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A B S T R A C T

Understanding the extent to which vascular disease and its risk factors are associated with prodromal
dementia, notably Alzheimer’s disease (AD), may enhance predictive accuracy as well as guide early inter-
ventions. One promising avenue to determine this relationship consists of looking for reliable and sensitive
in-vivo imaging methods capable of characterizing the subtle brain alterations before the clinical manifesta-
tions. However, little is known from the imaging perspective about how risk factors such as vascular disease
influence AD progression. Here, for the first time, we apply an innovative T1 and DTI fusion analysis of
3D corpus callosum (CC) on mild cognitive impairment (MCI) populations with different levels of vascular
profile, aiming to de-couple the vascular factor in the prodromal AD stage. Our new fusion method success-
fully increases the detection power for differentiating MCI subjects with high from low vascular risk profiles,
as well as from healthy controls. MCI subjects with high and low vascular risk profiles showed differed
alteration patterns in the anterior CC, which may help to elucidate the inter-wired relationship between
MCI and vascular risk factors.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Emerging evidence has shown that cardiovascular disease (CVD)
and preclinical cardiovascular risk factors are linked to the etiology
of dementia, including Alzheimer disease (AD) (Cardenas et al., 2012;
Gorelick et al., 2011; Iadecola, 2013; Kalaria et al., 2012; Luchsinger
et al., 2001; Newman et al., 2005; Posner et al., 2000; Vermeer et
al., 2003). Specifically, some findings suggest a direct influence of
vascular diseases in accelerating amyloid b accumulation (Garcia-Al-
loza et al., 2011; Iadecola, 2013). The entanglement of cardiovascular
and neural factors is further evidenced by the recently hypothesized
connection between the Locus Coeruleus (LC) and AD. In this sce-
nario, AD is mediated by the integrated modulatory function of LC on

* Corresponding author at: CIBORG Laboratory, Department of RadiologyUniversity
of Southern California & Children’s Hospital Los Angeles,4650 Sunset Blvd, Los Angeles,
CA90027, USA.

E-mail address: natashalepore@gmail.com (N. Leporé).
1 Equal senior author contribution.

the heart rate, attention memory, and cognitive functions (Mather
and Harley, 2016). While an effective treatment for AD is still out
of reach, there are established therapeutic strategies for CVD, and
its risk factors are also clinically modifiable (Chui, 2006). Therefore,
disentangling the effects of CVD and its risk factors on the devel-
opment of AD has implication for symptom management, and may
potentially alter clinical outcomes for pre-dementia patients.

In particular, differentiating the effects of different CVD profiles
on the anatomy of the brain in mild cognitive impairment (MCI) - a
precursor to AD and other types of dementia - would provide impor-
tant insights into the effects of preventable CVD factors on the initial
course of AD. Nevertheless, efforts aimed at differentiating vascular
diseases from MCI report inconsistent results (Hayden et al., 2005;
Loewenstein et al., 2006; Nordlund et al., 2007). In particular, Hay-
den et al. identified a set of memory and executive tests in prodromal
vascular dementia (VaD) that are distinguishable from prodromal
AD (Hayden et al., 2005). Nordlund et al. confirmed the differences
in executive function between MCI subjects with and without vas-
cular disease, and also reported differences in speed, attention, and
visuospatial functions in these two groups (Nordlund et al., 2007).
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However, no differences between vascular and non-vascular types of
MCI were found by other studies (Loewenstein et al., 2006). These
discrepancies may partially be caused by different inclusion criteria
for vascular disease (i.e. with or without stroke), coupled to analysis
techniques that do not have the required detection sensitivity. This
highlights the need for sensitive and reliable algorithms that can help
in decoupling the vascular component of preclinical dementia, and
thus aid in early diagnosis and therapeutic design.

