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ARTICLE

Distributed genetic architecture across the
hippocampal formation implies common
neuropathology across brain disorders
Shahram Bahrami 1✉, Kaja Nordengen 1,2, Alexey A. Shadrin1,3, Oleksandr Frei1,4, Dennis van der Meer1,5,

Anders M. Dale 6,7,8, Lars T. Westlye 1,3,9, Ole A. Andreassen 1,3 & Tobias Kaufmann 1,10✉

Despite its major role in complex human functions across the lifespan, most notably navi-

gation, learning and memory, much of the genetic architecture of the hippocampal formation

is currently unexplored. Here, through multivariate genome-wide association analysis in

volumetric data from 35,411 white British individuals, we reveal 177 unique genetic loci with

distributed associations across the hippocampal formation. We identify genetic overlap with

eight brain disorders with typical onset at different stages of life, where common genes

suggest partly age- and disorder-independent mechanisms underlying hippocampal

pathology.

https://doi.org/10.1038/s41467-022-31086-w OPEN

1 Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University
of Oslo, Oslo, Norway. 2Department of Neurology, Oslo University Hospital, Oslo, Norway. 3 KG Jebsen Centre for Neurodevelopmental Disorders, University of
Oslo, Oslo, Norway. 4Department of Informatics, University of Oslo, Oslo, Norway. 5 School of Mental Health and Neuroscience, Faculty of Health, Medicine and
Life Sciences, Maastricht University, Maastricht, The Netherlands. 6Department of Radiology, School of Medicine, University of California, San Diego, CA, USA.
7Department of Neurosciences, University of California San Diego, La Jolla, CA, USA. 8Center for Multimodal Imaging and Genetics, University of California at
San Diego, La Jolla, CA, USA. 9Department of Psychology, University of Oslo, Oslo, Norway. 10Department of Psychiatry and Psychotherapy, Tübingen Center
for Mental Health, University of Tübingen, Tübingen, Germany. ✉email: shahram.bahrami@medisin.uio.no; tobias.kaufmann@med.uni-tuebingen.de

NATURE COMMUNICATIONS |         (2022) 13:3436 | https://doi.org/10.1038/s41467-022-31086-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31086-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31086-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31086-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31086-w&domain=pdf
http://orcid.org/0000-0002-8179-2788
http://orcid.org/0000-0002-8179-2788
http://orcid.org/0000-0002-8179-2788
http://orcid.org/0000-0002-8179-2788
http://orcid.org/0000-0002-8179-2788
http://orcid.org/0000-0002-5897-6394
http://orcid.org/0000-0002-5897-6394
http://orcid.org/0000-0002-5897-6394
http://orcid.org/0000-0002-5897-6394
http://orcid.org/0000-0002-5897-6394
http://orcid.org/0000-0002-6126-2966
http://orcid.org/0000-0002-6126-2966
http://orcid.org/0000-0002-6126-2966
http://orcid.org/0000-0002-6126-2966
http://orcid.org/0000-0002-6126-2966
http://orcid.org/0000-0001-8644-956X
http://orcid.org/0000-0001-8644-956X
http://orcid.org/0000-0001-8644-956X
http://orcid.org/0000-0001-8644-956X
http://orcid.org/0000-0001-8644-956X
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4003-1018
http://orcid.org/0000-0002-4003-1018
http://orcid.org/0000-0002-4003-1018
http://orcid.org/0000-0002-4003-1018
http://orcid.org/0000-0002-4003-1018
mailto:shahram.bahrami@medisin.uio.no
mailto:tobias.kaufmann@med.uni-tuebingen.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The hippocampal formation plays critical roles in episodic
memory1,2, navigation3,4, and emotions5. Consequently,
impaired or lesion-induced loss of hippocampal function-

ing has tremendous and diverse impact on emotions and cogni-
tive functions6,7. Thus, the hippocampus has been extensively
studied across a wide variety of diseases and traits, including
trajectories of early development and aging.

