Title
Hydrolysis of Metal Dioxides Differentiates d-block from f-block Elements: Pa(V) as a 6d Transition Metal; Pr(V) as a 4f "Lanthanyl".

Permalink
https://escholarship.org/uc/item/9410t8gg

Journal
The journal of physical chemistry. A, 124(44)

ISSN
1089-5639

Authors
Dau, Phuong D
Vasiliu, Monica
Wilson, Richard E
et al.

Publication Date
2020-11-01

DOI
10.1021/acs.jpca.0c08171

Peer reviewed
Hydrolysis of Metal Dioxides Differentiates d-block from f-block Elements: Pa(V) as a 6d Transition Metal; Pr(V) as a 4f “Lanthanyl”

Phuong D. Dau1, Monica Vasiliu2, Richard E. Wilson3, David A. Dixon2*, John K. Gibson1*

1Chemical Sciences Division. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA

2Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35401 USA

3Chemical Sciences and Engineering Division Argonne National Laboratory, Lemont, IL 60439 USA

*Corresponding author email: dadixon@ua.edu; jkgibson@lbl.gov

Abstract
Gas-phase reactions of pentavalent metal dioxide cations $M^{V}O_{2}^{+}$ with water were studied experimentally for $M = V, Nb, Ta, Pr, Pa, U, Pu$ and Am. Addition of two $H_{2}O$ can occur by adsorption to yield hydrate $(H_{2}O)_{2}M^{V}O_{2}^{+}$, or by hydrolysis to yield hydroxide $M^{V}(OH)_{4}^{+}$. Displacement of $H_{2}O$ by acetone indicates hydrates for Pr^{V}, U^{V}, Pu^{V} and Am^{V}, whereas non-displacement indicates hydroxides for Nb^{V}, Ta^{V} and Pa^{V}. Computed potential energy profiles agree with the experimental results, and furthermore indicate that acetone unexpectedly induces de-hydrolysis and displaces two $H_{2}O$ from $(H_{2}O)VO(OH)_{2}^{+}$ to yield (acetone)$_{2}VO_{2}^{+}$. Structures and energies for several M^{V}, as well as for Th^{IV} and U^{VI}, indicate that hydrolysis is governed by involvement of valence f versus d orbitals in bonding: linear f-element dioxides are more resistant to hydrolysis than bent d-element dioxides. Accordingly, for early actinides, hydrolysis of Th^{IV} is characteristic of a 6d-block transition metal; hydration of U^{V} and U^{VI} is characteristic of 5f actinyls; and Pa^{V} is intermediate between 6d and 5f. The praseodymium oxide cation $Pr^{V}O_{2}^{+}$ is assigned as an actinyl-like lanthanyl with properties governed by 4f bonding.
Introduction

Metal-oxo bonds are ubiquitous for metals, particularly so for very electropositive d-block and f-block elements. Common metal-oxygen bonds include M-OH$_2$ dative to water in hydrates, M=O double (or higher order) bonds in oxides, and M-OH single bonds in hydroxides such as can result from hydrolysis. As relative stabilities of these metal-oxygen bonds underlie much chemistry, understanding them is essential. Despite the key role of hydrolysis in metal ion chemistry, it remains inadequately understood for species such as VV, NbV, and TaV. For these group 5, d-block metals, the pentavalent solution species is not simple MO$_2$$^+$ but rather more complex and indeterminate oligomers Nb$_2$O$_5$$^+$. Hydrolysis of another group 5 metal, the early 5f actinide Pa, appears to reveal chemistry similar to d-block transition metals rather than prototypical 5f actinyls, though the underlying basis for this chemistry remains cloudy.

Structures of simple metal dioxides illuminate the nature of their bonding. A classic example is the linear versus bent structures of isoelectronic UO$_2$$^{2+}$ and ThO$_2$, a difference attributed to bonding—specifically back-bonding from O$^2-$—that involves 5f-orbitals of U, contrasting with 6d-orbital involvement for Th. The issue of differing influences of f- versus d-orbitals on bonding in lanthanide and actinide compounds has been deliberated extensively. Thorium(IV) can be considered as the first 6d transition metal element, and uranium(IV) as the first true 5f actinide, reflecting decreasing energy of 5f relative to 6d orbitals with increasing nuclear charge. The shift from d-block ThO$_2$ to f-block UO$_2$$^{2+}$ suggests that isoelectronic PaO$_2$$^+$ could be intermediate in character, raising the issue of whether it more like a d-block transition metal dioxide or a 5f actinyl. For the 4f lanthanide analogue of Pa, praseodymium, the pentavalent oxidation state has been identified only in gas-phase compounds such as PrO$_2$$^+$ and NPrO$_2$. The chemistry of PrV has been assessed for the PrO$_2$$^+$ moiety embedded in a gas-phase nitrate anion complex. Although bare PrO$_2$$^+$ has been reported, and elegantly characterized by infrared spectroscopy to reveal a linear structure, its chemistry is unexplored such that it remains uncertain whether it exhibits chemical characteristics more similar to d-block dioxides or f-block actinyls. If actinyl-like, PrV would be praseodymyl, the first lanthanyl, to borrow a term from Ionova et al. Although CeO$_2$$^+$ has been reported to have a linear structure, the high reactivity of the intermediate order Ce-O bonds indicate that it does not exhibit actinyl-like chemical character. It should be noted that we adopt the conventional definition of actinyls, and thus also lanthanyls, as linear metal dioxo cations with short multiple bonds between the metal and oxygen. Goals of the current work included elucidation of the chemistry of pentavalent Pa and Pr, specifically whether they behave more like f-block or d-block elements.

An approach to explore metal-oxygen bonding is the relative propensity for formation of hydrates, hydroxides, and oxides, as assessed by thermodynamics and kinetics for interconversion between isomers containing these motifs. A dihydrated dioxide cation, (H$_2$O)$_2$MVO$_2$$^+$, has two M=O oxo bonds and two M-OH$_2$ dative bonds to water, which could transform to four M-OH hydroxide bonds in isomeric MV(OH)$_4$$^+$. Energies and barriers associated with hydrate-hydroxide isomer interconversion elucidate relative stabilities of the incorporated bonds. Such transformations are simplified for isolated complexes in the gas phase, absent solvation and other coordination effects. A gas-phase study of partial hydrolysis of PaV found that addition of H$_2$O to PaO$_2$$^+$ yields both hydrate (H$_2$O)PaO$_2$$^+$ and hydroxide PaO(OH)$_2$$^+$, in qualitative accord with solution chemistry of Pa.

2
We here examine the gas-phase reactivity of several metal dioxide cations with water. For the experiments, MVO$_{2}^{+}$ ions were generated by electrospray ionization (ESI), where M = V, Nb, Ta, Pr, Pa, U, Pu and Am. An ion trap mass spectrometer was employed to study reactions of MO$_{2}^{+}$ with two H$_{2}$O, which can yield hydrate (H$_{2}$O)$_{2}$MO$_{2}^{+}$ or hydroxide M(OH)$_{4}^{+}$. As these isomers cannot be differentiated by their mass/charge ratios alone, which are identical for different isomers, the product structures were probed by reaction with acetone under the premise that H$_{2}$O in a hydrate will be replaced by such a stronger Lewis base, but H$_{2}$O in a hydroxide like M(OH)$_{4}^{+}$ will not. Results suggested hydrates for VV, PrV, UV, PuV and AmV, but hydroxides for NbV, TaV and PaV, which portrays the 4f lanthanide PrV as acting like a 5f actinyl, and actinide PaV as d-block-like. Density functional theory (DFT, B3LYP) and coupled cluster CCSD(T) computations were performed for pertinent reactions of dioxides MVO$_{2}^{+}$ for M = V, Nb, Ta, Pr, Pa, U, Pu, and Am, as well as for ThIVO$_{2}$ and UVIO$_{2}^{2+}$. Computation and experiment are in accord, except for the predictions that VO$_{2}^{+}$ partially hydrolyzes and NbO$_{2}^{+}$ fully hydrolyzes. The disparities for VO$_{2}^{+}$ and NbO$_{2}^{+}$ are reconciled in favor of the computational predictions that they are hydroxides by recognizing that addition of acetone to a hydroxide close in energy to a hydrate can induce conversion of the hydroxide to hydrate, followed by H$_{2}$O elimination. Such an acetone-induced dehydration process could naively, and incorrectly, be interpreted to indicate an initial hydrate structure. Hydrolysis for 6d-like ThIVO$_{2}$ and hydration for 5f-like UVIO$_{2}^{2+}$ are also predicted, further identifying PaV as intermediate between d-block and f-block elements. Resistance of PrV to hydrolysis supports the notion of praseodymyl as the first lanthanyl analog to the actinyls. Overall variations in energies and structures indicate that f-orbital bonding favors linear actinyl-like dioxides, whereas d-orbitals favor bent dioxides and tetrahedral hydroxides.