Being the largest white matter (WM) structure with a high
demand of blood supply from several main arterial systems, the
corpus callosum (CC) has been reported to be vulnerable to both
MCI (Di Paola et al., 2010; Dimitra et al., 2013; Teipel et al., 2011;
Zhang et al., 2013) and vascular diseases (Delano-Wood et al., 2010;
Friedman et al., 2014; Gons et al., 2012). Given the extensive con-
nections between the CC and the cortex, regional disturbances of the
CC may mirror dysfunctions of specific cortical domains. Therefore,
anatomical alterations of the CC may serve as potential discrimi-
nators of the concurrent but possibly different effects of vascular
and neurodegenerative components. Structural magnetic resonance
imaging (MRI) is a typical choice for detecting CC anatomical alter-
ations and has been effective in deciphering brain parenchyma
loss (Serra et al., 2010; Teipel et al., 2002; Wang et al., 2011a;
Zhu et al., 2012), while diffusion tensor imaging (DTI) has been
promising in characterizing WM microstructure alterations (Dimitra
et al., 2013; Kantarci et al., 2005; Teipel et al., 2011; Zhang et al.,
2013). Parenchyma and diffuse injuries often occur concomitantly
in WM structures such as the CC, and a joint analysis of diffusion
and T1-weighted data may therefore provide a more complete pic-
ture of CC changes brought on by brain injury. However, to the best
of our knowledge, all the above studies regarded each aspect on its
own (Dimitra et al., 2013; Wang et al., 2011a; Zhang et al., 2013), or
by comparing them side-by-side (Di Paola et al., 2010; Teipel et al.,
2011). None have tried to truly combine these two features into one
analysis.

Here, we perform an innovative, truly combined analysis of struc-
tural and diffusion MRI data on the 3D CC surfaces of MCI subjects.
We group our MCI subjects into high and low vascular risk profiles
(will be referred to as MCI-l and MCI-h groups in the remainder
of the text), and conduct pairwise statistical analyses on the fused
morphological and diffusion properties among these two MCI sub-
groups as well as on aging controls without cognitive impairment.
Our aims are twofold: 1) to test whether the vascular component
affects distinct regional alterations that may help us to distinguish
different MCI subtypes; 2) to further validate the feasibility and sen-
sitivity of using our T1 and DTI fusion method to analyze subcortical
alterations.

2. Subjects and methodologies

2.1. Data and preprocessing

Fifty-eight subjects aged 66 to 89 were grouped based on their
clinical dementia rating (CDR) and vascular risk profile into 15 MCI
subjects with low vascular risk (76.40±7.65 years, CDR=0.5, low
Framingham cardiovascular risk profile (FCRP) scores), 18 MCI sub-
jects with high vascular risk (78.39±5.69 years, CDR = 0.5, high
FCRP scores or had previous clinical diagnosis of myocardial infarc-
tion) and 25 healthy controls (76.68±6.40 years). Subjects with
confounding neurological conditions, such as stroke, were excluded.
Brain T1 and DT-MR scans of all the subjects were obtained using a
3T SIEMENS scanner. DTI data were acquired using an echo-planar
imaging sequence, with a voxel size of 2 × 2 × 2 mm3, resolution
of 128 × 128 × 60, b-value of 1000s/mm2, and 60 gradient direc-
tions. Anatomical data were acquired using a MPRAGE sequence,
with a voxel size of 1 × 1 × 1 mm3, resolution of 256 × 256 ×
192, TE=2.98 ms, TR=2500 ms, and TI=1100 ms. Each subject,

in addition to being imaged via T1-MRI and DTI, was evaluated
on the MMSE (Mini-Mental State Exam) as a marker of cognitive
function, as well as a standardized battery of neuropsychological
tests, consisting of MEMSC (verbal memory summary score) for ver-
bal memory, NVMEMSC (non-verbal memory summary score) for
non-verbal memory, EXECSC (executive function summary score) to
measure executive function, and GLOBSC (global cognition summary
score) to assess global cognition. These measures have previously
been described in the literature and are commonly used in neuropsy-
chological assessments (Mungas et al., 2003).

All the T1 data were preprocessed and linearly registered to the
same template space - selected randomly from one of the controls
that was previously transformed to MNI space (Jenkinson et al.,
2002). On the linearly registered T1 images, each subject’s corpus
callosum (CC) was manually traced on the mid-sagittal plane, and
the lateral boundaries were determined where the CC starts to radi-
ate into and merge with cerebral white matter. Subsequently, 3D
surface representations and conformal mesh grids of the CC were
constructed using an in-house conformal mapping program (Wang
et al., 2011b). One-to-one correspondence between vertices were
obtained through constrained harmonic based registration (Wang et
al., 2011b).

All the DTI data were first preprocessed, which included brain
masking, eddy current correction, echo-planar imaging distortion
correction, and tensor estimation. To truly integrate DTI and T1 infor-
mation, we transformed the DT images from each subject to their
corresponding T1 space, using linear registration between the b0-
weighted and T1 images. The linear transformation matrices saved
from the T1 registration were then applied on the linearly aligned b0
images, to transform the diffusion information to the space of the T1
template. After each of the linear registrations, the diffusion tensors
were resampled using the b0 transformation matrices, and rotated
according to the underlying anatomy. These steps were achieved
using MedINRIA (Toussaint et al., 2007).

