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The effect of stimulus presentation time on bias: A diffusion-model based analysis
Jeremy Ngo (jeremy.ngo@unsw.edu.au),

Christopher Donkin (christopher.donkin@gmail.com)
School of Psychology, UNSW,
Sydney, NSW 2052, Australia

Abstract

There are two main types of bias in simple decision tasks,
response bias and stimulus bias. Response bias is a starting
level of evidence in favor of a biased response, whereas stim-
ulus bias is the evaluation of stimuli in favor of a biased re-
sponse. Previous research typically dissociates between these
two types of bias. Some studies suggest that it can be diffi-
cult to induce response bias without stimulus bias (Ratcliff &
McKoon, 2008; van Ravenzwaaij, Mulder, Tuerlinckx, & Wa-
genmakers, 2012). We used a two-alternative forced-choice
brightness discrimination task in which we manipulated the
presentation length of the stimuli. We analyzed the data with
a hierarchical diffusion model. The results show an overall re-
sponse bias, as well as stimulus bias that increases as stimulus
presentation time decreases. We argue that the results suggest
a need to revise how stimulus bias is conceptualized through
the drift rate parameter of the diffusion model.

Keywords: diffusion model; response bias; stimulus bias;
prior bias; dynamic bias; drift criterion

Introduction
Decision bias is an important area of research because it re-
veals information about the underlying processes that drive
decision making, highlighting how different contexts and
goals can influence decision-making behaviour in different
ways (White & Poldrack, 2014). Simple decision tasks,
where individuals are asked multiple choice questions with
only two possible responses, are fairly common in the field of
decision making. Research has suggested that there are two
distinct types of bias in simple decision tasks: response bias
and stimulus bias, also known as prior and dynamic bias, re-
spectively (van Ravenzwaaij et al., 2012; White & Poldrack,
2014). Response bias is a preparedness to make a certain re-
sponse, whereas stimulus bias is an asymmetry in how two
stimuli of equal value/magnitude but opposing valences are
processed as evidence for their respective responses.

Decision making can be thought of as sampling informa-
tion from your environment to build support for a response
over time. There have been a number of response time mod-
els that have been proposed to formalize this concept. One
popular model is the diffusion model (Ratcliff, 1978; Ratcliff
& Rouder, 1998; Ratcliff, 2002). To exemplify this model,
suppose an observer is tasked with categorizing the stimu-
lus presented in Figure 1a as dark or bright, depending on
whether it contains more black or white circles. The dif-
fusion model keeps track of a single quantity of evidence,
which reflects the relative amount of accumulated evidence
for one choice over the other. This means that in this exam-
ple, evidence for a ‘dark’ response counts as evidence against
a ‘bright’ response, illustrated in Figure 1b. Once evidence
for one response reaches a boundary, a decision is made.

The basic diffusion model is defined by 4 main parame-
ters that are attributed to different cognitive components that
make up the speed and accuracy involved in decision making.
These parameters consist of the drift rate, starting point of ev-
idence accumulation, response boundaries, and non-decision
time parameters. The non-decision time represents the time
taken to perform the processes not directly associated with the
evidence accumulation process e.g. motor response to press a
button associated with a response. The boundary refers to the
amount of evidence required to make a response, and is often
characterized as the level of caution the observer has chosen.
The starting point of evidence accumulation and drift rate
are the two parameters associated with response and stimu-
lus bias respectively.

The starting point parameter is used to represent a baseline
level of evidence towards a specific response before stimulus
information is accumulated as evidence. Response bias is es-
sentially a shift in the start point parameter, meaning less ev-
idence is required to reach one response boundary compared
to the other, as illustrated in Figure 1c. A start point halfway
between the two response boundaries indicates no response
bias. The drift rate describes the average rate at which evi-
dence is accumulated in favour of one response over the other.
Stimulus bias is when one type of stimulus elicits a stronger
or weaker drift rate compared to the other type of stimulus.
Stimulus bias is illustrated in Figure 1d.