Experimental Methods

Caution! The Pa-231 U-238, Pu-242 and Am-243 isotopes employed in this work are radioactive. All experiments with these isotopes must employ special procedures in radiological laboratories.

The general approach has been described previously.

Metal oxide cations MO$_{2}^{+}$ (M = V, Nb, Ta, Pr, Pa, U, Pu, Am) were produced by ESI of ~100 µM ethanol solutions (≤ 10% water) prepared by dilution of a stock solution of the metal. The aqueous stock solutions were as follows: 2.5 mM V$_{2}$O$_{5}$ and 25 mM HNO$_{3}$; ~10 mM (exact concentration not determined) K$_{2}$NbF$_{7}$ or K$_{2}$TaF$_{7}$ in excess HCl; 0.5 mM PrBr$_{3}$ and 50 mM HNO$_{3}$; 22 mM 231Pa obtained by dissolving 1.7 mg (NH$_{4}$)$_{2}$PaF$_{7}$ (cr) in 1 M HF; 10 mM 238UO$_{2}$ (NO$_{3}$)$_{3}$ (pH 1); 8 mM 242PuO$_{2}$ (ClO$_{4}$)$_{2}$ (pH 1); 0.673 mM 243AmO$_{2}$ (NO$_{3}$)$_{2}$ (pH 1). Radioactive isotope half-lives are 33,000 y for 231Pa, 4x109 y for 238U, 373,000 y for 242Pu, and 7370 y for 243Am. Ions isolated in the ion trap of an Agilent 6340 quadrupole ion trap mass spectrometer undergo ion-molecule reactions at ~300 K.

Mass spectra were obtained in the positive ion mode using the following parameters: solution flow rate, 60 µL/h; nebulizer gas pressure, 12 psi; capillary voltage offset and current, ca. -3.5 kV and ~20 nA; end plate voltage offset and current, -500 V and ~200 nA ; dry gas flow rate, 4 l/min; dry gas temperature, 325 °C; capillary exit, 141.7 V; skimmer, 26.3 V; octopole 1 and 2 DC, 15.75 V and 3.13 V; octopole RF amplitude, 58.3 V$_{pp}$; lens 1 and 2, -4.8 V and -65.2 V; trap drive, 216.8. High-purity N$_{2}$ for nebulization and drying was the boil-off from liquid nitrogen. The background water pressure in the ion trap is estimated as ~10$^{-6}$ Torr and was constant to within <10%. The He buffer gas pressure in the trap was constant at ~10$^{-4}$-10$^{-3}$ Torr. Acetone (≥ 99.5%) was introduced into the trap through a variable leak valve to an indeterminate but constant (unless noted) pressure as confirmed by calibration using UO$_{2}$ (H$_{2}$O)$_{4}^{+}$.43
Computational Methods

Geometries were optimized at the DFT level44 with the hybrid B3LYP exchange correlation functional.45,46 The aug-cc-pVDZ basis sets47,48 were used for H and O; the cc-pVDZ-PP basis sets with effective core potentials were used for An = Th, Pa and U;49-52 the Stuttgart small core relativistic effective core potential (60ECP) and basis set were used for Pu and Am;53-55 the Stuttgart small core relativistic effective core potential (28ECP) with its accompanying segmented basis set were used for the lanthanide Pr;56,57 and aug-cc-pVDZ-PP were used for Group 5 transition metals V, Nb, and Ta.58-60 Vibrational frequencies were calculated to show that the structures are minima. These calculations were performed using the Gaussian16 program system.61

The optimized geometries were then used in single point CCSD(T)62-65 (coupled cluster theory with single and double excitations with a perturbative triples correction) calculations. The aug-cc-pV\textit{n}Z basis sets were used for H and O; the cc-pV\textit{n}Z-PP basis sets were used for Th, Pa and U; and aug-cc-pV\textit{n}Z-PP were used for V, Nb, and Ta for \textit{n} = D, T and Q. We note these basis sets as \textit{a}\textit{w}\textit{n}. The CCSD(T) energies were extrapolated to the CBS limit by fitting to a mixed Gaussian/exponential using the following equation:66,67 \(E(n) = E_{CBS} + A \exp[-(n-1)^2] + B \exp[-(n-1)^{2}] \), where \(n = 2, 3, \) and 4 (DZ through QZ). Values obtained from this procedure are denoted as CBS.

All-electron single point CCSD(T) calculations using the 3rd-order Douglas-Kroll-Hess Hamiltonian68-70 were performed at the DFT optimized geometries with the aug-cc-pV\textit{n}Z-DK for H,71 aug-cc-pwCV\textit{n}Z-DK for O,71,72 cc-pwCV\textit{n}Z-DK3 for Pu and Am,73 and cc-pwCV\textit{n}Z-DK3 for Pr,74 basis sets, for \textit{n} = D, T for Pu and Am, and \textit{n} = D, T, and Q extrapolated to the CBS limit for Pr, where possible. We note these basis sets as \textit{a}\textit{w}\textit{n}-DK for Am and Pu and CBS-DK for Pr. The calculations included the correlation of the valence electrons and the 5s, 5p, 5d, 6s and 6p core-shell electrons for Pu and Am, the 4s, 4p, 4d, 5s and 5p core-shell electrons for Pr, and the 1s core-shell electrons of O. For Pu and Am, we used our previous reported results for the first addition of H\textsubscript{2}O30 and we performed calculations by changing the starting orbitals75-77 for the CCSD(T) calculations from the Hartree-Fock orbitals to Kohn-Sham orbitals from DFT generated using the PW91 generalized gradient exchange-correlation functional.78-80 as the PW91 orbitals resulted in much smaller values of the T\textsubscript{1} diagnostic.81

The open-shell calculations were done with the R/UCCSD(T) approach where a restricted open shell Hartree-Fock (ROHF) calculation was initially performed and the spin constraint was then relaxed in the coupled cluster calculation.64,82-84 The CCSD(T) calculations were performed with the MOLPRO 2018 program package.85,86

The Natural Population Analysis (NPA) results based on the Natural Bond Orbitals (NBOs)87 using NBO78,89 are calculated using MOLPRO 2018 at the Hartree-Fock level. The calculations were done on our local UA Opteron- and Xeon-based Linux clusters as well as the Dense Memory Cluster at the Alabama Supercomputing Center. Selected calculations were done using Cascade in the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL).

Results and Discussion

Experiments were performed for monopositive MIVO\textsubscript{2}+ containing a pentavalent metal. Computations were additionally performed for neutral ThIVO\textsubscript{2} and dipositive UVIO\textsubscript{2}2+. \textit{For simplicity, MO\textsubscript{2} without specified charge hereafter denotes all three types of species, MIVO\textsubscript{2}}, ThIVO\textsubscript{2} or UVIO\textsubscript{2}2+. The actual charge is indicated for formulations containing a specific metal.
Differentiating Hydration from Hydrolysis

Gas-phase association of two H₂O with MO₂ can occur by net reactions (1a) - (1c).

