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Abstract

Whether unique to humans or not, consciousness is a central aspect of our experience of the world. The neural fingerprint
of this experience, however, remains one of the least understood aspects of the human brain. In this paper we employ
graph-theoretic measures and support vector machine classification to assess, in 12 healthy volunteers, the dynamic
reconfiguration of functional connectivity during wakefulness, propofol-induced sedation and loss of consciousness, and
the recovery of wakefulness. Our main findings, based on resting-state fMRI, are three-fold. First, we find that propofol-
induced anesthesia does not bear differently on long-range versus short-range connections. Second, our multi-stage design
dissociated an initial phase of thalamo-cortical and cortico-cortical hyperconnectivity, present during sedation, from a phase
of cortico-cortical hypoconnectivity, apparent during loss of consciousness. Finally, we show that while clustering is
increased during loss of consciousness, as recently suggested, it also remains significantly elevated during wakefulness
recovery. Conversely, the characteristic path length of brain networks (i.e., the average functional distance between any two
regions of the brain) appears significantly increased only during loss of consciousness, marking a decrease of global
information-processing efficiency uniquely associated with unconsciousness. These findings suggest that propofol-induced
loss of consciousness is mainly tied to cortico-cortical and not thalamo-cortical mechanisms, and that decreased efficiency
of information flow is the main feature differentiating the conscious from the unconscious brain.
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Introduction

Despite the centrality of consciousness to our experience, no

agreement has yet emerged on which aspects of brain function

underlie its presence, and what changes are connected to its

disappearance in the healthy brain (e.g., during sleep) as well as in

pathological conditions (e.g., coma). As a consequence, we are

currently hard pressed to answer even basic questions concerning

the presence, absence, degree and nature of the phenomenon of

consciousness in humans and other species [1]. As experimental

investigations into this domain have increased, a number of

proposals have been put forth to characterize the neural

fingerprint of consciousness. According to some views, the crucial

feature underlying consciousness is the presence of specific

patterns of activations, such as the presence of competing assembly

of cells, or ‘neural coalitions’ [2], synchronization of neural activity

in specific frequency bands [3,4], or the level of spontaneous

oscillatory activity, at fast frequencies, in the thalamo-cortical

system [5]. According to other proposals, consciousness is related

to the spread and reverberation of information across the neural

system, and in particular within specific regions in parietal and

frontal cortices [6,7] – although the scope of this view is mostly

relevant to the idea of conscious availability of content to a neural

system, as compared to the more general ‘‘state of consciousness’’

of a neural system [8]. Finally, a recently proposed view [1,9],

stresses the importance of evaluating not the degree of correlation

among different (often long-range) regions, but rather the degree

of information present and the extent to which information is

integrated across the nodes of a system.

In the present work we look at spontaneous low-frequency

fluctuations in the functional magnetic resonance imaging (fMRI)

signal [10,11], to assess the relationship between different states of

consciousness and basic principles of information processing (as

captured by the blood oxygenation level dependent signal; i.e.,

BOLD). The analysis of spontaneous fluctuations of the BOLD

signal has been fruitfully employed to explore consciousness-

related changes in clusters of temporally coherent regions during

sedation [12,13], sleep [14–16], and in the pathological brain

[17,18]. In particular, associations within specific networks of

regions have been found to be monotonically modulated by
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consciousness [19–21], consistent with some theoretical views

[3–5]. This idea, however, clashes with reports of increased cross-

regional correlation concurrent with decrease or loss of conscious-

ness [22,23], suggesting the importance of characterizing not just

the strength but also the quality of information processing within a

system [1,24].

Following this idea, we employ previously collected resting-state

fMRI data [21] to assess, in 12 healthy volunteers, the dynamic

change of governing principles of brain organization during

wakefulness (W), propofol-induced sedation (S) and loss of

consciousness (LOC), as well as after consciousness recovery (R),

a dynamic approach that has been recently advocated for [25]. In

particular, we focus on the change of global and local topological

metrics of information processing across conditions [26–28], a

technique that has been successfully employed to characterize and

model dynamics within physical [29], biological [30] and social

systems [31], and that has been shown to capture specific aspects

of brain organization in the maturing, healthy adult, and

pathological brain [32–36]. A particularly appealing aspect of

this technique in the context of studies of consciousness is the

parallel between the measures it offers, focused on characterizing

how information is exchanged and propagated through a network,

and theories of consciousness that stress the centrality of how

information is treated and integrated within the brain [1,9].

As detailed below, we report three main findings. First, contrary

to a recent report [25], we find that long- and short-range

connections are not differentially affected by sedation. Second,

employing a support vector machine (SVM) classifier, we

dissociate the thalamo-cortical and cortico-cortical hyperconnec-

tivity observed during sedation from the cortico-cortical hypo-

connectivity observed during loss of consciousness. Finally,

contrary to results in other species [37], we find significant global

changes in the (functional) topological organization of the brain

during sedation. However, we show that normalized clustering,

the global metric that was previously reported to be sensitive to the

loss of consciousness [25], remains significantly elevated also

through post-sedation recovery of wakefulness. Conversely, we

find that a strong decrease in efficiency of information distribution

(defined as the inverse of the characteristic path length – see

Materials and Methods) is the only unambiguous marker of

propofol-induced loss of consciousness.

Results

Network Description
The average connectivity matrices and the frequency distribu-

tion of (average) correlations for each condition are shown in

Figure 1 and Figure 2a, respectively. According to a two-sample

Kolmogorov-Smirnov goodness-of-fit test, the distribution of

positive and negative correlations are significantly different for

all pairwise comparisons (KSW v S~0:04; KSS v LOC~0:33;

KSLOC v R~0:25; KSW v R~0:12; all pv0:001). In all four

conditions about 80% of correlations were between 0 and 0.4.

LOC, however, exhibited a leftwards shift of the distribution, as

shown by the median correlation value of 0.11, as compared to

0.23, 0.22, and 0.19 for W, S, and R, respectively. Furthermore,

14% of correlations in the LOC condition were negative, as

compared to about 2% in all other conditions, while only 6% were

above 0.4, versus 17%, 14% and 11% for W, S, and R,

respectively. To assess whether correlations between areas at

different distances were unequally affected by the level of

consciousness, we employed a repeated measures ANCOVA with

one within-subjects variable (i.e., condition) with four levels (W, S,

LOC, R), and inter-ROI distance as a covariate (with distance

defined as the 3-dimensional Euclidean distance between the

baricenter of each ROI; see Figure 2b) to predict correlation

strength. As expected, we found a significant effect of condition

(FHF(2:28,8:55E4)~2:46E3, pv0:001), indicating that correla-

tion strength systematically varied across conditions. Specifically,

W consistently exhibited the strongest average correlation level,

across all bins, followed by S and R, while LOC consistently

exhibited the weakest average correlation across all bins. We also

found a significant effect of distance (F(1,37440)~8:04E3,

pv0:001), indicating that, as shown in Figure 2b, the average

correlation strength decreased with distance. In addition to the

two main effects, we also found a significant interaction between

condition and distance (FHF(2:28,8:55E4)~75:95, pv0:001),

indicating an uneven effect of condition on links of different

length. However, when we followed up this significant interaction

with a set of separate repeated measures ANOVAs (one per each

bin) we found that it was entirely driven by the absence of a

significant difference between W and S for the first 3 bins (out of

15; i.e., regions closer than 3.4 cm). With this exception, the effect

of propofol was remarkably consistent at all other connection

lengths (particularly with respect to the crucial condition – i.e., loss

of consciousness – where no difference was found across

connection length). Indeed, at all other bins the four conditions

were found to be significantly different from each other, based on

estimated marginal means and a Sidak correction for multiple

comparisons. The observation of a small effect of distance on

connection strength across levels‘ of sedation is also consistent with

the extremely low effect size observed for the interaction between

condition and distance in the overall ANOVA (v2
p~0:002), and

strengthens the idea that, overall, connection size had a minimal

effect on correlation strength – something that is immediately clear

from Figure 2b.