Response bias and stimulus bias both play a large role in
decision making, however they are typically presented as in-
dependent of each other and dissociable i.e., the preparedness
to make a response does not affect the evidence accumulation
process. The characterization of these processes as indepen-
dent confers two main advantages. Firstly, it makes the model
more parsimonious. Secondly, it gives a way to account for
the different effects that different manipulations have on re-
sponse times and accuracies.

A number of studies have contributed to this dissociation
of response bias and stimulus bias and their associated pa-
rameters. The start point can be influenced by the relative fre-
quencies of the presented stimuli and the relative reward rates
associated with the stimuli, with limited effects on other pa-
rameters (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Diederich & Busemeyer, 2006; Ratcliff & McKoon, 2008;
White & Poldrack, 2014).

On the other hand, studies have illustrated that the drift rate
is influenced by the quality and discriminability of informa-
tion presented during a trial (Palmer, Huk, & Shadlen, 2005;
Ratcliff & McKoon, 2008; Voss, Rothermund, & Voss, 2004).
The standard interpretation for a bias in the drift rate parame-
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Figure 1: (a) Example of a stimulus where the participant had to decide the stimulus was dark or bright based on the proportions
of black and white circles. (b) Diagram of the basic diffusion process. For this example, the top boundary represents the
threshold for a ‘dark’ response, and the bottom boundary is the threshold for a ‘bright’ response. (c) Effect of a start point
bias towards ‘dark’ responses. There is a shift in the starting point of evidence accumulation such that, given the same course
of evidence accumulation observed in Figure 1b, the dark threshold is reached earlier. The dotted line represents the further
evidence accumulation if the threshold was not reached. (d) Example of stimulus bias, with Vd and Vb representing drift rates
for ‘dark’ and ‘bright’ stimuli respectively. Evidence is collected more quickly for the ‘dark’ response than it is for the ‘bright’
response. The grey arrows represent drift rates where there is no stimulus bias.

ter is one of criterion setting (Mulder, Wagenmakers, Ratcliff,
Boekel, & Forstmann, 2012; Ratcliff, 1985; van Ravenzwaaij
et al., 2012). The information observed from a stimulus is
compared to a criterion, and the difference between the stim-
ulus information and the criterion yields the evidence value
that is to be accumulated in the model. Changing the criterion
to permit more evidence for a particular response produces a
bias. White, Mumford and Poldrack (2012) demonstrates this
in a size discrimination task by showing participants a stan-
dard against which upcoming lines should be compared in or-
der to determine what constitutes a ‘long’ or ‘short’ response.
Their manipulation of this standard selectively influenced a
drift criterion parameter in a diffusion model.

There have been studies that used the diffusion model to
focus on specifically dissociating these two types of bias.

Leite and Ratcliff (2011) examined the effects of stimulus fre-
quency, response payoff, and decision criterion manipulations
on start points and drift criterion parameters through a nu-
merosity discrimination task where participants had to decide
whether volume of asterisks contained within a 10 by 10 grid
could be categorised as a ‘low’ amount or a ‘high’ amount,
based on some given criteria. They found that changes in the
start point parameter alone were able to account for changes
in the RT and accuracy data when they manipulated stimu-
lus frequency and payoff. When they manipulated the deci-
sion criterion for what was considered ‘low’ and ‘high’, they
found the data was best fit by shifts in the drift criterion pa-
rameter. Similarly, White and Poldrack (2014) used a per-
ceptual discrimination task and a recognition memory task
and found that response bias and stimulus bias can be inde-
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pendently induced in the diffusion model through the use of
stimulus frequency and decision criterion manipulations re-
spectively.

Other research in this field however, has proposed that
these biases and the underlying parameters may not be nec-
essarily be independently manipulated. Ratcliff and McKoon
(2008) examined the effect of relative frequency and stimu-
lus difficulty manipulations on model parameters using a mo-
tion discrimination paradigm. When stimulus difficulty was
manipulated, they found that only drift rate varied, however
when relative frequency of the stimuli varied, they found a
bias in the start point as well as a modest effect on the drift
criterion.