2.2. Surface based sampling

After the surface based registration in Section 2.1, a deformation
tensor

√
JJT - where J is the Jacobian of the transformation from the

registration - was computed at each vertex on the surface. Its deter-
minant (detJ, the difference in surface area) and projection on the
log-Euclidean space (log

√
JJT ) (Arsigny et al., 2006) were used in later

statistical analysis (Lepore et al., 2008; Wang et al., 2011b).
To project diffusion indices of each of the CCs onto its surface, we

first calculated midlines of all the 3D CCs, and then collected diffu-
sion parameters to each surface vertex along its corresponding radius
to the midline, specifically using:
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Here X, M, P are the (x, y, z) coordinates of a vertex in the surface,
the corresponding point of the vertex in the midline, and a voxel
within the 3D representations, respectively, while R represents a
pre-defined distance between P to the line of

−−−−→
X − M. The sampling

process can be more intuitively visualized in Fig. 1. The first equation
is used to assign the voxels close enough (≤ R) to the corresponding
radius of the vertex, while the second equation constrains the sam-
pling to the voxels within the space between the midpoint to the
vertex (not in the prolongation direction). According to our previous
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Fig. 1. Surface of CC and the illustration of sampled voxels. The red line on the right side of the figure is the midline of the CC, blue stars represent voxels within CC, and pink,
yellow, as well as green crosses represent surface vertices. In the direction perpendicular to the midline and pointing to each vertex, voxels within pink, yellow, and green areas
are projected to the vertices with the corresponding colors. Mean index (FA, MD....) of projected voxels is assigned to the vertex for later statistics.

pilot study, we chose R = 0.6 mm3 to make sure each of the vertices
has some voxels assigned, and to minimize overlap with neighboring
vertices (Lao et al., 2015).

2.3. Statistical analysis

Our statistical analyses were conducted using either the mor-
phometry information, the diffusion information, or a combination
of both. Vertex-wise univariate student t-tests or multivariate
Hotelling’s T2 tests were performed based on the following variables:

1. Morphometry information: univariate detJ and multivariate
(s1, s2, s3) from the logged deformation tensors, which are
independent elements of the matrix (Fig. 2, 1st and 2nd row).

2. Diffusion information: univariate mean FA along the radius of
the CC for each vertex and multivariate k1 and k2 (Fig. 2, 3rd
and 4th row). Note: we did not include k3. Being small, this
value is susceptible to noise and may reduce detection power.
While this is fine for additive measures such as FA as the effect
will be negligible (as the value is small), it is a much bigger
issue when analyzing a multivariate vector of statistics, where
each eigenvalue is treated as an independent measure.

3. A fusion of morphometry (s1, s2, s3) and diffusion indices (k1

and k2) (Fig. 2, 5th row).

Here, one of the primary purposes is to determine a method that
can sensitively detect underlying anatomical differences between
our MCI groups. Therefore, our general criteria for measurements
selection were: firstly, to use the most representative, or generally
used measurements in both shape and diffusion analysis for compar-
ison, and secondly, to compare these to what we hypothesized would
be a joint structural and diffusion measure with enough sensitivity
to detect subtle underlying differences between groups, based on
ours and others prior studies. MD showed significant but less pow-
erful results than FA, and similarly, (FA, s1, s2, s3), or (MD, s1, s2, s3)
showed less significant results than (k1,k2, s1, s2, s3). Therefore, we
only included the above five most representative univariate or mul-
tivariate measurements in our final analysis.

Given the fact that our subjects were from a relatively large age
range (66–89 years), we used linear regression to factor out the
effect of age. For each feature value separately, we have:

F = b0 + b1 ∗ age + b2 ∗ group + error. (3)

Where F is one of the features we previously obtained, b0, b1,
b2 are the corresponding correlation coefficients. Group are coded
as dummy variable: 0 for controls, 1 for MCI-l group, and 2 for
MCI-h group. All the following statistics were performed on linearly
regressed features.

For each of the tests, two types of permutations were performed:
a vertex-based one to avoid the normal distribution assumption
and one over the whole segmented image to correct for multi-
ple comparisons, as described in (Lepore et al., 2008; Nichols and
Holmes, 2001). Permutation based corrections are independent of
the distributions of the statistics, which is commonly non-parametric
in voxel- or vertex-wise analyses. Furthermore, permutation based
multiple comparison corrections are less stringent than conventional
sequential correction methods (Benjamini and Hochberg, 1995), as
they do not assume independence of neighboring voxels or vertices,
and they are widely accepted in brain image analyses (Lepore et al.,
2008; Rajagopalan et al., 2012; Wang et al., 2009). In each of the
permutation tests, 10,000 permutations were employed.

