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ABSTRACTAV

 We have made_somefStepé towards solving nuﬁeriéally the équations
Qf'Khuri‘and Tréiman for K and. 1 - 3x éndvexﬁénding them to include
P-wave ihtéféctions, the effects of a nonflat . bare mafrixvelemént, anc.
the effects of unequal masses for the_charged aﬁd.neutrai pions. Our
results show thaf it is rathervdifficult, with S waves alone, to get-a
steep enough slope for the matrix element on the Dalitz plot when the
bare matfix element is a constant. The 8-wave phase shifts required to
fit the balitz plot dataiare usually quite unphysical (e.g.,

0 2

a. -a, = -l.O; an ‘FO pole IOCated Just off the edge of the Dalifz J
plot, efc.). Ih our calculétioné the inclusion:of P ﬁaves appears to
have & lgfge effect bn the Dalitz plot. If we assume I = O phase
shifts ofvéither the up-down.or the down-up variety, and if we assume

I =1 and I =2 nphase shifts.thatn are consistent witﬁ the experimen-
tally determined phase shifts, then the resulting solutions of the KT
equatiohs with é constant inhomogeneous term yield Dalitz-plot slopes
which fit the data..\The inclusion of P Waves in the KT equations

probably deserves moré study, however, perhaps with different

numerical approaches.
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With the samé asSumption foa constant inh6mogeneous.term, the -
extension of the K-decay solutions to n decay follows trivially
just from changing the mass of the decaying particle.

If.the inhomogeneous term of the KT equations is given a linear
term, M . =.l +5 g(sc — so), the effect is to tilt the solutions,

' but by an exaggerated amount. If the inhOmdgeneous term is changed to

=1 +4£ gr tanh[(sv - 8,)/r], which gives a-éiope on fhe balitz
Mbare' T2 el o o//7 "2 v _ o
plot but goes to a constant asymptotically, the effect is just to tilt
the solutions in the region of‘thetDalitz‘pldt by the amount % g.

When the masses of the charged and neutral pions are made
unequal in the KT eqﬁations, the largest effects to be observed in the
matrix element are cusps related to thresholds located in the physical
regioniof thebDalitz'plot and due to the presencé'of communicating
subchannels. The calculated effects are in a direction agreeing with
experiment, thus leading tp the'specﬁlationvthat perhaps the unequal

masses of the pionsrmight'be responsible in large part for the slight

amount of I = 2 final state observed in the decay.



"

I. IﬁTRODUCTION
The £hree;pi0n décay of the ‘K meson has.beeﬁ}stﬁdigd since

R. H. balitzvfirSt analyzed iﬁ':T‘ evéntévin 1953.l The decay modes .
obseryed:areﬁ- o | |

& o Nt decay™"

Qé'nfnoﬂo - "'t decay";

“similarly foi K B :

KLO-~> ﬂfﬂ-ﬂo-

000
Sad O |

Because of thé small anbunt of energy reléased in these décays, the
experimentai distributionsof énérgy among the.threevpions is rather
featureless'except for gentle slopesvto the Dalitz plots of these

decays.-”Becduse of this small energy release, however, it is tempting

to see if_qne cannot'understand‘these slopes in terms of the low energy

strong interactions amongst the three pions in the final state, rather
than attribute it to some intrinsic slope in the matrix element of the
bare weak interaction.. A number of attempts in this direction have

i

been made, but in more recent years explanations-based on current

\ algebra, relating the slope to the magnitude of the two-pion decay of

K mesons, have become more popular (see‘revieWAby Cabibbog). The vieW—_
point we woﬁld like to adobt is a return to thé original view that the
slopes are caused only‘by dressing a‘bare,‘flat weak interaction with‘
strongbfiﬁal-state.intéractions. Accordingly in fhis paper-we‘assume
various fdrﬁs of the low enérgy o interaction_and proceed to

calculate Slopes for the Dalitz plot.



This. picture of thing'oﬁly’final?stafe ihtéfactiéns hés some
virtﬁes.r Fifst, if:thébpicture is éorrect,_one has the pléasing
possiﬁility of goiﬁg:the otheeray"t6Vinfer some information about low
energy -ﬁn 'Scatﬁerihg from the observéd slopes. Thefe is not a partic-
ular'wealth of unaﬁbiguous data for this.important low energy s
scatteriné'so it would be worth‘trying to sort éﬁt thevinteractions of
é three-particle final state. Secondly, if the idea is correct and‘thev
assﬁmption df a constant primdrdial matrix éiement applies to efa decay
as well,vit_should be straightforﬁard to.include an explanation of the
slope of tﬁe Daiitz plot for.thé electromagnetic décay of the n
meson into three pions;‘

;Oﬁr_basic aPProaéh'is tﬂat of Khuri andereiman,5 whiéh:was-
first'proboéed in 1960. :The XT approach&uses felativisticfs-matrix
thedry aﬁd dispersion—}éiation techﬁiquesé‘ Méthematically the approach

'requires the solving of a set of coupled,Véingular'integral‘equétions
whose kernels are.essentially nﬁ scattering amplitﬁdes;_ In order to
sdlve fhesé equations'Khuri and Treiman procged.tb‘make a»series of
approxim;tions which we will wish td_fe-examiné in this paper and.
hopefully‘improye on.

_ﬁsing jJust an SFwavevscattering iength‘approximatioﬁ-to low
energy uw scgttering, Khuri and Tréiman were abie to fit the slopes
of the'vérious Dalifz plots with a, -.52 ~ --O.7.LL In a more phehom— | Y
enological approach_BrOwn and Singer5 have proposed that the Daliﬁz
plot spectfa could be understood by assuming a low-energy broad-
width, I =0 ax resonance, the so called' 0 resonance. A fit to

‘the data requires a mass, md ~v590—h25 Mev; and a width,
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5

I, =~ 75%lOO'MeV._ Tt seems somewhat suspicious tha% the "resonanée"
has to be located just outside the edge of.the Dalitz plot (~ 360 MeV
for' K décay and =~ 410 Mev for 1 decay), but the mod=l provides
a good mnemonic for the direction of the expérimenéal_Da]itz plot
slopes;.ahd inaicétés that lafgevphase shifts are cequired in order to
fit the data wheh using only I = O interactions. Barbcur and Schult
and Schult and Barbouf7 used Faddeev equations with S- s&snd P-wave
nonlocal separable potentials to investigate final—étate intefactions
in K5ﬁ decay . They find that usingronly's waves requires

2 2

5 " 8 ~ 2 1in order to fit the data. By incluling P-wave and

using small S-wave scattering lengths (~0.2) they find that the P wave
‘ . :

a

~ can become dominant and fits’can‘be achieved with a, < aoe. These

P-wave dominant solutions are sensitive to a cutof:® usged in the
caléulétion, nevertheless it is interesting that tley finl that P waves
could be important in the problem;

A recent attempt to use the.KT.equatiohs hes begn made by Neveau
and Sc;h_e_rk.8 In their work they use fhe KT equations to find what

corrections strong final state interactions might nake on a bare weéak

interaction that has a linear slope equal to that predicted by current

-algebr@é The sxn P-wave and I = 2 S-wave interactions are neglected

and the T = O S wave is taken to have a resonance at about 700 MeV
wifh a‘Wiath of about 300 MeV. Two subtractions are made so that.an
arbitrary lineag aependence can be introduced. An equation‘for the
correction to this linear dependence is derived, andsolved.approximately

by taking a major portion of the expected sQlution out in terms -of
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Omnes ~type functions anﬁfuéihg'@ one—iferétion_@pproximation for the

remainder. They also con§ider'¢he case of. 1, -decay and make argu-

St
ments thgt perhaps thé_s#fdng‘finélégtéte ihteraétioﬁ»coraections can
overcome'the-failufe Of}simbie 6erent-aléebfé té:givé a_ionzero matrix
element fdr.the deéay.' - -. |

In this paﬁér ve should iiké_td explore & techhiQté for solving
the KT equétions more directly.and.numerically_on a compuier;,to try
to include P-wave nn intgractions in the.KT'prescfiption, and to
investigate cfudeiy tﬂe>éffécts,onzthé.@atrix eiemént wher. one takes
into consideration the mass différence.betweeﬁ the charged and neutfal

pions.
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iI.-'BRIEF'SKETCH;AKﬁ.REVIEW OFFTHEvKHURI—TREIMAN EQUATIONS
AL Basic Idea of the KT Equations

The Khur1~Tre1man approach uses the S-matrix ideas of analy-
t101ty;cross1ng, and unitarlty. Rather than focusing attention on
decay diagramg_llke Fig. la, one COnsiders the generél "scattering
like" diagr@m_shbwn'in‘Fig.'lb., When.anaiytiéally continued and con-
éidered-on a Mandelstam plot this reaction-émplitude will'havé s, t,
and u physical regioﬁs“likp & nérmél reaction and will also haveva
Dalitz-plot physical region in the cenﬁer because ore of:the particles
is heavy enough to decay . into the other three (Fig. lc) One.then

assumes‘that this scattering like" amplitude obeys a Mandelstam

-representatlon 51m11ar to that for a normal reactlon

qu the discontinuity of thejamplitude in a'given channel, say

S, the ﬁnitarity equation is'used, that is

v ‘ . ' qint(s) *
é- DiscSvAKnt—) I = . ' ( )?I n-> int Aint—-) nx
_ all open inter- \S S
mediate states,
"inb.t"

Next comes -an important assumption Fér the intermediate states we

shall keep only nﬂ. This means retaining in the unitarity equation

only & diagrgmjlike*Fig;:ldvand ignoring intermediate states such as

Kn, U4n, etc. The foremost rationale for doing this is that it makes

the problem simpler. But arguments .can be put forward that the K

and Uy thresholds are.much higher than the s threshold and might

therefore have less effect on the Dalitz-plot region. These thresholds
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.océur "beyond" thé Dalitz plot, whéfeas_the ﬂ% threshold occurs right
at the ?ﬁeginning" of»the-Dalitz.plot. 

‘The sum dver all the open intermediatevstates also implies
integr&tiéﬁ over all angles of thevintermédiate staﬁet. Khuri and
‘Treiman'ﬁext make another im@drfant approximation which we hope to
‘relax S§méﬁhat in Sec. TII. They.kéep oniy S waveévin the nax amplié
tude. If this is done oﬁe'can arrive'at the fdllowing symmetric— |
lookinguset of”equations, khown as.thé.KT equations: |

8 f'so

* _ t' - * ‘ , e
, AKJ\?—%i ﬁﬂ(s’ ) = A](nf-? Jm(SO’tO’uO) T Y
: B} . o ' . Jthr

1 . oo
X 1 DlSCS-,.‘l..\'Kﬂ.—.)..ﬁJT L
(s7 - s + 1€)(s' - 5, + 1€)

+ similar terms in t and u, (2)

wﬁere L bisc ' = v—gbt'z; (s) A (s)

‘ ’ 2 S: AKﬁ-—) T - ) (S)E K- b191¢ s T T s
' ~ charge C

.states

-
and where A

(s)

Kn— nn ™

(For-thislgeneral discussion I shall-gioss over questions of chargg
states and symmetries. They will be gone into‘latef'in mofe detail.)
Wiﬁh the use of the +ie prescription it can be seen thét we have

. both inside the integrals and outside énd fhus have an integral

K= nn

equation in three variables s, t, and u (actually'only two because

s+t +u-= §:1nig). The kernel of the integral equation is essentially °

the xn scattering émplitude, A'ﬁ_anﬁ. In practice one assumes the
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e

P18 scatterlng amplltude to be known, and.solves for the decay ampll—

tude, Akn—éﬂn' That 1t is a coupled 1ntegral equatlon can be seen by

- the fact;thaﬁ the intermediate-state pibnsimay have different charge

stateslfrom the final state piong so that there is a coupling between
the amplitudeS’for.the different charge modes of decay.

Notlce that the KT equatlons cannot give the overall normaliza- -

»tlon of AKn—> ’ since 1t appears llnearly on both s1des of (2) This

means the KT equatlons can glve only relatlve amplltudes compared with-

-some chosen spot in the s, t,: and u plane, such as the center of

the Dalitz plot. In practlce the subtraction constants are chosen to
be real and;of oider.l f(fOr example the choice -2 and 1 for T
and . T' decays respectiuely‘satiSfiee'AIAI‘ ;_% requiremenfs).