The degree of hippocampal maturation and change throughout
the lifespan may capture information relevant to the study of
psychiatric and neurological disorders, where the age at which
individual neurophysiological trajectories usually diverge from
the norm may reflect key characteristics of the underlying
pathophysiology8. Indeed, the hippocampal formation is known
to be involved in disorders with typical onset early in life9, such as
autism spectrum disorders (ASD), attention-deficit hyperactivity
disorder (ADHD), schizophrenia (SCZ) and bipolar disorder
(BIP), through its roles in perception, memory processes, mod-
ulation of executive function, emotion regulation, among
others10–12. Furthermore, through its involvement in stress
response, the hippocampal formation is potentially involved in
migraine (MIG)13 and tests of recollection memory indicate
hippocampal dysfunction in major depression (MD)14, both of
which are disorders that can appear at any stage from adolescence
to old age. Finally, the hippocampal formation is implied in
diseases that primarily emerge during senescence such as Par-
kinson’s disease (PD) and Alzheimer’s disease (AD). Emerging
data suggests a complex hippocampal crosstalk among the
dopaminergic and other transmitter systems in PD, where the
hippocampal formation is involved in adaptive memory and
motivated behaviour15. Loss of hippocampal functions like
navigation and episodic memory are core markers of AD and
hippocampal atrophy is an established finding16,17. Together,
these studies highlight the role of the hippocampal formation in a
range of psychiatric and neurological disorders across the
lifespan.

The past decades have brought significant progress towards a
characterization of the genetic architecture of the hippocampal
formation, from experimental manual mapping in mice18 to brain
imaging-based genome-wide-association studies (GWAS) in
humans19–22, initially based on total hippocampus volume
reporting one20 and six19 loci, and further increasing to 15 when
studying individual hippocampal subfields21. Given the broad
functional portfolio of the hippocampal formation, however, it is
clear that much of the genetic architecture remains to be explored,
calling for further studies and novel analytical approaches23.

Recent work revealed a distributed genetic architecture of
human brain anatomy24,25 and function26 and suggested that
capitalizing on this distributed nature in a multivariate GWAS
approach can significantly improve the discovery beyond stan-
dard GWAS approaches24. Advancements into deriving subdivi-
sions of the hippocampus through adaptive segmentation has
allowed for a fine-grained assessment across multiple
subregions27. We hypothesized that the genetic architecture
within the hippocampal formation is distributed across its sub-
regions and thus aimed to gain novel insights into the genetics of
the hippocampal formation by deploying such multivariate
GWAS approach to the 19 subregion volumes that can currently
be segmented with MRI27. Further, given hippocampal involve-
ment in many severe and highly prevalent brain disorders across
the lifespan, we targeted common neurological and psychiatric
disorders ranging from developmental disorders to neurodegen-
erative disorders, aiming to reveal gene variants potentially
involving the hippocampus at different stages in life.

We accessed raw T1-weighted MRI data from 35,411 geno-
typed white British individuals (age range: 45–82 years, mean:
64.4 years, s.d.: 7.5 years, 51.7% females) from the UK Biobank28

(permission no. 27412) and segmented the hippocampal forma-
tion into 19 subregions in addition to total hippocampus volume
(sum of all subfields) using FreeSurfer 7.127 (Fig. 1a). For each of
these, we calculated the average volume between the left and right
hemisphere and residualized for age, age squared, sex, scanning
site, a proxy of image quality, intracranial volume and the first 20
genetic principal components. The resulting residuals were used
in genetic analyses, feeding the 19 subregions alongside whole
hippocampus volume into the Multivariate Omnibus Statistical
Test (MOSTest)24, which implements permutation testing to
identify genetic effects across multiple phenotypes, yielding a
multivariate GWAS summary statistic across all 20 features.

Results
Multivariate approach identifies 177 loci associated with
the hippocampal formation. In line with our hypothesis, we
found strong support of a distributed genetic architecture in the
hippocampal formation. Multivariate GWAS revealed 177 unique
genetic loci with distributed associations across the hippocampal
formation. The upper part of Fig. 1b depicts the corresponding
multivariate statistics, highlighting the polygenic architecture of
the hippocampal formation. For each of the 177 loci, the lower
part of Fig. 1b depicts statistics from univariate GWASs of
individual hippocampal subregions. The elevated univariate sta-
tistics for multiple hippocampal subregions in some of the same
loci supports a distributed genetic architecture across the hip-
pocampal formation, which is also supported by genetic corre-
lation analysis of the univariate GWASs of the individual
subregions (Supplementary Fig. 1, Supplementary Data 1).
Whereas the strongest hits among the 177 discovered loci are also
implied in univariate analysis, a large share of the 177 loci showed
elevated yet not genome-wide significant effects at univariate
level. By capitalizing on these distributed effects across sub-
regions, the multivariate approach boosted discovery. Supple-
mentary Data 2 provides additional details on the 177 discovered
loci, most of which were not identified in previous hippocampus
GWAS. Supplementary Fig. 2 depicts corresponding
quantile–quantile (Q–Q) plots, including one from permutation
testing that confirms validity of the multivariate test statistic. A
multivariate replication attempt in an independent sample of
5262 individuals with non-white ethnicity supports robustness of
the findings, yielding same effect direction for 98% of the lead
SNPs (Supplementary Fig. 3).