Network Classification
Results for the classification of brain networks (i.e., correlation

matrices) are reported in Table 1 and Figure 3. At a global level,

the SVM algorithm classified successfully states of wakefulness (W

& R) versus states of sedation (S & LOC) with high accuracy,

Author Summary

One of the most elusive aspects of the human brain is the
neural fingerprint of the subjective feeling of conscious-
ness. While a growing body of experimental evidence is
starting to address this issue, to date we are still hard
pressed to answer even basic questions concerning the
nature of consciousness in humans as well as other
species. In the present study we follow a recent theoretical
construct according to which the crucial factor underlying
consciousness is the modality with which information is
exchanged across different parts of the brain. In particular,
we represent the brain as a network of regions exchanging
information (as is typically done in a comparatively young
branch of mathematics referred to as graph theory), and
assess how different levels of consciousness induced by
anesthetic agent affect the quality of information ex-
change across regions of the network. Overall, our findings
show that what makes the state of propofol-induced loss
of consciousness different from all other conditions
(namely, wakefulness, light sedation, and consciousness
recovery) is the fact that all regions of the brain appear to
be functionally further apart, reducing the efficiency with
which information can be exchanged across different parts
of the network.

Information Processing in Loss of Consciousness
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sensitivity and specificity (all above 83.33%; pv0:001). The same

level of classification was also achieved when comparing contig-

uous brain states (namely, W vs. S; S vs. LOC; and LOC vs. R; see

Table 1 for a detailed report of accuracy, specificity, sensitivity and

significance for each). Conversely, wakefulness (W) and wakeful-

ness recovery (R) could not be successfully distinguished from each

other (p~0:12). (For completeness the two remaining classifica-

tions, namely W vs. LOC and S vs. R, are reported in Figure S1.)

At the local level, accurate classification of each transition relied

on different sets of edges within each brain graph (see Tables S1

and S2 for full details). In particular, as depicted in Figure 3b, and

more in detail in Figure 4a, the edges mostly contributing to

correctly classifying S versus W included positive cortico-cortical

(54.8%) and thalamo-cortical (40.9%) connections, as well as a

minority of cerebello-cortical (0.5%) and striato-cortical (3.8%)

connections. Conversely, as depicted in Figures 3c and 4b, the

distribution of connections correctly classifying LOC, as compared

to S, mostly included negative cortico-cortical connections

(82.5%), as well as a minority of positive cortico-cortical (9.9%),

thalamo-cortical (3.5%), cerebello-cortical (2.9%) and thalamo-

striatal (1.2%) connections. Notably, when tested statistically, the

allocation of classifying edges for these two transitions are

significantly different (x2(14)~6634:69, pv0:001). Finally, as

shown in Figures 3d and 4c, as compared to LOC, classification of

R was almost entirely based on the re-emergence of positive

cortico-cortical connections (98.4%) as well as a small minority of

cerebello-cortical connections (1.6%).

Network Analysis
Global metrics. Normalized global network metrics for each

condition, across all thresholds, are reported in Figure 5. (As

described in the Materials and Methods section, all the following

network properties are computed on weighted matrices using

weight-conserving algorithms. This approach, which is a departure

Figure 1. Mean connectivity matrices for each condition. Within each subdivision/lobe, ROIs appear in a rostral-to-caudal fashion.
Abbreviations: CtxF : cortex, frontal lobe; CtxT: cortex, temporal lobe; CtxP: cortex, parietal lobe; CtxO: cortex, occipital lobe; BG: basal ganglia; Thl:
thalamus; BS: brainstem; Crbl: cerebellum.
doi:10.1371/journal.pcbi.1003271.g001

Information Processing in Loss of Consciousness
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from previous research in this field [25,37], is motivated by the fact

that binary matrices equally assigning a value of ‘1’ to all

suprathreshold edges regardless of their connection strength are

susceptible to false short paths which may significantly affect

results [38] – see the Materials and Methods section for further

discussion. In the Results and Discussion sections the ‘w’

superscript is omitted for notation simplicity.)

Overall, the global repeated measures ANOVA indicated a

significant effect of condition on normalized clustering (c;

FHF(2:84,155:95)~14:75, pv0:001, v2
p~0:20). The threshold

factor was also significant (F(4,55)~25:58, pv0:001, v2
p~0:62),

as expected, but did not interact with the condition factor

(FHF(11:34,155:95)~0:37, p~0:97), indicating that the effect of

the level of sedation on this measure is robust to the thresholding

procedure. Follow-up pairwise comparison indicated that the

effect of condition was mainly due to W and S exhibiting

significantly less clustering than LOC and R, while no significant

difference was found between either the first two or the latter two

conditions. The follow-up 1-way ANOVAs (one per threshold)

replicated the overall results at all thresholds, although it was only

marginally significant at the lowest density threshold (i.e., p~0:07;

see Figure 5, top row).

The level of sedation also affected the normalized characteristic

path length (l; FGG(2:05,112:63)~20:57, pv0:001, v2
p~0:26).

Threshold level was also significant (F (4,55)~25:44, pv0:001,

v2
p~0:62), but did not show any interaction with the level of

sedation (FGG(8:19,112:63)~0:08). Pairwise comparisons indi-

cated that the only significant difference occurred between LOC

and all other conditions, with the state of unconsciousness

exhibiting significantly greater (normalized) characteristic path

length. These results were also replicated, at each threshold, with

the 1-way ANOVAs (although the effect was only marginally

significant at the lowest density threshold; i.e., p~0:08; see

Figure 5, second row).

The effect of condition on small-world properties (s) generally

mirrored that seen for c, with a significant effect of condi-

tion (FHF(2:84,156:08)~9:79, pv0:001, v2
p~0:14), a signi-

ficant effect of threshold (F (4,55)~18:37, pv0:001, v2
p~0:41)

and no significant interaction between the two factors

(FHF(11:35,156:08)~0:26, p~0:99). Follow-up pairwise compar-

isons indicated that, as for c, the first two conditions (i.e., W and S)

were not significantly different from each other, but both exhibited

significantly smaller s than the last two conditions (LOC and R),

which were not significantly different from each other. In the 1-

way ANOVAs, the same pattern was numerically detected at each

threshold, but it was only significant at the three highest density

thresholds (i.e., 21%, 26% and 31%), non-significant at the lowest

density threshold (i.e., 11%) and marginally significant at the

second lowest threshold (i.e., 16%; see Figure 5, third row).

Consistent with the results for l, a significant effect of condition

was also found on normalized global efficiency (nEg;

FGG(2:24,123:12)~19:35, pv0:001, v2
p~0:25). Threshold also

exhibited the expected main effect (F(4,55)~37:43, pv0:001,

v2
p~0:71), but again no interaction was observed with the level of

sedation (FGG(8:95,123:12)~0:18, p~0:99). Pairwise compari-

sons indicated that in LOC efficiency is significantly decreased, as

compared to all other conditions. The general pattern was

replicated at each threshold individually, but it was only significant

for the three highest density thresholds (i.e., 21%, 26% and 31%),

marginally significant at the second lowest density (i.e., 16%;

p = 0.06) and non-significant at the lowest density threshold (i.e.,

11%; see Figure 5, fourth row).

Finally, normalized mean modularity (nQ) was also significantly

affected by condition (FHF(2:85,156:76)~13:95, pv0:001,

v2
p~0:19) and threshold (F(4,55)~32:63, pv0:001, v2

p~0:68),

with no significant interaction between the two factors

(FHF(11:4,156:76)~0:023, pw0:99). Pairwise comparison indi-

cated that the effect of condition was mainly due to W and S

Figure 2. Correlations description. (a) Frequency distribution of ROI
correlations for each condition (and boxplot); (b) Strength of ROI
correlations for each condition as a function of inter-ROI distance (for
display purposes regions are binned in fifteen-9 mm distance groups).
doi:10.1371/journal.pcbi.1003271.g002

Table 1. Results of brain network group classification with SVM algorithm.