2.4. Correlation analysis

The imaging measurements were further evaluated with respect
to overall mental status demonstrated by Mini Mental State Exam-
ination scores, as well as 4 domain specific neuropsychological
measurements: MEMSC, NVMEMSC, EXECSC, GLOBSC. Four subjects
with missing neuropsychological test data were excluded, leaving
a total of 54 subjects for the correlation analysis. After controlling
for age, Pearson’s correlation analyses were conducted to determine
specific contributions of regional CC to cognitive performance, in
terms of shape (represented by detJ) or WM integrity (represented by
mean FA). To evaluate the association of neuropsychological perfor-
mances with the combined feature of shape and diffusion properties
of CC (represented by (k1,k2, s1, s2, s3)), we continued to perform
a distance correlation – a generalization to the classical bivari-
ate measurements of dependance (Székely et al., 2009). Similar to
the permutation corrections employed in group-wise comparisons,
10,000 permutations were applied in each of the correlation tests, as
described in Lao et al. (2014), Nichols and Holmes (2001).

3. Results

Fig. 2 shows vertex-wise group differences among 3 groups based
on 5 different measures: detJ, (s1, s2, s3), mean FA, (k1,k2), and
fused (k1,k2, s1, s2, s3). The corresponding structure-wise corrected
p− values are displayed in Table 1. The final statistical results on
the CC surface in Fig. 2 are smoothed using heat kernel algorithm as
described in Chung et al. (2005).

The MCI-l group showed alterations spanning the midbody and
the posterior surface of the CC as compared to controls, with
significant structure-wise differences detected by detJ, (s1, s2, s3),
and (k1,k2, s1, s2, s3) measurements; the MCI-h group presented
broad areas of alterations mainly located in the dorsal anterior,
mid-body, and splenium of the CC compared to controls, with
significant structure-wise differences detected by detJ, (s1, s2, s3),
and (k1,k2, s1, s2, s3) measurements, as well as trends detected by
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Fig. 2. Group analysis of MCI-l vs. controls (1st column), MCI-h vs. controls (2nd column), and MCI-l vs. MCI-h (3rd column ) using 5 different measures: a) detJ; b) (s1, s2, s3);
c) mean FA; d) (k1,k2); e) (k1,k2, s1, s2, s3). Vertex-wise corresponding p−values are color-coded according to the color bar in the upper left corner. P- maps are smoothed using
heat kernel algorithm (Chung et al., 2005). In addition, whole structure-wise corrected p−values are presented in Table 1.

mean FA and (k1,k2) measurements. For the MCI-h vs. MCI-l, the
main clusters were located in the genu of the CC, and the fusion
measurements reached structure-wise significance, while mean FA
and (k1,k2) showed trends. It is important to note that up-sampling
the relatively low resolution DTI data resulted in same or simi-
lar diffusion indices appearing in surrounding vertices on the CC
surface, thus causing the band-like areas shown in the significance
map (Fig. 2).

To intuitively understand the direction of alterations, we also
mapped the average maps of vertex-wise detJ and FA between
3 groups, as shown in Fig. 3. Compared Fig. 3 with Fig. 2, we
can see that nearly all the significance areas fell in the Controls
> MCI-l, Controls > MCI-h, as well MCI-l > MCI-h areas. These
findings point to shrinkage and reduced WM integrity in the CCs
of MCI-l and MCI-h patients as compared to those of normal
controls.
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Table 1
Structure-wise corrected p−values for different measurements are displayed. All the
p-values were corrected using a permutation based analysis with 10,000 permuta-
tions. Significance is set to p< 0.05, and is highlighted in light cyan. P-values implying
trends are highlighted in light gray.

Table 2
Structure-wise corrected p−values for different measurements are displayed. All the
p-values were corrected using a permutation based analysis with 10,000 permuta-
tions. Significance is set to p< 0.05, and is highlighted in light cyan. P-values implying
trends are highlighted in light gray.

3.1. Correlation analysis results

The vertex-wise significant p−map and correlation coefficients
r map from Pearson’s correlation analyses between neuroanatomi-
cal measurements (detJ and mean FA) and 5 neuro-cognitive indices

(MMSE, MEMSC, NVMEMSC, EXECSC, GLOBSC) are displayed in Fig. 4
and Fig. 5. The corresponding structural-wise corrected p− values are
shown in Table 2.