(1a) MO₂ + 2H₂O → (H₂O)₂MO₂ \textit{Hydration}
(1b) MO₂ + 2H₂O → (H₂O)MO(OH)₂ \textit{Partial hydrolysis}
(1c) MO₂ + 2H₂O → M(OH)₄ \textit{Full hydrolysis}

The experimental approach to differentiating products of reactions (1a) - (1c) was previously employed to distinguish hydrate \((H₂O)PaO₂⁺\) from hydroxide \(PaO(OH)₂⁺\).³⁵ The premise is that a stronger Lewis base such as acetone (aco) will displace “physisorbed” \(H₂O\) but not “chemisorbed” \(H₂O\). The term “physisorbed” is used here for gas-phase complexes in which the \(H₂O\) ligand remains intact to yield a Lewis acid-base adduct, whereas “chemisorbed” is used for cleavage of a water ligand to yield a hydroxide. This specifically gas-phase terminology is not intended to suggest that condensed phase coordination complexes with strongly bound intact water ligands should similarly be referred to as “physisorption”. Association to a metal center of intact ligands like \(H₂O\) and aco should not generally present large kinetic barriers, as the computational results described below illustrate, though with notable exceptions. Accordingly, displacement of such ligands should be governed primarily by energetics, specifically by stronger binding of aco versus physisorbed \(H₂O\). In contrast to hydrates, elimination of chemisorbed \(H₂O\) from a hydroxide requires kinetically-hindering hydroxyl bond rearrangement. The resulting simple premise—revealed below as too simple—is that \(H₂O\) will be displaced from a hydrate, but not from two hydroxide groups with formation of \(H₂O\) and a metal o xo bond. Thus, products [a], [b] and [c] of reactions (1a), (1b) and (1c), respectively, are expected to exhibit the reactivity shown in Table 1. Included in Table 1 are predictions for aco adducts [a’], [b’] and [c’] that were, in some cases, studied in lieu of the simpler species. The results below demonstrate the utility of the \(H₂O\)-displacement approach, as well as a needed refinement to the premise underlying the approach.

The \(MO₂\) ion of interest was produced by ESI of a solution containing dissolved \(M\). The precursor solution metal species was not necessarily the pentavalent \(MV\) found in the gas-phase species, which for the case of \(PrV\) is unknown in solution. Experiments in the ion trap proceeded as follows: (A) Isolation of \(MO₂\) followed by its exposure to added aco and background gases; (B) Isolation of the product complex corresponding to addition of two waters, \([MO₂ + 2H₂O]\), or two waters and one aco, \([(aco)MO₂ + 2H₂O]\); and (C) Reaction of the isolated complex with aco and background gases, followed by final product identification. In step A, competition between addition of aco and background \(H₂O\) determines what species is isolated in step \(B\). For \(M = V, Nb\) and \(Ta\), sufficient \([MO₂ + 2H₂O]\) was produced in step \(A\), but for \(M = Pr, Pa, U, Pu\) and \(Am\), fast addition of aco required instead isolation of \([(aco)MO₂ + 2H₂O]\) (Supporting Information Figure S1). Coordinating aco is presumed to insubstantially perturb the relative stabilities of hydrates and hydroxides, such that formation of [a’], [b’] and [c’] implies respective formation of [a], [b] and [c] (Table 1). Computational results indicate minor effects of spectator \(H₂O\) ligands on hydrolysis reactions, which suggests similarly minor effects of aco ligands (Supporting Information Figure S3).
In Table 1 three types of expected reactivity are identified: displacement of two H₂O by aco for [a] and [a’]; displacement of one H₂O by aco for [b] and [b’]; and no H₂O-displacement for [c] and [c’]. Also indicated in Table 1 is the expected addition of aco to the primary products. Representative results for reactions of the complexes with aco (and background gases) are shown in Figures 1 and 2. For M = V⁺, Pr⁺, U⁺, Pu⁺ and Am⁺, displacement of two H₂O suggests reactants hydrate (H₂O)₂MO₂ (or (aco)(H₂O)₂MO₂). For M = Nb⁺, displacement of one H₂O suggests (H₂O)NbO(OH)²⁺. For M = Ta⁺, no H₂O displacement suggests Ta(OH)₄⁺. For M = Pa⁺, separate reaction channels show displacement of one (minor) and two (major) H₂O, which suggests minor (H₂O)PrO(OH)₂⁺ and mostly Pa(OH)₄⁺. These assignments are summarized in Table 2 together with those from the computations. Reactions for long times (Supporting Information Figure 2) corroborate the results in Figures 1 and 2, and the assignments in Table 2. Refinement of the interpretations of the experiments, as discussed below, revises assignments of (H₂O)₂VO₂⁺ to instead (H₂O)VO(OH)₂⁺, and of (H₂O)NbO(OH)₂⁺ to instead Nb(OH)₄⁺, both revisions being in accord with the computational results. The experiments confirm previously reported dihydrates for actinyls UO₂⁺ and PuO₂⁺, and extend this hydration behavior to americyl, AmO₂⁺. Results for PrO₂⁺ also indicate a dihydrate, (H₂O)₂PrO₂⁺. It was previously established that the oxidation state in PrO₂⁺ is Pr⁴⁺, this being the only pentavalent lanthanide. The present results demonstrate that PrO₂⁺ exhibits hydration chemistry that is also characteristic of actinyls so that praseodymyl is tentatively considered as the first lanthanyl, an assignment that is consistent with the reported structure, and is further bolstered by computations discussed below.

For d-block transition metals, the results suggest H₂O adsorption by hydration to yield (H₂O)₂VO₂⁺, partial hydrolysis to (H₂O)NbO(OH)₂⁺, and full hydrolysis to Ta(OH)₄⁺. Although these results are refined below, this initial trend invites comparison with the next two group 5 elements, Pr and Pa. Although both Pr⁺ and V⁺ evidently exhibit hydration, the computational results below indicate different underlying characteristics: PrO₂⁺ is actinyl-like; VO₂⁺ is not. Seeming contradictions between experiment and theory for V⁺ and Nb⁺ are reconciled by recognizing that addition of aco to their hydroxides can induce de-hydrolysis and H₂O elimination, as discussed in greater detail below. The experimental results for Pa⁺ indicate partial hydrolysis to (H₂O)PaO(OH)₂⁺ as a minor channel, with mostly full hydrolysis to Pa(OH)₄⁺, which is like Ta⁺ and quite unlike the actinyl(V) species U⁺, Pu⁺ and Am⁺.

Terminal Reaction Products

Results for long reaction times are summarized in Table 3 (see also Supporting Information Figure S2) where terminal products and corresponding maximum coordination numbers (CNs) are given. For the present conditions of low pressure and T~300 K only complexes with inner-sphere metal-bound ligands are expected. Also, gas-phase CNs are often lower than in solution where the presence of additional far-field solvent molecules further stabilize inner-sphere ligands. Thus, actinyls form pentahydrates in solution whereas tetrahydrates in gas phase. The M⁺ ionic radii (IR) for CN6 from Shannon are given in Table 3. The IR for Pr⁺ in Table 3 is estimated by assuming a similar relationship for the following two groups: Hf⁺/Ce⁺/Th⁺ and Ta⁺/Pr⁺/Pa⁺. For the first group: IR[Ce⁺] = 0.87 Å, IR[Hf⁺] = 0.71 Å, IR[Th⁺] = 0.94 Å. This relationship applied to the second group yields: IR[Pr⁺] = 0.74 Å, IR[Ta⁺] = 0.64 Å, IR[Pa⁺] = 0.78 Å. It should be emphasized that this very crude estimate for IR[Pr⁺] is not...
Terminal observed complexes were (aco)₄MO₂ with CN6 (M = U⁵⁺, Pu⁵⁺, Am⁵⁺), or (aco)₃MO₂ with CN5 (M = V⁵⁺, Pr⁵⁺). The lower CN of V⁵⁺ is attributed to its smaller IR. As the estimated IR for Pr⁵⁺ is comparable to the IR for Pu⁵⁺, the lower CN for Pr⁵⁺ is not similarly rationalized. However, (aco)₄PuO₂⁺ and (aco)₄AmO₂⁺ were very minor products, such that the absence of detectable (aco)₄PrO₂⁺ is not a significant disparity. Essentially similar behavior for PrO₂⁺, PuO₂⁺ and AmO₂⁺ supports assignment of PrO₂⁺ as an actinyl-like lanthanyl. CN6 complex (aco)₄UO₂⁺ was abundant, presumably reflecting the relatively large IR for U⁵⁺. For Nb⁵⁺ and Ta⁵⁺, CN6 complexes (aco)₃NbO(OH)₂⁺ and (aco)₂Ta(OH)₄⁺ were minor relative to those having one fewer aco. In contrast, CN6 (aco)₃PaO(OH)₂⁺ and (aco)₂Pa(OH)₄⁺ were prevalent; the higher CN for Pa⁵⁺ presumably reflects its larger IR.