Y Critique of the Approximate Solution by Kluri and Treiman

| Now comes the-iuportant question of ﬁow to iolve this compli—

caped set of coupled integral equetions in two dimensions. Khuri
andVTreiman obtained an'approximate solution by making‘one iteration:
of an iterative solufion to the problem. The A*_ inside the integral
was replaced by the-subtraction constant A (so, 0? 0) so that with
a glven assumed form for the nx scattering ampl1tude the'integf&tion
could be done expllcitly to obtaln a closed express1on for the ampll—
tude. The Eis scatter;ugeamplltude chosen by_Khurlxend_Trelman kept
only”S waves and used a scattering-length approximation. Specifically,

they assumed

;EET cot 81 - =

()2 . - 1

and



A E 12 sin 8 ~ _2_<;ET,
(s)2 ™7 (s)?
where ai 'is‘the scatte?ing lengﬁhqur'agpure_i-éﬁin state.
Using tﬁesé épproximé£io§s an§ keéping up tpﬂlinegr terms in s - S0
in the matrixvelement_squafed;Khuri“énd Treiman'obfain én expression
fof'the'slopé of the Dalitz plot which is p?oportional'to éo g'ag.»
Fittihg this to the obsérved siop§vthen reqﬁires 1ao - ay & -0;7.M
' Thg KT paﬁer:was written‘in 1960, and since that time a
theorefiﬁal prejudice has evblved_that a, ‘éhould be smAll and pdsitive

and that N should be smaller and negative, in direct disagreement

with the above result. As a guide to our thinking we can recall the

values ﬁroposed by_Weinberg9'6ﬁ the basis of softvpion theorems, namely

~ +0.20 and a, = -0.06.

%0 | 2
- Upon a second-examination some of the ébofé approXimations made
by Khuri and‘Treimah to solvé their équatioﬁé appéar a bit shaky. For
the purposes.éf this mathematical discussion lefﬂs consider -a somewhat -
simpler.equationvin_only one variable,.namely'the so-called "Omnes

equatidn,"'

| s8-8y et B(s') Als') '-
I i R GEr hx o Gaeesr RN E)
' thr - ' '
18(s")

vhere F(s') = e sin 8(s'). KXhuri and Treiman take

o F(S') 5 .gggi
(s)2

and obtain,after one iteration,



| a1 A($)7 S 1s I(S) 'HI(SO)"

where

()2
S (B BB e
BT ek

This ‘gives a reasonable behavior, that is,a matrix element deereasing
with energy for positive a, and vice versa. However, if we use a non-

rélativistic effectivefrange'aﬁproximatiop,

- 1
q cof o) z

and
F(S') o~ qaz

we éet _

]

-iqga.

I(é):7
Since héré I(é) is‘pure;y‘imaginary:this le@ds to an "A(s){2
 that islégual to one at ﬁhe subtractién point, bﬁt-is greafer than‘one
'everYwheré-else in the physical region, thus exﬁibiting a bowl-sghaped
s depéndence around the arbitrary subtraction poiﬁt Sqe In fact,vif
one takes - F(s)/q(s) to be‘any real-anélytic fﬁnction'of, s with at
‘most a right-handvcut with a squafe-root branch point'and no other

. singularities on the physical sheet, then I(s) is purely imaginary.
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Examples of such behavior are
F(S) .= qay

aa,

I-%_Eag’ a positive,.

. vgg —, a and b positive,
I -1bg” - iqa. ' '

'for o — da T , &, b, and c positiVe and
-1 ~Dbg +cq - iga o '
: - > he .

This'seeﬁs iike asfairly iarge class:of kerneis that leeds to non-
. sensical results on first 1terat10n.v | v

| It mlght be hoped that these problems could be cured by further
iteratlon, that is,by using the output amplltude as a trial amplitude
to be substituted_back into the 1ntegral. to generate another output
. smplitude,:and so én.' Slnce doing the 1ntegrals explicitly for repeated
iteration soon becomes tedious, iteration was trled numerically on a
computer. The effortswas.unsuccessful, however, most of the,time. The
,sblutiou'most often "blew up," that is, for any ‘s‘% sd it increased in.
magnitude(with'eech succeeding iteration. For a few cases the numerical
iteration was even started-with the exact known solution for a trial . e
solution, end yvet the iterations still diverged. This could be due to y
numerical inaccuracies and propagation of error, but we suspect it may
be due to violation of some unknown convergence criteria, which wouid

lead to failure even if the iutegrals were done analytically.
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Because of these,problems a more‘airecﬁ method for solving (5)‘
by matrix inversion was fried and found to be successful. The method
ihvolveS'choosing a_set.of N mesh points, replacing the integral by -
A_a sum, and deriving a set of N linear equations in ‘N unknowns for
the amplitude. Details for the nﬁmerical method can be found.in‘ |
Appendiceé,A and B. . ,

Next we come to a'question of ﬁniquenéss. The exact solution

‘for, integral equation (3) is known, namely

oo
_ P(s . 0 - id.S' S(S')
M) = B T | e e sy v )
: : v Jthr : '
o ()

' whéré P(s) is an arbitrary real polynomial in s. The highest order
of polynomial that can be tolerated depends‘on the convergence of the
integral in (3) and thevnumber of subtractions. For example, if we use-

agaihlthe,ndnielativistic éffective'range approximdtidn :
5 = tan™(qa),
the exact (but unhormalized) solution is

p(s) ,
T+iga 2 >go ’.
C(1 - iqa), a <0,

where P(s) is a first-order polynomial and € 1is a constant. This
means, after normalization, that the_solution is unique for a < O,

but not for a > O. The reason for- the nonuniqueness is ‘due to the use .
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of ﬁunphysical" phase:shifts;'i.e.Lphase shifts which do not .go to
 zero as s goes tovinfinity_aé.iﬁ nonrelativistic potential scattering.
Now in'thé above example the 501utions which seem physiéally reasonable .
are |

¢ . .v _
THig %7

. c{l - iqa), a <O.

Thatbis,fhe‘matrix_eiémeﬁfnsquAféd_should go down with energy for
positivé a .and‘vice.Veréa; :Thé phyéicaliyrreésOﬁéble way ' to échieve
uniqueﬁgés:and exteﬁdvthe~nonrelativistic potential scéttering resulfs
then wouidfbé to select the'solution with the lowest.asymﬁtotic
behaviqt. Now,,oné_might worry”thithis selection can be achieved

in the nuﬁerical solution,.buf'i£ is submitted that the manner for
doing fhe.hﬁmerical integfatiqn outlined in Apbendiva introduces
sﬁfficiéﬁt'bias to select'thefl0west asymptotic behavior for our
.cases Qf-interest. 'As.aAdémoﬁstration of aécuraéy, numerical.solutions
wére obtainéd for (3) using nonrelativistic scattering lengths of

a = fl,O, and only,l6'mesh points._ Comparison of the amplitudes squared
of'the]true and numerical:solutions gives a discrepanby of hi% at

the 1as£;ﬁesh:pbint; s = 1000, 3% at s = 100, and less than 1% for

s < 6.76 (ﬁhe Dalitz plot région for ‘K - 3x). For s <100, then,
therevié virtually no difference between the solutions, and on the
scales used in latér figures there is no'gfaphable difference between

the solutions.
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III;_'ANeEXTENSIONuTQAINCﬁUDE P-WAVE FINAL STATE iNTERACTIONS;
TI-IE DERTVATION- OF ‘THE EQUATTONS USED FOR" APPROXTMATE
NUMERICAL SOLUTION OF THE KT EQUATTONS
A. Genefdi Expression of the KT‘Eqﬁations

We nOW’present a sequence of derlvatlons and approx1matlons
ieading up to the equatlons ‘actually used for numerlcal calculation.
To reduce,the amount of algebra we may occas1onally gloss over certain
inessential_cemplicetions for the particular topic-ﬁnder discussion.
Also beeause of all the different charée cases pessible we shall -
-occesionally usefjﬁst iiiustrative examples, in which the geﬁeraiization
to other ehargé\eaSes is obvious. | | |

vLef[us first write~dOWn'e‘general expreesidn for the nx
cdntribﬁtioﬁ to the discontinuity in a pafticular channel and ﬁhen
.p¥oceed to make simplifieatiene. Let A*(K —anaﬁbﬁc) E3MQBY(Sa’Sb?SC),
where .a,_s, and' Y- stand fdrtﬁhevehepge statee of‘ g2 “bé and'ﬁc |

-

respectively, and where Sq = sbc, the'invariant mass squared'of enbﬂc,

etc. Then
1l ... : L E Q' Y _ S 27
2 DlSC aBY(Sa’ sb_’ SC)‘ - (S E Q[S (mB' + va) ]
) N B Yl 4 . . X ) .
- - faery, o - | |
. x ' —rﬁ_— MaB,' T (s.a,sbr:'ysév ) BB' ¥ ,BY(SB«'; COS _Ag'bb’ ) ) | (5)
where - BB'Y',BY' is the sxx matrix'elementefor T —anb,nc,, and

where the'integrafion‘is>over all possible angles of the’ ;ntermediate-

state, g, in the b'c' (or equivalently bc) center of mass..
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Here also qB'f' stands for the center-of-mass momentum, and
Y,)g' the threshold for the b'c’! intermediate state. Similar

equations can be obtained for the- Sy’ ahd Se discontinuities. The

(mat + m

normalization of B 1is such that if we projected onto a pufe state of

I Spin and angular momeﬁtum the S matrix could be regained by

- i £\
S = 142189y,
L= T 5
ST R
. i f PR e . ¢ o
where ¢ and q . are inltlglj andfinal-state momenta respectively.
As mentioned befbre,»the overall normaliﬁation,of M is immaterial,
since itéppearson both the left- and right4hand sides of the above
equations. '
Equation (5) is deliberately written with général'kinematics,
'in order to be useful when we consider what effects the difference in

mass of the chargednand;neutralpiohs might have on the matrix elements.

In what follows we shall consider the pions to,be'of equal mass.i:This
- ;
- qB' YI

that we can use I-spin amplitudes for the g interaction, etc.

means that all‘the'threshOlds are the same, that at = q = q,
B. Angular Integfﬁtion-Approximation

Since theAKTvintegfal equations involve the Sqr Sy» gnd S,

'plane, some set of mesh points must be chosen féf numerical calculation.

vRatherithan try - to covef the whéle plane it was decided to e¢0n6mize on ‘ ¥

the gﬁhber of mesh points'and choose points along certain rays in the

plgﬁe. In order to see the rationale behind the rays chosen we examine

the angular integration in (5). One could use partial-wave projections
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of the décay amplitude, but we'canfobtainialmost equivalent results by
uSingtapprop}iate combinations of rays. Figure 2a shows the situation.
The integration is in the be (equivaléntly ble’) center of mass .

and is OVerfall angles for the intermediate pion momentum Py e Now,

Ser E By = (pau + Pb’u) = m »+ mio o+ gEaEb{ : EEa-Eb.,

Spr = Sger T (Pau_+ pc?p). = my +m, +2EE. - 2R Rers
so that

.Sby _ sc' = "I'Ea"qu. _—

Nbficé ﬁhafifor fixed sa; the,éﬁguia? infegfatién; when viewed in

the‘Mandeistam plane, will be over a ﬁari&ble that is "pérpeﬁdicuiarh
., nax \b', - s, , with the center pointof the vint'eg'ratio'n at
c;:='d.v Since we dré.includiﬂé'at most P waves‘in the 1

to sa;jndmely -8
Spr = 8
interaction, this integration will be sensitive at most to the linear

variation of MGBY

(sa’sb?’scf)' in s, = s -
| “Along any given ray let

Masr(sa’sb’sc) = Mgy Label(s) ’

where s, the only variable, goes ffom threshold»to 0 along‘the ray,
and the‘ray_label is any convenient'mnémonic.labél. If for illdstra_
tion we §uppréss the charge labels and choose to label the rays for

M as ghowh in Fig. 2b, then in the vicinity ofvthe s, rays we make

the following linear approximation to M, the decay amplitudé;
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M(s ,sb.,sc.') ~ B (s) + (50T + B0 (5) - 2y (s,)

x (80 = 85¢) >

where 2A is the separation of the two rays, b(s ) “and Mac'(sa);
On the Dalitz plot of course . experlment 1nd1cates that [MJ is nearly
llnea,r, whlch is consistent with the above a,pproxlmatlon. "'Wivth only

S and P waves the =10 ‘sca.tt‘ering a.fnplitude is

(Sa’ cos gob') ~ C O(,Sa). +C2_}32(8&)

Bgry Y
+ 073y (s,)P) (cos ebb,) ,
where P, (cos be,). = M
el lpy

0 2

coefficients. The angular integration in (5) can now be performed by

and C_, Cl’ and C gtand for the appropr'ié,te 'I-spin Clebsch-Gordan

using the rule that for eny vectors a, ‘g, and ¢

[h—— (a- b)(b e) = %bg(%'c)
.lDi.’_ *( q tCB( ) CB( )]
5 Discg .M Sa,Sb,Sc) = — I 0°0'85/ * LoBpis, )0
a : (sa)Z