For surface shape measurements, represented by detJ, signifi-
cant regional correlations are seen in clusters mainly located in
anterior and posterior CC, and two of the five correlation tests
(EXECSC and GLOBSC) hit structure-wise significances according to
Table 2. As to WM integrity, represented by mean FA along radial
direction, four of the five correlation tests (MMSE, MEMSC, EXECSC,
and GLOBSC) showed anatomical meaningful correlations with WM
integrity in the dorsal anterior CC. According to Table 2, EXECSC
showed a structure-wise correlation with mean FA that represented
a trend (p = 0.0857), and 2 of the 5 measurements (MEMSC
and GLOBSC) reached structure-wise significance. As to the com-
bined shape and diffusion features (k1,k2, s1, s2, s3), areas of sig-
nificant correlations are mainly consistent with those detected by
shape and WM integrity separately, while nonverbal memory scores
(NVMEMSC) showed anatomical meaningful correlations in the pos-
terior CC, which were not fully captured by shape or diffusion feature
based bivariate correlations.

4. Discussion and conclusion

In our study, the MCI-h group presented widespread atrophy and
reduced WM integrity spanning nearly the whole CC as compared
to controls, with the largest cluster located on the posterior end.
In the group analysis between the MCI-l group and the controls,
similar alterations were mainly shown in the middle to the poste-
rior regions. When comparing the MCI-h and the MCI-l group, our
fusion method detected significant disparities in the dorsal anterior
CC. These findings together indicate a consistent influence of MCI on
the midbody to the posterior end of the CC, and importantly, a dis-
tinct effect of cardiovascular profile on the genu. Moreover, these
same regions presented significant correlations with neurophysio-
logical battery tests including MEMSC, EXECSC, and GLOBSC. Our
findings provide important anatomical supports to the co-existence
of MCI-subtypes and may yield new insights in the distinct role of
cardiovascular components in the etiology of dementia. The T1 and

Fig. 3. Average map of detJ and mean FA between groups are color-coded according to the color bar in the upper left corner. When these results are compared with Fig. 2, we can
see the main direction of change: nearly all the significance areas fell in the Controls > MCI-l, Controls > MCI-h, as well MCI-l > MCI-h areas.
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Fig. 4. Vertex-wise significance results of correlation analyses between detJ as well as mean FA vs. 5 neuropsychlogical scores. P- maps are smoothed using heat kernel algorithm
(Chung et al., 2005).

DTI fusion analysis presented in this study yield higher statistical
detection power, and may provide a new direction in analyzing
subcortical WM structures.

4.0.1. Significance of the study

In the past decades, MCI has drawn increasing attention as a way
to study the early evolution of AD, and as a potential target for early
interventions. However, not all MCI patients will convert to AD as it is
not a homogenous state and may also precede other types of demen-
tia, such as vascular dementia (VaD). One of the main difficulties

in accurately predicting the MCI - AD conversion is due to the co-
morbidity and shared etiology with other types of disease (Meyer et
al., 2002; Ott et al., 1995). In particular, CVD – precursors of VaD –
are also important risk factors of AD (Newman et al., 2005; Vermeer
et al., 2003). Epidemiological studies have shown that cardiovascu-
lar risk factors such as hypertension, high cholesterol, and diabetes
are highly associated with cognitive decline and AD (de Bruijn and
Ikram, 2014; Newman et al., 2005; Stampfer, 2006). Nevertheless, no
established mechanisms clarify how CVD participates in the devel-
opment of AD, and whether there is a dissociable impact of CVD and
cardiovascular risk factors (CRF).
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Fig. 5. Vertex-wise correlation coefficient maps have been generated based on detJ
(left column) and mean FA (right column), respectively. Compared this figure with
Fig. 4, we can see the direction of the correlation analyses: nearly all the significant
regions represent positive correlations.