Comparison N (per group) Accuracy (%) Sensitivity (%) Specificity (%) p-value

(W&R) vs. (S&LOC) 24 85.42 87.50 83.33 p,0.001*

W vs. S 12 83.33 83.33 83.33 p,0.001*

S vs. LOC 12 91.67 100.00 83.33 p,0.001*

LOC vs. R 12 87.50 83.33 91.67 p,0.001*

W vs. R 12 62.50 58.33 66.67 p = 0.120

‘*’ indicates the classification survives Bonferroni correction.
doi:10.1371/journal.pcbi.1003271.t001

Information Processing in Loss of Consciousness
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exhibiting significantly less modularity than LOC and R, while no

significant difference was found between either the first two or the

latter two conditions. This same effect was seen in the follow-up

ANOVAs at the three highest density thresholds (i.e., 21%, 26%

and 31%), while only a marginal effect was seen at the second

threshold (i.e., 16%) and no effect at the lowest threshold (i.e.,

11%). With respect to the mean number of modules uncovered in

each condition, at the global level we find a marginally significant

effect of sedation (FGG(2:76,135:02)~2:75, p~0:059), although it

exhibited a very small effect size (v2
p~0:029). Pairwise comparison

indicated that the only difference was observed between S and

LOC, with the latter showing a lower number of modules than the

former. Consistent with the effect size statistic, however, although

the same numerical trend was observed at each individual

threshold (see in Table 2), it was never found to be significant in

any of the follow-up 1-way ANOVAs.

Local metrics. With respect to local metrics, results for nodal

strength and local efficiency are depicted in Figure 6. The level of

sedation had a significant effect on nodal strength across a wide

variety of lateral and midline regions. Overall, two main patterns

were detected. In some regions (shown in blue in Figure 6a), local

strength was stronger (across thresholds and subjects) during W

and R. This U-shape pattern was detected across a wide number

of regions throughout the midline as well as in occipital, parietal

Figure 3. Classification results. Top 1% connections contributing to the group SVM classification of (A) all wakefulness conditions (W&R) vs. all
sedation conditions (S&LOC); (B) W vs. S; (C) S vs. LOC; (D) LOC vs. R. For each comparison, the upper triangle shows the connections contributing to
correctly classifying the first condition, the lower triangle shows the connections contributing to correctly classifying the second condition. Red
connections indicate positive correlations contributing to the correct classification of a condition, blue connections indicate negative correlations
contributing to the correct classification of a condition. (Since classifications are relative to a comparison group, top classifying nodes for a given
condition may differ according to what group it is classified against.) See Figure 1 for abbreviations.
doi:10.1371/journal.pcbi.1003271.g003

Information Processing in Loss of Consciousness
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and latero-ventral prefrontal-cortices (consistent with previous

results [25]). In other regions (shown in yellow-red in Figure 6a),

local strength was stronger during S and LOC, as compared to the

other two conditions. This inverted U-shape pattern was mainly

detected in temporal cortex, ventro-medial prefrontal cortex, and

the apical aspect of prefrontal cortex. The effect of sedation on

local efficiency (Eloc) was, as expected (cf. [39]), consistent with the

clustering results. All regions in which a significant effect of

condition was detected exhibited greater efficiency (on average,

across subjects and density thresholds) in LOC and R. As shown in

Figure 6b, condition mainly affected the local efficiency of regions

within the medial section of parietal and frontal cortices.

Discussion

In this study we assessed propofol-induced changes in patterns

of connectivity, as well as in global and local governing principles

of brain organization, during wakefulness, sedation, loss of

consciousness, and wakefulness recovery. Our results contribute

to a growing literature addressing the topological organization of

the human brain [26,38], the changes in functional architecture

accompanying the loss of consciousness [16,25,37], as well as a

specific hypothesis concerning the role of different subsystems in

loss of consciousness [40,41].

Overall, our main findings are three-fold. First, despite the

frequently voiced idea that long-range connections play a key role

in anesthesia-induced unconsciousness [40], we fail to find a

substantial asymmetric decrease in cross-region correlation as a

function of inter-regional distance. Average connectivity strength

decreased monotonically with distance in approximately the same

manner across conditions (with the sole exception of extremely

short connections, below 34 mm, but only during the initial phase

of sedation, and not during loss of consciousness). This finding

runs counter to a recent report demonstrating an uneven effect of

propofol-induced unconsciousness on short-range (i.e., v78 mm)

versus long-range (i.e., w78 mm) connections [25]. The only effect

we detected concerned much shorter connections (i.e., v34 mm),

and was only found for the initial period of sedation, and not for

the period of loss of consciousness. Whether the different result is

to be attributed to methodological asymmetries (e.g., 2-timepoint

versus 4-timepoint paradigms, the binning procedure, the use of

different ROIs parcellation schemes) or to un-modelled third

factors remains to be determined.

The second central aspect of our results directly addresses the

discussion concerning the role of thalamo-cortical versus cortico-

cortical circuits in propofol-induced unconsciousness [40,41]. In

particular, our SVM classification isolated increased thalamo-

cortical and cortico-cortical synchronization as being maximally

informative in the wakefulness versus sedation classification,

suggesting a prominent role of this circuit in the initial stages of

sedation, before the onset of unconsciousness. Conversely, correct

classification of the state of loss of consciousness, as compared to

sedation, overwhelmingly relied on negative cortico-cortical

correlations. These findings support the view that propofol-

induced loss of consciousness is more closely linked to cortico-

cortical mechanisms rather than thalamo-cortical ones, as also

suggested in a recent EEG effective connectivity study [41]. It is

important to point out that our SVM classification is entirely based

on the full matrix of ROI-to-ROI correlations and is, therefore,

entirely data driven and blind to the existence of particular neural

circuits or opposing hypothesis concerning their role in propofol-

induced loss of consciousness. The observed major role of negative

Figure 4. Distribution of classifying connections. Distribution of
the top 1% connections contributing to correct SVM classification for
(A) S vs. W, (B) LOC vs. S (middle), and (C) R vs. LOC. See Figure 1 for
abbreviations; in addition ‘p’ indicates positive correlations; ‘n’ indicates
negative correlations.
doi:10.1371/journal.pcbi.1003271.g004

Figure 5. Global metrics. Average normalized global network metrics
for each condition at each threshold (bars depict standard error).
Abbreviations: Clustering, c; characteristic path length, l; small-
worldness, s; efficiency, nEg ; modularity, nQ. Significance level:
pv0:005 ‘***’; 0:005ƒpv0:01 ‘**’; 0:01ƒpv0:05 ‘*’; 0:05ƒpv0:08
‘,’; pw0:08 ‘ns’.
doi:10.1371/journal.pcbi.1003271.g005

Information Processing in Loss of Consciousness
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cortico-cortical connectivity in propofol-induced unconsciousness

should be differentiated, however, from studies on pathological

loss of consciousness in severe brain injury where post-mortem

[42] and in-vivo [43] evidence highlights the role of thalamus in

loss and recovery of consciousness [44,45]. While further studies

will have to directly address the issue, our findings are consistent

with the suggestion that thalamus may be a necessary but not

sufficient component in maintaining consciousness [41] consistent

with the view that thalamic lesions might induce unconsciousness

after severe brain injury by virtue of disconnecting an otherwise

functioning cortex [46,47].

The third result of our study concerns changes in governing

principles of information processing during loss and recovery of

consciousness. Contrary to a recent study in other species [37], we

do find significant changes in global topological measures across

levels of consciousness. Consistent with a previous report [25], we

find that loss of consciousness is marked by an increase in

normalized clustering (c), which measures the ‘cliquishness’ of

brain regions, potentially indicating an increase in localized

processing and thus a decrease of information integration across

the brain. Our multi-stage design, however reveals that clustering

remains significantly elevated (as compared to initial wakefulness

and sedation) during post-anesthesia wakefulness recovery. This

result shows that while it is true that clustering increases once

consciousness is lost, it is not a sufficient marker of consciousness,

something that the two-point design (i.e., initial wakefulness versus

loss of consciousness) in Schröter et al. [25] could not reveal. On

the other hand, we find that the normalized characteristic path

length (l) is significantly increased only during loss of conscious-

ness, suggesting that during unconsciousness the efficiency of

information distribution within the network is reduced (a finding

that is consistent with a very recent study on loss of consciousness

in sleep [16]). Whether this state of increased ‘‘functional distance’’

between regions is causal or consequent to propofol-induced loss of

consciousness will have to be addressed in future research. As

previously reported, the small-world architecture of brain

networks (s) persisted (and in fact increased) in loss of conscious-

ness [25], confirming the robustness of this core principle of

organization of biological networks despite profound state changes

[32]. Mirroring c, however, small-world architecture also

remained significantly elevated during wakefulness recovery.