+

X %[Ma,b(sa) + Ma.c(‘s.-a,)] C.’LBl(Sa) ]2-—Z[Ma.b(sa) - Mac(sa,)](s_b-sc) (6)
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An importahf thing to observefié'that the'S—aneiinteraction multiplies
‘the sum of ‘M.ab and Mac: on the right-hand side of (6) and the P-WaQe'
interacfioh>multi§lies the difference. For aﬁ waavé-only situation
each set‘of parallel rays can be allowed to collgpse'to a single ray
if desiredvby letﬁing A go to zeré. 'Anotheriimpdrtant thing to
obéerve is‘that the final expression for the angﬁlar inﬁegration and
discontinﬁity,v(6), involves only'relétiVistic>ihvariants;so that it
is natural to analytically cbntinug this expression beyond:the Dalitz
plot, evén-though it was deriVediénd motivatéd from the Dalitz plot
physical‘situatiOn.‘ |
ASVMentioned’befqré,the'chodsing of rays yiélds an economy of
mesh pdints and thus a reduction in the size of‘coﬁputer mémory
required. The gdded accuracy to be obtained by keeﬁing explicit
angulgr averaging wﬁs felt not to be worth the bother, ét'least at
this stage of the éxploration of the KT equations.  This approximation
is reversible if desired by substituting:
M (s ) + M (s,)] - W(s,) —-ggﬁM(s ,sb.,sc,) ,

ac’ a

EZ[Mab(sa) - Mac(sa)](sb‘- Sc) - ﬁ‘:‘_I.(sza,’sb"sc)
| | Uhye |

T M(sa,s sc,)-5°Pl(c§s Obb')'
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S C. Exténéion~of_the KT Equations to Include
é-wayé Final-State Interactions
We -should now like to éxamine how one can éo from one-dimen-
sional dispersion relations to a "three dimensional"-KT dispersion

relation. »Hblding S,  fixed we can write

M (s!,s,) M (s),s.)
M = = ds' .8.' 2 ° . = ds/ Mby""—'P_i' + G (s_,8.,8_),(7)
_ a8, -8, e b Sy =5, - ¢ @ b’ "¢

where Gc is an unknown function except that it has no cuts in the

s  or s

a 5 variables. Similar equations can be written for holding

Sa_ and sb fixed. Let"

My = F(s,) 30N (s,) + M, (s,)]
o, Fa_(sé) %Z[Mab(sa).; Miac,(sa)‘]‘(lsb - SC)? | l.» v. (8)

‘where F,__ and F _ are the appropriate S- and P-wave interactions, -
and similarly for M, ‘and M. ‘If we have only S wave, i.e.
F _ = Fb; = F,_ =0, then by comparing the symmetry of the single

dispersion relations. in Sy Sy» and 'sc we can deduce that

. R 1 .' , Mc(sé)
Gc(sa{sb,sc)v = — [ds] EZTTTEZ + Go(sa,sb,sc),
where G is an unknown function with no cuts in any of its variables.

0]

When we include P waves, however, the s, 1integral in {7) requires that

: : 2 . i
in (8) with Zmi -8 2s,. But then by com

we replace Sy, = S, a

C
paring the thr@é single-dispersion relations one cannot arrive at a
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cOnsistent-ehoice'for G- IﬁfhoWever;we use. the trick .

s' =»s8' -« 8 +8

, the s' - s will cancel the denominator and we
“a a ‘a a a ‘a St

will have the constant
ds' F. (s') 1M (s') - M (s')]
, a "a-‘"a’ 24 ab‘"a ac‘ a’"’

which we then can add to G.. Notice thét*this constant depends on the
P-wave irnteraction . and on the solutlon of the problem, MEb and Mac’
but it nevertheless does’ not depend on. the external variables sa,.'sb,
and sé. Wlth the ‘inclusion of all such’ constants ;nto their respective -
G's 1t is possible to deduce a consistent 'Gc'- The equation for M

then becomes

M = 1 dsa Me(sa’sb -'ﬁé)_+-£ Mb(sb,s _‘»Sa)
= . t B . -
- Sa ~ Ba N Sp ~ Sp
: ds oM, (s',s. - 8) . . '
Y S c’a: b _ : o
+ = '”S' s + GO(sa’sb’Se) s, o (9)
» : c c , . _
where ;Gb~'as before has no cuts in any of 1ts variables, and where

Mg is ) functlon of ‘the two variables, 85 and va - S, &8s given.

b

for MB and Mc' This is the extension of the Khuri-Treiman equations

by (8), and is at most linearly dependent»on s, - s, and similarly

“to include P—wave.»nn interactions.

It is interesting to consider the physical interpretation of
GO.
left would be G

-If'all the x interactiqns were turned off, all that would be

o’ S° it is natural to regard it as somethlng like the -

befevweak'interactlon. What is not clear, however, is whether GO
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containsvaﬂybtermsvlike the ones Wé had:tq.add.to"Gc,‘iﬁ other words
terms whiéh may depend oﬂ‘thév nx interaction and the sintion; YM;
of the integrél equation. These tefﬁs,then,as well as the integrals
in (9) ﬁighf.be related to the final-state enhancement of the deéay,
It is relevaht here to obsérve tﬁaf Amado and»Noblélo‘have looked at
the general Quéstion of finalfstate enhancements for three-body weak
decays, within the cdntext of Faddeev equatiqns for an,exactly soluble
S-wave separableﬁpoténtial:model;' They find the final—state.enhance-
ment c@n‘vary over many orders of-magnitudé as some‘parameters of
their modél are‘changed,' Their<Dglitz plot distributions, however,
can remain,relatiVely unéhanged;as this overall enhancement varies.

In our problem,since we are assuming the pure weak ihteractién'contri-
butiqn fQ'Be cbnstaﬁt;we have assumed Go'-to be a conétant and have

performed one subtraction. Notice that terms like

1 .
-.S‘

-J(Sb-_ s)° .
b+ a

S'
a
go at.most to a constant as one approaches o along all rays but two

a’ Sp plane, so that making Gb ‘& first-degree polynomial

in the s
or betfer would give it a stronger asymptotic behavior than the stroﬁg-
interaétipn part and might require further subtractions.
| D. Symmetries of‘the‘ lat| = %. Rule
Experimentally the branching ratios to the various modes of
decay plus the relative magnitudes of the Dalitz plot slopes indicate

that in general the decays obey the IAII = %_ rule with perhaps some

small admixture of |AT] =-% (i.e., the final state is 'I = 1 with:
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perhaps a small admixturé'éf T =2). In what fﬁllowsfwe‘shall assume
that the ]AI[ =-§- rule :r’iolds"and that the final state ivs I=1
only. | o | | . | |
Following‘Khuri and Treiman;we can as‘a matter Qf convenience-
pretend that the. X .meson has I spin =1 and ihat I spin is'
cbnserved in the decay. LettingA o, @, B, and T be.tﬁe charge
indiceé.of the ‘K, =_, :“b’ vand To @espns,we can write the invariant ”'

a

‘matrix element for the decay as

AD +CDd

M = ' “+ B 10
o3OBY "o S (10)

5 8 5
P Y or ap’

where A, B, and C are functions of S,» Sp» and s_. From the
Bose statistics of the three pion.system we have thelsymmetries o
(sb_eéasc) BesC, A — A,
(Séve—asc) A e—ac, B« B,
 ($5 g—)Sb)' A esB, C«C.

Applying (lO) to some cases of interest we have, for example,

M++-(Sa’sb’sc)v = A+ B,

,MOO'f‘(Sa,-Sb,SC.). = =C,
ZM+eO(sa’Sb’S¢) = -C,
| MbOO(Safsb?sc) = A +B +C.

Expressing everything in:termsvof 7' decay, we then have the following

relations between the amplitudes for the various chargeumOdes of decay:



M++5 - fM+§o " Moo
.M;—b‘ - Moo+ 7
Moéof = Moo " Moio ™ Moos
Thus if'we yish_to impose the symmetry of the |AI| ='% rule, we can ~

decouple‘the:amplitudes for the different charge mddes of -decay in the
KT equations and derive an equation for only a single amplitude,'éay
the ' .émplifude.' All other amplitudes can thenvbe expressed in
terms of'that amplitude.
. -E. Equations for T'  DecayJ

, Figure 7 shows the rays and ray labeis chosen for ' decay.
For conveniénéé one pair qf.parallel rays has been collapsed bécauSe
there iS noiP‘wave in that chénnel. Because of the right-left charge:
’ symmétry‘dvaig. % there aré only three independéﬁt iays, as 1s apparent
in. the ray labels chosen.

Putﬁing together now all.the’things discussed in this section,

< and letting' —g—I B=F-= e16 sin 9, we obtain the following equation
v (s)7 .
for MCO+T'_
Mooi(8408438.) = Moo (50,56,50)
t l _' l v ' . l . R '. ' ' . '
* ;"“[és <;’ - s +1di¢ . s' - s+ ié) ' FE(S’) MiA(S )
S a 0
‘ l ' ] ) l . ~ 1 l ’ ) . )
* ;_ers s' - S, + i€ Fl(s ) o IHlD(S ) (Sb -sc)
1 /~ 1 , 1 ﬂ
= ds!' - : — - - - F.(s' !
+ P _Jf \\§' f 5y 4 ie s' - g + 1e:> Pﬁ(s ) MiA(SL>-

Equation (11) Continued next page
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Equation (11) Continued

L+
|

7t :de s' - sb + ie ..Fl'(S )ZMlD(s )(Sa- h Sc)

1 , 1 |
+ ;[ds (S' v_sc.*iefs' —.S$+i_€>
where - | | g
M) = B o) g
and '

1

. 1
v ' = {g') - ot
Mp(s') = Fhoy(s') - My (sm)l.
Here we have subtracted at the center of the Daiitz plot,

Sg =,Sb_— Sc = 8y = 3 2: mi . = The subtractlon does not affect the

Fl tefms because they are zero at that spot anyﬁ&y.

"To make a coupled set of integral equationé out of (11) one
- merely evaluates the geﬁeral matrik eiement on the left-haﬁd side along
the same réys as are being used on the right-hand side. Thus for

=S’

MlU(s)'VWG'substitute into the right-hand side of (11) S,

. Similarly for

-2 I 1 V ) Ll oL
Sy =5 go‘ 58 *5 A, and s = 58 "5 8 -3 A.
Mips 8, =8, 8y = ; S9-58-54, and s, = ; Sg "5 8 t34

’ ’ _ 2 L b] L s =
and for M, S, =555 "58 8 =585;-58; and S, = S. Then
for MlA and MlD one just adds and subtracts the appropriate

equatioﬁs for MiU' and MiL'
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IV, SPECIFIC CALCULATIONS
.A._ Préfacé tQ'Sbecific-Calculatiéns‘.

:JWé'shall.nekﬁ_Wiéh_td investigate‘the solution of (11).. Since
~ the nature . of the .ﬂﬂ interaction is not known exactly, the best that
~.we can hope for is some sort of infuitive'underStanding by assuming a
fange of reasonablezinput nx:.phaSe shiffs anardbseTQing the’range |
ofidutput sélutions.b In order to try to separate the I =0 'and I=2
VS;Wg#e;énd P-wave effeéts, we shall considér' For» Fp ,gnd F, one
at a time to be ndnzero, and.léte} combine them in concert. =

A feW‘Qomménts abéut'thé.numéfical.progrgm for solving (11)
might‘be of interest.'Usiné 25 mesh pdints‘per ray requirés the inversion
of5a 75-by-75 complex matrix. An aceurgfe suﬁrouﬁine_called»LINITll
Qas.dsed for this'invérsidn;‘ The totél p?ogram required about 15-30
secbhdsvand'76;OOO‘WOrds of storage locations on a CDC 6600 computer.
Tﬁé solution for~'Mé' wag noﬁ-Sehéitive_to A, fhe amount of separation
of theA Miv rays, so g vélué of A= 0.5 was rather arbitrarily chosen
and uéed. o | | | |

 In'orderAto compare our solutions with data,-we‘have.taken as .

our "experimental data" the erdpirical_'forml2

/|Mé|2 = 1 + g(sé - 85), “where g ~ Q;h.

'
I

The value, g ~ 0.4, is the Dalitz plot slopé predicted from an applica-

-EIg(T ) ’

2
where g(t) ~ -0.2], rather than the measured value, g ~ 0.5. The

tion of the Al = 1 rule to the = decay'data [g(T')

experimental data for <t decay are better known than for ' decay,

and the discrepancy between g =~ O.4t and g ~ 0.5 indicates_somé ‘
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breaking of the AI = %‘ffule, which we assumed in deriving (11).

Considering,tﬁé exploratory nature df_thé present work, this empirical

form with g ~ 0.4 " should be adequate for our'purposes“ Usihg mn =1

and m, = 3;6, this iéads on fhe Dalitz plot to

n
1]

1l 2 - '
0 '3' .Zmi = .5'521

um 2 - 1M2| min .= 0.4y,

wn
I

c min ~ T

Il

So max (mK -m ) = 6.76, |M2|2max = 1l.57.

