applications are submitted to a job submitter whose subjobs are

distributed to Entropia clients by a scheduling master. Once distributed, the application subjobs

run on loosely-coupled workers inside sandboxes. The sandbox denies unauthorized access to the

underlying systems, ensuring that no system call can inappropriately access the host desktop PC.

It acts as a virtual, homogeneous compute environment on top of a real, heterogeneous distributed

environment helping the portability of applications and improving the security for both the host

machine and the distributed subjobs. At the end of any application subjob, the content of the

sandbox is reset to an initial (empty) state: the results are sent back to the scheduling master and

the remaining files are canceled leaving the worker empty and ready to proceed a new subjob. In

Entropia DCGrid, it is allowed to open pinholes for communication with other sandboxes (peer-

to-peer communication) and for reaching the local file system. This aspect does not compromise

the security of the whole grid system since the machines running DCGrid clients are located inside

the same administrative domain and behind firewalls. Each Entropia DCGrid client creates one

sandbox. The user can launch two processes inside the same sandbox and can also specify that one

process can run without waiting for the other process to terminate.

3



3 Architecture of DGMonitor

Unobtrusiveness and the distributed nature of the grid have led us to design and implement our

DGMonitor according to a master-worker scheme. The master acts as a registration authority and

controls the overall worker activity of the system. To keep the monitoring of networked resources

as unobtrusive as possible, we delegate the collection, the processing and the storage of perfor-

mance data to the master. Figure 1 shows the architecture of our lightweight monitoring tool and

its processes.

application

mLauncher

mStarter

resources mDaemon mController

TextDisplay

FileStorage

DBStorage

mCollector

monitored 
worker

data

control

monitoring
master

observers 

pinhole

sandboxchannel
Entropia

Figure 1: The architecture of the DGMonitor.

We expect the monitored system to change as the desktop grid changes (e.g. new PCs are added or

removed). Therefore, it is important that the set of monitored workers is not decided a priori but is

continuously updated at run-time. To get such a dynamic monitoring approach without requiring

any direct authorized access to the worker, we spread the monitoring processes among the PCs

of the desktop grid system using the Entropia channel. We do not know a priori which PCs will

take part in the distributed computation, but once they have received an Entropia client and start

running subjobs, they become visible to our DGMonitor. This is achieved by sending tasks to the

workers containing both an application subjob and the additional monitoring processes.

Since the sandbox is a virtual environment, the monitoring process has to be located outside the

sandbox to collect real resource information. It also has to completely break any connection with

the sandbox to survive the termination of the application subjob. The sandbox initial empty state

is indeed reset once the application subjob has terminated, preventing the monitoring process to

continue the monitoring activity if located inside the virtual environment.

We use a chain of processes (i.e. mLauncher, mStarter and mDaemon) to break all connec-

tions with the sandbox and be able to provide a real, continuous stream of performance information

to the monitoring master. The mLauncher process is started inside the sandbox. It opens a pin-

hole1 through the sandbox, creates the mStarter process outside the virtual environment and

waits for its termination. The mStarter process creates the mDaemon process as a stand-alone

process and dies immediately. Even if running outside the sandbox, the mStarter process is still

intercepted by the virtual environment and if alive at subjob termination, it is detected as an errant

child blocking the reset to the initial empty state. The mDaemon process is the real monitoring

1Pinholes are set through a task configuration file

4



process which samples information about the system resource usage. Before starting its monitor-

ing activity, every mDaemon checks the possible existence of a previous instance to avoid duplex

mDaemon processes on a worker. When the mDaemon process is started, any stdout and stderr

pipes are closed so that any connection with the sandbox is broken.

We use disjoint control and data channels between workers and the monitoring master. Control

packets are sent to and from the mController process through the control channel and carry

information to control the execution state of the mDaemon processes once the connection with

the sandbox is broken. The data channel is used to send resource samples from the mDaemon to

mCollector, as shown in Figure 1. DGMonitor uses a relational approach for the data model

representation and can store the performance data into relational databases, files or print it to

standard output. Performance data collected by the mCollector process is forwarded to a set

of data observers defined in the configuration file of the process (i.e. TextDisplay, DBStorage,

FileStorage). The chosen observer design pattern makes our monitoring tool highly flexible: so

far, the terminal printer implementation (TextDisplay) has been used for debugging and testing

purposes while for extensive data collection we have developed an implementation for connectivity

with an MySQL database (DBStorage) and for writing to files (FileStorage).