Association of background O₂ to (aco)₃UO₂⁺ yielded (aco)₃(O₂)UO₂⁺ (Figure 2b). Such O₂ addition for other complexes has been attributed to oxidation of U⁵⁺ to U⁶⁺ in a superoxide,⁴² Reaction for long times (Figure S2f) show that (aco)₄UO₂⁺ is converted to (aco)₃(O₂)UO₂⁺ by exothermic reaction (2). Like (H₂O)₃(O₂)UO₂⁺,⁴² (aco)₃(O₂)UO₂⁺ is presumably a side-on bonded η²-O₂ superoxide of U⁶⁺ with high CN7. The absence of an analog to reaction (2) for Np⁵⁺, Pu⁵⁺ and Am⁵⁺ reflects their higher M[VI/V] reduction potentials: 0.09 V for U⁶⁺; 1.16 V for Np⁶⁺; 0.94 V for Pu⁶⁺; 1.60 V for Am⁶⁺.⁹⁴

\[
\text{(2) } (\text{aco})₄\text{UO}_2^+ + \text{O}_2 \rightarrow (\text{aco})₃(\text{O}_2)\text{UO}_2^+ + \text{aco}
\]

Results in Figure 2a indicate presence of both isomers (aco)₃Pa(OH)₄⁺ and (aco)(H₂O)PaO(OH)₂⁺. For longer reaction times (Figure S2e) the dominant product is (aco)₂Pa(OH)₄⁺, with depletion of (aco)₃PaO(OH)₂⁺ via exothermic reaction (3).

\[
\text{(3) } (\text{aco})₃\text{PaO(OH)}_2^+ + \text{H}_2\text{O} \rightarrow (\text{aco})₂\text{Pa(OH)}_4^+ + \text{aco}
\]

Potential Energy Profiles (PEPs)

Reactions (1a) - (1c) proceed by successive addition of two H₂O. Because the He pressure in the ion trap is at least 100 times greater than that of H₂O, products of the first H₂O addition experience many cooling collisions with He before encountering another H₂O molecule. Accordingly, association of two H₂O to MO₂ does not occur in a concerted manner but rather as separate sequential additions. These process are given by reactions (4a)-(4d) and (5a)-(5d) where, as above, MO₂ generically designates a metal dioxide with charge state neutral (ThO₂), monopositive (MO₂⁺) or dipositive (UO₂²⁺). Reaction with the first H₂O can occur by physisorption reaction (4a) or chemisorption reaction (5a). The product of (4a) can react with a second H₂O by three reaction pathways: physisorption (4b); chemisorption (4c); or chemisorption inducing conversion of the first H₂O to chemisorption (4d). The product of (5a) can react with a second H₂O by chemisorption (5b); physisorption (5c); or physisorption inducing conversion of the first H₂O to physisorption (5d).

\[
\text{(4a) } \text{MO}_2 + \text{H}_2\text{O} \rightarrow (\text{H}_2\text{O})\text{MO}_2 \quad \text{1st physisorption}
\]
(4b) \((\text{H}_2\text{O})\text{MO}_2 + \text{H}_2\text{O} \rightarrow (\text{H}_2\text{O})_2\text{MO}_2\) \(2^\text{nd} \) physisorption

(4c) \((\text{H}_2\text{O})\text{MO}_2 + \text{H}_2\text{O} \rightarrow (\text{H}_2\text{O})\text{MO(OH)}_2\) \(2^\text{nd} \) chemisorption

(4d) \((\text{H}_2\text{O})\text{MO}_2 + \text{H}_2\text{O} \rightarrow \text{M(OH)}_4\) \(2^\text{nd} \) chemisorption/chemisorption

(5a) \(\text{MO}_2 + \text{H}_2\text{O} \rightarrow \text{MO(OH)}_2\) \(1^\text{st} \) chemisorption

(5b) \((\text{MO(OH)})_2 + \text{H}_2\text{O} \rightarrow \text{M(OH)}_4\) \(2^\text{nd} \) chemisorption

(5c) \((\text{MO(OH)})_2 + \text{H}_2\text{O} \rightarrow (\text{H}_2\text{O})\text{MO(OH)}_2\) \(2^\text{nd} \) physisorption

(5d) \((\text{MO(OH)})_2 + \text{H}_2\text{O} \rightarrow (\text{H}_2\text{O})_2\text{MO}_2\) \(2^\text{nd} \) physisorption/physisorption

Computations were performed for each of these reaction pathways for \(\text{M} = \text{Pa}^\text{V}, \text{U}^\text{V}, \text{Pu}^\text{V}, \text{Am}^\text{V}, \text{V}^\text{V}, \text{Nb}^\text{V}, \text{Ta}^\text{V}, \text{Pr}^\text{V}, \text{Th}^\text{IV}, \) and \(\text{U}^\text{VI}.\) Energies for the pertinent species are in Table 4, and the resulting PEPs are shown in Figures 3-6, along with illustrative structures for the specific case of \(\text{M} = \text{Pa}^\text{V}.\) Coordinates for all structures are in Supporting Information. The \(\text{MO}_2, \text{MO(OH)}_2\) and \(\text{M(OH)}_4\) exhibit two essential structure types shown in Figure 7: Pr-type and Ta-type. Symmetries and bond angles are in Table S6.

Most energies used for the PEPs in Table 4 are CCSD(T)/CBS values, with exceptions identified there. Energies at the B3LYP level of theory are in SI Table S1. The largest differences between energies from B3LYP and CCSD(T) for a given \(\text{M}\) range from a low of 3.6 kcal/mol for \(\text{Ta}^\text{V}\) to a high of 19.4 kcal/mol for \(\text{V}^\text{V}.\) For most \(\text{M},\) the largest differences are for \(\text{M(OH)}_4\). The largest disparity between CCSD(T)/\(\alpha\text{T}\) and CCSD(T)/CBS is only 2.9 kcal/mol, for the case of \((\text{H}_2\text{O})_2\text{TaO}_2^+\).

Comparing Experiment and Theory

The reaction energetics of \(\text{MO}_2\) with \(\text{H}_2\text{O}\) to yield \((\text{H}_2\text{O})\text{MO}_2\) or \(\text{MO(OH)}_2\) by reactions (4a) and (5a) are shown by the PEPs in Figure 3. For \(\text{M} = \text{Pr}^\text{V}, \text{Pu}^\text{V}\) and \(\text{Am}^\text{V},\) TS1 prohibits hydrolysis to \(\text{MO(OH)}_2\). A particularly revealing parameter is the isomerization energy to convert \((\text{H}_2\text{O})\text{MO}_2\) to \(\text{MO(OH)}_2\), plotted in Figure 8 (green data points). For \(\text{M} = \text{U}^\text{VI}, \text{Pr}^\text{V}, \text{Pu}^\text{V}, \text{Am}^\text{V}\) and \(\text{U}^\text{V}\) this isomerization is endothermic by at least 14 kcal/mol such that hydrate \((\text{H}_2\text{O})\text{MO}_2\) is lowest in energy. For \(\text{M} = \text{Nb}^\text{V}, \text{Ta}^\text{V}\) and \(\text{Th}^\text{IV}\) this isomerization is exothermic by more than -17 kcal/mol so hydroxide \(\text{MO(OH)}_2\) is lowest in energy. Although \(\text{VO(OH)}_2^+\) is also predicted as the lowest energy structure, isomerization to it is exothermic by only \(-5.3\) kcal/mol. For \(\text{M} = \text{Pa}^\text{V},\) the isomerization is endothermic by only 0.6 kcal/mol so neither product is significantly preferred.

The energy to convert an actinide hydrate to hydroxide increases as the actinide 5f orbitals become stabilized from \(\text{Pa}^\text{V}\) to \(\text{U}^\text{V}\) to \(\text{Pu}^\text{V}\) to \(\text{Am}^\text{V}.