Functional mapping and annotation identifies 87 genes
robustly associated with the hippocampal formation. We
functionally annotated all candidate SNPs (n= 25704) that were
in linkage disequilibrium (r2 ≥ 0.6) with one of the independent
significant SNPs using functional mapping and annotation of
GWAS (FUMA)29. About 90% of the SNPs had a minimum
chromatin state of 1–7, thus suggesting they were in open chro-
matin regions30,31, and 6.1% were in regulomeDB category 1 or 2,
suggesting potential regulatory function30 (Supplementary
Fig. 4A, B). A majority of these SNPs were intronic (49.9%) or
intergenic (30%) and 1.0% were exonic (Supplementary Fig. 4C).

We mapped the 177 loci implied for the hippocampal formation
to 963 genes based on four different mapping strategies (positional,
expression quantitative trait loci (eQTL), chromatin interaction
mapping and MAGMA analysis). Out of these, 87 genes were
identified by all four mapping strategies (Fig. 2), supporting
robustness of these findings. Supplementary Data 3–6 and
Supplementary Fig. 5 provide additional details. Four genes were
mapped from the locus with strongest GWAS effect: TESC,
important in cell proliferation and differentiation20, FBXW8,
important for ubiquitination and protease-mediated degradation32
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with a suggested role in clearing protein aggregates like hyperpho-
sphorylated tau33 in addition to synapse formation34, C12orf49, an
essential regulator of fatty acid metabolism35, and finally RNFT2
(also known as TMEM118), important for immune regulation36.
The second strongest GWAS hit, mapped to LEMD3 (also known
as MAN1) is also relevant for immune regulation37. FAM53B,
mapped from the third, POU3F3, mapped from the fourth, and

VCAN, mapped from the fifth strongest locus, all have important
roles in neurodevelopment38–40.

Genome-wide gene-based association studies (GWGAS; two-
sided P < 2.7 × 10−6) through MAGMA identified 303 unique
genes across the hippocampus (Supplementary Data 5). Many of
the significant gene sets reflected processes related to early
development (Supplementary Data 7), such as neurogenesis
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(PBonf= 9.2 × 10−8), regulation of anatomical structure morpho-
genesis (PBonf= 1.3 × 10−8) and neuronal differentiation (PBonf=
1.6 × 10−6), potentially indicating that individual differences in
hippocampal volumes later in life may be largely determined early
in development. Also, when focusing on the 87 genes implicated
from all four mapping strategies (see above), the gene-sets reflect
processes related to early development like regulation of cell
morphogenesis (P= 2.7 × 10−7; Supplementary Data 8). Over-
represented pathways for the 87 common mapped genes included
pathways representing processes prominent during the lifetime,
from brain development (e.g. axon guidance, neuronal migration,
angiogenesis) to plasticity (long-term depression) and finally
damage mechanisms (protein repair, spinal cord injury, regula-
tion of bad phosphorylation and neurodegeneration). (Supple-
mentary Data 9). An analysis of cell types41 for the 87 genes
implicated strongest expression in foetal astrocytes, followed by
mature astrocytes and neurons (Supplementary Fig. 6).