" B. Fy#0

 Since the I = 2, S-wave phase shift is known to bé'smail, it

is naturéi fp'begin'with the I =0, S—Wave'chgnnéi, which is expected
to be more importanf, to see how close’oﬁe’can come to "fittihg"vthe
data usiﬁg this channel aloné. The I = 0, S-wave rx phase shift is
of course a subject of some controversy in the 11terature (for a short
review - of the current pion-plon phese-shift s1tuatlon see Jackson 5)
There is_agreement,howeven thatﬂthe phase-shlft.should be positive and
lérge (>60°) by 700 MeV, |

We begin the analysis with Just a nonrelativistic scattering

length approx1matlon
: O —. tan_l(qa ) o : (12)
o - =T/ ‘ : :

is the scattering length. _The'nUmefical solution of (11)
uolu

where ao

for Mé for several choices of a, is shown in Fig. ‘The results

are gomewhat disappointiag - because the slope of the Dalitz plot is in

-the wrong direction for positive &y and is small unless,enormous
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scattering léngths'afe used. The @athematical reason for this can be
understood,hqweven if we return fo consideration of the simple, one-
dimensionai'Omnes equation and consult the exact solution, Eq. (k).
‘Substituting - |

5 = qa S N | - (13)
into () yields a rather flat solution, |a(s)] = 1.0; for all s!
In other words the solution to the Omnes equation is dependent not so
much on the magnitude of the fhase shift as it is in how the phase
shift varies above or below (13). Wé_can.nbw‘see that (12)‘variés on
the downwgrd side (fbr positive ao)‘of (13) and thus produces é; |
decliningvsolﬁtibn fﬁr the Omnes eQuation,and for EQL (11). It is
essentially for this reason that Khuri and Treiman get the fesulﬁ
~ =0.7 and the pdss;pility that- a, is negative. We find

a. = 8

(o} 2
that ao

also fof‘thé'relativisfic scattering length approximation (see Fig. 5),

~ -1.0 approximately fits the data, not only for (12) but

8o = tan Tasy/(1 + a)°) . - (k)

If.we wish to gtéy with the idea that ;80. is positive, as is
indicated by experiment,:the wﬁy is clear. The phdse shift mﬁst begin'v
~ like (13)‘at low‘enéfgies but. then must rapidly rise above (13). Maﬁy
forms for achieving this might come to mind. Histdrically'fhevfirst :
form to be used was a pole, the so-called o (or €) resonance,
proposed by Brown and Singer.5 Using.just a simple propagator approxi-
mation for the.ﬁAtrix element, they were able to fit the Dalitz plot

~data by assuming a low mass and moderate width for the resonance,
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390-&25 MeV and P 75-100 MeV whlch puts it convenlently Just |
off the edge of the Dalitz plot (360 MeV for K decay and 412 Mev
for 10 decay). Recently there has been somevsuggestlon that_the pole
could be at 750 MeV, "underneath" the p resonance. Using a simple

Breit-Wigner form

8, = tan T —2;2—-—- ), :where T (q) g— r. _ ' (15)
o . m° - s . . A

we get the results shdwnvin,Fig. 6. Unfortunately, owing to numerical
difficulties, we cannof‘get»a good solutiQn for a pole any’closer to
the Dalitz plot than 450 MeV (we shall 4iscuss this point later). Never-

theless, if the 450- and 750-MeV cases are cpmpared,'the trend is clear

‘that the Brown and Singer values in some sense represent an optimum.

In order to get a sfeep ineline'itvis necessary to bfing‘the pole in

as close aé.possibleito the edge of the Dalitz'plot? eay 390-425 Mev.
A choice for r,> 100 MeV ﬁill make the graph for |M2|2 .not steep
enough, end F <75 MeV will yield toofmuch positive curvatufe for -
|M2'|2_ on. the Dalitz plot.

Another phase shlft form that may be of 1nterest to try is one
COrresponding~to the so-called "up-down solution" of the literature.15
This solution lies between 60° and 90° oﬁer'the range-5QO-lOCO’MeV |
rather thah rising repidiy throughe909 to produce a resonance as for
the "down-up-solﬁtion." A form which rises faster than..qao iniﬁia}ly
(so as to produce a positive Dalitz plot slope), goes through 60° at -

an energy My, and then levels off at 90° is as follows:
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8o = ten “[aag + (a/a)° (W3 -a2x)] (16
. : S 2 1 .
where a, is the scattering length, and q, = (mo /4 - 1)2. For lack
of a better expression let me refer to form (16) as a "hump." The v oo

results of using this form for various values of the parameters. aq

and m

for thellowest compbnent of Qay, namely &gy = 0. .Also the optimum

is shown in Fig. 7. As can be seen, the steepest slope occurs

value fdr .mo occurs between 500 and 550 MeV. Values closér than-thisb
to the edge of the Daiitz plot produce fop much_negativé cufvature,

and values further aﬁaytprdduce slopes that are too: small. Even for
the optimum, however;‘the Dalitz plot slope is 6nly,about ~60% of the
rgquiréq:siope, so this phaée-shift forﬁ.by itself iS-inadequaté to

£it the data.l” |

- An even more extreme case

= Lok - ‘ .
5% = 3 6(E - 500 MeV)

was tried,but the results were not -appreciably better; furthermore,
this foim leads to a logarithmic singﬁlarity.én the real axis. |
A few miscelianeoﬁé gomments about the foregoing solutions
-might be 6f interest. vFirst, for all the hump and écaftering-length
caseS'with~positive‘asymptotié phase shift, the numerical .|M2(s)|2' -

appéars to go to zero as s goes to "infinity" (the last mesh pdint

[ %

is s = 1000), which means that in Eq. (11) the inhomogeneous term,

4 . — 2 . 1N . . " .
MOO+(SO’SO’SO) = l.o, is being cancelled off at "infinity" with a

~

fair degree of accuracy. For example,using the nonrelativistic
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scattéring length approximation with 8y = +1.0 prodUces:an

4

|M2[2,= 3 x 10 ' at s = 1000.  In fact crude fits can be made to the

asymptotic bghévioré fbr the foregoing solutions with the genefél reéult
that for;anbésymptofié phaéé,' 80‘; ng, ‘|M212 ~>s;l'6n, ﬁhereaé the
amplifude équared foi the Omnes équation'wduid go.like s™®. For the
FO pbleé_thé numerical problems are worse, but there still is a

’ reasonaﬁle degree of cancellatidﬁ.of £he inhomoéeneoﬁs term

»(|Mé|2 - 9.0:1070 - 1.0°107 at s = 1000). Secondly, the hump and
scattering—length'solutions were tested for cutoff sensitivity by
introducihgbcutoffs past 1000 MéV; (s = 53). These éﬁtoffsa of
course pfoduce singuiarities in the solution at'the,cutoff_ point, but
otherwise produce no graphable difference in the Daliﬁi piof_region'
(i.e.;vless than 1% difference). Thirdly, an interesting numerical
problem Qccﬁrs in (ll)'ahd in fhe Omnes equation for phases‘outsidg

the rangé; -% r <8 5 %ﬂ, as_occurg‘for example, for poles (0 < & < x).

The F 3 (e216'

- 1)/2i has an ambiguity in that & & ny gives the

same . F,‘so‘that a very réasdnable phase shift such aé S =l4135°"would
be equivaleht to another reasonable phase shift, & = —h5f. Normally |
the assumption of anélytitity for T aﬁd M admits only one solution,
but,fof a numerical.problem that does not stress anélyticity for ' F

and M, one can often get solutioné that appear to correspond to
changing the phase:;apid;y ffbm B to .6 - ¢ when & becomes greafei 
%.» For our Calculations'we.get around this problem by factoring

out’ of the unknown integrand the major expected violent behavior near

than

poles, and treating that part more exactly. In this way the remaining

unknown:portion of the integrand is likely to be smoother (see Appendix



~30-

B for numerical integratlon technidues) With.this'improvement in
1ntegrat10n we always managed to get the correct solutlon, provided

v that the pole is not too close to the Dalltz plot The cause for

the problenm when the pole is near the Dalltz plot is still unclear.
The maJor cause appears to be related to the fact that there 1s a cusp
in MiA at s =7.96 [in (11), 5 5, § . 96 = 4.0]. The closer the
pole approaches thls cusp, from elther ‘above or below, the worse the
solution becomes, going asymptotlcally to a large constant at s %‘m.
It may be necessary to factor this cusp behavior out in some manner
in the numerical 1ntegrat10n of FO MlA in order to get a good solu--
tion. As long as m Z‘h50 MeV (550 MeV for 1 decay), however,

no problem is encountered | | | '

’ Lastly there is a threshold cusp problem,most notlceable for
large negative s~wave-Scattering lengths. Numerous efforts were made
to getlridfof this cusp by improving the numerical accuracyvof the
calculation (e.g., increaslng the number of mesh points near threshold,
improving the weights for numerical integration byﬁtaking into.better
account the square root nature of the threshold branch point for F,
ete.). ‘All of these efforts consistently yielded the same SOlution;
however.: The cause for‘this_cusp is stilla,mystery. The numerical
solution of the Omnes equation using these same phase-shift forms
produces.no such curvature. Since experiment would appear to indicate
that actual three-body final states in nature do not exhibit such cusps

or positive curvature near the physical subenergy thresholds, it would
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éppearfto bé‘a féult of ﬁhe_model or numericél'téchhique_that they o
occur in our édlculgtions._ This cﬁsp will not bqﬁher ﬁs so much in
our more realistic ékampleélhowefer. |
- o mAo

 Figures 8 énd 9 Shbwbthe effect of ﬁSing nonrelativistic and -
relatiViétié'scattering length apéréximatiéns,’fespectiQely for F,.
The sharp bréak in Mé that OCcufs;ét s =38, - 8 =7.96 is due to
thevfact fhat S and 5y go below threshold at that point (see Fig.
3). In compariﬁg fhé _F2' scattering-length resuits_with‘_Fo ‘one can
make the:rémarkable observationvthaf,fbr. a, = Fao éne'obtains very |
negrly the_sgme graph for s < 7.96.' Thié is in keeping with'thé‘KT
result,_.éo - az‘z -0,7,.which dépends only on thé,linear.combinatiOnV
(ao - ag), and not on the individual magnitudes. Accordingly we find
thét ag'z“+l.0 will approximate;y fit the data.

.AS'can be obServed,‘the threshbld cusp problem pérsists for
Fy 0
B =n g |ue)” ~

The experimental I = 2 phase shift is reasonably well kiown.

as well as F. Invfittingvasymptotic behaviors we find that for

- =1.2n
s .

The form used by most serious phase-shift analysts is the one by Baton

et al.}7

8, ~ ~-0.052 and the effective

range r, ~ 1.9. ' -~ (17)

Analytically, however, (17) goes sharply to -x at 1260 MeV (s = 85).
To prevent this unreasonable behavior we artificially limit 62 to be

-21° for 970 MeV (s ~ 50) and beyond, which is the last data point
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‘of Baton et al; This form is our standard éhdicé for a'iealiétic .f =.2'
phase shift fo£>use in latef‘appliCQtions. We shall refer to tﬁis
choice as the'”gatdn F2,"bevéﬁ though stfictly speaking Baton etval.
are responsibie for only'thg first portion of it. A-cutoff or any other
similar procedure could jﬁst asIEasily have been used and would make o
littley&ifférence. Figure 10 shows thg mild,nature of the solution
for Mé for Baton's F, used alone.
| D. FO :gnd F, #0 |

Since we previously found that exéhahging ag ;'¥l.O and
a, = 0. O fdr ao'= 0.0 aﬁd a2 = Fl. 0, produced the same Dalitz plot
curves,lt might be 1nterest1ng to test the KT hypothesis further, that
is, that the "slope depends only on the combinatlon ao - 52. In Flgs.
11 and 12 are shown the results for various sets of nonrelat1v1stlc
and relativistic,scattering lengths'respectively. In support of the

~ -0.5 and a, =~ +0.5 will

KT hypothesis it can be seen that a o

0 .
approxiﬁ@tely fit the'data, and that the sets aO‘=’+O;5’,‘a2 ; +O.5,
and ad:: 56.5,, a, = -0.5, cancel out remarkably for s < 7.96 but
behave quite differently beyond this pqint, .
Figure 13 showé the results of combining thé gentle ‘Baton _Fé
with two typical previous I=0 caéés, The solutions are changed
very'littlé for _s.< 7.96, but are slightlytlafger'aSymptotically.
The combinations go nearly to zero asymptdtiéally in spite of the fact
that 82 by itself would produce a growing solution at infinity. The
FO pole, m, = 750 MeV and PO = 250 MeV, was chosen for graphing

becaugse it showed the largest graphable difference when combined with

8-
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E. ﬁ‘oi,' YF‘l,- and F, # o ."