4 Efficient Monitoring

4.1 System Metrics

On desktop grid systems, which are non-dedicated systems, the knowledge of dynamic resource

properties is vital for improving application performance. DGMonitor is able to capture both

dynamic and static properties of the networked resources (i.e. compute and communication re-

sources).

In our approach, we look at each desktop PC as a set of networked resources. The resources under

investigation are: CPU, memory, storage devices and network.

For each networked resource, we have identified a limited set of representative metrics capable of

capturing the dynamic resource properties. Table 1 reports on the networked resources and the

related set of metrics used by DGMonitor. Each metric corresponds to a performance counter that

Resources Measured metrics

CPU idle time, user time, system time

number of processes,

process queue length

Memory available, cache, cache faults,

page faults, page transferred

Storage devices transfer time, transfer/sec,

transfer queue length, Bytes/transfer

Network nic bandwidth, out queue length,

packets transferred, packet dropped

Table 1: Networked resources and related metrics.

is added to a collective query: at specified frequencies, the system is queried and the metrics are

sampled. The data packets used to transmit this information do not exceed 128 Bytes in size.

5



4.2 Monitoring and Measuring Sensitivity

Dynamic resource properties change at run-time in varying degrees: depending on the use that an

application makes of the resources, some resource properties may be updated more frequently than

others. Most applications on desktop grid systems are scientific applications which run during long

turn-around times ranging from several minutes to hours or days. Medium-grain (seconds/minutes)

and coarse-grain (tens of minutes) measurements of the networked resources give reasonable esti-

mates of system behavior.

Our medium-grain monitoring policy is based on both time- and value thresholds. These time-

(δt and ∆t) and value thresholds (a vector of resource thresholds δ~r, one for each of the n metrics

monitored reported in Table 1) are set at the beginning of the monitoring process on each worker

and can be changed at run-time. Every δt time, the mDaemon process samples the values of the n

metrics,~r(t), and sends them to the mCollector process if the following is true:

9ri(t) 2~r(t) : jri(t)� ri(t �δt)j> dri:

To facilitate the accurate rebuilding of performance traces of the networked resources, the mDae-

mon process samples the values of the metrics and performs a forced send of the whole metrics

vector~r every ∆t time.

4.3 Data Collection

For accurate real-time performance data of a large desktop grid system, frequent and fast moni-

toring traffic is required. Such kind of transmissions may introduce relevant communication intru-

sions. To obtain low communication intrusions, we use the UDP/IP protocol for transmission of

performance monitoring data from the mDaemon process to the mCollector process.

UDP/IP is a fast, but unreliable transmission protocol (packets may get lost). No attempt to re-

transmit lost messages is made and regression models might be used at the data storage level to

rebuild lost information [18]. Because UDP/IP does not need to maintain connection states of the

monitoring processes, it supports a larger number of monitored workers.

A data message comprises the worker ID assigned during the registration, the timestamp at which

the samples have been taken and the several metrics describing the resource properties. The worker

ID allows to simplify the storage procedure of the data: no sophisticated client recognition mech-

anisms based on the sender IP are required both at the mCollector and data storage levels.

5 Ensuring Self-Cleaning

To survive the sandbox reset at the end of any subjob and to sample real resource values, we allocate

the monitoring process, mDaemon, outside the sandbox, thereby violating the unobtrusiveness

principle of the sandbox. To guarantee unobtrusiveness, the mDaemon process is time-bound:

DGMonitor uses the concept of a ”lease” or amount of time in which a given mDaemon will be

valid for monitoring the resources.

The first time a worker joins the pool of monitored desktop PCs and receives an application subjob,

the starting mDaemon sends a registration request to the mController. If a confirmation for

the initial registration is not received by the mDaemon process, it terminates. At regular intervals

∆T , mDaemon asks for a renewal of the monitoring lease. In case the renewal is not successful,

6



the lease expires and mDaemon terminates. In case of network failure or a failure of the mCon-

troller process, the mDaemon processes do not succeed in renewing the lease and terminate.

In case of worker failure, no attempt to resume the mDaemon is done by the monitoring master.

The choice of the most appropriate ∆T is a critical task that should be based on three main factors:

the system scalability, the local overhead due to the renewal of the lease and the level of unobtru-

siveness desired. A small ∆T (e.g. one second) means frequent renewal by a large set of workers

and may imply a high load on the mController process. It also means more frequent use of

resources on the worker and the consequent increase of the local overhead. On the other hand,

minimizing the lease duration through a small ∆T implies a more responsive mDaemon termina-

tion to any renewal failure. In Section 8 we will look at how much a small ∆T affects both the

scalability and the local overhead.