Additionally, van Ravenzwaaij et al. (2012) proposed that,
theoretically, response bias is sufficient to account for optimal
performance in a variable or fixed difficulty task when relative
frequency of stimuli is manipulated, but only under certain
conditions (cf. Moran, 2015). However, they found that the
model fits of empirical data from individuals performing a
motion discrimination task show that the relative frequency
manipulations had effects on start points and drift criterion in
both fixed and variable difficulty tasks.

Rather than being independent of each other, it is possible
that base rate information plays a role in moderating how in-
dividuals evaluate information under certain circumstances.
This provides a potential explanation for why both response
bias and stimulus bias were found in studies which manipu-
lated relative frequencies of stimuli. The current experiment
aimed to test how response bias and stimulus bias may be ex-
pressed under conditions of limited information and differing
stimulus frequencies. In doing so, we wanted to observe if
this dissociation of these biases and their related parameters
holds true. Our experiment empirically evaluated the effect of
the relative frequency of stimuli and the duration of stimulus
presentation on the parameters of the diffusion model through
the use of a hierarchical Bayesian version of the simple diffu-
sion model.

Method
Design
The stimuli used were various combinations of 64 black and
white circles in a 8 by 8 grid. In each stimulus, there were
35 circles of one color, and 29 of the other. Participants
were instructed to make ‘black’ or ‘white’ responses for each
stimulus they were presented, indicating which color circle of
which there were more. For clarity, stimuli with more black
circles will be referred to as ‘dark’ stimuli and the associ-
ated response will be ‘dark’ responses. Similarly, stimuli with
more white circles will be referred to as ‘bright’ stimuli and
the associated response will be ‘bright’. An example of a dark
stimulus is shown in Figure 1a.

The independent variables manipulated were relative fre-
quencies of stimuli and the presentation length of the stim-
uli. Relative frequencies of stimuli were manipulated across
blocks. This manipulation had three levels, dark biased (two

thirds of block were dark stimuli), bright biased (two thirds of
block were bright stimuli), and unbiased (even proportions of
dark and bright stimuli). There were 13 presentation lengths
of stimuli, ranging from 0ms (where no stimulus is shown)
to 200ms in 16.7ms (1 frame on a 60 Hz monitor) intervals.
The presentation length varied from trial to trial within each
block. The experiment consisted of 9 blocks of 80 trials each.

Procedure
At the start of the experiment, participants received instruc-
tions on the aim of the task and what they should expect to see
on each trial. It was stated that the presentation time of the
stimuli will vary within each block. Participants were also
told the relative frequencies of each type of stimulus (dark
and bright) will differ across blocks and received information
about the proportions of dark and bright stimuli at the start of
each block. At the end of each block, participants are given
an opportunity to take a self-paced break before continuing
onto the next block.

At the start of each trial, participants were required to press
and hold the spacebar with the index finger of their dominant
hand. Once spacebar was held, a fixation cross was presented
for 500ms, followed by a mask presented for 100ms, followed
by the stimulus. The stimulus is presented for a random dura-
tion from 0-200ms, followed by a backward mask of 100ms.
There was 16.7ms before the disappearance of the mask and
the appearance of the stimulus. Once they were prompted
for a response, they had to release the spacebar and indicate
a response using the ‘F’ or ‘J’ key to indicate whether they
thought stimulus was ‘dark’ or ‘bright’ using the same fin-
ger the held down spacebar with. If they released their finger
too early, they received a warning and the experiment would
progress to the next trial. These instructions were given to
discourage preemptive responses.

After each trial, participants received feedback on screen
based on the accuracy of their response. For the 0ms trials
where there is no ‘correct’ response, the feedback for their
response was probabilistically determined based on the bias
condition for the current block. ‘CORRECT’ was presented
in green if their response was accurate and ‘INCORRECT’
was presented in red if their response was inaccurate. This
feedback was on screen for 750ms before they were allowed
to continue to the next trial.