Although much weaker, a similar effect of condition was also

uncovered for normalized modularity (nQ). Finally, we remark

that the presence of different results observed in the two propofol

conditions (sedation and loss of consciousness) and, importantly,

consciousness recovery, is consistent with the view that changes in

global brain topology observed here and elsewhere [25,37] are not

simply due to drug exposure, but rather reflect brain state changes

relating to the loss of consciousness, supporting a previously

expressed view [25].

Beyond the global reorganization of brain topology, we also

observed changes in local network topology. With respect to nodal

strength, selected frontal and parietal regions along the midline, as

well some lateral and opercular ROIs, appeared to be modulated

by changes in the level of consciousness. In particular, regions in

medial frontal and parietal cortices, along with occipital and

lateral parietal, exhibited less nodal strength during sedation and

loss of consciousness. Other regions, on the other hand, in

temporal cortex especially, but also in dorsal and ventro-medial

prefrontal cortex, exhibited the reverse pattern. Mirroring the

result for c, local efficiency appeared to be modulated mostly

across midline parietal and prefrontal regions. Overall, this pattern

of reorganization of local network topology is consistent with the

view that propofol affects specific hubs central to normal/wakeful

connectivity [48] which are also known to play a critical role in

consciousness [49–51] and self-consciousness [52].

Taken together, our findings support the idea that (propofol-

induced) loss of consciousness correlates with a change in the

quality of information processing, and not only a change in the

strength of connectivity across regions [1,24]. In particular,

dynamic reconfiguration of thalamo-cortical and cortico-cortical

connections, and contemporaneous decrease of efficiency and

increased local processing might affect the degree by which

information can be effectively integrated across the brain [9].

Table 2. Mean number of modules for each condition at each
density threshold (SD reported in parenthesis).

threshold W S LOC R

11% 15.00 (9.33) 14.72 (5.90) 10.60 (5.15) 11.26 (6.99)

16% 8.81 (3.72) 9.39 (2.94) 7.03 (2.79) 7.92 (4.96)

21% 6.81 (2.46) 6.95 (2.06) 5.30 (1.74) 6.42 (3.73)

26% 5.34 (1.46) 5.55 (1.59) 4.95 (1.44) 5.09 (2.38)

31% 4.71 (1.28) 4.85 (1.00) 4.56 (0.99) 4.54 (1.57)

doi:10.1371/journal.pcbi.1003271.t002

Figure 6. Local metrics. Regions displaying a significant effect of
condition on local metrics. (a) Nodal strength (yellow-red colors indicate
regions in which degree was stronger, on average, for the S and LOC
conditions, while blue-lightblue colors indicate regions in which degree
was stronger for W and R). (b) Local efficiency (yellow-red colors
indicate regions in which the measure is stronger, on average for the
LOC and R conditions). Color intensity is assigned on the basis of the
(FDR adjusted) p-value for the condition factor in the 2-way repeated
measures ANOVA. (Surface rendering was performed using Caret [98].)
doi:10.1371/journal.pcbi.1003271.g006
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In terms of theories of consciousness, these findings can be

interpreted as making two contributions. First, the significant

increase of cortico-cortical decorrelations during loss of conscious-

ness is coherent with views of consciousness stressing the role of

coherent reverberation and spread of neural activity [6,7],

particularly within fronto-parietal regions [5]. (We point out that,

as shown in Tables S1 and S2, all fronto-parietal connections

driving the correct classification of loss of consciousness, compared

to sedation, are negative.) Second, our graph theoretic analysis

further indicates that, in terms of network information processing,

propofol-induced loss of consciousness is marked by a specific

change in the quality of information exchange (i.e., decreased

efficiency), consistent with the view that the specific modality with

which information is exchanged within brain networks is crucial to

the maintenance of a state of consciousness [1,9].

Finally, it is important to stress that many of the methodological

limitations expressed elsewhere concerning the interpretation of

the blood oxygenation level dependent signal, as well as the

current challenges tied to applying graph theory to brain measures

previously discussed [25,28,32,34,37], also apply to our study. In

particular, with respect to the implementation of graph-theory

measures in neuroscience, several issues are still in search of

resolution. Here, we believe it is important to stress five

methodological considerations. First, as we note in the Materials

and Methods section, most topological measures require thresh-

olding of adjacency matrices, a procedure that presently lacks a

defined standard approach (e.g., how many and which thresholds

to employ) and might have important effects on the derived

metrics [53]. While the real resolution of the issue will likely

include measures that can be applied to fully connected matrices

[28], we stress that our results were robust to the choice of

threshold. Second, in contrast to some previous studies [25], we

made use of weighted measures, a difference that might explain

the divergence of results. For instance, we note that the observed

between-group differences in our study were most pronounced at

the lowest density thresholds (corresponding to least sparse

networks), in contrast to many binary brain-network studies, in

which between-group differences are most pronounced at the

highest density thresholds (corresponding to most sparse networks)

[54]. Many binary-network studies discard as many as 90–95% of

all possible connections to elucidate the observed between-group

differences [53] and it is likely that these more radical thresholding

approaches are associated with substantial loss of connectivity

information [55]. High thresholds are needed in binary studies

because when weak and strong links surviving thresholding are

equally assigned a value of 1, measures based on path length

become susceptible to the creation of spurious long-distance short-

cuts, which might obscure the architecture of strong connections

and, thereby, important across-group differences [38]. It is

therefore possible that the use of binary matrices in previous

studies might have obscured the differences in characteristic path

length that we have observed. Consistent with our findings, a

recent study in the domain of sleep also uncovered loss of

efficiency during unconsciousness [16]. Third, as discussed in the

Materials and Methods section, because of the known effects of

motion on graph theoretic analysis [56,57], our sample was

reduced to 12 volunteers. Although this sample size is within the

boundaries of previous work on this same topic (e.g., N = 11 in

[25], N = 20 in [37]) it does fall at the low end of the spectrum.

Therefore, even though our analyses leverage on a statistically

more powerful 4-point repeated measures design (as compared to

the more typical two groups across-subjects comparison and two-

points within subject design), future studies will have to confirm

their generality. Nonetheless, we do stress that the effect-size

analysis, which is robust to small samples, shows that our effects

are of large magnitude, and that our results are consistent with

previous reports [16]. Fourth, while we adopt the presently

accepted mainstream interpretation of characteristic path length

and global efficiency as measures of functional integration, we

acknowledge that these interpretations have not been directly

validated and are less trivial to make in networks where edges

represent correlations and hence do not necessarily represent

causal interactions or information flow [28]. Finally, it is important

to stress that a recognized source of variance across results is the

choice of ROIs [58,59]. In particular, we employed more ROIs

than in similar previous studies [25,37], hence it is possible that

some of the reported differences are due to the less granular

parcellation schemes previously employed. Similarly, it is also

possible that, if we had used an even greater number of ROIs, or

based our networks on a voxel-wise analysis, results would have

differed. However, it has been shown that simple binary decisions

concerning the presence of certain network organizational

parameters (e.g., small-worldness) are robust across different

parcellation granularity [58–60]. Consistent with this finding, a

recent study evaluating network properties during sleep reported a

loss of efficiency during loss of consciousness that paralleles our

own findings, despite the fact that their networks featured more

than 3,700 nodes [16]. It should be stressed, however, that high

granularity parcellations might yield quantitatively very different

estimates of network properties, as compared to low granularity

parcellations, and might allow topological features to be displayed

more prominently [58,59]. There is, however, an important

conceptual difference that separates region-based networks from

voxel-based networks [34,61]. In our report, as in all region-based

analyses of brain connectivity, network locality is conceived at a

specific scale, determined by the coarseness of the employed

parcellation. Hence, when we investigate local network properties,

we are investigating topological features calculated over proximal

brain regions. Conversely, voxel-wise networks assess locality

within regions of the brain, an approach which has the potential

advantage of capturing differences across regions of the brain in

within- and between-connectivity [34,61]. In this sense, region-

based network analyses might be biased towards highlighting the

properties of regions with widely distributed connections at a

coarse scale, predominant in heteromodal association areas [62],

and blind to local hierarchical connections more predominant in

sensory cortical areas [63]. Voxel-based network analysis, instead,

allow for examining inter-regional as well as intra-regional

connectivity [34]. Nonetheless voxelwise parcellations might

however pose conceptual difficulties with respect to computing

global network properties because grid-like subdivisions do not

generally respect boundaries or sizes of heterogeneous functional

areas, an approach that might lead to mischaracterization of brain

network function [64]. In conclusion, in interpreting our results (as

any region-based network analysis with comparably sized, or

larger, ROIs) it is thus important to keep in mind that our

statements concerning changes in local topological features are

intended as network-local, and do not necessarily reflect local

changes at the brain physical level.