The first thing one"might wish to try when analyzing the effects
6f the.iﬁclﬁsion of P anes‘wbuld ﬁe to try‘a/P-wave case by itself;
Upon’éetting FO =0 and Fy = 0 in (11), however, one disc6Vers that
the on;yvgolution is  MbO+(sa’Sb’Sc) = Mbé+(sO’SO’SO) = 1.0, regardless
of ‘Fl!"The numerical solution of (11) reassﬁringly also yields 1.0.
This result has an intuifiveIinterpretation. If the "primordial weak
amplitude;" the_inhomogehéous térm in (ll), is ponstant_and sé has no
projection into any of the I =1, P-wave, nﬁ' channels, then there
éan bé'ﬁo_P;wave fesﬁattering unless there is some S-wave rescattering
‘Presént ﬁhiéh can give confributions to thbsglchannels. In other words
there can be no P-wave rescattering amongst fhe piohs unless there is
alsobsome S-wave rescattering amongst thém. Mathematically the way \
that this shdws up is that in the_eq&;tion for M., considered to be
uncoupled for the moment, ﬁhere.is.ho inhomogenéous term. There are
only effeéti?e inhomogeneous terms inﬁolving integfals over FO and
Fy. |

'Accordingly,'to begin an orderly investiggtion we shall first
combine .Fi with FO and use nonrelativisﬁic Scatferipg lengths for

both. For P waves this of course means

5 = tanfl(q5él), - ' - (18),

where 8y is the P-wave scattering length. Figure lk'shows the éfféct

of adding increasing amounts of P wave to & case with ay = 0.2.

Interestingly enough, the effect of adding small'amounts of P wave is
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to tilt thé Dalitz plot slbpe in the desired direction. In the
. solution, what apparently happens is that a "line of zeros" appears in
g’ Sp» S, Plane at s = - (that is, the solution is zero

everywhere along a line of fixed sc), and advénces.towards the Dalitz

the s

plot as the_P,wave ié increased. This line of zeros can be seen approach-
ing the Dalitz piot‘region'if onellobks at the solutioﬁ for Miﬁ.'.'
and M (see_Fig. 3), and after entering the Dalitz plot region the
line can be seen in Mg -as well. This is what gives rise ﬁo the
dramatic dips in Fig. lhf When the line of zeros approaches the sub-
traction_point, Se = 5.3%2, for a) =~ 0.35, thg solution Qf course
becomes quite violent. Sinée the.experimentally‘Qbserved Dalitz plot
has poéitive slope, ﬁhe line of zeros will have tbvhave SC <k in
‘order to fit the data. |

It ao is changedbto_ +1.0 the picture'iooks much the same as
Fig. lh, buf fotated-cloqkwise soméwhat to'accduﬁt for the different
O-ohly.soluﬁiqn).. The iine of zefos still‘
crOSSes'the subﬁraction point for & %:0.35. If the Baton F2 is

starting point (the F

added to the mix, the effect on the Dalitz plot is roughly the same as
would be accomplished by'reducing ay by about 25%. v'

A study'of the effect of introducing cutoff into Fl and Fo
was made to determine the sensitivity of the solution.‘ It was found
that inﬁroducing a cutoff into Fo when Fl is present makes a
bigger éhange in the Dalitz plot slope than wheh Fl is absent.
Introducing the cutbff into F, with FO present makes a comparable

1

change in slope, but in the opposite direction. Introducing a cutoff
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into"Fl_Yat S = 51” is comparable in effect to increasing aq by
~0.1. The.largest effect occurs for those cases in which the line of
Zeros is-near the Dalitz plot and the subtraction point.

Figure 15 shows the effects of adding increasing amounts of

scattering iength,P wave to an. I =0 hump case. The results are

similar‘to those in Fig..lh except'thaf here, of course, the Fo-only -
solution already has g poéitive slopé in the Dalitz plot. The best
fit £b the‘data occurs for an '&l ~ 0.15.

The separatiOn between the My, and MlL rays in the.Mandei-
étam plane correspbndsvto‘a smaller‘andvsmaller difference in cos ©,
the cosine nf the’ T écatferiné angle, as one goes out-along the
rays,>if.theirJSepargtibn, ,A, is a constant. Thus one might expect
MlD »fo become smaller énd smaller.at large s. This is in fact the
cnseQ If,nne makeS‘ A a growing, linear function of s, corresponding
'asymptotically to a constgnt difference in cos O, MlD does not fall
6ff s0 rgpidly,.but then the integrals involving MlD have a linear
A(S')_ in the denominator so that there is no particular convergence
problem. Importantly there in virtually novchange in the solutionrfor
M2' when A is "widened" in this manner.

To make use of more realistic 6l's,‘we recognize the existence

" of goodvexperimental'data for 51 at the higher energies near the o

pole, but note that the value of the scattering length is not so well

determined. Accordingly'we adopt a parametrization of ‘81 by

Olssonl& which will allow us to vary the scattering length and not

disturb the pole parameters too greatly. Explicitly we take
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L (ol | ' el &, qB/(l +q )2
5 ‘: a?l 1+ (c; 2)< ) + (1 - cl)< )l‘) (19)

where a = E_Fr/Sqf, |
where w, = 755'Mev ~ 5.51 ,
r, = 110 MeV ~0.80 ,
9, = 2.57,
and where 1¢l is a free‘parameter. The scettering length is given
o . - .
& = ¢ 8, = ey X 0.0273.

The "effedtivebscattering length" of the low energy portion of (19)

is not so easily éhanged.by LF however, becéuse'with large 15 the
higher-otder terms in the effective range expansion eoon,become impor-
tant. The net effect is to reduce the phase shift so as not to disturb
the resonance features teo greatly. To emphasize the care that must
be‘ﬁsed in COmparing‘theoretical scattering lenths‘(defined at
threshold) with empirical scattering lengths found from flttlng low
energy data, we give the follow1ng example. A fit of (19) to the low
energy experimental data of Baton et a.l.17 requires'a. ¢, = 10 or 20,
which would 1mply a) ~ 0.27 er 0.5k, but if one fits a scattering .
‘length to the lowest- energy data'point, at g = 1.6, one obtains a

value of gnly a ~ 0.06.
Figure 16 shows the effect of combining this Fl pole with

the ay = 0.2, my = 500 MeV, Fy hump, for several choices of e -

As can be seen, the addition of the P wave dramatically steepens the
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Dalitz plbt slope in the proper direction. By comparing with Fig. 15

we can séévthat the o polé with ¢ = 10 is comparable in effect to

1

a P-wave séattering length, a. = 0.15. Figure 17 shows the effect of

1

o @nd F, Wwith the limited Baton Fe.' The

effect of this addition is not largé_in the Dalitz plot. Mostly it les-

combining the preceeding F

sens the sldpe'of the ¢y =10 and ¢y = 20 cases so that they come close

to fitting the experimental'dafa._ If the above calculations are

repeated-with the an hump,; the ¢y = 10 and

= 0.0, my = 500 MeV, Fy

¢, = 20 cases exhibit'steeper slopes than the data, mainly because the

initial slope of the F.-only solution is gredter.

0
”Figure 18 shbws the effect of combining the Fl pole with the

m = 75Q'MBV, fc - 250 MeV, ¥, polé, for several choices of cy-
Again thé ;ddition of the P wave dramatically steepens thevDalitz plot
slope in the proper direction. With the addition of FE; in Fig. 19,
the steepesf slopes'are'dampeﬁed'someﬁhat so that fhé ¢y = 10 and 20
caseS‘cohé close to fitting the data agaihﬁ If in the above the
m; ='h50-MEV pole is uéed, the resulting Daliﬁz plot slopes are too
steep because of the steéper initial slope. |

There is an émbiguity.in thé I = O phase shifts, of course, ’
but it is interesting that if one takes the two most popular choices,
corresponding to the up-down and down-up solutions, and adds reasonable
amountsﬂof P-wave and I = 2 interactions, one can come this
close to fitting the experimental data.

_Somé cqmments éfe perhaps in order at this point; The first
is that the addition of P wave to the probleﬁ appears to have a

surprisingly large effedt. This;is cdnsistentvwith the observation by
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Schult;and,Barboui',7 Qho fouﬂd in their calculationsvthat:P waves could
haveflarge effeCté. Nevertheless the fact that it is large means that
this'portiOn of the calcuiation is likely to inVite the most:contro-
versy; . If one were to search for possible numerical weak points in
" the Calcuiation, there are two that come to mind. 'First is the
possibiiity thaf since thé.eQuation for MiD has no iﬁhomogeneoﬁs
term, it may in some way be more unstable numerically} Secondly with
regafd to thé‘ Fl polé, all the prgvioﬁsly meﬁtioned problems in‘.
‘obtaining a gobd‘numerical solution when a polé.is present apply to
‘the _Fl -pole as well as the FO pqlé;. In faét, although the same
numerical techniques wefe used on_fhe Fl pole as fér the 'FO pole
(see Appendix B), the Fi poie showed greater éensitivity to the
exact nature of the teéhhiques,than did the FO pole. The numericai'
techniQues for handling the.pdles ﬁeré devélobed on the>0mnes equation,
for WhiCh there is.an exact énswer for comparison. ‘Although if is-
-reaSonébie to exbect ﬁhe same techniques to work for the coupled
’équ&tions'with FO’ and Fl pbles, they'qf éourse can nevér bé
compared with an exact answer. Since the equations involving the -FO
pole are more similar to the Omnes equation than the equations-ih&olving'
the Fl- pole, perhaps there can be greater confidence fér the tech-
niques to work for the .FO' pole fhan'the Fl pole.
F. 1 Décay'

By Jjust cﬁanging the mass of the K meson in the above cal-

culations to that of the 7 meson (mK ~_3;6 and .mn z,h.b)- ﬁe

should be able to calculate the decay spectrum of the 1 meson.. This

simple procedure assumes that the "bare" decay matrix element for 1
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decay is a constant as before, in spite of.a différent decay mechanism.
This is probébly contrary to cufrent algebra which'gives zero for fhe
deéay rgte‘if the matrix élemeﬁt is flat.19 ItrshOuld be qbserved here
that Neveéuénd Scherk8 have made an attempt to,impbse thé constrainfs
of curreﬂt algébrg‘at the.two soft-pion points and-genératé correEtions
to the linear (and hence -zero) metrix element via final-state interL
actions in'twice—subtr;étéd KT equations. | |

By virtue of the assumed  I-spin symmetry of the‘final Staté,
Eq. (lO);-the M2 of T decavaill éorréspond to -the 'S;_.-spectrum
of 1 —%ﬁ+ﬂfﬂo- Figures 20-23 éhow-the.exténsion'to n _decay of some
selected cases of interésfvfrom K decay. Again fﬁe "experimental
points"'showﬁ are just tﬁe result of substituting into thé empirical
formula,‘ |M2|2.=‘l.+ O.h‘(sc - so); and shown here for rough comparisoﬁ |
only (sée Cnops et al.?o). The geﬁeral featurés:of the calgulations
tend to cpnfirm and aécentﬁate our‘prévioué conclﬁsiqns. It is Just
as impdséibie as before to fit the Dalitz plot with I = O cases
alone unless one assumes a pole on the edge of the Dalitz plot. The
FO pole closest to the Dalitz plot for which weé can obtain a reliable
numerical solution 1s m, = 550-MeV. This pole unfortﬁnately has too
large a mass to fit the data, but, as before, it indicates that a pole
- closer to the edge of the Dalitz plot‘would do better. The bestv‘I =0
hump casé doeé particularly poorly when extended to 7 decay. The
ibést fits from before invol&ing P wave, howevér, continue to fit as

nicely'forf 1 decay, in accordance with the final-state interaction

philosophy.
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G. Nonflat Inhomogeneous Term
It ie of interest to determine.the,changes that occur if the
bare matrix.element has SOme‘energy dependence,vinsteed of beiné
constanﬁ as in the foregoinédiscussion. Theie may be cqntributiOns to
the inhomogeneous term which depend-on.the - final-state interactions,
but we ignore this possibility for the moment aﬁd speak as if the
inhomogeneeus term were a Born term or bare ﬁeak interaction term. We

chose a linear term of the form

o | 1oy |
MOO+(Sa’Sb’Sc)bare 1+3 g-(Sc, SO)' ' (20)

For XK decay, current algebra2 predlcts such a. matrlx element in the

Fed "(

phy31cal reglon w1th g ~ 0. 4, which of course w1ll flvﬁthe data.

o Flgure 2h shows the effect of using just a simple scatterlng
length, ag = 0.2, with a bare term of varying amounts,of g, The
most striking obeervation is that the.final-state interaction exag-
gerates the sldpe of'the bare matrix.element,v'% g,' by roughly a-
factor of L. The amount of exaggeration is a function of the sy -

0
= 1.0 the factor is roughly 10, and for the hump

iﬁteraction. For example, for a, = O the factor is of course
unity; fdr ag
case, ‘ao.= 0.2, m, = 500 MeV, if is also 10. There is apparently
no problemrof nonconvergence of integrals for these cases because if
one meesures the'asymptotic behavior.of -FO cases for which 60 q,%
‘asymptotically, one obtains [Mya] and  |u,| ~s%, with o~ +0.6.