Before the task began, participants were given 12 practice
trials consisting of equal numbers of dark and bright stimuli.
Each of the presentation lengths, excluding the 0ms presenta-
tion length, were used for one of the practice trials.

Model specification
Data were fit using a hierarchical Bayesian version of the
simple diffusion model (for more information on hierarchi-
cal diffusion models see Vandekerckhove, Tuerlinckx, & Lee,
2011). MCMC estimation was performed through the JAGS
Wiener module (Wabersich & Vandekerckhove, 2014) to esti-
mate the parameters by running 3 chains with 5000 iterations
each.
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Individual-participant level parameters of the diffusion
model were assumed to come from Gaussian distributions at
the population level. For example, a drift rate for participant
i in condition j was modelled as vi j ∼ N(µv j ,λ j), where µv j is
the population-level mean drift rate parameter for condition
j, and λ j is the precision of the population-level drift rate pa-
rameter for condition j. The priors for the population-level
mean parameters were set to be vague and relatively uninfor-
mative. For non-decision time, we used a normal distribution
of mean 0 and a precision of 100, truncated to be above zero.
For the boundary parameter, we used a normal distribution
with mean of 3 and a precision of 2, truncated to be above
zero. For start-point parameters, we used a uniform distribu-
tion from 0 to 1. For drift rate, we used a normal distribution
with mean 0 and precision of 1. For the population-level pre-
cision parameters, λ, we used gamma distributions with shape
and rate parameters of 0.001.

The distance between the boundaries (a), the mean dis-
tance of the starting point (z), the average rate of evidence
accumulation (v), and the non-decision time parameter (T)
were estimated for each individual while also estimated on
a population level. The results discussed are the population
level parameters estimated by the model. For the purpose
of model fitting, dark responses were made when evidence
passed the boundary at a and bright responses were made
when evidence passed the boundary at 0. This means that
higher start points and positive drift rates represent more start-
ing evidence and evidence accumulation for dark responses
and lower start points and negative drift rates represent more
starting evidence and evidence accumulation for bright re-
sponses.

We allowed start points and drift rates to vary freely across
all conditions in the experiment, but constrained boundaries
and non-decision times to be equal across the three levels of
relative frequencies of stimuli conditions. This results in the
estimation of 13 boundary parameters and 13 non-decision
time parameters (for the each of the trial types), 39 start point
parameters (for each trial type across the 3 levels of relative
frequencies of stimuli) and 78 drift rate parameters (same as
the start point parameters, but estimated separately for the
dark stimuli and the bright stimuli). This results in a total
of 143 population level parameters. In the following section,
we discuss the posterior distributions of the population-level
mean parameters.

Results
Figure 2 illustrates posterior distributions of population level
start point parameters for each presentation time. A start point
closer to 1 and 0 indicates higher starting evidence for dark
and bright responses, respectively. When no bias is expected
in the start points, a start point of 0.5 is expected. This is what
we observed for the unbiased blocks - start points for the un-
biased stimulus frequency blocks are distributed around 0.5
across all presentation time conditions, as shown in the green
violin plots in Figure 2. From the results of previous exper-

iments that manipulated relative frequencies of stimuli, we
expect a bias in the start point in both the dark and bright
biased conditions (Leite & Ratcliff, 2011; Ratcliff & McK-
oon, 2008; van Ravenzwaaij et al., 2012; White & Poldrack,
2014). In the dark biased conditions, we expect start points
to be above 0.5 and in bright biased conditions, start points
are expected to be below 0.5. Our results are in line with
this expectation and are fairly consistent across the different
presentation times.

Figure 2: Violin plots of posterior distributions of population
level start point parameters for each presentation time.