A considerable number of researchers suggested a selective cog-
nitive decline pattern associated with vascular pathology, and efforts
have been made to differentiate vascular disease from AD or MCI
using cognitive performance. Ingles et al. investigated the neuropsy-
chological performance in elderly subjects 5 years before diagnosis,
and reported a selectively low abstract reasoning performance in
subjects who evolved toward vascular cognitive impairment com-
pared to those who converted to AD or remained normal (Ingles
et al., 2007). Marra et al. reported executive functioning prob-
lems in the vascular form of MCI subjects, whereas the degenerative
form of MCI were mainly impaired in episodic memory tasks (Marra
et al., 2011). Similar to these, greater impairments in executive
function have been reported in MCI with a vascular component
(Graham et al., 2004; Hayden et al., 2005; Nordlund et al., 2007;
Nyström et al., 2015). However, there is no consensus on the exec-
utive dysfunction predominance of vascular pathology. A neuro-
physiological study aiming to discriminate cerebrovascular disease

from AD observed a slightly severe, but non-significant executive
dysfunction than memory failure in autopsy-defined cerebrovascu-
lar disease group (Reed et al., 2007). Moreover, a study comparing
cognitive profiles in MCI subjects with different etiologies reported
no differences of memory or executive function between the vascu-
lar and non-vascular types of MCI (Loewenstein et al., 2006). These
inconsistencies hint at the limitation of using neuropsychological
patterns only as dissociable features for vascular injury/dementia
(Reed et al., 2007).

With the advent of MRI, multiple modalities such as arterial
spin labeling (ASL), structural and diffusion MRI have been uti-
lized to investigate the vascular pathology on brain anatomy. It is
widely accepted that vascular disease or risk factors are associated
with an accelerated rate of cerebral atrophy (Barnes et al., 2013;
Jochemsen et al., 2013; Kloppenborg et al., 2012) and decreased
glucose metabolism (Chételat et al., 2013), while the information
as to whether these associations are independent of MCI is mini-
mal. In the handful of studies investigating vascular pathology in
the context of MCI or AD, mixed results were reported. Specifically,
a volume based T1-weighted MRI study on CC in AD, VaD as
well as mild ambiguous subjects reported significantly smaller
anterior and posterior CC regions in the AD group, significantly
smaller anterior CC regions in the VaD group, and no difference
in sub-clinical dementia group as compared to controls, while no
differences between VaD and AD groups were detected (Hallam et
al., 2008). A region of interest based DTI study on MCI subjects
reported decreased WM integrity in selected frontal, temporal, pari-
etal lobe regions as well as the corpus callosum in both groups
of patients with and without subcortical vascular changes, while
the WM alterations in the centrum semiovale and parietal lobe
were believed to be more associated with the vascular pathology
(Shim et al., 2008). A T1-MRI based study on cortical thickness
and grey matter (GM) volume in MCI subjects with different levels
of cardiovascular file profile observed an association between ele-
vated vascular risk factors and atrophy in the temporal and parietal
lobe - the same regions affected by AD (Cardenas et al., 2012).

Difficulties inherent in diagnosing and AD and VaD, and differ-
ent inclusion criteria of vascular diseases clouded the interpretation
of these studies. Moreover, limited statistical power of volume
based methodologies and measurements focusing on single modality
measurement further reduced the sensitivity of these studies to
the potential neuroanatomical alterations lurking in pre-clinical
stages. Therefore, in-vivo measurements with higher sensitivity
are highly desired to further explore the concurrent but possi-
bly distinct effects of CVD and MCI on the brain. In this work,
we focused on neurodegenerative patterns in pre-dementia stages,
and excluded compounding conditions such as stroke that directly
alter brain anatomy. In the present study, the joint T1 and DTI
measurement in 3D CC had successfully pinpointed dorsal ante-
rior CC regions that significantly differed between MCI-l and MCI-h
group of subjects. These findings provided new anatomical evi-
dence for the distinctive impact of vascular pathology before
clinical magnification of dementia, thus of great importance in
early preventive intervention and in guiding therapeutical design.
The sensitivity of our methodology and the relevance of detected
anatomic alterations and the corresponding neuroanatomic and
functional implications will be described in details in the next
sections.

4.1. Methodological considerations

Postmortem and probabilistic tractography studies have shown
that the CC is not a homogenous structure, in terms of fiber
composition (Aboitiz et al., 1992) and topographical distribution
(Park et al., 2008). Group differences of brain WM, including the
CC, are typically analyzed based on whole structure volume or
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some anatomically motivated partitions, voxels, midlines, or mid-
planes. The whole volume based method facilitates an intuitive
and coarse estimation of CC anatomy (Ardekani et al., 2014; Zhu
et al., 2013), but has been ineffective in detecting subtle anatom-
ical changes. Studies based on subdivisions of the CC are more
tuned to the heterogeneity of CC, but may easily be biased due to
inconsistent classification (i.e. partitioning into 3, 5 or 7 compart-
ments), as well as arbitrary delineation of subdivisions (Bachman
et al., 2014; Frederiksen et al., 2011; Rosas et al., 2010). Voxel-
based methods give poor localization of differences in anatomical
regions compared to surface-based ones and may be contami-
nated by differently oriented tracts (O’Donnell et al., 2009), while
midline- or midplane-based methods rely on assumptions that WM
perpendicular to the mid-line or the mid-plane is uniformly dis-
tributed. The method introduced in this paper uses clearly defined
CC regions traced in T1 images, that are largely preserved within
tract information projected onto the surface of the corpus callosa.
The 3D representations may better localize injury in heterogeneous
CC, and may have higher statistical detection power to identify
the neuro-circuit alterations underlying the observed anatomical
alterations.