Genetic overlap between the hippocampal formation and
common brain disorders. We studied the genetic overlap
between hippocampal formation and eight disorders: ASD,
ADHD, SCZ, BIP, MIG, MD, PD, and AD. By choosing disorders
ranging from developmental disorders to neurodegenerative dis-
orders, we make sure to cover a wide range of biological processes
potentially involving the hippocampal formation at different
stages in life. The commonly used approach, genetic correlations
of the disorders with individual hippocampus subregions, did not
show significant associations after Bonferroni correction for
multiple comparisons (Supplementary Figs. 7 and 8 and Sup-
plementary Data 10). However, conditional Q–Q plots42 con-
ditioning the multivariate statistic of hippocampal formation on
the disorders and vice versa showed a clear pattern of pleiotropic
enrichment in both directions (Supplementary Fig. 9). Conjunc-
tional FDR analysis42,43 allowed us to test for shared loci between
the hippocampus and each of the disorders. Strikingly, we iden-
tified 8 loci significantly (conjFDR < 0.05) overlapping with

ADHD, 4 loci with ASD, 77 with BIP, 161 with SCZ, 41 with MD,
80 with MIG, 19 with AD and 10 loci significantly overlapping
with PD (Fig. 3a).

Supplementary Data 11–18 provide a full list of loci over-
lapping between hippocampal formation and the disorders. We
mapped each of these loci to genes using positional, eQTL and
chromatin interaction mapping (Supplementary Data 19) and
checked for genes that were implicated for multiple disorders. By
far strongest overlap was found between SCZ and BIP, where 106
of the genes overlapping between hippocampal formation and
SCZ were also found to overlap between hippocampal formation
and BIP (Fig. 3b). While this overlap may be expected given the
relatedness of the disorders, it is particularly noteworthy that we
found large overlap between other combinations of disorders as
well, some of which pertain very different onset times across the
lifespan such as ASD and AD (14 genes), ADHD and PD (11
genes), or ASD and PD (14 genes). Many genes were implied for
more than two disorders, and Fig. 3c depicts the subset implicated
as overlapping with hippocampal formation for at least four
disorders. Again, it is particular worth noting the co-occurance
for distinct disorders in different phases of life. For example, the
most frequently mapped gene was the AMT gene involved in
glycinergic neurotransmission, found to overlap between hippo-
campal formation and ADHD, SCZ, MD, MIG and PD,
respectively (Supplementary Data 19). Other examples are the
tau protein associated genes MAPT and STH, found for ASD,
SCZ, AD and PD, or the GPX1 gene, known to protect cells from
oxidative stress and here found for ADHD, SCZ, MD and PD.
This may illustrate genetic mechanisms independent of life
phases and may suggest that some of the pleiotropy between
brain disorders might be explained by shared mechanisms in
hippocampal pathology.

Discussion
Taken together, our multivariate GWAS of the volumes of the
hippocampal formation revealed a plethora of genomic loci not

Fig. 1 The multivariate framework discovered 177 independent loci significantly associated with the hippocampal formation. a Schematic illustration of
the hippocampus regions. The hippocampal formation comprises the histologically distinguishable subfields of the hippocampus proper as well as the
dentate gyrus with its own subfields, and the neocortical subiculum, presubiculum and parasubiculum. In all but the latter, the hippocampal formation is
also divided into an anterior (head) and a posterior part (body). b The upper part illustrates the −log10(P) statistic from the multivariate GWAS across the
entire formation, with 177 significant loci. The lower part depicts for each of the 177 unique loci the corresponding −log10(P) statistics from univariate
GWASs of single subregions (one colour per subregion, p-values are two-tailed), supporting a distributed genetic architecture across the hippocampal
formation. The strongest effects are labelled with numbers that reflect regions according to the order of regions in the legend (1=CA1_body,
2= CA1_head, 3= CA3_body, 4= CA3_head, 5= CA4_body, 6=CA4_head, 7=GC_ML_DG_DG_body, 8=GC_ML_DG_head,
9=molecular_layer_HP_body, 10=molecular_layer_HP_head, 11= presubiculum_body, 12= presubiculum_head, 13= subiculum_body,
14= subiculum_head, 15= fimbria, 16=HATA, 17= hippocampal fissure, 18=Hippocampal_tail, 19= parasubiculum, 20=Whole_hippocampus).
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identified in previous work, implicating a distributed nature of
effects on hippocampus. The mapped genes have roles in neu-
robiological processes across the lifespan. Importantly, the pro-
found overlap between hippocampal formation and common
brain disorders and the identification of some of the same genes

implied for disorders with onset in different phases of life suggests
age-independent neuropathology and may pinpoint potential
disease-independent drug targets.