In sum, our findings show that changes in the level of

consciousness induced by propofol affect basic organization

principles and dynamics of information processing across the

whole brain as well as within specific regions known to be involved

in consciousness. In particular, we find that propofol-induced loss

of consciousness is mostly associated with cortico-cortical mech-

anisms, as opposed to thalamo-cortical ones, and with a substantial

decrease in the efficiency of information flow within the network.

Future research will have to assess whether different anesthetic
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agents and pathology (e.g., brain trauma, seizures) induce loss of

consciousness via the same mechanisms.

Materials and Methods

The present report constitutes an entirely novel analysis of data

that has been previously described with different methods [21].

Before detailing our analysis approach, based on graph-theoretic

measures, we briefly describe the population, manipulation and

data acquisition methods.

Ethics statement
The study was approved by the Ethics Committee of the

Medical School of the University of Liège (University Hospital,

Liège, Belgium).

Participants, conditions and fMRI data acquisition
Participants. The whole dataset included twenty healthy

right-handed volunteers (16 female) between the ages of 18 and

31 (M = 22.40, SD = 3.40). However, given the strong sensitivity

of graph-theoretic measures to motion [56,57], subjects present-

ing any displacement above 3 mm throughout any one scan (of

the 4 each subject underwent) was dropped. In total, 8 subjects

were excluded due to movement, reducing our sample size to 12

volunteers. For the remaining volunteers average absolute

movement was well below half a millimiter (0.33, 0.34, 0.20,

0.26, for W, S, LOC and R, respectively) and did not significantly

differ across condition (1-way repeated measures ANOVA;

FGG(1:36,15:03)~0:90; p~0:39). In addition, we remark that

subject exclusion is, at present, a conservative strategy. Indeed,

on the one hand, motion has been shown to affect graph theoretic

measures [56,57]. On the other hand, it has been shown that

standard motion correction algorithms are insufficient correc-

tions, and are liable to introduce spurious, but systematic,

correlations [57]. Finally, novel more aggressive correction

approaches censoring time-points [57], while correcting for

motion and potential spurious correlations, are associated with

the negative effects of reducing the number of time-points [65,66]

which has been shown to be associated with increases in the

likelihood of high correlation, and to be a potential source of

across condition or across subject bias [66]. As detailed below, in

the following analysis we factor out motion as has been done

previously [16,25].

Conditions. Volunteers underwent four resting-state fMRI

scans. The across-scan variable was the level of consciousness, as

clinically evaluated by the Ramsay scale [67]. The first scan was

accomplished with participants being fully awake (wakefulness;

W). In the second scan participants were sedated (S; Ramsay

level 3) so that while their response to verbal command were

slowed, they were still present. In the third scan participants

experienced loss of consciousness (LOC; Ramsay levels 5–6),

and exhibited no response to verbal instruction. Finally, the last

scan was performed after participants had recovered (R; Ramsay

level 2).

fMRI data acquisition. Functional images were acquired

on a 3 Tesla Siemens Allegra scanner (Siemens AG, Munich,

Germany) with an Echo Planar Imaging sequence in 32

ascending slices (TR = 2,460 ms, TE = 40 ms, FOV = 220 mm,

voxel size 3:45|3:45|3 mm, and matrix size 64|64|32).

Because participants were acquired with a different number of

volumes (varying between 196 and 350), correlation matrices

were computed only on the first 196 volumes (8 min) for all

conditions and subjects. For each participant one T1-weighted

MP-RAGE image was also acquired (TR = 2,250 ms,

TE = 2.99 ms, FOV = 256|240|160 mm, FA~90, resolution

1 mm3 isovoxel).

fMRI data analysis
Data analysis was carried out in three stages: initial preprocess-

ing, support vector machine (SVM) matrix classification, and

computation of global and local graph-theoretic measures.

Preprocessing. Functional and anatomical images were

preprocessed according to the general procedures available in

the 1000 Functional Connectome Project (http://fcon_1000.

projects.nitrc.org/), and followed very closely the procedures

employed in previous studies on the topic [16,25]. First, the initial

4 TRs of each functional dataset was removed. Second, data

underwent slice-time correction, rigid-body adjustment for intra-

run motion, brain extraction, 4 mm FWHM smoothing, band-

pass filtering (0:008vHzv0:1), and removal of linear and

quadratic trends. Nuisance signals, including motion parameters,

white matter and CSF associated time-courses were partialled-out

using a linear regression. Consistent with previous research

[25,37], global signal was not removed since it has been shown

to be liable to introducing artifactual anti-correlations that can bias

correlations differently in different parts of the brain depending on

the underlying true interregional correlation structure, potentially

introducing structure even where there is none [68,69] and has

been shown to suppress meaningful neural activity [70,71], while

regression of white matter and CSF signals has been shown to

reduce many of the unwanted sources of noise that global signal

regression is often used for [72]. Furthermore, with respect to

graph theory analyses specifically, global signal regression has been

reported to decrease reproducibility of both local and global

topologically metrics [73–75]. The residuals of the regression were

then co-registered to an MNI-space template (via 2-step

registration using 6 degrees of freedom (dof) for within subject

alignment of functional data to anatomical data and 12 dof to

align the subject’s anatomical image to the template). As part of

this latter step, data were also resampled at 2 mm3 isovoxel

resolution.

Brain network constructions. For each subject and each

condition we constructed a graph representing a mathematical

description of the brain as a functional network. A graph consists

of a set of points and a set of lines connecting pairs of points [31].

In our framework, each point, also referred to as a node or vertex,

corresponds to a specific brain region, or region of interest (ROI).

Each line, also referred to as an edge or link, specifies the presence/

absence of a connection between any two vertices and, for

weighted graphs, the magnitude of the connection. (In our analysis

the connection is the Pearson correlation r statistic between each

pair of nodes.) In what follows graphs are typically visualized in a

familiar matrix heat-map presentation, where each row/column of

the square matrix represents an ROI, and element (i,j) specifies the

functional correlation between ROIi and ROIj .

Brain graphs were constructed in three steps. First, each

individual data-set was parceled into 194 ROIs spanning cortex,

sub-cortical nuclei, cerebellum and brainstem (see Figure 7). ROIs

were defined independently, on the basis of a functional atlas that

groups together spatially coherent voxels with homogeneous

functional connectivity, at a desired resolution [76]. Specifically,

we took the brain parcellation made available by Craddock and

colleagues and employed that parcellation scheme to divide the

brain in a set of 194 regions of interest. It is important to note that

this procedure ensures that ROI selection is entirely independent

of our data, thereby avoiding any form of bias in the analysis [77].

With the exception of atlas choice, this procedure follows exactly

what has been done in previous research [25,37,78]. Choice of this
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parcellation scheme over previously used atlases such as the AAL

[79] and the Harvard-Oxford Atlas [80,81] is advantageous from

several points of view. First, being functionally defined it clusters

spatially proximal voxels by homogeneity of functional connec-

tions as opposed to clustering by anatomical position which, as

exemplified by the case of the precentral gyrus ROIs in both the

AAL and the Harvard-Oxford atlases, clusters together function-

ally very distinct subregions. Second, at our chosen level the

Craddock ROIs have, collectively, almost twice the granularity as

either structural atlas (i.e., 194 ROIs versus, 90 and 112 for the

AAL and Harvard-Oxford atlases, respectively). Furthermore,

when all atlases are equally resampled at 2 mm resolution, the

ROIs obtained from the Craddock atlas appear much more

homogeneous, in terms of size, than the other two (e.g., min to

max voxel count range: 517, 5,005 and 8,076 for the Craddock,

Harvard-Oxford and AAL atlases, respectively). After the func-

tional parcellation of the brain into 194 ROIs, the average time-

course associated with all voxels within each region was extracted.