6 System Monitoring Control

A separate control channel is used to control the behavior of the mDaemon processes, to update

the time- and value thresholds and to register a new lease and keep the registration updated. The

loss of a message on this channel might compromise the monitoring process e.g. unexpected

termination of a daemon or excessive client intrusion. To assure reliable control communication

between master and workers, DGMonitor uses the TCP/IP protocol. Control messages are sent in

both directions through the TCP/IP channel.

Master control messages are sent from the mController to the mDaemon processes to control

the monitoring, i.e. to start or resume the monitoring activities, to stop or suspend the monitoring

or to kill a monitoring process on a single worker or a group of workers. An update of the time-

and value thresholds as well as of the lease duration can also be sent at run-time. Table 2 shows

the list of the master control messages and the related action.

Message Action

STOP stop an active mDaemon

START restart a frozen mDaemon

KILL kill an active mDaemon

UPDATE update the time and value

thresholds (δt, ∆t, ∆T , ∆r)

Table 2: Master control messages and the related action.

Worker control messages are sent from the mDaemon to the mController to register a new

worker and at regular intervals to obtain a renewal of the lease. Figure 2 shows the exchange

of control messages during a registration. The mDaemon sends a control message containing

worker info − local time − proposed thresholds

global time − assigned thresholds

mDaemon mCollector

Figure 2: Exchange of control messages between monitoring master and monitored worker during

a new registration.

7



the static properties of the networked resources available. It also sends its local time and a set of

proposed time- and value thresholds (δt, ∆t, ∆T , ∆r) based on the static properties of the networked

resources. The mController confirms the registration providing the mDaemon with a worker

ID, its global time and the assigned time- and value thresholds. The global time provided by the

monitoring master to the monitored worker is described in detail in the next section.

Master control messages are not frequent and therefore the related TCP/IP connections do not

affect the global system load. On the contrary, registrations or lease renewals might affect the

network load for large amounts of workers and small ∆T and in the worst case might be responsible

for loss of packets in the data channel.

7 Reconstructing Performance from Collected Data

The monitoring master has to be able to patch together the performance data of the workers in

a consistent manner. To address this issue, a consistent notion of global time has to be main-

tained among the several PCs of the desktop grid system. To overcome this problem, a monitoring

tool has to introduce some mechanism of synchronization during the performance data sampling.

Mechanisms based on ordered events such as barriers for synchronizing the computation and the

communication may change the run-time behavior of the monitored application introducing idle

times and therefore, change scheduling and execution of the processes.

To cope with the problem of maintaining a global notion of time and at the same time reducing

scheduling and execution intrusions, we adopt a notion of global time using synchronizations based

on Christian’s algorithm [6]. A precise synchronization between master and workers takes place at

the registration and at each lease renewal: during these operations the master provides the workers

with its local time to which it has added a rough estimation of the time needed for its communica-

tion. Figure 3 shows the re-synchronization done at every lease renewal. The mDaemon encloses

into the request for the lease renewal its timestamp t0. The request is received by the mCon-

troller at the time t1. The mController sends back a confirmation of the lease renewal at

time t2. Both t2 and t̄0 = t0+(t2 � t1) are sent back in the confirmation message. At time t3, the

worker receives the renewal and restarts the performance sampling adopting a new global time,

t = t2+
t3�t̄0

2
. Timestamps of the sample times are delivered in the performance packets containing

the sampled performance information.

8 System Evaluation

8.1 Scalability Study

A rapid growth in the number of desktop PCs might imply a significant growth in the number of

samples of the resource properties and a consequent increase in terms of overhead at the monitoring

master level. To identify when the master becomes a bottleneck to the scalability of the whole

system, we measure:

� the maximal number of mDaemons collecting data on workers that the mCollector can

serve in real time without losing data packets containing resource properties,

� the maximal number of renewals that the mController can serve in real time without

losing any request from the workers.

8



worker master

t0=t0+(t2−t1)t2, t2

t3

time time

t0t0

t1

global time t 

2
t= t2 + (t3 − t0)

Figure 3: Time synchronization between the monitoring master and a monitored worker.