For comparison o =~ -0.8 when g = 0. For F2 cases in which

e}

ol

o v asymptotically, o =~ +0.6 as compared with o ~ -0.6 when

g = 0. Thie suggests that negative scattering lengths will yield
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divergent integrals,‘Which indeed is found‘to be true. We were

- unable to measure thevaSymptotic behavior accurately for an FO pole

case because of zeros near the "asymptotic region,"” but the: a appears
to'be apprbdchiﬁg something less than one and these cases presumably
converge also.

Some scatteringvlength cases for. Fl

‘were tried by themselves,

since (20) has a nonzero projection into the P-wave channels. The

"solutions appeared to converge,'but showed an even stronger exaggeration

of g, for example a factor of -38 for a; = 0.1. The combination

81
thf0ughh£he data points.

= 0.1 and a small g = -0.01 can prdduceva solution that goes

The slope of the bare matrix element (20) by itself causes a

line of_Zefos in the Mandelstam plane. vBecause'of the exaggeration of

that slope by the vﬁﬂ ‘interaction, the zero rapidly enters the Dalitz

. plot, with increasing g, and approaches the subtraction point, Sqe

If one wishes to test fhé resbonse of previous cases of interest %o

the introduction of a bére interaction slope, one must do so gently,
€.8., 1g1 < 0.10, otherwisé the solutibns.rapidlyvlose their identity
and any correspondence with réality. Figurev25 shows such a "gentle"
perturbétion of a hump case. This violent modification is in contrast
to the_ieSults on K decay of Neveauand Sche'rk'.8 The ‘explanation for

the diffefencé lies in_thé fact that they ﬁave two soft-pion subtraction

points. Their amplitude is therefore less susceptible to the influences

of the final-state interactions.
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vThe sensitivity of solutibns to g 18 due to the asymptotic
behavior of (20). If instead we use a bare interaction term of the

form

1 +'% gr.taﬁh[(sc - so)/r] - (21)

‘Mbo+(sa’sb’sc)bare
this sensitivity disappears. Little or no ekaggeration of the slope'b
occurs, and all cases which previously converged for a flat matrix

element, converge for (21). The only difference is that the solution

in the region of the Dalitz plot is "tipped" an extra amount, given by

% g. An interesting aside observation is that solutions which would

ordinarily have gone to zero asymptotically now go to approximately

% gr 1instead. TFigures 26 and 27 show the effect of using (21) on
some cases of interest;fwith T ch0seh to be 2.5 (the results are

not sensitive to this particular choice of 7).
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V. EXTENSION OF. THE KT EQUATIONS 70 ALLOW UNEQUAL MASSES
FOR THE ‘CHARGED AND NEUTRAL PIONS.
__'A; Derivation of the Equations Used for Appreximéte;
Numerlcal Solution of the KT Equations |
It was felt that the KT equations might be an appropriate
| vehicle for studying the effects-to be expected from_the fact thatvthe'
charged'and_ﬁeutral pioms have slightiy;differenf maeses.' Accordingly
a study'wasfundertaken to fry to-ineorporate tﬁe.Siight pion mass
differemce'intoﬁthe KT equations. The starfing poinf ié:Eq. (5). There
we can see immediately the most important changes to be made, First
the e functlon means that the various discontinuities can "turn on"
at different values of s, dependlng upon the masses of the pions in
the 1ntermed1ate state. Therefore we will-have_to begin the various
integrels,involved in the KT eqﬁatidns at the differemt thresholds.
Secondly, .there is a qBY(S) facﬁor; whieh'originally ceme‘frem phase
space; and which also depends on the masses of the intermediate pions.
This fdctdr goes to zero, of course, at the intermediete—state thieshold,
and is rather insensitive to small variations in the threshold at
large s. Thirdly; ii cam\be seen that the 'nn‘ interactioniwill have
to be empressed in the form of an invariant matrix element, for the
veriousrinitial'and final chafge.sfates. This'imvariant matrix
element,ofncoursg does net go. to zero at any thréehold, but goes
smoethiy to the appropriate seattering length,'i.e.,'the q from

'phase space has the threshold kinematics and the B. has the dynamics.
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It was decided to make a‘calculation of pﬁly one test case,
namely'the _T and..T' system; Bofh T and 7' afe required;because'f
the intermediate-state pioﬁé can have’different charge from the external
pions, and thus the ampiitudes_for thé 7 and -1’ 'debéys‘will become
cQupled through the KT integral equations. Préviously,wiﬁh thé equal-
ﬁass problem, we could reduce thé'compléxity 6f-ﬁhe proﬁlem wifh-the
impositioﬁ éf the |A¢|‘='%-vfule and force the final stété.to be
I =_l. only. ‘But here the electromagnetic splitting of the pion. masses
is sﬁeéifically an -I-spin breaking effect so that exact |AT]| = %‘
will'nd’longer hold. For the next siep_we make use of éxperimental
evidence12 that,indicapes_that the 7 and <t'  decay finai states aré
mostly I = i, with ‘some small'admixture‘of 1'2 2, ahd no evidence
for I = 3. A simple analysis of ﬁhe'various I;épin states of three
pionsgl reveals that T = 3 will lead to a ratio»of the %_ and T’
Ampiitﬁdes evaluated‘at the éentér.of the Dalitz plot of 1/2, as con;
ttasted with -2/1 for I = 1. The I =2 does not contribute at
the:center of the Dalitz plot. vThe evidence for the I = 2 admixture
is that the ratio of the center-point t and Tt amplitudeé is Just
as it should be for the |AI| =5 rule, but that the ratio of the
Dalitz piot slopes is -2.60 t 0.12, or about five standard deviations
gregter than the -2 ratio allowed by the 1AI|<= % rule. .The way
chosen to mimic this situation for the KTrequations was .to take -2
as the inhomogeneous term fér the 7 equation'and +1 for the t'.
This will discriminate against the I = 3 final state and yet allow
‘the ratio of the Dalitz plot slopes to vary from the strict |az) = %

rule value.



_In §rdéf té keep the.probleﬁ:simple,no P-ﬁavé finalééﬁate
interactions Qereaséﬁméd;sothat.the Nb.:l rays could be collapsed
to one (see Fig. 3). The ray labeling chosen is Ti, T2, T'l, and
T'2, similar to Before; ﬁith the label, 2, referring to the odd pion
spectra. There is a total of four rays of 25 mesh points each, which
requifes thé solution of &a 100-by-100 complex?patrix. Using the

ll'the program to

nurerical matrix inversion. subroutine calledlLINIT,
solve the KT e@uations required approximately LO seconds on a CDC 6600
‘and 10%.000 words of central memory core. .

. Defining the'integral'operators

o - - o

: ‘ ' -1 1

. 1 -

" [ - C"S““i"" 's"so+'i€>’
, ' 1 1
ds?* <:’ . - —— )
) . . .1 o s! - s. + ie ’

1 , (2 g o X »

‘I’ \s (2 so- > s) + 1e‘ 0 )

the set of coupled integral equations for the unequal¥mass case is-

=
in

"

i

MTI(S) = 2 f_(La f~Lb)(2q+f 3+—,+- M * 900 BOO,-+- MT'Q)
ot 'Lb(q+- B++,++ MT2)
MTQ(S) = ,-2 * La(q+- B++,++ MTE)

¥ .pb(hq+_ B+‘,+' Ma * 2q00 B00;+- MTWé)

Equation (22) continued next page
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Equation (22) continued

Mog(e) = 1+ (L, + 02,4 By, o Morp)
+ Iy(2a,_ By 00 M1 * %0 Boo,00 M)
Moip(s) = 1+ 1,(20, B o0 My * %00 Boo,00 Mrr2)

% Lb(hq+0 BO+;O+ MT’l) ’ (22)

where tﬁe appropriaﬁe o function is understobd to go with each of
the q's. |

In choosing the parametrization for the xx invariant matrix
elements thé goal waé to make them correspond és c¢losely as poséiblé
to the faﬁiliar I¥spin amplitudes, because the main reason for breaking
the symmetry at léwer energies 1s ﬁresumébly just due to the mass
splitting. It is probably adequate just to approximate the matrix
elemeﬁts by scattering lengths néar»threshold, but in order to ensure
that the parametrization is unitary aﬁd has the correct analyticity
properties at the various.thresholdé, we resort to a:K—matrix formalism

+ for nested thresholds. The matrix_élements are:
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B, (s) = E I (6) - dage())/n(s),

BOo,+§(5) - B oole) = (37 [y (2))(e),
_BO;’OO(S> = [K;;(s) --iq+_<s)]/n<;),
l®) = /2,00 i3, ),
Bl ol8) = BlE(s) - ia,(s)],
where  q,,°(s) = [s,.__- (m, + m6)2][§-- (m,, - mﬁ)QJ/ns_,

+

Ko(s) & 3(220(s) + £,(s)7,

W

’{F;[fo<é)*- ()1,

";Kab(s)

n

3 [£5(s) + 22,(s)],

o Ky(s)
D(s) .

i

[Kag(s) - iq, (s) 1Ky (s) - 1qyn(s)] -vKabg(S)’

and whefé ’ fI(s)

il

q(s) cot 6I(s) is the real, analytic, iéospin-
invarfgnt; effective range funCtion. | -

There is a slight ambiguity as to ﬁhich points in.the T and
kL Dalitz plots the relative normalization ofv -2/1 shodld refer‘tb;
becausé of thé sligﬁtly différent Q values of the‘two»decaYS. Howevexy
such brdblems are of secénd/order in>natufe and different choicés of
points‘near the centers of the Dalitz plots. will give'nearly identicai

solutions.
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B. Specifichalculations
Numerical solutions‘were'obtained for. the set of coupled
integraleqs,v(QQ), for some simple I =‘O and I =2 cases of
interest, namely a hump for I=20 .and a Batoﬁ choice for I = 2.

When 1.0, 1.0, and 3.6 are substituted for the masses of the no,

nf; and >K+ respectively, i.e., the.equai-mass case, the solutions
obtainéd'are nearly identical with those obtained»previously with Eqg.
(11). This is a good verification that the prescription for using the
inhomogeneous terms, -2 and +l1, with the increased number of ampli-

tudes will still yield the |AI| =5 results in the limit of no mass

VSR

splitting.
.Wheh the experimentally obserVe@ ratios, 1.0, l.O}h, and

3.659, afe substituted for the masses of the no;_'ni, and K&

reSpectivély, sOlutibns like that shown in Fig. 28_afe oﬁtained. The
most‘striking feaﬁufe 6f the solution is the cusp for .MT'E at the
- ﬁhreshold (s = h.27). Since the physical threshold for M_,,
ié the ﬂOﬁO threshold (s = 4.0), the cusp occurs in the physical
region:of the Dalitz plot and would oceur as a "line of cusps" at

8, = h.27, across one edge of the plot. Physically the situation is
as follows. The X  can decay into ﬂ+(ﬂfﬂ-), but then the ﬂ+n-

can inelastically scatter into a channel with a lower threshold, namely

nono. The subenergy of the nj+n‘_ has to be above the = threshold,

however, or otherwise this process cannot occur. Mathematically the

cusp arises from the first integral in the MT,2 equation of Egs. (22).

~ -2, and near threshold B, _ ~ %(a? - a

On the Dalitz plot M O).

1 ,00
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Since - aé;-:ao is exﬁeéted to be negafive, this first integral will be
pbsitive.fOTI s Jjust below the n+n- threshold. Thé‘integral will
decrease repidly as  s goes further below threshold, causing the sharp
break to appear in the solution at s = 4.27. When a, —kao = 0, no
cusp appears in the solution.