The distributed genetic architecture across the hippocampal
formation, here revealed through 177 hippocampus-associated
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loci and 87 genes mapped consistently by four mapping strate-
gies, pointed at pathways with involvement across the lifespan,
starting with embryogenic brain development, like axon guidance
and neuronal migration, then involving neuronal plasticity pro-
cesses, and finally pathways of neurodegeneration. Our findings
align with and expand upon earlier reports from univariate
analyses of the hippocampus19–22, pointing at neurogenesis-
related pathways22 and linking hippocampal volumes to common
brain disorders19,21.

Our results suggest that several genes have a role in hippo-
campal pathology across multiple brain disorders, with onset
times ranging across the lifespan. These findings not only support
the notion of pleiotropy across a spectrum of neurological and
psychiatric disorders but may also pinpoint to both, age- and
disorder-independent drug targets. For example, our discovery of
the AMT gene overlapping between hippocampal formation and
ADHD, SCZ, MD, MIG and PD, respectively, may implicate an
age-independent role of glycine in hippocampal pathology. The
AMT gene codes for aminomethyltransferase (T-protein), an
enzyme crucial for the glycine decarboxylase complex (GCS) in
mitochondria. Glycine is a primary inhibitory neurotransmitter
in the spinal cord and brainstem, but increasing evidence shows
important glycine involvement also in the hippocampal
formation44. Glycine exerts a tonic inhibitory role through
extrasynaptic glycine receptor chloride channels45, in addition to
modulation of NMDA receptors in the hippocampal formation as
evident from rodent studies46,47. Rodent studies also suggest that
through regulation of both glycine and serine synthesis and
cleavage, aminomethyltransferase as part of the glycine dec-
arboxylase complex, may provide a homoeostatic regulation of
hippocampal function and plasticity by simultaneous activation
of excitatory NMDA receptors and inhibitory glycine
receptors48,49. The glycine site on the NMDA receptors is cur-
rently under investigation as a promising drug target for several
of the disorders that we here associated with the AMT gene,
including ADHD50,51, PD52, SCZ53 and MD54, either by direct
glycine supplementation, other substances working on the same
receptor site or by increasing endogenous glycine by inhibiting
the glycine transporter. Another example for a potential age- and
disorder-independent drug target is the microtubule-associated
protein tau (MAPT) gene, which was here implicated for ASD,
SCZ, AD and PD. Indeed, tau has for long been a marker of AD
and PD55 yet has recently also gained focus for ASD56, with
animal models suggesting that tau reduction may prevent beha-
vioural signs of this neurodevelopmental disorder57. Taken
together, our results therefore add support for disorder-
independent gene targets for hippocampal pathology across the
lifespan, including AMT and MAPT, among others, and illustrate
how the multivariate GWAS approach can reveal overlapping
biochemical mechanisms underlying different disorders and
traits.

Some aspects are relevant for interpreting the results of this
study. First, there is currently no optimal method for gene
mapping. We here chose to apply four different mapping stra-
tegies and highlighted genes that were identified in all four
strategies. While this cannot fully overcome all limitations of
current gene mapping approaches, we consider an identification
of a given gene by four strategies as an indicator of robustness.
Second, we identified genes associated with the hippocampal
formation and several of the brain disorders across the lifespan,
which might point to shared molecular pathways. However, it has
to be emphasized that they could also have different roles in
different pathologies. This study lays the foundation for future
detailed studies of potential common pathways and drug targets.
Third, generalizability of our findings beyond the study popula-
tion remains to be investigated. We here performed our main

analysis in data from 35,411 white British individuals and repli-
cated our findings in data from 5262 individuals with non-white
ethnicity, however, both samples were drawn from the same UK
Biobank study population. Forth, it should be noted that the here
used GWAS for major depression partly included samples that
were not necessarily clinically diagnosed with major depressive
disorder but reported symptoms of the disorder. This may factor
into the specificity of this GWAS. Finally, future research tar-
geting lateralization effects may yield additional insight into
hemispheric similarities and differences in distributed genetic
effects across regions of the hippocampal formation.