For the \(\text{M}^\text{V}\) that are predicted to first yield \(\text{MO(OH)}_2\)—\(\text{V}^\text{V}, \text{Nb}^\text{V}, \text{Ta}^\text{V}\) and perhaps \(\text{Pa}^\text{V}\)—a key question is whether association with a second \(\text{H}_2\text{O}\) results in hydrolysis reaction (5b) to yield \(\text{M(OH)}_4\) or hydration reaction (5c) to yield \((\text{H}_2\text{O})\text{MO(OH)}_2\), alternatives that are assessed by the PEPs in Figure 4. For none of the four does TS3 present a prohibitive barrier to hydrolysis. The ultimate product should thus be the lowest energy, which are summarized as the energies for isomerization of \((\text{H}_2\text{O})\text{MO(OH)}_2\) to \(\text{M(OH)}_4\) plotted in Figure 8 (blue data points). For \(\text{M} = \text{Nb}^\text{V}, \text{Ta}^\text{V}\) and \(\text{Pa}^\text{V}\), this isomerization is exothermic by more than -12 kcal/mol so \(\text{M(OH)}_4\) is the lowest energy structure. For \(\text{M} = \text{V}^\text{V}\) the isomerization is endothermic by 12.2 kcal/mol so
(H₂O)VO(OH)₂⁺ is predicted to be more stable than V(OH)₄⁺. The ultimate products are thus predicted to be M(OH)₄ for M = Nb, Ta and Pa, but (H₂O)MO(OH)₂ for M = V. Not shown in Figure 4, for simplicity, are TS2 barriers for addition of H₂O to MO(OH)₂ to yield hydrate (H₂O)MO(OH)₂. This transition state is associated with addition of water to hydroxides having the Pr-type structure with a quasi-linear O=M-OH moiety (Figure 7). TS2 thus exists for M = Pr, U, U⁺, Pb and Am. Notably, this barrier to simple hydration is remarkably substantial for the last two, at 8.2 and 19.1 kcal/mol, respectively, such that hydrates MO(OH)₂ for M = Pb and Am should not form under low-energy conditions. However, because these two species are among those that should not form MO(OH)₂ to start with, but instead form (H₂O)MO₂, these TS2 barriers do not impact the predicted courses of the reactions.

For the metals that are predicted to first yield (H₂O)MO₂—Pr, U, Pb, Am, and perhaps Pa—association with a second H₂O by reactions (4b), (4c) and (4d) is assessed by the PEPs in Figure 5. In all cases, addition of a second water as a solvating molecule is substantially exothermic. For M = Pr, Pb and Am the energies after (H₂O)₂MO₂ on the PEP are too high for further transformation. For these three M, TS4 is above the energy asymptote by at least 7.6 kcal/mol, TS3 is even higher, and formation of M(OH)₄ is endothermic by at least 9.6 kcal/mol. For M = U, (H₂O)UO(OH)₂⁺ is kinetically accessible via TS4 but it is 9.1 kcal/mol higher in energy than (H₂O)₂UO₂⁺. The PEP in Figure 5 for M = Pb shows that addition of H₂O to (H₂O)PaO₂⁺ should yield Pa(OH)₄⁺ as kinetically accessible and lowest energy, which is thus predicted as the final product for addition of H₂O to either (H₂O)PaO₂⁺ or PaO(OH)₂⁺.

The computational predictions are summarized in Table 2, where disparities between experiment and theory appear for M = V, Nb and Pa. For Pa the disparity is minor as the dominant and ultimate product in the experiments is the predicted species Pa(OH)₄⁺. For M = V and Nb, the product inferred from experiment exhibits one less stage of hydrolysis than predicted. For Nb the disparity is between hydroxides (H₂O)NbO(OH)₂⁺ and Nb(OH)₄⁺, whereas for V it is between a hydrate and hydroxide. Hydrate (H₂O)₂VO₂⁺ inferred from experiment is computed as actually 9.0 kcal/mol higher than (H₂O)VO(OH)₂⁺. Inferred partial hydroxide (H₂O)NbO(OH)₂⁺ is computed as 11.8 kcal/mol higher than Nb(OH)₄⁺. This energy difference for V might reasonably be within error, but the implied error for Nb seems excessive. Rather than automatically assuming a large computational error, we surmise that displacement of H₂O by acq might occur for some hydroxides such as these, as elaborated in the following section. The demonstration below that such displacement can indeed occur indicates that the computations are likely valid whereas some inferences from experiment are likely not.

Another evaluation of the validity of the PEPs in Figure 3 is oxo-exchange reaction (6).

(6) MO₂ + H₂¹⁸O → MO¹⁸O + H₂O

For reaction (6) to occur spontaneously, barrier TS1 to interconversion of (H₂O)MO₂ and MO(OH)₂ must lie below E = 0 (the energy of the separated reactants) on the PEPs in Figure 3. In accord with the present PEPs, it was previously found that reaction (6) occurs for M = Pa and U, but not for Pb or Am. The PEPs further predict that Pr should not oxo-exchange, whereas U⁺, Th⁺, V⁺, Nb and Ta should exchange. Schwarz and co-workers reported that reaction (6) does indeed occur for M = V.⁹⁵
Can Acetone Displace H₂O from Hydroxides?

Although disparities between computations and experiments are modest, they motivate assessment of the assumption that acetone will displace H₂O from a hydrate but not from a hydroxide. PEPs in Figure 6 provide a basis to evaluate this hypothesis by considering reaction (7) where italicized H₂O and bold OH emphasize that the eliminated water, H₂O, derives from dehydrolysis. The TS₄ barrier on the PEP in Figure 6 determines whether the necessary (H₂O)₂MO₂ intermediate for occurrence of reaction (7) can form. This TS₄ barrier is below the reactant asymptote (E ≤ 0) for all eight M⁴⁺ and for U⁶⁺, lying above it only for Th⁴⁺. Reaction (7) is exothermic for M = U⁶⁺, U⁴⁺, Pu⁴⁺, Am⁴⁺, and Pr⁴⁺, nearly thermoneutral for M = Pa⁴⁺, endothermic by only 5.3 kcal/mol for M = V⁴⁺, and endothermic by at least 17 kcal/mol for Nb⁴⁺, Ta⁴⁺ and Th⁴⁺.

(7) MO(OH)₂ + H₂O → (H₂O)MO₂ + H₂O

The following specific assessment for V⁴⁺ based on the PEP in Figure 6 indicates that reactions such as (8) and (9) cannot be excluded, this in conflict with the premise that acetone will not displace H₂O from a hydroxide. The energy for association of aco and VO₂⁺ is computed as –75.9 kcal/mol at the CCSD/aT level (-79.8 at B3LYP), which is 20.8 kcal/mol more exothermic than for association of H₂O and VO₂⁺. Accordingly, whereas reaction (7) is endothermic for M = V⁴⁺ by 5.3 kcal/mol, reaction (8) is predicted to be exothermic by -15.5 kcal/mol. Furthermore, the PEP for reaction (8) and M = V⁴⁺, like that for V⁴⁺ in Figure 6, is expected to lie fully below E = 0. This assessment illustrates that association of aco to a hydroxide might in some cases induce exothermic de-hydrolysis and H₂O elimination, with the direct implication that displacement of H₂O does not necessarily indicate a hydrate as was assumed for initial interpretation of the experimental results. As aco addition to V⁴⁺ is 20.8 kcal/mol more exothermic than for H₂O, and (H₂O)VO₂⁺ is only 5.3 kcal/mol higher energy than VO(OH)₂⁺, reaction (8) is predicted to occur for M = V⁴⁺. Reaction (9) may similarly be viable for M = Nb⁴⁺ as (H₂O)NbO(OH)₂⁺ is a modest 11.8 kcal/mol higher in energy that Nb(OH)₄⁺. However, when the hydroxide/hydrate energy difference is larger, such as for (H₂O)TaO(OH)₂⁺ at 26.8 kcal/mol above Ta(OH)₄⁺, aco should not induce H₂O-elimination from the hydroxide.