Scalability of the mCollector

To measure the maximal number of mDaemons that the mCollector can serve without losing

data packets, we use a multi-threaded packet generator to emulate large numbers of monitored

workers sending their metrics samples together. We use real-size data packets of 128 Bytes con-

taining the performance metrics listed in Table 1. We consider two different commodity mas-

ter configurations: a slow master with 400MHz CPU speed, 256MBytes memory and 8833 IDE

disk (slow master) versus a faster master with 2GHz CPU speed, 512MB and ATA-33 IDE disk

(fast master). We also consider three different kinds of observers: an observer which directly

writes the data in a local file (FileStorage), an observer which uses a MySQL database located

on the monitoring master (DBStorage loc) and an observer which uses a MySQL database on a

remote machine (DBStorage rem). We repeat each monitoring test several times, each time lasting

more than five minutes. The amount of data packets sent from the workers to the master ranges

from 1000 data packets to 15000 data packets per second.

Figure 4 shows the number of received packets (y-axis) versus sent packets (x-axis) for both the

slow and the fast master’s configuration when the data is locally saved in a file (FileStorage). The

master with faster and larger system resources (i.e. CPU, memory, HD) is able to serve a larger

number of received packets. The maximum number of packets simultaneously served without any

loss is 12000 using a fast master and 4000 using a slow master.

Figure 5 shows the amount of received packets (y-axis) over sent packets (x-axis) using the fast

master configuration when the performance data is saved in a local database (DBStorage loc)

and remote database (DBStorage rem). The remote database is located on a commodity PC with

1.8GHz CPU speed and 512MBytes RAM. The PC is connected to the monitoring network through

a Fast Ethernet connection on a Local Area Network.

Saving performance data in a local database gives worse performance in terms of maximum amount

of packets stored without any loss than saving this data in a remote database. This is because the

local database steals about 30% of the CPU cycles from the master, saturating it in a much faster

time. Figure 5 shows that we receive all the packets up to 1200/sec but we lose more than 14% of

9



Figure 4: Rate of collected data for different master hardware configurations when the data is

directly saved in a local file.

Figure 5: Rate of collected data for different database locations (local and remote) with a fast

monitoring master.

the received packets with just 3000 packets/second. We have found that such a loss increases to

68% when the number of sent packets are 6000/second.

On the other hand, the storage on the remote database provides better performance in terms of

maximum amount of packets stored without any loss. However, for more than 600 packets/sec,

such a storage on the remote database is no longer able to take place at run-time because it starts

to introduce delays between when the data leaves the mCollector and when it is stored into the

10



database. This is mainly due to the congestion control: as a consequence packets are cached on

the master and slowly sent to the database introducing a thrashing phenomena. If the UDP com-

munication between mDaemon and mCollector allows us to avoid TCP/IP congestion control

problems during the collection of the resource metrics, once we want to store this data on a remote

database, we have to face such a problem. Moreover, the creation of TCP/IP packets steals CPU

cycles additionally affecting the transmission delay. Such a delay increases significantly with the

number of packets sent to the database forcing us to reduce the duration of the tests in order to

keep the total delay under control and allow the database to store the data in a short time. This is

not the case for the local database in which all the data is stored at run-time even for more than 600

packets/second up to 6000 packets/second. By running shorter monitoring tests (ranging between

15 and 30 seconds), we observe that we are able to repeat the same performance (in terms of max-

imum packets received per second without losing any packet) that we have reached when writing

the same data on local file.

Scalability of the mController

To measure the maximum rate of renewals that the mController can serve, we simulate a large

number of workers trying to renew the lease by using a multi-threaded generator. In a first set of

tests, the generator is located on one machine and then to increase the load it is replicated on two

and three machines. For every renewal a TCP/IP connection is open and a round trip message is

exchanged between the simulated mDaemon and the mController.

We look at the two different master configurations used in the previous experiment: a monitoring

master with 400MHz CPU speed and 256MB memory previously called slow master and a mon-

itoring master with 2GHz CPU speed and 512MB called fast master. Table 3 shows the maximal

number of requests served per second for the two configurations. When we try to generate higher

fast master slow master

renewal/sec 1440 503

Table 3: Maximal number of renewal per second served by the mController process when

running on different master configurations.

loads, we observe that the mController process is no longer able to serve more requests and

consequently the multi-threaded generator, by adapting its speed, is not able to exceed the limits

reported in the table.