Regarding the estimates of the drift rate parameters, Since
bright and dark stimuli carry the same amount of information
(i.e. same proportion of dominant-color circles) we expect
the drift rates to have the same magnitude, but in opposite
directions. Stimulus bias is calculated as the average drift
rate across dark and bright stimuli for a presentation time in a
type of block. Since the drift rates for dark and bright stimuli
should be equal but with opposite valences, if there is no bias,
we expect the average drift rate to be 0.

For the unbiased blocks, the longer a stimulus was pre-
sented, the higher the drift rate in the direction of the response
associated with that stimulus, with drift rates for short presen-
tation times being distributed around 0, as shown in Figure
3a. This matches our expectations of a higher drift rate when
more information (longer presentation time of stimuli) is pre-
sented, resulting in limited observed stimulus bias (as shown
in the green plots in Figure 3d). For the biased blocks, we
observe an overall shift in the drift rates for both bright and
dark stimuli, away from 0 and towards the response for the
biased stimuli. This is particularly prevalent for the shorter
presentation time conditions i.e., for the bright biased blocks,
drift rates are in the direction of a bright response when the
stimulus is presented for a limited amount of time (0-67ms),
regardless of what stimulus was presented (illustrated in Fig-
ure 3b). A similar effect is present for the dark biased blocks,
illustrated in Figure 3c. Consequently, we found that the stim-
ulus bias observed in the shorter presentation time conditions
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Figure 3: Violin plots of posterior distributions of drift rates for dark and bright stimuli across presentation times for the
(a) unbiased, (b) dark biased and (c) bright biased blocks. (d) Average of the dark and bright stimulus drift rates for each
presentation time for each block bias type.

was in favor of the biased stimuli for the biased blocks. This
also changed as a function of presentation time; we observed
a clear trend of stimulus bias decreasing as presentation time
increased, summarized in Figure 3d.

Discussion
There are two main findings to take away from the experi-
ment. Firstly, it replicated the response bias effect produced
by relative frequencies of stimuli manipulations demonstrated
in previous research (Bogacz et al., 2006; van Ravenzwaaij et
al., 2012; White & Poldrack, 2014). Secondly, the results
from the experiment suggest that stimulus bias has an inverse
relationship with presentation time in relative stimulus fre-
quency manipulations. The second finding is particularly in-
teresting because does not coincide with typical interpreta-
tions of drift rate and drift rate bias in the diffusion model. If
the drift rate reflects the accumulation of information, as stim-
ulus information approaches 0, so too should the drift rate.
The results of our current experiment contradict this, contin-
uing to show modest drift rates towards the biased response
when there is limited stimulus information.

One possible deviation from this perspective that could ex-
plain these results is a model which allows the drift rate to
vary across the length of a trial. Its possible that initially,

drift rate is driven by biases or sequential effects but is up-
dated as the information from a presented stimulus becomes
apparent. Diederich and Busemeyer (2006) discuss a simi-
lar concept of a two stage processing model for data from a
perceptual discrimination task in which payoffs and deadlines
were manipulated. They proposed a model that suggests there
are two stages within a trial in which different aspects of the
task inform the drift rate. This model suggests that during the
first stage, payoff information determined the drift rate but
after some period of time, stimulus information takes over.
They found that this model was best able to account for the
data when compared to two other models, one that allowed
boundaries to vary over time, and another that allowed drift
rates to vary across time.

On the other hand, a study by Ratcliff and Rouder (2000)
manipulated stimulus presentation time in order to examine
the concept of non-stationary drift rate in a two choice iden-
tification task. They found that a model with a non-stationary
drift rate, where the drift rate rose during the onset of a stim-
ulus and then fell to 0 once it was masked, was unable to
satisfactorily explain the data. However, a model that used a
constant drift rate over time fit the data well, suggesting that
there is a constant accumulation of evidence over time even
when the stimuli are shown then masked during a trial. In
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light of their findings, Ratcliff and Rouder clarify that these
findings may not necessarily extend to other domains such as
perceptual stimuli (such as the one used in the current experi-
ment) because a cognitive representation may not necessarily
be the output of perceptual processing as it is in a letter iden-
tification task. Where previous studies focused on purely the
onset of a stimulus, none have addressed how response bias
may interact with stimulus onset asynchrony.