Finally, the average signal derived from each ROI was correlated

to all other ROIs (using a Pearson’s correlation coefficient; r) in

order to obtain a 194|194 square connectivity matrix (i.e., the

graph). These connectivity matrices were the input for the

following two analyses.

Network classification. Classifications were performed, on a

pairwise basis, using the Pattern Recognition of Brain Image Data

software package (PROBID; http://www.kcl.ac.uk/iop/depts/

neuroimaging/research/imaginganalysis/Software/PROBID.aspx).

PROBID employs a linear kernel Support Vector Machine

(SVM) [82] algorithm to achieve classification; that is, it

attempts to find a hyperplane that separates the matrices

according to their class membership (e.g., W vs. S). This

approach is particularly appealing in the domain of brain

imaging because of its well-known benign properties in

circumstances in which the number of input features (here,

the number of elements of the N|N adjacency matrix) exceeds

the number of samples [83]. Use of a linear SVM algorithm has

two important advantages. First, it reduces the probability of over-

fitting the data (as compared to non-linear algorithms, since the

linear kernel has only one parameter that controls the trade-off

between having zero training errors and allowing mis-classifica-

tions; cf. [83,84]); second, it allows direct extraction of the weight

vector that defines the hyperplane, that is, a vector specifying

which elements are most relevant for discriminating between the

groups. In our context, the input to the classifier were the

unthresholded correlation matrices, implying that ROI-to-ROI

correlations were the features upon which classifications were

performed. Following the requirements of the software, each

subject’s adjacency matrix was vectorized; conversely, the

classification results were reshaped into the original 194|194
matrix form. Classification performance was evaluated using an

exhaustive ‘‘leave-one-out cross validation’’ scheme, as imple-

mented in PROBID, resulting in mean accuracy, mean sensitivity,

and mean specificity percentages for each classification. In this

approach, N different training datasets are built by leaving out, in

each, a different subject. The estimated SVM hyperparameter

(i.e., the hyperplane best separating the two classes) from each

training set is then separately validated against the one dataset that

has been left out of the training. Finally, the results from each

separate iteration of the training-validation procedure are

averaged. Overall, it is important to stress that our approach

avoids the most frequent pitfalls known to potentially bias machine

learning approaches (see [83] for a detailed discussion). First,

because feature extraction (i.e., computation of the adjacency

matrices) was performed on a single subject basis, our subject-

based cross validation strategy adheres to the independence

assumption of training and validation set, thereby ensuring that (i)

the estimate of the hyperparameter is indeed inferred solely on the

properties of the training set, and has not been contaminated by

the test set, and that (ii) the model evaluation is not biased by any

information included in the training set. Second, because our

rejection of artifacts (e.g., modeling of motion) is unconnected to

class membership, there is no risk that the rejection schema might

bias the classification results. Similarly, the decision to entirely

reject a subject whenever one of the four sessions presented

excessive motion also allows us to avoid the potential biases

associated with unbalanced class frequencies. Finally, the use of an

exhaustive leave-one-out validation strategy provides an almost

unbiased estimate of the generalization error [83], albeit at the

expense of an increased variance of the estimator, thereby

avoiding the possibility of excessively optimistic estimates of the

generalization error. Overall, five classifications were computed.

First, we attempted to classify the two states of wakefulness (W &

R) versus the two states of altered consciousness (S & LOC).

Then, we performed three pairwise classifications aimed at

distinguishing contiguous states; namely, W vs. S; S vs. LOC;

LOC vs. R. Finally, we compared the two states of wakefulness to

each other (i.e., W vs. R). The statistical significance of each

classification accuracy was assessed with a non-parametric

approach based on repeated label permutation (10,000 times).

The p-value from the permutation was derived by counting the

number of times the true (that is, non-permuted) accuracy was

greater than the accuracy derived after permuting the labels and

dividing by 10,000. Familywise error rate was controlled for with

a Bonferroni correction.

To visualize the results of the SVM classification for each

comparison, we created ‘‘importance maps’’ (also referred to as

‘‘evidence maps’’) [85,86]. These maps, depicted in Figure 3, were

obtained in two steps. First, we separated the elements of the

weighting matrix w, which defines the hyperplane best separating

two classes (e.g., LOC versus S), into two sparse matrices. The first

sparse matrix, w1, included all the elements contributing to

classifying the first condition (e.g., LOC); the second sparse

matrix,w2, included all elements contributing to classifying the

second condition (e.g., S). (It should be noted that while there is no

absolute scale for quantitatively interpreting the importance maps,

the greater the value for a given link, the greater its influence on

the classification.) Second, we multiplied each sparse matrix by the

average adjacency matrix across all subjects correctly classified.

The resulting sparse matrices, which are depicted in Figure 3, thus

show the average value, across all subjects correctly classified, of

each edge contributing to the classification of a given condition

Figure 7. ROI selection. Parcellation of brain data into 194 cortical,
subcortical and cerebellar ROIs.
doi:10.1371/journal.pcbi.1003271.g007
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scaled by how much it contributed. Positive values therefore

indicate positive correlations (i.e., edges) contributing to a

classification, scaled by how much they contributed to the

classification; similarly, negative values indicate negative correla-

tions (i.e., edges) contributing to a classification, scaled by how

much they contributed to the classification.

In parallel to the SVM algorithm, all classifications were also

computed using PROBID’s Gaussian Process Classifier (GPC)

[87] algorithm, which yielded nearly identical results.

Finally, to assess whether the pattern of connections which

allowed classifying the transition from wakefulness to sedation (i.e.,

S vs. W) differed from the pattern of connections which allowed

correctly classifying the transition from sedation to loss of

consciousness (i.e., LOC vs. S), we performed a x2 test comparing

the distribution of classifying connections in the two comparisons.

More in detail, for each of the two classifications, we divided the

top 1% of edges contributing to correct classification into 15 kinds

of connections (e.g., cortico-cortical (positive), cortico-cortical

(negative), thalamo-cortical, striato-cortical, etc; see Tables S1

and S2). Counts for the two conditions were then entered into a

contingency table and thus submitted to a x2 test comparing the

two distributions.

Network analysis. To characterize local and global proper-

ties of the brain networks during normal wake, sedation, loss of

consciousness and recovery, we employed a set of metrics derived

from graph-theory [27,54,78]. Prior to the analysis, connectivity

matrices were thresholded to avoid the possibility that weak and

non-significant links representing spurious connections may

obscure the topology of strong and significant connections [28].

Thresholding was performed on a proportional basis thus

retaining, for each individual matrix, only the strongest t%

(positive) edges. To date there is no agreed algorithm to select a

unique threshold at which to perform graph-analysis, hence we

followed one of the many procedures employed previously.

Specifically, the lower boundary was selected to ensure the

averaged degree was not smaller than 2|log(N), where N is the

total number of nodes in the graph (i.e., N = 194). This lower

boundary guaranteed that the resulting networks were estimable

networks [30]. The upper boundary was selected to ensure that

mean small-worldness (see below for the definition) in each

condition was not smaller than 1.0. These two constraints yield an

interval of density thresholds between 11% and 31%, which we

sampled in steps of 5% (resulting in the following five density

thresholds: 11%, 16%, 21%, 26%, 31%). The issue of thresholding

is addressed in more detail in the Discussion.

Several global and local metrics were computed for each

connectivity matrix, employing the Brain Connectivity Toolbox

(BCT) [28]. First, we assessed large-scale network functional

integration of brain networks, which captures the extent to which

information from distributed regions can be rapidly combined, by

measuring their characteristic path length and global efficiency.