In conclusion, our results suggest a polygenic architecture of
the hippocampal formation, distributed across its subregions. The
genetic overlap with various brain disorders with typical onset at
different stages of life implicated genes that may be relevant
targets for future studies into the mechanisms underlying hip-
pocampal functioning and pathology across the lifespan. With
several of the findings fitting currently studied treatment targets
(e.g. the glycine site on the NMDA receptor), our results also
confirm the utility of the approach and suggest that capitalizing
on the distributed nature of genetic effects on the brain will be
instrumental in our future endeavours to further understand
mechanisms underlying the brain and its disorders.

Methods
Sample and pre-processing of imaging and genetic data. The UK Biobank was
approved by the National Health Service National Research Ethics Service (ref. 11/
NW/0382). We accessed raw T1-weighted magnetic resonance brain imaging data
from 35,411 genotyped white British from the UK Biobank28 (age range: 45–82
years, mean: 64.4 years, s.d.: 7.5 years, 51.7% females) for the main analysis, and of
5262 individuals with non-white ethnicity (age range: 45–81, mean: 62.9, s.d.: 7.6
years, 53.6% females) for the replication in independent data.

We processed T1-weighted images using the standard recon-all pipeline in
Freesurfer 5.358, and subsequently segmented the hippocampal formation using
Freesurfer 7.127. The segmentation method has previously been validated in three
independent data sets, attributing robust performance and highly replicable
results27. For genetic analyses, we followed the standard quality control procedures
to the UK Biobank v3 imputed genetic data and removed SNPs with an imputation
quality score < 0.5, a minor allele frequency < 0.005, missing in more than 10% of
individuals, and failing the Hardy–Weinberg equilibrium tests at a P < 1e−9.

Multivariate genome-wide association analysis and gene mapping. For each of
the 19 regions of the hippocampal formation—parasubiculum, presubiculum head
and body, subiculum head and body, CA1/CA3/CA4 head and body, GC-ML-DG
head and body, molecular layer head and body, HATA, fimbria, hippocampal tail,
hippocampal fissure—as well as for total hippocampus volume we calculated the
average volume between the left and right hemisphere and subsequently residua-
lized the volumes for age, age squared, sex, scanning site, Euler number as a proxy
of image quality59, intracranial volume and the first 20 genetic principal compo-
nents. The resulting residuals for the 20 regions were jointly fed into the multi-
variate omnibus statistical test (MOSTest)24 analysis. MOSTest implements
permutation testing to identify genetic effects across multiple phenotypes, yielding
a multivariate GWAS summary statistic across all 20 features. For mathematical
details of the implementation, see van der Meer et al. (2020)24, for details on the
software implementation see github.com/precimed/mostest. MOSTest has been
extensively validated in the original methods paper, including simulations and
comparisons with other methods that have confirmed its solid performance in
discovery and an order of magnitude shorter runtime compared to other tools24.
For comparison to standard univariate approaches, we also performed univariate
GWAS (extracted from the univariate stream of MOSTest24). Supplemental genetic
correlation analyses were performed using LD-score regression60,61. Heritability
was estimated using genome-wide complex trait analysis (GCTA)62, and for
comparison using LD-score regression60,61.

To identify genetic loci we uploaded this summary statistic to the FUMA
platform v1.3.729. Using the 1000GPhase3 EUR as reference panel, we identified
independent significant SNPs at the statistical significance threshold P < 5e−8. All
SNPs at r2 < 0.6 with each other were considered as independent significant SNPs
and a fraction of the independent significant SNPs in approximate linkage
equilibrium with each other at r2 < 0.1 were considered as lead SNPs. FUMA
annotates associated SNPs based on functional categories, Combined Annotation
Dependent Depletion (CADD) scores which predicts the deleteriousness of SNPs
on protein structure/function63, RegulomeDB scores which predicts regulatory
functions30; and chromatin states that shows the transcription/regulation effects of
chromatin states at the SNP locus64. We also conducted Gene Ontology gene-set
analyses based on FUMA’s gene ontology classification system29 and pathway
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analyses65 for all mapped genes and the 87 common mapped genes of hippocampal
formation. We conducted genome-wide gene-based association and gene-set
analyses using MAGMA v.1.0866 (http://ctg.cncr.nl/software/magma) in FUMA.
All variants in the major histocompatibility complex (MHC) region (GRCh37:
6:28,477,797–33,448,354) were excluded before running the MAGMA analyses.
MAGMA performs multiple linear regression to map the input SNPs to 18091
protein coding genes and estimates the significance value of that gene. Genes were
considered significant if the P value was <0.05 after Bonferroni correction for
18,091 genes. We performed cell type analysis of the 87 genes identified by all four
mapping strategies using data available as part of the supplements in Zhang and
colleagues 201641.