Result Analysis and Discussion

Having a TCP/IP connected remote database is a viable solution only if the average number of

packets per second expected to be served instantaneously is of the order of a few hundred. A

local database can instead serve an expected load of about a thousand packets per second which in

our case is the preferable solution. Every simulated load reported in this paper can be considered

the result of either a small number of workers (of the order of hundreds of workers) forced to

send monitoring packets every second or a larger number (of the order of thousands of workers)

running an application which is characterized by slow system changes, so that the performance

11



data transmission happens less frequently (of the order of seconds or even minutes). A lease rate

limit found arises from the use of the TCP/IP protocol but is not as restrictive as the limits found

for the mCollector since a renewal of the lease every second is not strictly required.

By looking at the results reported above, we can conclude that any technology improvement of the

monitoring master (i.e. faster CPU, larger memory, faster disk access) can significantly affect the

performance of both the mCollector and mController processes. Moreover, the monitoring

master and the database server perform better if located on different, dedicated machines to assure

higher scalability, but still the database host remains the limiting factor. Also architecture improve-

ments like multiple monitoring masters on which mCollector and mController processes

are built in hierarchical structures can significantly increase the number of workers served. These

issues are currently under investigation.

8.2 Local Overhead

To study the worker overhead of DGMonitor, we compare the CPU, memory and network usage

rate of the mDaemon process versus the total usage rate for the same resources using the Perfor-

mance Logs and Alerts. The resource usage sampled every second is piped into a log file. The

measurements have shown that the CPU and the memory usage of mDaemon remain almost in-

significant. The network utilization remains under 0.1% even in a condition of maximal load when

the metrics are sampled and sent every second and the lease renewal also takes place every second

(δt = ∆t = 1∆T = 1).

9 System Integration

9.1 System Portability

For our DGMonitor, multi-threading, synchronization constructs and socket communication have

been designed to be portable: all these parts run not only on Win32 machines and Entropia DCGrid

but also on other operating systems based on pthreads like Linux/Unix machines and other desktop

grid systems like XtremWeb. On the master side, all the monitoring processes are portable. On

the worker side, we are currently developing a /proc-based mDaemon and we plan to insert our

DGMonitor into an XtremWeb platform with workers hosted on both Win32 and Linux machines.

Once this extension is finished, we plan to extensively use DGMonitor to monitor large hybrid

desktop systems composed of XtremWeb workers and Entropia workers.

9.2 System Interoperability

The data scheme currently adopted in our MySQL database is simple and is used for the collection

of all the metrics listed in Table 1. Different implementations and database schemes can easily be

implemented to collect sets of metrics to filter and observe specific events. Moreover, an ad-hoc ob-

server implementation can be a direct interface to other specific services. Indeed, our DGMonitor

can easily interoperate with existing services, e.g. resource location services [12, 17] or forecast-

ing services [19]. It can also be combined with the Round Robin Database Tool [15, 13] and

Web-based interfaces to maintain and visualize performance data. To locate networked resources

at run-time, DGMonitor with its relational database can be used as a back-end for grid information

services like RGIS [10] and R-GMA [11].

12



10 Related Work

To our knowledge, no existing monitoring tools support desktop grids based on sandboxes as does

our DGMonitor. Most of the existing monitoring tools (e.g. SVPablo [8], Paradyn [16]) monitor

the whole distributed system at the application level isolating software parts which are particularly

resource demanding. Therefore, they normally require some code re-engineering, re-compiling

or re-linking and some embedded instrumentation at the operating system or middleware level.

Monitoring tools like NWS [19], Ganglia [14] or dproc [1] require direct access to Linux/Unix

machines. DGMonitor does not require direct authorized access and can run on both Windows and

Linux/Unix machines.

Monitoring tools like dproc maintain a hierarchical structure of the distributed system and the

performance data. To extract performance data from the entire system the user is required to know

the hierarchical topology of the monitored system and a hierarchical query language is required.

Any change of the hierarchical topology may affect the reconstruction of the global performance

view. As for RGIS [10] and R-GMA [11], DGMonitor has an easy data model of the networked

resources based on a relational data model rather than hierarchical data model. RGIS monitors

mainly static resource properties while R-GMA looks at the dynamic properties. DGMonitor is

able to capture both dynamic and static properties of the networked resources.