(8) MO(OH)₂ + aco → (aco)MO₂ + H₂O
(9) M(OH)₄ + aco → (aco)MO(OH)₂ + H₂O

Hydrate (H₂O)₂VO₂⁺ was inferred from displacement of two H₂O to yield (aco)₂VO₂⁺. Demonstrated viability of reaction (8) for M = V⁴⁺ suggests that (H₂O)VO(OH)₂⁺ might similarly react with aco to eliminate two H₂O and yield (aco)₂VO₂⁺. Also, Nb(OH)₄⁺ might react with aco as in reaction (9) to yield (aco)NbO(OH)₂⁺. The general conclusion is that H₂O elimination from a hydroxide could be induced by aco addition, if the hydrate structure is only moderately—e.g. less than ~15 kcal/mol—higher in energy. This refinement of the premise underlying interpretation of the observations specifically resolves the apparent discord for V⁴⁺ and Nb⁴⁺. Computed lowest-energy structures (H₂O)VO(OH)₂⁺ and Nb(OH)₄⁺ are now also considered sensible and valid from the perspective of the experimental results.
Isomerization Energies

Energies for isomerization reactions (10) - (12) plotted in Figure 8 reflect intrinsic relative stabilities of hydrates and hydroxides. These isomerization reactions provide insight into solution chemistry because, like a metal ion in solution, such conversion of a hydrate to hydroxide is not initiated and enabled by a bimolecular ion-molecule association as it is in distinctly gas-phase processes such as reactions (1a) - (1c). The ordering of metals on the abscissa in Figure 8 was identified as reflecting key structural trends discussed below. This ordering results in similar energies for isomerization reaction (10), to within less than 8 kcal/mol, for the first three M\(^V\) species, Pr\(^V\), Pu\(^V\) and Am\(^V\), followed by a regular decrease for the next five M\(^V\). Placed at the far ends of the axis in this plot are U\(^VI\) and Th\(^IV\), with the isomerization energy for U\(^VI\) intermediate between those for Pr\(^V\) and Pu\(^V\), and that for Th\(^IV\) the lowest of all the M. The isomerization energies for Pa\(^V\), U\(^V\), Pu\(^V\) and Am\(^V\) are consistent those obtained in our prior work.\(^96\) The previously reported isomerization energy for M = Np\(^V\), 20.8 kcal/mol,\(^96\) is between those obtained here for U\(^V\) (13.5 kcal/mol) and Pu\(^V\) (28.0 kcal/mol).

\[
\begin{align*}
(10) & \quad (\text{H}_2\text{O})\text{MO}_2 \rightarrow \text{MO(OH)}_2 \\
(11) & \quad (\text{H}_2\text{O})\text{MO(OH)}_2 \rightarrow \text{M(OH)}_4 \\
(12) & \quad (\text{H}_2\text{O})_2\text{MO}_2 \rightarrow \text{M(OH)}_4
\end{align*}
\]

The reaction (10) isomerization energies for f-elements Pr\(^V\), U\(^V\), Np\(^V\), Pu\(^V\) and Am\(^V\) are positive such that (H\(_2\)O)MO\(_2\) is more stable than MO(OH)\(_2\) (Figure 8). For group 5 d-block elements V\(^V\), Nb\(^V\) and Ta\(^V\), these isomerization energies are negative such that MO(OH)\(_2\) are more stable. The isomerization energy for Pa\(^V\) (0.6 kcal/mol) is so close to zero that Pa\(^V\) is intermediate in character between the f- and d-block species. The extremely favorable energy for (H\(_2\)O)ThO\(_2\) to isomerize to ThO(OH)\(_2\) indicates d-block character for the nominal 5f actinide Th\(^IV\). The monotonic increase in isomerization energies across the actinide series from Pa\(^V\) to Am\(^V\) indicates lower relative stability of the hydroxide as 5f orbitals decrease in energy relative to 6d/7s.\(^23,96\) Another trend is decreasing isomerization energy from 3d-element V\(^V\) to 4d Nb\(^V\) to 5d Ta\(^V\), and a further decrease to 6d Th\(^IV\). The reaction (10) isomerization energy for Pa\(^V\) is lower than for actinyls, but not as low as for the distinct d-block elements, indicating its intermediate character.

As for reaction (10), the isomerization energies for reaction (11) plotted in Figure 8 show a trend for the d-block species of a decrease from endothermic for V\(^V\) to exothermic for Nb\(^V\) and Ta\(^V\). The reaction is endothermic for Pr\(^V\), U\(^V\), Pu\(^V\), and Am\(^V\) with the order being Pr\(^V\) > Pu\(^V\) > Am\(^V\) > U\(^V\). In contrast to the energies for reaction (10), those for reaction (11) increase from Pa\(^V\) to V\(^V\). The energy for Pa\(^V\) is significantly below that for V\(^V\) and slightly below that for Nb\(^V\), with Pa\(^V\) thus lying between Nb\(^V\) and Ta\(^V\). An alternative to energies for isomerization reactions (10) and (11), are those for combined isomerization reaction (12), which plotted in Figure 8 show Pa\(^V\) intermediate between V\(^V\) and Nb\(^V\). Overall, the results in Figure 8 demonstrate that isomerization of Pa\(^V\) hydrates to hydroxides is more similar to d-block rather than f-block elements.

Notably, Pr\(^V\) is predicted to exhibit particularly unfavorable isomerization to hydroxides, with a high stability of hydrated (H\(_2\)O\(_2\))[O=Pr=O]\(^+\) relative to Pr(OH)\(_3\)\(^+\). It should be emphasized that this does not suggest that PrO\(_2\)\(^+\), or any Pr\(^V\) species, should be stable in condensed phase.
Stabilities of M^V towards reduction to M^{IV} can be roughly evaluated from fifth ionization energies, $IE[M^{IV}]$, which for the actinides increase from Pa (~ 44.3 eV) to Am (~ 50.0 eV) in correspondence with increasing $M[V/IV]$ reduction potentials. Although the $Pr[V/IV]$ reduction potential is not determined, $IE[Pr^{IV}] = 57.53 \pm 0.05$ eV is so high that reduction of Pr^V to Pr^{IV} should be very favorable, likely unavoidable in liquid water. The present results thus do not predict that Pr^V can be prepared in condensed phase but rather that hypothetical $Pr^{IV}O_2^+$, like uranyl and other actinyls, would be resistant to solution hydrolysis to yield a Pr^{IV} hydroxide. Instead of forming *praseodymyl* in solution, reaction of Pr^V with liquid water might result in hydrolytic reduction to species like $Pr^{IV}(OH)_n^{(4-n)}$ or $Pr^{II}(OH)_{n-1}^{(3-n)}$ ($n = 0-5$; $n' = 0-4$).

It might naively be expected that stronger $M=O$ bonds should be more resistant to activation such as occurs in conversion of oxides to hydroxides. However, experimental bond dissociation energies for MO_2 (neutral or cation) to yield M (neutral or cation) and two O (neutral), plotted in Figure 8, show that lower metal oxide bond energies do not imply more favorable transformation to hydroxides. Oxides PaO_2^+, NbO_2^+, TaO_2^+ and ThO_2 have very strong $M=O$ bonds, yet they are particularly susceptible to conversion of their hydrates to hydroxides. For example, the energy to dissociate TaO_2^+ (340 kcal/mol) is more than twice that for VO_2^+ (161 kcal/mol). Nonetheless, transformation of $(H_2O)_2MO_2$ to $M(OH)_4$ is substantially exothermic for $M=Ta^V$ ($\Delta E = -61$ kcal/mol), but slightly endothermic for $M=V^V$ ($\Delta E = 3.2$ kcal/mol). Energy barriers for transformation of $(H_2O)_2MO_2$ to $M(OH)_4$ are also lower for $M=Ta$ versus V (Figure 5). As this apparent enigma illustrates, the energy to transform a hydrate to a hydroxide does not depend only on the strengths of the $M=O$ (and $M-OH_2$) bonds that are disrupted, but also on the $M-OH$ bonds that are created. Such an evaluation considering only $O-H$ bonds assumes negligible differences between the $O-H$ bonds disrupted in hydrates and created in hydroxides. A less stringent but adequate assumption is that changes in $O-H$ bonds between hydrates and hydroxides may be significant but are similar for different metals. Overall energetics and kinetic barriers suggest that strong $M=O$ bonds in MO_2 are associated with strong $M-OH$ bonds in $M(OH)_4$. Relatively small differences in net energies of the four $M-O$ bonds in $(H_2O)_2MO_2$ versus those in $M(OH)_4$ dictate the isomerization energetics. Although the $Ta=O$ bonds in $(H_2O)_2TaO_2^+$ are very strong, the also very strong $Ta-OH$ bonds in $Ta(OH)_4^+$ favor the latter isomer. As elaborated below, stabilities of dioxides versus hydroxides evidently reflect variations in efficacy of $M=O$ versus $M-OH$ bonding for different types of metal-based bonding orbitals.