The vulnerability of the CC in MCI has been reported in both
structural and diffusion studies (Di Paola et al., 2010; Hu et al.,
2014; Teipel et al., 2011; Ukmar et al., 2008; Zhang et al., 2013,
2007; Zhuang et al., 2010). Structural MRI is a typical choice and
has been effective in deciphering brain parenchyma loss (Serra et
al., 2010; Teipel et al., 2002; Zhu et al., 2012), while DTI has been
promising in characterizing white matter microstructure alterations
(Karas et al., 2008; Teipel et al., 2011;Ukmar et al., 2008;Zhang et al.,
2013, 2007;Zhuang et al., 2010). These previous studies have been
analyzing the brain parenchyma or its diffusion properties on their
own (Ukmar et al., 2008; Zhang et al., 2013, 2007), or by compar-
ing them side-by-side (Di Paola et al., 2010; Rosas et al., 2010; Teipel
et al., 2011). To the best of our knowledge, none have tried to truly
combine these two features into one statistical analysis.

As shown in our study, measurements in both structural and
diffusion aspects have given significant between group differences,
confirming the concomitantly occurred parenchyma and diffuse
injuries in CC. Group analyses based on structural information (detJ
and (s1, s2, s3)) have successfully detected alterations in the mid-
body to the posterior end, while group analyses based on diffusion
information (mean FA and (k1,k2)) are more sensitive to alter-
ations in the anterior and the posterior ends of CC. Here, for the
first time, we fuse the T1-based morphometry information and DTI-
based diffusion information into one, single analysis. In all three
group-wise analyses, the fused method successfully outperforms
analyses based on structural information or diffusion information
alone. Moreover, in group comparisons between MCI-h and MCI-l
group, only the fusion method reached overall significance, while no
significance is detected if T1 and DTI measures are considered sep-
arately. These results show the feasibility of using the T1 and DTI
fusion method to increase detection power.

4.2. Anatomic and functional implications

The corpus callosum spans the midline of the brain and pos-
sesses numerous connections to surrounding structures. At its most
anterior end, the genu, WM tracts innervate the frontal lobes,
and infarction of the genu has been reported to result in frontal
lobe dysfunction (Buklina, 2005; Krupa and Bekiesinska-Figatowska,
2013; Miller and Cummings, 2007). The splenium, at the poste-
rior end, lies in close proximity to the hippocampus through the
amygdala (Kretschmann et al., 1998), and alterations of the splenium
are often associated with impairments in memory and visual percep-
tion (Knyazeva, 2013; Rudge and Warrington, 1991). In our cohort of
subjects, these anatomic-functional relationships have been further

validated in the correlation analysis of regional CC FA values with
5 neuropsychological tests. As shown in Fig. 4 and Fig. 5, executive
functioning, verbal memory, and global cognitive profile, which are
higher brain functions that are extensively involved frontal networks
(Cummings, 1993; Hoffmann, 2013), showed significant associations
with dorsal anterior CC, while nonverbal memory, which is highly
correlated with hippocampus functioning (Bonner-Jackson et al.,
2015), selectively correlates with the ventral posterior CC.

Thus, the anatomy of the dorsal anterior CC is more predictive
of frontal lobe involved executive and verbal memory functions,
while the posterior CC is more associated with temporal and parietal
nonverbal memory. Taken together, the constellation of group-
wise analysis and anatomical-neurophysiological correlations imply
a main effect of MCI on medial to posterior cortex involved mem-
ory functions, while CVD and its risk factors add to the symptoms
through frontal connections.