The characteristic path length (L) of a network is defined as the

average length of the path uniting each pair of nodes within the

network [30]. Since our networks are based on functional data,

paths can be conceived as sequences of statistical associations (i.e.,

correlations) between nodes rather than physical existing/non-

existing paths as might be the case with structural measures. The

most common and mainstream interpretation of characteristic

path length in networks is as a measure for global integration of

information between topologically distant brain regions (see

Discussion for more details). To date, the vast majority of graph

analysis of functional data have been performed on binary graphs,

that is, connectivity matrices in which all elements that survive

thresholding are set to 1, regardless of their original value, and all

other elements are set to 0. In this procedure, however, once

matrices are binarized weak edges exert the same influence on

network measures than strong edges. In the context of path length,

for example, where strongly correlated nodes can be intuitively

interpreted as (functionally) ‘‘closer,’’ binarization might result in

erroneous creation of long-distance shortcuts, which can obscure

the architecture of strong connections and, ultimately, important

across-group differences [38]. Thus, following the development of

metrics that make use of weight information [88,89], we employ

‘‘weighted’’ measures (denoted, in the following formulae by the

superscript ‘w’). Characteristic path length was thus computed as

follows:

Lw~
1
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where N represents the set of all nodes within a network, n the

number of nodes, and dij is the shortest path uniting nodes i,j. The

average inverse of L is thus a measure of global efficiency (Eg) of a

network [39]. A different aspect of a network is the degree to

which it exhibits functional segregation, which captures the extent

to which subgroups of nodes densely interconnected with each

other can carry out specialized processing. To quantify the

presence of clusters of regions (e.g., modules) with strong statistical

dependencies suggestive of segregated neural processing we

computed the clustering coefficient (C), a measure of the ‘cliquishness’

of networks’ subdivisions defined as the average fraction of a

node’s neighbors that are also neighbors of each other [30]. In its

weighted version, clustering is defined as [89]:
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where ki is the degree of a node (i.e., the sum of the weights of all

nodes connecting to node i), and tw
i represents the geometric mean

of all triangles (i.e., triads of reciprocally connected nodes)

surrounding node i. Similarly, modularity (Q) measures the extent

to which a network can be optimally subdivided in a number of

non-overlapping groups of regions which have high within-group

connectivity and low across-group connectivity [90]. As for above,

we employed the weighted version of the algorithm [88]:

Qw~
1

lw

X
i,j[N

Wij{
kw

i kw
j

lw

� �
dmi ,mj

where Wij is the weight of the connection (i.e., correlation)

between nodes i and j, mi designates the module m within which

node i is contained, and dmi ,mj
is equal to 1 if nodes i and j are part

of the same module m, and 0 otherwise. To address the issue of

degeneracy, we followed a three step procedure previously

suggested [28]. Specifically, computation of modularity was

refined by first applying a finetuning algorithm to the above

calculation, and then running a final probabilistic tuning algorithm

on the finetuned result. In addition, because the calculation of

modularity is heuristic and variable across iterations, we

performed the three steps above (modularity, fine-tuning and

probabilistic-tuning) 50 times for each matrix, and then employed

the mean modularity value across the 50 iterations for subsequent

analyses (we note that we also performed the analyses on the

median modularity, across the 50 iterations, and it yield

qualitatively identical results).
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It is important to note that it is often not possible to interpret the

significance of the absolute values of the above metrics. Thus, the

metrics derived for each network are typically normalized by the

average metric derived from 100 random networks (with matched

size and degree distribution). The normalized characteristic path

length (l) is thus the ratio of the characteristic path length (L) of a

brain network and the average characteristic path length of 100

random networks (Lrand ). Normalized clustering coefficient (c),

global efficiency (nEG ) and modularity (nQ) are defined analo-

gously. In addition, the ratio of normalized clustering and

normalized characteristic path length is often referred to as the

small world property (s) of a network. Small-world networks are

networks that are neither completely random nor completely

regular; rather, they lie in-between these two extremes and exhibit

a high degree of clustering, like regular networks, and a low

characteristic path length, like random networks [30]. Several

studies to date have observed small-world characteristics in the

human brain [26,91].

In addition to the metrics above, we also characterized the brain

networks on a node-wise basis. First, we computed the strength (si)

of each node, a basic measure of node centrality defined as:

sw
i ~

X
j[N

wij

Nodes with a high strength are nodes that are (functionally) close

to many other nodes in the graph. In general, measures of

centrality are based on the intuition that nodes participating in

several short paths within a network are important controls of

information flow [31]. Node strength can therefore be interpreted

as an index of communication activity within a network. Finally,

we also calculated the local efficiency (Eloc) of each node to get a

local measure of segregation. In its weighted version, local

efficiency for node i is defined as [28,39]:

Ew
loc,i~

1

n

X
i[N

P
j,h[N,j=i

wijwih dw
jh(Ni)

h i{1
� �1

3

ki(ki{1)

where dw
jh(Ni) is the length of the shortest (weighted) path between

j and h that contains only neighbors of i. This metric can be

interpreted as measuring how ‘‘fault tolerant’’ the system is since it

captures how efficient the communication is between the first

neighbors of i when i is removed [39]. The present extension of

the local efficiency to weighted networks differentiates the

influence on presumed fault tolerance of strongly connected and

weakly connected neighbors, and broadly parallels a generaliza-

tion of the clustering coefficient to weighted networks [28,89].

Statistical analyses were performed in Stata (SE, Version 13,

Stata Corp) and Matlab (Mathworks Matlab, version R2013a).

The effect of condition on each metric was assessed using a

repeated measures ANOVA model with condition (4 levels: W, S,

LOC and R) and threshold (5 levels: 11%, 16%, 21%, 26%, 31%)

as factors. Following convention [92], where the Machuly’s test

indicated violation of the sphericity assumption, degrees of

freedom were calculated with the Huynh-Feldt correction for

moderate violations (e§0:75; denoted with the HF subscript) and

the Greenhouse-Geisser for more severe violations (ev0:75;

denoted with the GG subscript). Because of the relatively small

size of our sample, we also report the partial omega-squared (v2
p),

a measure of effect size in the population that is resistant to sample

size and therefore provides a better measure of the magnitude of

the effect between conditions [93,94]. Unlike other metrics of

effect size that are significantly upwards biased (e.g., g2
p), v2

p does

not results in inflated estimates even for small sample sizes [93,95].

This statistic is usually interpreted as the percent of the dependent

variable’s variance accounted for by the effect in the population

with other non-error sources of variance being partialled out, and

is considered to indicate, for values of 0.01, 0.06, 0.14, small,

medium and large effects, respectively [96]. Pairwise comparisons

among the different conditions were performed on the basis of

estimated means using a Sidak adjustment for multiple compar-

isons. The 2-way repeated measures ANOVA was followed-up

with a set of 1-way repeated measures ANOVA, one per each

threshold, with condition as the only factor. For global measures,

significance was assessed against a conventional 0.05 p-value

criterion. For local measures, due to the multiple comparisons

issue, we employed an FDR-adjusted criterion of pv0:05
(following [97]).

Supporting Information

Figure S1 Classification results for S vs. R and W vs.
LOC. Top 1% connections contributing to the group SVM

classification of (A) S vs. R, and (B) W vs. LOC. For each

comparison, the upper triangle shows the connections contributing

to correctly classifying the first condition, the lower triangle shows

the connections contributing to correctly classifying the second

condition. Red connections indicate positive correlations contrib-

uting to the correct classification of a condition, blue connections

indicate negative correlations contributing to the correct classifi-

cation of a condition. Classification of S vs. R achieved 71%

accuracy (58% sensitivity, and 83% specificity; p = 0.01), while

classification of W vs. LOC achieved 87% accuracy (83%

sensitivity, and 92% specificity; pv0:001). Abbreviations: CtxF:

cortex, frontal lobe; CtxT: cortex, temporal lobe; CtxP: cortex,

parietal lobe; CtxO: cortex, occipital lobe; BG: basal ganglia; Thl:

thalamus; BS: brainstem; Crbl: cerebellum.