The solution shown in_Fig; 28 has a Cusp for N%g as well as
M ins alfhough it is not discerniﬁle, and above the‘.n+n- .threshold

the Dalitz piot slopé of M is =2 times that of M, Just as

'2
for the |AI| = % rule. However, the M}Q

cusp is not, so that the "average”

cusp is included in its

physical reglon whereag the M%,g

slope of the 'MT’E.

in the_prdper sense to agree with experiment. In'fact if one makes

Dalitzvpiot will be steepened, compared With'_M%g,

least-squaresrfits of straight lines_to the twb.physical region slopes

of the éxample of Fig. 28, oné obtains a slope ratio of réughly 42.6.
It is intéresting that the unequal;masé effect has the proper

direction:dnd can have a pfdper oider of magnitudé to agree with experi-

ment, but unfortunately when one examines the data of Davison et al.22;

on 7t' . decay, there is ﬁo evidence for a cusp at s = 4.27. One can

get rid qf the cusp in oﬁr'calculations by setting» 8y =8y = 0, but

that éimultaneousl& makes the slope ratio revert to -2, and would

imply that the I = 2 final-state admixture is due to some other

mechanism begides the unequal masé of the pions. A different possibility

is that &, - a, £ 0, but_tha# the cusp shown in bur calculétions is |

too large due to some poor approximation we may have made. It is

interesting to speculate that perhaps Jjust using S‘waves for the nn

\
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amplitude 1s inadequate,. because it can thgn‘be readiiy seen that the
KT integral equations imply,double~disconfiﬁuities for thé decay
amplitude that have Sharp, éectdr.type boundaries (e.g., s aﬁd t > b,
s and u >k, and t’andl u > L) instead of the exﬁected curved

boundaries..
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VI. AREAS OF IMPROVEMENT |
Cénsiderjin what aréaé.this'stﬁdy éoﬁid be improved. . The

inclusiohxdfvmore partial waves is.probably not warfanted“right.aﬁay,
partly bécaﬁse of enérgy considerafions,vbuf mostly bécausé the wﬁblé
question of how to extend thé.KT eqﬁétiéns t§ include more partial
waves needs to bé exaﬁined and answered séfisfactorily first; This
extension.should of course be SOmé‘well-definéd'approiimation to the
Mandelstam fepresentatidh; ih this paper we havé made ‘a guéss at An
extenéidﬁ which it is théd'is not too bad for P waves. Another possi-
bility fbrvim?rovement'is to include the "initial sta%e intergctions" |
of S-wave: K — Kn séattéfihg. This would lead to a cdupliﬁg 6f all
the = K-meson thrée—pidn deéay modés,,but an imposition-of the |aI| = %
rule could,réduce the prdblemvtd tractable size again. It would alsd
introducé the cémplex conjugate of the unknown_decayvamplitude;into
ﬂﬁé infégrgl eqﬁation, whichvﬁould reqﬁire special handling. Hoﬁever;
if the belief is held that the 7- and K-decay Délitz~plot slopes
arise.from the same origih, theﬁ the Kn interﬁediate state would not
be expected to haVe large contributions because it is present in one
case and not in the other. |

i.dné can also look,for better numerical ways of approaChing the
problem. One poSsibilif& is that instead of Solving_for'the'amplitude '
at 25 mesh points aldng a8 ray one c¢ould expaﬁd the amplitude ih a
finitg number of terms of some orthbnormal basis along the ray, énd
then solve for the eipahsion'coefficients. The hope of thisgkina of
procedure would be that only a smaii number of basis ferms wéuld be

requiredAfor comparable accuracy. This ﬁouldlalso make the calculation



_52_'

accessibie to smaller computers bécausevof fhé smalléf‘matrix»to ihvert.
If it turﬁed out that 25 basis terms fgr éach‘ray were required to.
achievevcomparable accﬁracy, then there would be no:advantage to this
aﬁpro&éh;' invfhis conﬁection one woﬁld haverto worry-about the non-
analytic behavior of the ray amplitudeé at s = 7.96 (% Sg - % s = 4.0),
and how mény terms wbuld be_réquired to reproduce thisbﬁehavior,
especiaily along the No. 1 rays whefe.thisvnonanalytic behavior is more

| -A Another poésible approach woﬁld be to expand |
MOO+(Sa;Sb’sc) in pgrtial waves in.the various gx suBchanneis and
then obtain a coupled set of integral equations for these partial-wave
amplithdes rafher than for ray amplitudes.. At some point in the
derivatibn_an equaﬁion siﬁilaf to (9) will»bevredChed,band where in
order to.ﬁaftial-Wave analyze the.leftrhand side, it will be necessary .
fo integfate over two of the thiee'singular dehominatois.‘ With only |
one singﬁlar deﬁqminator remaining it may theh be possible fo con&ert
the equation iﬁto a Fredholm'equation by standard techniques,(see'

23 ol 25

Muskhelishvili and Pogorzelski.
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VIi. CONCLUSIONS

'We héve made some steps towards solving.numeriéally ﬁhe
equations of Khuri and Treiman'fdr K énd N - 3x éﬂd extenaing them
to includé P-wave interaétiéns, the effects -of a nonflat bare matrix
elément,:and the effeCts of unequai masses for the charged. and neutral
pions. 6ﬁr results éhow that if is rather difficult, with S waves
alone, to ée£ a. steep enouéh slope for fhe matrix element on thé Dalitz
plot when the'bafe matrix element ié a constant. The S-wave phésé
shifts required to fit the Dalitz plot.data are usually quite unphysical
(e.g., 'éO - 8, = -1.0," an:. Fo ~pole located just off the edge of
the Dalitz plot, etc.).':Ih our éalculati@ns the'iﬁélusion of P waves
appears:fq have a lérge éffect on the Dalitz.piot, If we éssume I’; 0
phase shifts of eithér the up-down or the down-up variety, ahd if we
assume I =1 and I =2 phase shifts which are consistent with tﬁe
eiperimentally determined phéSé shifts; then the reSulting solutionsv
of.the KT equétions with a constant_inhomogeneous term yield Dalitz
plot 510§es which fit the data. The inélusion of P waves in the KT
v equatibns‘probably.deserves more study, however, ?erhaps with different
humerical<gpproaches. | _.

‘With the same assumption of a constant inhomogeneous term,
the exténsion of the K-decay solutions to‘-ﬁ bdecay foliows:trivially
justvfrdm changing the maés of ‘the decaying particle. .

If the inhomogeneous term of the KT equatibns is given a linéar
term, Mﬁére =1+ % g(sC - so), the effect is to tiit the solutions,

but by an exaggerated amount. If the inhomogeneous term is changed to
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Mbare.= 1 +'%.gr ta.nh[(sc - sé)/r], which_giVes a élopé on the Dalitz‘

plot but goes to abconstaﬁtvasymptotically, the effect ié'jﬁst to

tilt the solutions in the region of the Dalitz plot by the-amount % g,
When the masses of the'charged and neutralvpions are made

unéqual in the KT equations, the l&rgesf effectsbto.be observed'in

‘the matrii,element'are éusps related to thresholds located in the-

physical region of the Délitz plot;and due to fhé presence of communi-

cating subchannels. The calculated effects are in a direction agreeing

With experiment, thus leading to the specﬁlation that perhaps the

unequal masses of fhe pions might'bé rESponsible'ih large'paft for the

slight amount of I = 2 final state obsérved in the decay.
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© APPENDIX A. METHOD OF DIRECT NUMERICAL SOLUTION OF
. >INHOMDGENEOUS INTEGRAL EQUATIONS BY MATRIX INVERSION
,fhe method outlined below_for direct numerical solution Of
inhomdgéneoﬁs integral equafion$ by matfix‘inversioﬁ is a standard
numericél tedhniQue andvis included here only for completeness.2
| Let us: consider the inhomogenéous integral equation,
- R |
B(s) = Bo(s) + | K(s,s') #(s') ds',
o _ o 0 : -
' where fhe"inhomogéneousvterm, A¢O(s), and fhé kerpei, K(s;s'),‘are
known functions of s 'andv s'; and @(s) 1is the unknown function to
be fdgnd;  Choose a set of N mesh points {si], and devise a method
of approximate numerical integration so- that the intégral can be
replaced by a sum, |
b B N
K(s,vs'.). #(s') d’s" =~ Z ¥ g ¢j’
Ja : - j=L .
where.the W 3 is nov: & known set qf ﬁeights, and where the i refers
tg Si and j  to 33.27 The intégralvequation can now be rewritten .
as a set of N equations in N unknowns, ¢j’
By = Pos * Z W35 ¢j,
or

Z (w5 - Sij) 2 o Boi-
J ' ‘
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This set can now be solved by standard matrix techniques by considering
g, and @.. to be N-dimensional column vectors,and (w.. - 5. .)
73 0i- | | ij ~ id
to be an N-by-N matrix, to be inverted..

A set of m coupled integral equations [such as Eq. (11),
where m = 3] can be sdlved in a like manner by combining'the individual
¢ vectors "end to end" to make one  mN-dimensional vector, and

similarly for the matrices.
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APPENDIX'B.V METHOD FOR EVALUATING
SINGULAR INTEGRALS NUMERICALLY

Our experience has beén that success in the direct numerical
solution of singular integral equétions by the matrik-inVersion mefhbd
depends.heavily on the quality of the numerical integration techniques -
used. Acéordingly it is perhaps useful to write down éxplicitly the‘
methods that we used in”this paper. |

We shall wish to integrate numerically, singular integrals of

the form

in a manner useful for solving singular integral equations. That is,
we shall wiéh to replace the integral by a sum over a set of mesh

points
N

) vy £s3),
j=1

where the wij are. known weights, which can.be evaluated once and used

later to integrate an arbitrary function f(sj). "The naive weight

T
§T sy

will not work because of the ambiguity that arises when sﬁ = 8y
Besides, the pole is‘such a violent thing that sampling it with just -
a few mesh points is not likely to give very accurate results. Also

the pole "moves" as s, 1is changed, so that trying to put extra- points
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1n the v101n1ty of the pole would Just 1ncrease the mesh-p01nt den51ty
everywhere. The. general phllosophy of our method is to try to factor

the integrand into a "violent but known" part [such as 1/(s' - s)]

~and an "enknewn but Sﬁooth"ipart;‘jfhen wé can handle the smooth part
in soﬁe crude, appreximete'manner, and handle the violent part as
exectlyiasvpossible.e The application ofAfhis philosophy3will become
more clear as we prOéeed |

Flrst let s dlspose of the 331de problem of the 1nf1n1te upper

limit of 1ntegratlon. We can use the general llnear transformatlon of

‘the form .

to reduce the range of integration to something finite. If we impose
the requirement that:the-points sﬁ, S and o map. into the points

= -1, 0, and +1, the transformation becomes

sy * (sm - 2st)x,

l-x
Herev Sp is still erbitrary and can be chosen‘to suit the particular
problem. For our case, st = h, and we chose 8, = 8} as a compromise
between emphasizing;the Dalitz plot region.and the-resonance regien
(e.g., tﬁe center of the Dalitz plot, s.= 5.3, corresponds to x = -0.50,
and the o resonance occurs at s =~ +0.74). The results of course are '

not seﬁsitive to the choice of CEOR The integral then transforms into

o) : . ' +1 L .
t ’ - [ T
[ i = |
s , - . '

-1
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The factor (1 -x)/(1 - x')k.can"éither Ee.consideréd part of the
violent but known pértidn of.the iﬁtegrand or combined-with the f(x')
to become part of the unknown but smooth poftion;vdepending on the
expected ‘asymptotic behavior of 'f(s').. For a subtracted integral [such "
as occurs in Eq. (11) for the I =0 and I = 2 “portions] the factdr

can diséppear altogether, -

41 | | +1

oy L =-x £(x") o 1= f(g )
dx : - - dx .
1 -x" x' - x 1l -x' x - Xy
J1 - . . : -1 '
+1 -
= £(x') -x X' - X,

In general, thelweight‘for a subtracted integral is Jjust the difference
of the two'appropriate weights for the unsubtracted iﬁtegrals [eithef
with or without the factor (1 - x)/ (1L -~ x') being priorly removed].

Now to evaluate an integral of the form

b

we shall choose a set of mesh points, IXj}, and use linear interpola-

tion for f(x') between successive fj’

-

f(}'{’) __._'_’j_.f +_.__.__..J_..f

y (BL)
j J+l ,j+l J '

1 .