Comparing to controls, CCs in the MCI-h group presented simi-
lar but more extensive alterations than those from the MCI-l group,
suggesting an ’interactive’ impact of the vascular and neurodegener-
ative factors on brain morphometry. These are generally in line with
anatomical findings showing associations between vascular brain
injuries or risk factors and aggregated brain atrophy, especially in the
parietal and temporal lobe (Cardenas et al., 2012; Villeneuve et al.,
2014). In terms of the comparison within MCI subgroups, significant
differences resided in the dorsal anterior CC, implying an ’additive’
effect of vascular pathology on the brain frontal network that is dif-
ferentiable from the non-vascular neurodegeneration influences. The
frontal lobe hypo-perfusion detected by ASL-MRI has been reported
to be associated with worse executive and memory function (Alosco
et al., 2013). Vascular risk factors measured by FCRP and high-density
lipoprotein cholesterol are found to link with thinner frontotemporal
cortex (Villeneuve et al., 2014). In our study, the distinctive impact
of the cardiovascular factor in the genu of CC is consistent with the
anatomic relationship between cognitive profile and the frontal lobe
(Villeneuve et al., 2014), and provides further neuroanatomic evi-
dence supporting the neuropsychological findings of the selective
executive dysfunction of vascular pathology (Hayden et al., 2005;
Marra et al., 2011; Nordlund et al., 2007).

However, our implications for a vascular associated frontal lobe
dominated cognitive functions needs to be interpreted with cau-
tion. As detected by the T1 and DTI joint analysis, broader areas
including anterior, mid-body, and posterior CC showed different lev-
els of alterations in the MCI-h group, while only the anterior regions
reached group-wise significance. Hence, the significant alterations
detected in genu between MCI with high and low vascular types does
not mean that the anterior CC is the only region involved in vascular
pathology. For instance, the conclusion in Villeneuve et al. (2014) is
that vascular risk factors ‘interact’ with neurodegeneration factors in
temporal and posterior lobe, and cause additional adverse effect on
the frontal lobe. Further, reduced executive or global cognitive func-
tioning implied by more severely altered genu does not necessarily
lead to the assertion that cardiovascular factors impair executive
functioning more severely than nonverbal memory. Previously, to
validate the executive predominance model of vascular pathology,
(Reed et al., 2007) hypothesized a lower executive performance
than episodic memory performance in cases with autopsy-defined
cerebrovascular diseases, but failed to detect a statistical significant
differences between the two tests. Our study provides a poten-
tial interpretation to previous results that vascular pathology may
accelerate the deterioration of multiple cognitive domains, with its
influence on the frontal involved network especially dissociable from
non-vascular neurodegeneration factors.

Our current study extend the database of vascular pathology on
the brain in pre-dementia stages, and suggests an ‘additive’, albeit
not ‘dominant’ effect of vascular associated impact on the frontal
lobe, which may eventually lead to the refinement of the widely
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accepted frontal predominancy theory. Our findings provide new
neuroanatomical substrate of vascular contributions to cognitive
impairment before the magnification of dementia, which may serve
as a new biomarker that helps clinical diagnostic and therapeutical
design.

5. Limitations and future directions

There are also several limitations of the presented study. First,
due to the limited size of our cohort, we merged subjects with high
FCRP and subjects with histories of myocardial infarction into one
single group - the MCI-h group. We hope to enroll more subjects in
the future, and refine our vascular model. Second, due to the large
age range within our cohort, we used linear regression to factor
out the effect of age. The effect of age on brain anatomy in elderly
subjects has been widely accepted, and we did observe a signifi-
cant linear relationship between age the surface diffusion indices as
shown in Fig. 4. However, the use of linear regression does not rule
out the possible existence of nonlinear relationship between age and
brain anatomy. Third, here we only included the most representative
univariate or multivariate measurements in our statistical analyses.
Nonetheless, our methods can also be applied to other shape or dif-
fusion measurements like thickness, mean diffusivity (MD), radial
diffusivity (RD), and alike, as well as combinations among these.
Fourth, it would be desirable to include other factors, like gender,
gene, education and ethnicity in future analyses to derive a more
comprehensive model.

In the future, we would also like to extend this method to to sub-
divide the CC into functionally or anatomically relevant regions, to
further strengthen the interpretation of our results. For example, we
could use a probabilistic tractography to the cortex or functional-
based partition on the CC subregions (Park et al., 2008), especially
where showed significant group differences, to investigate the asso-
ciation between regional CC alterations with disturbances in specific
cortical domains. In addition, it would be important to track the men-
tal status of patients, to see whether any of them transform into
clinically diagnosed dementia. This may provide additional insight
into the contribution of the vascular component in the conversion to
Alzheimer’s disease or other types of dementia.
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