(TIF)

Table S1 SVM classification (I): Top 1% of classifying
connections. Count (percent positive, percent negative) of the

number of edges contributing to correctly classifying all states of

wakefulness (i.e., W&R) as compared to all states of sedation (i.e.,

S&LOC). (See Figure 3a, main text.)

(PDF)

Table S2 SVM classification (II): Top 1% of classifying
connections. Count (percent positive, percent negative) of the

number of edges contributing to correctly classifying S vs. W, LOC

vs. S, and R vs. LOC. (See Figure 3bcd and Figure 4, main text.)

(PDF)
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51. Voss HU, Uluç AM, Dyke JP, Watts R, Kobylarz EJ, et al. (2006) Possible

axonal regrowth in late recovery from the minimally conscious state. J Clin

Invest 116: 2005–2011.

52. Laureys S, Perrin F, Brédart S (2007) Self-consciousness in non-communicative

patients. Conscious Cogn 16: 722–41; discussion 742-5.

53. van Wijk BCM, Stam CJ, Daffertshofer A (2010) Comparing brain networks of

different size and connectivity density using graph theory. PLoS One 5: e13701.

54. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human

brain connectome. Annu Rev Clin Psychol 7: 113–140.

55. Rubinov M, Sporns O (2011) Weight-conserving characterization of complex

functional brain networks. Neuroimage 56: 2068–2079.

56. Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, et al. (2012)

Impact of inscanner head motion on multiple measures of functional

connectivity: relevance for studies of neurodevelopment in youth. Neuroimage

60: 623–632.

57. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious

but systematic correlations in functional connectivity mri networks arise from

subject motion. Neuroimage 59: 2142–2154.

58. Zalesky A, Fornito A, Harding IH, Cocchi L, Ycel M, et al. (2010) Whole-brain

anatomical networks: does the choice of nodes matter? Neuroimage 50: 970–

983.

59. Hayasaka S, Laurienti PJ (2010) Comparison of characteristics between region-

and voxel-based network analyses in resting-state fMRI data. Neuroimage 50:

499–508.

60. Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in graph

analytic studies of human resting-state fmri data. Front Syst Neurosci 4: 22.

61. Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BTT, et al. (2010) The

organization of local and distant functional connectivity in the human brain.

PLoS Comput Biol 6: e1000808.

62. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the

primate cerebral cortex. Cereb Cortex 1: 1–47.

63. Mesulam MM (1998) From sensation to cognition. Brain 121 (Pt 6): 1013–1052.

64. Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the

analysis of brain networks. Ann N Y Acad Sci 1224: 126–146.

65. Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, et al. (2012) Distinct neural

signatures detected for adhd subtypes after controlling for micro-movements in

resting state functional connectivity mri data. Front Syst Neurosci 6: 80.

66. Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, et al. (2013) A

comprehensive assessment of regional variation in the impact of head

micromovements on functional connectomics. Neuroimage 76: 183–201.

67. Ramsay MA, Savege TM, Simpson BR, Goodwin R (1974) Controlled sedation

with alphaxalone-alphadolone. Br Med J 2: 656–659.

68. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The

impact of global signal regression on resting state correlations: are anti-

correlated networks introduced? Neuroimage 44: 893–905.

Information Processing in Loss of Consciousness

PLOS Computational Biology | www.ploscompbiol.org 13 October 2013 | Volume 9 | Issue 10 | e1003271



69. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, et al. (2012) Trouble at rest: how

correlation patterns and group differences become distorted after global signal

regression. Brain Connect 2: 25–32.

70. Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, et al. (2008)

Intrinsic functional relations between human cerebral cortex and thalamus.

J Neurophysiol 100: 1740–1748.

71. Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA (2010) Neural basis of

global resting-state fmri activity. Proc Natl Acad Sci U S A 107: 10238–10243.

72. Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources

of correlation in resting state fmri, with artifact detection and removal.

Neuroimage 52: 571–582.

73. Schwarz AJ, McGonigle J (2011) Negative edges and soft thresholding in

complex network analysis of resting state functional connectivity data. Neuro-

image 55: 1132–1146.

74. Liang X, Wang J, Yan C, Shu N, Xu K, et al. (2012) Effects of different

correlation metrics and preprocessing factors on small-world brain functional

networks: a resting-state functional mri study. PLoS One 7: e32766.

75. Telesford QK, Burdette JH, Laurienti PJ (2013) An exploration of graph metric

reproducibility in complex brain networks. Front Neurosci 7: 67.

76. Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS (2012) A

whole brain fMRI atlas generated via spatially constrained spectral clustering.

Hum Brain Mapp 33: 1914–1928.

77. Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular

analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci

12: 535–540.

78. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat Rev Neurosci 10: 186–

198.

79. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al.

(2002) Automated anatomical labeling of activations in SPM using a

macroscopic anatomical parcellation of the MNI MRI single-subject brain.

Neuroimage 15: 273–289.

80. Kennedy DN, Lange N, Makris N, Bates J, Meyer J, et al. (1998) Gyri of the

human neocortex: an MRI-based analysis of volume and variance. Cereb Cortex

8: 372–384.

81. Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, et al. (1999) MRI-

based topographic parcellation of human cerebral white matter and nuclei II.

rationale and applications with systematics of cerebral connectivity. Neuroimage

9: 18–45.

82. Mourão-Miranda J, Bokde ALW, Born C, Hampel H, Stetter M (2005)

Classifying brain states and determining the discriminating activation patterns:

Support Vector Machine on functional MRI data. Neuroimage 28: 980–

995.
83. Lemm S, Blankertz B, Dickhaus T, Mller KR (2011) Introduction to machine

learning for brain imaging. Neuroimage 56: 387–399.

84. Mourão-Miranda J, Reinders AATS, Rocha-Rego V, Lappin J, Rondina J, et al.
(2012) Individualized prediction of illness course at the first psychotic episode: A

support vector machine MRI study. Psychol Med 42: 1037–1047.
85. Johnson JD, McDuff SGR, Rugg MD, Norman KA (2009) Recollection,

familiarity, and cortical reinstatement: a multivoxel pattern analysis. Neuron 63:

697–708.
86. McDuff SGR, Frankel HC, Norman KA (2009) Multivoxel pattern analysis

reveals increased memory targeting and reduced use of retrieved details during
single-agenda source monitoring. J Neurosci 29: 508–516.

87. Marquand A, Howard M, Brammer M, Chu C, Coen S, et al. (2010)
Quantitative prediction of subjective pain intensity from whole-brain fMRI data

using gaussian processes. Neuroimage 49: 2178–2189.

88. Newman MEJ (2004) Analysis of weighted networks. Phys Rev E Stat Nonlin
Soft Matter Phys 70: 056131.

89. Onnela JP, Saramki J, Kertsz J, Kaski K (2005) Intensity and coherence of
motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft Matter Phys

71: 065103.

90. Newman MEJ (2006) Modularity and community structure in networks. Proc
Natl Acad Sci U S A 103: 8577–8582.

91. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinfor-
matics 2: 145–162.

92. Girden E (1992) ANOVA: Repeated Measures, volume 84 of Quantitative

application in social sciences. Newbery Park, CA: SAGE University Papers.

93. Keren G, Lewis C (1979) Partial omega squared for ANOVA designs.

Educational and Psychological Measurement 39: 119–128.
94. Ferguson CJ (2009) An effect size primer: A guide for clinicians and researchers.

Professional Psychology: Research and Practice 40: 532.
95. Pierce CA, Block RA, Aguinis H (2004) Cautionary note on reporting eta-

squared values from multifactor anova designs. Educational and psychological

measurement 64: 916–924.
96. Kirk RE (1996) Practical significance: A concept whose time has come.

Educational and Psychological Measurement 56: 746–759.
97. Yekutieli D, Benjamini Y (1999) Resampling-based false discovery rate

controlling multiple test procedures for correlated test statistics. Journal of
Statistical Planning and Inference 82: 171–196.

98. Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, et al. (2001) An

integrated software suite for surface-based analyses of cerebral cortex. J Am Med
Inform Assoc 8: 443–459.

Information Processing in Loss of Consciousness

PLOS Computational Biology | www.ploscompbiol.org 14 October 2013 | Volume 9 | Issue 10 | e1003271