We do not choose either a or b as mesh points because in our

. original problem f(a) 4is always zero [due to gq(s) factors] and
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f(b) is occas1onally 1ndeterm1nate.,'1n the 1eft¥end region, between

a - and Xy, We shall approx1mate f by Jjust llnear 1nterpolat10n from

O_ to :fl'

£, =0. In the right—end region, between x and b, we shall

approximate f by just continuing the linear interpélation'used between

Thls,can.be done easily in (Bl) by def;nlng X, = a and

X1 and e If the first and last meéh’points are ﬁear the end
points then these are not bad approximations.
"By using the linear intérpolation for f, the following weights
can be obtained:
b
1
dx'...(.).c_)—- wa,

where for 1 < j < N-2 .

o N
’Vj = ;;‘:‘;E:I [(g(xj+l)_- XJ+1 h(x J+l)} - {g(x ) - % h(x )}

1 . ‘ .
- i;ﬁ:ﬁ;;jz F{g(xj-l? - 35_1 h<xj-l)} - {gng) - Xj h(xj)}],
Vo1 ;"éame as above except that 'g(xN) —§é(b)fand h(xN)l—ah(b),

o= xN xN 1 Hele) - xN 1 h(b)} (el y) = gy Bl

(B2)

where g and h are defined as

g(t) = dx = - t’+vxlog(tv—x)v

and
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h(t) '= ] &' = = ]_-o.g(t - x).

dne can puf an‘_x f ie - prescription easily intoufhéiabove:ﬁgightsAby —
just usihg complex logarithmé and a small €. If é principal value | |
integral is‘desired then the arguﬁents of all logs_must bg fhe absolute
value ofvthe.quéntities.shown. .Also in the compufer.program for a
principal value integral, there would have to bé a separate test for
indetermiha£e o X log(O)»?cases,_a problem which doesn'tvoccur'in-the.

ie prescription. For_ X = xi ; ie, Im wj = -inéij gs it shoUld, and

for an x between two mesh points [as occur in Eq. (11) denominators

' - % s) + ie, for example] thé -ig is distrib-

uted linearly between thexweights of the two mesh points, the closer

of the form s' - (% S5

point receiving the larger weight.
' Next we come to the problem cases whichvrequire special treat-
ment, namely cases in which the f£(x') itself has singularities, for
example a "square root pole" at x' = +1, or poles.in the cbmﬁlex
plane neéflﬁhe real axis. | |
If f(x') has some known, violent structure or behavior,
u(x'),.then one can factor it ouf in the following manner:
£(x') = u(x")[f(x")/u(x')], where u(i') éan then be regarded as a
"violent but known" factor to be collected with the 1/(x' - x) to be
treated as exactly as poSsibie, and f(x')/u(x') is the new "unknown
but smqoth" function. TIn (B2) this éan be accémplished by.using
, t : ' o t
g(t) = ax’ % and h(t) = dx’ ‘;{X

and dividing the resulting weight by u(xj).



. ,63;

Examples of where these problem cases arise are as follows.

The f(x )' is of course_some F(x')-M(x') where F = (e218

-1)/21
is the ,m interaction and M(x') is the unknown solution to‘ the
integral equafion, If we cons1der Just the 51mple Omnes equation and
let 6‘ go to - % vasymptotlcally (e g., a negative scattering
lehgth);fthen F is finite but M @ s%v asymptotically. Mathematically
the subtracted integral converges bf course, bUt whereas the true solu-.
tion.rises répidly in.thé vicinity of x' = +l, the numerical‘solution
exhibits large oscillations near this:point. The use of
B i \

u(x') = 1/(1 - x')é cures this problem nicely.

 Wheh F contains.a pole near the real axis this polé should .
obvibﬁsly‘bé factored out into u(x'). However, from the physics.of
the situation we know thét.a polevin F will produce a pole. in M at
a complex édnjugate poiht so ‘this polevshould-be'féctOred_out'into
u(x') als§L28 The prescription for handliﬁg the"Fo pole casés is
as foliqws: | | |

For the Fo M, integrands ’
(s x )2 (1 o532

“u(x') ; _ -,
(x' _-'Xp)(x' - x,)

and for:the' Fq MlA integrands,

ey - @Ex)Taox)t
D

where xb. is the pole of F,. With the above Fo M, integrand

prescription used in the'Omnés'equation'with our FO polé'cases, the
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integral is done exactly,‘thét is,thé remaining unknown but smooth

portion is just a constant. "The u for the FO MlAv integrands just
o

used for the F,. pole and the FlfMlD'(l.é x)/(1 - x')  integrand is

reflects the structure of \F and nbthingwof M. vThe prescriptidh we

u(x') = (2 + x')% (1 - x;)%
(x' -‘xp)(x' - %,

and where the (1 - x)/(1 - x') ié included with>thé unknown:but
smooth portion. The fact that we have uséd 1.+ #')% in u instead
of (1 ¥'x')§/2 makes littlé difference} The jusfifiéatibn fofvthe
.asymptotic form of u is that F, (1 - x')% aSYmpﬁotically.and
empiriéally, M, o (1 - x), even if u is changed somewhat. There
is, however, some sensitivity of thevoverall solution to this asymptotic

form of u for the F.

1 pole,
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clear. ,H0we§er, since the tgchnique allows one to reproduce the
exact solutions of the Omnes equation, (5), to typically three
significant figures for 25 mesh points, it was assumed to be

applicable to the KT equations.
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Fdf'th§ éimp1estintegration technique one could think'of, V3 5

would just be K(si,sjj-Asj; where Asé is the disfance Petween\
mesh points: However, if  K(s,s') or ¢(s') is a rapidiy varying
function of 's'; as_in our case, one must use the knowledge of
ﬁhaﬁ‘behavior to devise a more appropriate set of weights (see

Appendix B).

An a;ternatiVe_idea one might entertain is to define

M(s) = [M'(s)]/(s — sp) and rewrite the integral equations to

solve for M'(s) instead of M(s), but this approach leads to

the same integréls for g and h and gives the same anShers.
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FIGURE CAPTIONS

(a) Decay'diagram for K - 3x.

(b)° - General "scattering like" diagram for K — yrg. - - -

(c) ‘Sketch of the physical regions of the general amplitude.

_(d) Diagram’showiﬂg intermediate states kept in the unitarity.

equation in each of the subchannels.
(a) The momentum vectorsbof pé, Pys P> Py.s and pc,"as_
seen from the bec (equivalently b'c') center—-of-mass

system.

v(b) An illustrative set of fay labels for a decay matrix

Fig. 1.
Fig. 2.
Fig. 3.:

Fig. L.

element. -
! . o 1 "
ihe ray label choice for Mbo+(sa,sb,sc). The "1U and
"L" stand for "upper" and "lower" branches of ray number 1,
and "1A" and-"1D" for the "average" and "difference" of the v
amplitudes;v

[Mé(s)]2 versus s for numerical solutions of Eq. (11) with

a nonrelativistic scattering-length approximation for FO’Y

Eq. (12) with a, = +1.0, +0.5, +0.2, -0.5, and -1.0. My(s)

€]
is defined (see Fig. 3) as the invariant matrix element for
+ 00 + : . o
K —-xnnx evaluated along the ray, So0 = S» and either
. _ 2 _ 1 . .
SQ+ =58y "5 8- The matrix element has been normalized to

1l at the cenﬁer of the Dalitz plot, Sg = 5.32. The extent
. . 2 .

of the Dalitz plot is indicated along the line |M2| = 1.0

and again along the bottom of the graph. The open boxes

(0Q) roughly indicate the experimental data and lie along a



Fig. 5.
Fig. 6.
Figo 70
Fig. 8.
Fig. 9.
Fig. 10.
Fig. li.
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curve given by the empirical formula ]Mé!g =1 + g(s - so),

with g = 0.k,

‘]Mé(s)JE .versus s for the relativistic scattering length

approxim@tion'for Fd; Eq. (14) with ay = +I.O, +0.5,

+0.2, -0.5, and 1.0 |

|M2(s)[2 versus s for an I #.O; SjﬁaVé polé; Eg. (15)
for tﬁe followiné sefé of pargmeters (mG,FO; SO):':(A5O.MeV,
75 MeV; 10.8),_(&50 MeV, 1oo,MeV;'1o.8j, (750 MeV, 125 MeV;
30),tand (750'M§v,'25o MeV; 30). | |

JME(S)[Q' vefsﬁs' s for a "hump" in_the I - 0, é-ﬁave phase
shift; EqQ (16). Shown - inb(a) is my = 500 MeV (s = 13.4)
and ag = 0.0, 0.1, 0.2, and 0.3. Shown in (b) is a, = 0.0
and my = 450, 500, 550, and 700 MeV (s = 10,8, 13.L4, 16.2,
and 26.1). | .

|Mé(s)|? versﬁs 5 fér.the nonrelativiétic scattering-

| length approximation for FE’ with ay = +l.O, +0.5, -0.0¢,

=-0.5, and -1.0."

|M2(s)|2 versus s for the relativistic scattering-length
approximation for F2, with a, = +1.0, +0.5, -0.06, -0.5,
and -1.0. .

lﬂg(s)|2 versus s for the experimentally determined I = 2

~ phase shift of Baton et al. (1967), Eq. (17) with a, = =0.052

o

and r, = 1.9. For s >50, &, is limited to be -o1°.
|M2(s)|2: versus s . for nonrelativistic scattering-length

approximations for: FO‘.and Fé for the‘following-scattering-
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.iéngth sets (ao,ae): (-0.5, +O.5),'(+O.5, +O.5), and
(-0.5, =0.5). | . S
Fig. 12‘5_[Mé(s)12 Vefsusv's for relativistic scattering-length T
approximations for' FO“ and Fg for the féllowing scattering -
length sets (ags85): (-0.5, +0.5), (+0.5, +0.5), and
| (4,6.5, —d'.5). | | |
Fig. 13. _]Mé(s)]2 versus »s.'for two FO cases, with and without

'_Eaton’s F The two F. cases used are (1) a hump with

0
500 MeV, and (2) a pole with m_ = 750 MeV

. 2 :
8 5 O.Q and mO

and T = 250 MeV.

Fig. 1h. ‘lMg(s)le versus s using nonrelativistic scattering-length

1

approximations for Fo and ‘F,. Here ay = 0.2, and
= 0.0, 0.1, 0.2, 0.3, 0.4, and 1.0.

&

Fig. 15. |M2(s)|2 versus s using.a nonrelativistic scattering-
"léngth approximation for Fl and a humﬁ for FO' Here

= 0.2, my =500 MeV, and a, = 0.0, 0.1, 0.15, and 0.2.

20 1
Fig. 16. lMé(s)lg versus s - using the p pole parametrization, (19),
for Fl,'and an ag = 0.2, My = 500 MeV hump for FO. The

- values of ¢, are 2, 5, 10, 20.

Fig. 17. 'IMé(s)IE versus s using the same F, and F; as Fig. 16,

and adding the Baton F2.

* Fig. 18. |Mé(s)|2 versus s using the o pole parametrization, (19),
for Fl’ and an m, = 750 MeV, FG = 250 MeV pole for FO.

The values of ¢ are 2, 5, 10, and 20.

1



Fig.,i9: !»MQ(S)[2 versusb s ﬁsing the same FO 'and_-F

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

20.

: a

21
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, @s Fie. 18

-and adding‘the Baton Fg.

 ﬁ”:décay IMQ(S)}Q- versus s for the FO hump case,

= 0.0, = 500 MeV, and the F, pole case, m_ = 550

)

.MéV3 Pc-= 100 MéV._ Both cases are shown with and without

"the Baton F

e

o :décay -{Mg(é)lg versus s for the F, hump case,

0=

~a. = 0.2, mb = 500 MeV, with and_withoutbthe Fl scattering

22,

2k,

26.

- 40.15.

iength ay . .
n. decay ’Mg(s)le versus s for the 'Fb hump case,

= 0.2,"mo = 500 MeV, the F; pole, (19), with ¢y = 10,

o)

and 20, and the Baton Fye

- N decay |M2(s)l2 versus s for the F, pole, mg 750

MeV, I =250 MeV, and the F; pole, (19), with ¢, = 10,

and 20, and the Baton F2.

_fM’E(s)'2 versus s for a nonrelativistic scattering length,

. = O.2,Iand using (20) for an inhomogeneous term in Eq.

0

(11). Here g = -0.2, -0.1, 0.0, +0.1, and +0.2.

,251

fMé(s)’g versus s for a hump case, &g = 0.2, My = 500
Mév, and using (20) for an inhomogeneous term in Eq. (11).
Here g = -0.1, 0.0, +0.l.

IMé(s)fg versus s for a nonrelativistic 3ca£tering length,
8y = 0.2, and using (21) for an inhomogeneous term in Eq.

(11). Here g = -0.2, 0.0, +0.2, +0.k.



-70-

Fig. 27. [M‘Q(s)]2 versus s for a hump case ay = 0.2, my =500
| 'MeV, and an Fy

:(21)wfor anrinhomogenéous term. Here -g = —0,2,~O;O, .2, —

scattering length; ay = +0.15, and using

‘ 404, _
. 2 : . 2 R ' .
Fig. 28. ]M&Q(s)l and IM%,Q(s)f versus s for numerical solutions
of (22). The masses for the no, ni, e_md-'K+ mesons are
taken to be 1.0, 1.034, and 3.659 respectively. For I =0
-the case used was a hump with a, ='0.2 and my = 500 MeV,

and for I =2 the Baton F, was used.

2
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LEGAL NOTICE

" This report was prepared as an account of work sponsored by the

United States Government. Neither the United States nor the United
States Atomic Energy Commission; nor any of their employees, nor
any of their contractors, "subcvon'tractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights. :
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