Another possible explanation is that expectancies or sub-
jective values of responses, more typically reflected in the
start point parameter, may moderate how the drift rate is set.
The distinction between stimulus and response biases in the
diffusion model is analogous to the Bayesian distinction be-
tween prior and likelihood. Bogacz, Brown, Moehlis, Holmes
and Cohen (2006) argued that the diffusion model is a special
case of Wald’s (1945) sequential probability ratio test, which
is an optimal procedure for deciding between two hypothe-
ses (Wald & Wolfowitz, 1948). Under this equivalence, the
start point of evidence accumulation corresponds to the prior
probability of the two competing hypotheses (responses). The
transformation of information into evidence is carried out by
a likelihood function. The posterior probability of the hy-
potheses are then used as prior probabilities as the next piece
of information is to be evaluated. Once the posterior proba-
bility of any one hypothesis is large enough, then a response
is triggered.

Under the Bayesian framework, a drift rate bias is an adap-
tation of the likelihood function that is used to transform in-
formation from the stimulus into the evidence for competing
responses. Our results suggest that the typical interpretation
of drift rate bias, the concept of a drift criterion, may not be
the whole story. Rather, it seems that the drift rate bias may be
also based on what the participant knows about the environ-
ment. Usually, such environmental information is assumed to
either adjust the prior probability of the different responses,
or modify the lens through which stimuli are evaluated. Our
data suggest that environmental information may also be ac-
cumulated as evidence, at least when the stimulus information
is lacking.

Furthermore, some studies have examined how informa-
tion can be weighted differently in their integration in their re-
sponse based on their reliability. There has been previous re-
search which show that individuals are able to integrate infor-
mation from multiple sources, weighing them based on their
reliability. (Ernst & Banks, 2002; Fetsch, Pouget, DeAngelis,
& Angelaki, 2012; Ohshiro, Angelaki, & DeAngelis, 2011).
This has been supported using a modified version of the dif-
fusion model in order to account for the time course of the
process (Turner, Gao, Koenig, Palfy, & McClelland, 2017).
This further supports the possibility that individuals may be
integrating both stimulus information and environmental in-
formation when accumulating evidence. When the stimulus is
uninformative, individuals may give greater weight to the en-
vironmental information which results in the diffusion model
showing stimulus bias in the parameter estimates.

When discussing these findings in the context of a diffu-
sion model, it is important to keep in mind that the current
set of analyses is a redescription of the observed data through
the diffusion model and may not represent the ‘true’ underly-
ing model. Some alternative models that may be able to ac-
count for the results of the current experiment are the leaky,
competing accumulator (LCA) model proposed by Usher and
McClelland (2001), and Kvam’s (2019) theory of bias based
on split attention and racing diffusion processes. Usher and
McClelland’s (2001) LCA model suggests that the observed
stimulus bias may be caused by a lateral inhibition between
accumulators for the two alternative choices. On the other
hand, Kvam (2019) puts forward a model based on a con-
tinuous orientation judgement paradigm which suggests that
stimulus information and predecision information (such as
base rates) compete with each other as separate accumula-
tors and cues can also moderate attention given to a stimulus.
Although these models are outside of the scope of this paper,
further research in this area should consider these models.

The results of the current experiment highlight that lim-
ited information can induce stimulus bias in blocks with un-
even stimulus frequencies. Potential avenues for future re-
search include investigating whether this stimulus bias can
be induced by other manipulations such as stimulus difficulty
or stimulus ambiguity, as well as using other modelling ap-
proaches, which may provide alternative explanations for the
observed stimulus bias effects. This may help to shed light
on the underlying mechanism through which information is
processed and how it can result in stimulus bias. Investigat-
ing the source of these effects have important implications for
understanding how individuals make decisions with different
levels of information and may give some deeper insight into
the roles of different types of information in decision making.
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