Multivariate replication analysis. To ensure that not only single locus associa-
tions replicate but that also the multivariate pattern of these associations are
consistent in the discovery and replication sample, we implemented a multivariate
replication procedure established in Loughnan et al.67. In brief, for each locus
identified in the multivariate analysis in the discovery sample, this procedure
derives a composite score from the mass-univariate z-statistics and tests for
associations of the composite score with the genotype in the replication sample (for
mathematical formulation see Loughnan et al.67). Four of the 177 loci could not be
tested as the lead SNPs from the discovery sample were not available in the
replication sample. For the remaining loci we report the percent of loci replicating
at P < 0.05 and the percent of loci showing the same effect direction.

Genetic overlap between hippocampal formation and brain disorders. We
accessed GWAS summary statistics for migraine (MIG) from International head-
ache genetics Consortium68 and for Parkinson’s disease (PD) from the Interna-
tional Parkinson Disease Genomics Consortium69,70. The latter included 23andMe
data. 23andMe participants provided informed consent and participated in the
research online, under a protocol approved by the external AAHRPP-accredited
IRB, Ethical & Independent Review Services (E&I Review). Furthermore, from the
Psychiatric Genomics Consortium we accessed summary statistics for attention
deficit hyperactivity disorder (ADHD)71, autism spectrum disorder (ASD)72,
bipolar disorder (BIP)73 and major depression (MD)74. Finally, we included data
from recent studies of schizophrenia (SCZ)75 and of Alzheimer’s disease (AD)76.
The included disorders have typical onset times at different phases in life, thus
potentially covering a wide range of biological processes affecting the hippocampal
formation.

Using conjunctional FDR statistics (FDR < 0.05)42,43, we identified shared
variants associated with hippocampal formation and each of the above-mentioned
brain disorders. In contrast to genetic correlation analysis, conjunctional FDR does
not require effect directions and can therefore be applied to summary statistics
from multivariate GWAS, which do not contain effect directions. Two genomic
regions, the extended major histocompatibility complex genes region (hg19
location Chr 6: 25119106–33854733) and chromosome 8p23.1 (hg19 location Chr
8: 7242715–12483982) for all cases and MAPT region for PD and APOE region for
AD and ASD, respectively, were excluded from the FDR-fitting procedures because
complex correlations in regions with intricate LD can bias FDR estimation. We
submitted the results from conjunctional FDR to FUMA v1.3.729 to annotate the
genomic loci with conjFDR value < 0.10 having an r2 ≥ 0.6 with one of the
independent significant SNPs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In this study we used brain imaging and genetics data from the UK Biobank [https://
www.ukbiobank.ac.uk/], and GWAS summary statistics obtained from the Psychiatric
Genomics Consortium [https://www.med.unc.edu/pgc/shared-methods/], 23andMe
[https://www.23andme.com/], International headache genetics Consortium (IHGC)
[http://www.headachegenetics.org/content/datasets-and-cohorts], the International
Genomics of Alzheimer’s Project [https://ctg.cncr.nl/software/summary_statistics], and
the International Parkinson Disease Genomics Consortium [https://pdgenetics.org/
resources]. The latter included 23andMe data, which was made available through
23andMe under an agreement with 23andMe that protects the privacy of the 23andMe
participants [https://research.23andme.com/collaborate/#dataset-access/]. The summary
statistics for hippocampal formation derived in this study is available in our github
repository [https://github.com/norment/open-science]. FUMA results are available
online [https://fuma.ctglab.nl/browse/371].

Code availability
All code and software needed to generate the results is available as part of public
resources, specifically MOSTest (https://github.com/precimed/mostest), FUMA (https://
fuma.ctglab.nl/), conjunctional FDR (https://github.com/precimed/pleiofdr/) and LD
score regression (https://github.com/bulik/ldsc).
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