Linking Energies, Structures, and Bonding

Relative stabilities of oxides and hydroxides reflect differences in bonding that are also manifested in structures, such as those summarized in Figure 7 and Table S6. A characteristic feature of the species in Figure 7 is a propensity for either a linear, or moderately bent “quasi-linear”, or a highly bent O-M-O moiety in MO_2, $MO(OH)_2$ and $M(OH)_4$. The angles plotted in Figure 9 capture these tendencies. The MO_2 are linear “actinyl-like” for $M = U^{VI}$, Pr^V, Pu^V, Am^V, U^V and Pa^V, but highly bent for $M = V^V$, Nb^V, Ta^V and Th^{IV}. These two MO_2 structure types, linear Pr-type versus bent Ta-type, are characteristic respectively of valence f and d orbital involvement in bonding. A simple but durable concept to explain such structural differences is that dominance of back-bonding from $O^2\text{-}2p$ orbitals to the metal center is more effective for linear structures if the bonding is to f orbitals, and more effective for bent structures if it is to d orbitals.
The underlying basis for the reality of these different structural motifs, linear and bent, has been convincingly rationalized by considering bonding in d-block transition metal oxides,13,104 and 5f actinyls.105 It should additionally be remarked that such structure-bonding correlations are useful phenomenological approaches even absent full causal understanding, which is likely ultimately unattainable.

The angles in Figure 9 for MO(OH)\textsubscript{2} show that one of the two O=M-O\textsubscript{OH} angles is highly obtuse ($\geq 159^\circ$, “quasi-linear”) for M = UVI, PrV, PuV, AmV, and UV, which also exhibit linear MO\textsubscript{2}. The corresponding angle in MO(OH)\textsubscript{2} for M = VV, NbV, TaV, and ThV is highly bent like in MO\textsubscript{2}. For M = PaV there is a distinct shift from linear actinyl-like PaO\textsubscript{2}+2 to two highly bent O=Pa-O\textsubscript{OH} angles in PaO(OH)\textsubscript{2}+. Referring to Figure 8, conversion of (H\textsubscript{2}O)MO\textsubscript{2} to MO(OH)\textsubscript{2} is energetically favorable for d-block M = VV, NbV, TaV, and ThV, where reactant and product have similar bent O-M-O angles. This conversion is energetically unfavorable for f-block M = UVI, PrV, PuV, AmV, and UV (as well as for NpV).96 that exhibit linear MO\textsubscript{2} and maintain quasi-linearity in MO(OH)\textsubscript{2}.

Nearly thermoneutral transformation of (H\textsubscript{2}O)PaO\textsubscript{2}+2, with a linear O=Pa=O unit, to bent PaO(OH)\textsubscript{2}+ suggests competition between f- and d-orbital participation, with Pa intermediate between 5f and 6d elements. As seen in Figure 8, the energy for isomerization of (H\textsubscript{2}O)PaO(OH)\textsubscript{2}+ to tetrahedral Pa(OH)\textsubscript{4}+, a structure indicative of dominant 6d bonding,13 is even more exothermic than the corresponding energy for (H\textsubscript{2}O)NbO(OH)\textsubscript{2}+, which indicates d-block character for PaV.

The shift from linear/quasi-linear to bent structures is seen in Figure 9 to occur between PaV and VV for MO\textsubscript{2}; between UV and PaV for MO(OH)\textsubscript{2}; and between PuV and AmV for M(OH)\textsubscript{4}. Except for M = UVI, PrV and PuV, the O\textsubscript{OH}-M-O\textsubscript{OH} angles in M(OH)\textsubscript{4} are within 3.1\textdegree of the ideal tetrahedral value of 109.5\textdegree. For M = UVI, PrV and PuV there is substantial deviation from tetrahedral, with a “quasi-linear” O\textsubscript{OH}-M-O\textsubscript{OH} angle of greater than 150\textdegree. The result in Figure 8 that formation of M(OH)\textsubscript{4} from (H\textsubscript{2}O)\textsubscript{2}MO\textsubscript{2} is particularly energetically unfavorable for M = UVI, PrV and PuV can be attributed to dominant f orbital bonding that favors linear structures such as found in the actinyl moiety. Results for UV suggest a switch from f-orbital bonding in linear UO\textsubscript{2}+ to d-orbital bonding in tetrahedral U(OH)\textsubscript{4}+, where the T\textsubscript{d} structure of the latter alternatively would be consistent with predominantly non-directional ionic bonding.

The satisfaction of listing the actinides in order of appearance across the series is disrupted on the abscissa in Figure 9. The basis for the ordering there as UV-AmV-PuV, rather than seemingly more natural actinide series progression of UV-PuV-AmV, is the variation in the structures of the M(OH)\textsubscript{4}+. The MO(OH)\textsubscript{2}+ for M = UV, PuV and AmV exhibit structures with a quasi-linear O=M-OH configuration that is characteristic of 5f orbital participation in covalent bonds. However, whereas M(OH)\textsubscript{4}+ for M = UV and AmV exhibit tetrahedral structures that evidently lack the structural constraint imposed by the 5f orbitals, the structure of Pu(OH)\textsubscript{4}+ retains a quasi-linear HO-Pu-OH configuration indicative of 5f bonding. This assessment seems to suggest that the participation of the 5f orbitals in the M-O bonds of M(OH)\textsubscript{4}+ may be greater for M = PuV versus M = UV or AmV. Although this potential interpretation is based on limited information, and is thus only tentative, similar maxima in actinide-oxygen bond covalency at or around Pu have been proposed for other oxo species, including actinyls.105 Notably, the structure of Pr(OH)\textsubscript{4}+ features a quasi-linear HO-Pr-OH connectivity that is indicative of 4f orbital bonding.

Overall, the results indicate that formation of hydroxides from oxides is least favorable when linear structures are more strongly imposed by f orbital bonding. Essential characteristics of
Pr\(^{V}\)—linear PrO\(_2^+\) resistant to hydrolysis to quasi-linear Pr(OH)\(_4^+\)—indicates substantial involvement of 4f orbitals in metal-oxygen bonding. The PrO\(_2^+\) species exhibits a similar propensity towards linearity as uranyl(VI),\(^{25}\) which for the latter is attributed to involvement of U 5f orbitals.\(^{12}\) We infer substantial 4f bonding character for Pr\(^{V}\), and assign PrO\(_2^+\) as a lanthanyl, specifically praseodymyl.