11 Conclusion

Accurate, continuous system monitoring and profiling allow us to retrieve the data necessary to

information services for performance tuning and scheduling optimization. In this paper we have

presented DGMonitor, a monitoring tool easily adaptable to different desktop grids and we have

proven its applicability on the Entropia DCGrid platform as a representative of sandbox-based

desktop grids. The implementation of DGMonitor is unobtrusive thanks to its minimal resource

usage on the monitored workers and its efficient monitoring process that keeps the performance

information updated periodically and at the occurrence of relevant system changes. New desktop

PCs are added to the monitored system as soon as they receive a subjob and they are removed when

the lease cannot be renewed.

Our experiments have shown that DGMonitor can monitor up to 12000 workers in real time without

losing any performance packets when writing the monitoring data in a file. When the monitoring

master writes the performance data in a local database and the highest accuracy for data collection

(every second) is used, DGMonitor can simultaneously collect performance packets from up to

1200 workers without any loss of data. Larger numbers of workers can be monitored in real time
under looser performance collection configurations (of the order of seconds or even minutes per

worker), allowing us to claim a good scalability of our monitoring tool. We are currently extending

DGMonitor to guarantee data privacy by adopting an encryption mechanism (i.e. private and public

keys). Last but not least, DGMonitor can easily be integrated into different existing information

services to provide performance data and create the base for performance tuning and scheduling

optimization playing a fundamental role in complex desktop grid systems.

References

[1] S. Agarwala, C. Poellabauer, J. Kong, K. Schwan, and M. Wolf. Resource-Aware Stream Manage-

ment with the Customizable dproc Distributed Monitoring Mechanisms. In Proc. of the 12th IEEE

13



International Symposium on High Performance Distributed Computing (HPDC-12), Seattle, WA, Jun

2003.

[2] M. Callman and M. Pavel. http://subterfugue.org/.

[3] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level Resource-constrained Sandboxing. In 4th

USENIX Windows Systems Symposium (WSS 2000), Seattle, Aug 2000.

[4] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture and Performance of an Enterprise

Desktop Grid System. Journal of Parallel Distributed Computing, 2003.

[5] C. Cowan and D. Wagner. http://lsm.immunix.org/.

[6] F. Cristian and C. Fetzer. The Timed Asynchronous Distributed System Model. IEEE Transactions on

Parallel and Distributed Systems, 10(6):642–??, 1999.

[7] H. Dail, F. Berman, and H. Casanova. A Decoupled Scheduling Approach for Grid Application De-

velopment Environments. Journal of Parallel and Distributed Computing, 63(5):505–524, 2003.

[8] L. De Rose, Y. Zhang, and D.A. Reed. SvPablo: A Multi-language Performance Analysis System.

Lecture Notes in Computer Science, 1469:352–??, 1998.

[9] J. Dike. A User Mode Port of the Linux Kernel. In Proc. of the 4th Annual Linux Showcase, Atlanta,

GA, 2000.

[10] P. Dinda and D. Lu. Nondeterministic Queries in a Relational Grid Information Service. In Proc. of

Supercomputing 2003 (SC 2003), Phoenix, AZ, Nov 2003.

[11] S. Fisher. Relational Model for Information and Monitoring. Technical report, Tech. Rep. Informa-

tional Draft GWD-GP-7-1, Grid Forum, 2001.

[12] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl J. Supercomputer

Applications, 11(2):115–128, 1997.

[13] M. Karaul. Metacomputing and Resource Allocation on the World Wide Web. PhD thesis, New York

University, May 1998.

[14] M. Massie, B. Chun, and D. Culler. The Ganglia Distributed Monitoring System: Design, Implemen-

tation, and Experience. 2003.

[15] D. A. Menasce and V. Almeida. Capacity Planning for Web Services. Prentice Hall PTR, 2002.

[16] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R. B. Irvin, K.L. Karavanic, K. Kun-

chithapadam, and T. Newhall. The paradyn parallel performance measurement tool. IEEE Computer,

28(11):37–46, 1995.

[17] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Management for High

Throughput Computing. In Proc. of the Seventh IEEE International Symposium on High Performance

Distributed Computing (HPDC-7), Chicago, IL, Kul 1998.

[18] M. Taufer. Inverting Middleware: Performance Analysis of Layered Application Codes in High Perfor-

mance Distributed Computing. PhD thesis, Laboratory for Computer Systems, Department of Com-

puter Science, Swiss Federal Institute of Technology (ETH) Zurich, Oct 2002.

[19] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource Perfor-

mance Forecasting Service for Metacomputing. Journal of Future Generation Computing Systems,

15(5-6):757–768, Oct 1999.

14