The importance of lanthanide 4f and actinide 5f orbitals in bonding is related to their energies relative to other valence orbitals. Homologous pairs early in the two series exhibit the following ground-state atomic valence configurations (outside of the closed-shell Xe or Rn cores):\(^{98}\)

- La[5d\(^1\)6s\(^2\)] / Ac[6d\(^1\)7s\(^2\)]
- Ce[4f\(^1\)5d\(^1\)6s\(^2\)] / Th[6d\(^3\)7s\(^2\)]
- Pr[4f\(^2\)6s\(^2\)] / Pa[5f\(^2\)6d\(^1\)7s\(^2\)]
- Nd[4f\(^3\)6s\(^2\)] / U[5f\(^3\)6d\(^1\)7s\(^2\)]
- Pm[4f\(^4\)6s\(^2\)] / Np[5f\(^4\)6d\(^1\)7s\(^2\)]
- Sm[4f\(^5\)6s\(^2\)] / Pu[5f\(^5\)7s\(^2\)]
- Eu[4f\(^6\)6s\(^2\)] / Am[5f\(^6\)7s\(^2\)]

These atomic configurations illustrate that the energy of 4f orbitals relative to 5d orbitals is lower than for 5f relative to 6d.\(^{23}\) A result of this difference is that lanthanides have 5d occupancy only for the first two members, La and Ce, whereas actinide 6d occupancy persists for the first five members, from Ac to Np, with the 5f fully below 6d only for Pu and beyond. Like Hf, Th has a d\(^2\)s\(^2\) valence configuration and thus generally behaves like a d-block transition metal. Beyond Th, the 5f orbitals become partially occupied with a transition to 5f-like chemistry beginning at Pa. Although this assessment employs electronic configurations of atoms, it should also provide insight into trends for relative orbital stabilities, and occupancy, for these atoms in similar chemical environments. Thus, the nearly linear protactinyl moiety in (H\(_2\)O)\(_2\)PaO\(_2^+\) is considered a manifestation of 5f orbital involvement, whereas its isomerization to tetrahedral Pa(OH)\(_4^+\) suggests 6d involvement, a combination of bonding contributions that is consistent with the relative orbital energies for atomic Pa. Similarly, as atomic Pr, the lanthanide homolog of Pa, has valence 4f orbitals lower energy than 5d, the result is a nearly linear PrO\(_2^+\) in (H\(_2\)O)\(_2\)PrO\(_2^+\) that resists conversion to Pr(OH)\(_4^+\).

Dative Bonding in Hydrates

Like the bare MO\(_2\), the dihydrates (H\(_2\)O)\(_2\)MO\(_2\) exhibit two basic structure types: *Pr-type* with nearly linear O=M=O, and *Ta-type* in which this moiety is highly bent. These structures are shown in Figure 10 together with selected bond angles. The specific structure of (H\(_2\)O)\(_2\)ThO\(_2\) shown in Figure 10 is formally *Ta-type*, but it is distinctive in being pyramidal-like. The O=M=O angles in all (H\(_2\)O)\(_2\)MO\(_2\) are within a few degrees of those in bare MO\(_2\), with the M=O distances in the hydrates elongated by 0.016–0.027 Å, or by 0.047 Å in the case of Th\(^{IV}\). The structures in Figure 10 demonstrate that “physisorption” hydrates are not bound only by ion-dipole interactions, with quotation marks used here to emphasize that there are clearly distinct M–OH\(_2\) chemical bonds between the metal center and water. The hydrate structures indicate orbital-induced directional dative bonding that substantially affects the orientation of the H\(_2\)O ligands. This effect is
particularly obvious for dihydrates exhibiting the Pr-type structure with nearly linear O=M=O, where the angles $\alpha_{W,W}$ in Figure 10 are highly compressed from the value of 180° expected for a simple ion-dipole interaction and inter-ligand repulsion between adsorbed H$_2$O molecules.

Energies for “physisorption” of H$_2$O to MO$_2$, 1$^{\text{st}}$ hydration reaction (4a), and H$_2$O to (H$_2$O)MO$_2$, 2$^{\text{nd}}$ hydration reaction (4b), are plotted in Figure 11. Dative bonding decreases the charge on the metal in (H$_2$O)MO$_2$ relative to MO$_2$ such that the ion-dipole contribution and exothermicity of the 2$^{\text{nd}}$ hydration is slightly reduced, by less than 20%, relative to the energy of the 1$^{\text{st}}$ hydration. Also in accord with a contribution from an ion-dipole interaction, hydration is most exothermic for dipo positive UVI, intermediate for monopositive MV, and least exothermic for neutral ThIV. More interesting from a bonding perspective is the variation in hydration energies among the different MV. Whereas f-block PrV, PuV, AmV, UV and PaV have 1$^{\text{st}}$ hydration energies in the range of -28 to -33 kcal/mol, those for d-block VV, NbV and TaV are significantly more exothermic, in the range of -46 to -53 kcal/mol. Although NPA charges q(M) from NBOs are not actual physical parameters, they do reveal variations between metals. The charges q(M) for MO$_2$, plotted in Figure 11, are in the range of 2.4 to 2.9 for all of the MV, except for VV. For the actinides, the positive charge decreases across the series from PaV to AmV, suggesting a corresponding increase in M=O bond covalency, in accord with a previous assessment. The charges q(M) for MO$_2$ and PaV, for M = NbV and TaV are similar to those for the actinides, while that for M = VV is substantially less positive. Remarkably, the charge on vanadium in cation VO$_2^+$ (q(V) = +2.05) is much lower than on thorium in neutral ThO$_2$ (q(Th) = +2.50). The particularly large charge transfer from O to the metal center in VV is indicative of especially enhanced V=O covalent bonding. Notably, hydration is markedly exothermic for VV, which also has a particularly low positive charge on the metal center; this relationship is certainly not characteristic of a simple ion-dipole interaction between VV and H$_2$O, but rather indicates substantial dative bonding.

As discussed above, the dihydrate structures indicate directional dative bonding, whereas hydration energies suggest that this bonding is greatest for VV/NbV/TaV. Bond distances are another indicator of dative bonding. Distances d(M=O) in MO$_2$, plotted in Figure 11, exhibit trends characteristic of the corresponding metal ionic radii. Thus, the difference of -0.23 Å between the M=O distances for PaV (1.778 Å) and VV (1.551 Å) is close to the difference of -0.26 Å between the radii of PaV and VV (Table 3). Such correspondence suggests M=O bonds of comparable character for the MO$_2$ for the six MV. In contrast, the M-OH$_2$ distances in (H$_2$O)MO$_2$ exhibit larger variations. These M-OH$_2$ distances are similar for PrV, UV and PaV, but decrease by 0.46 Å between PaV and VV. The bond distances, like hydration energies, thus indicate particularly substantial dative bonding, and resulting shorter metal-water bonds, in hydrates of VV, NbV and TaV.

Conclusions

Transformation of a hydrated metal dioxide (H$_2$O)$_2$MO$_2$ to hydroxide M(OH)$_4$ entails no change in oxidation state or number of metal-oxygen bonds. Energetics for these transformations reflect relative stabilities of the four M-O bonds in the hydrate versus the four in the hydroxide.

Addition of two H$_2$O to several MO$_2$ was examined by experiment to qualitatively assess these energies. The experimental results were initially taken to suggest two types of behavior: hydrate formation for M = PrV, UV, NpV, AmV and VV (as well as for M = UVI); and hydroxide formation for M = PaV, NbV, and TaV (as well as for M = ThIV). Notably, 4f-block PrVO$_2^+$ exhibits chemistry
also characteristic of 5f-block uranyl and later actinyls, whereas homologous Pa$^\text{V}O_2^+$ behaves like a heavy d-block transition metal dioxide.

Computed energies are in essential accord with experiment, except for the computational predictions that (H$_2$O)VO(OH)$_2^+$ is slightly more stable than (H$_2$O)$_2$VO$^+$, and Nb(OH)$_4^+$ is more stable than (H$_2$O)NbO(OH)$_2^+$. These predictions are considered valid, with experimentally observed H$_2$O elimination ascribed to de-hydrolysis and H$_2$O elimination from hydroxides, induced by acetone. The initial experimental assignments as (H$_2$O)$_2$VO$^+$ and (H$_2$O)NbO(OH)$_2^+$ were thus revised to (H$_2$O)VO(OH)$_2^+$ and Nb(OH)$_4^+$, in accord with the computational results. De-hydrolysis induced by acetone addition is a gas-phase phenomenon that is not generally expected in solution.

Computed structures indicate that PrO$_2^+$ and PaO$_2^+$ are linear actinyl-like species, which is ascribed to involvement of 4f (Pr) or 5f (Pa) orbitals in bonding. The resistance of PrO$_2^+$ to hydrolyze to Pr(OH)$_4^+$, and the low-symmetry structure of the latter, substantiate assignment of PrO$_2^+$ as praseodymyl, the first 4f lanthanyll. In contrast, exothermic hydrolysis of PaO$_2^+$ to Pa(OH)$_4^+$ with a high-symmetry T$_d$ structure indicates characteristic d-block transition metal character in the hydroxide. Whereas the 4f lanthanyll PrO$_2^+$ and 5f actinyl UO$_2^+$ moieties are resistant to conversion to hydroxides, hydrated PaO$_2^+$ exothermically isomerizes to yield a tetrahedral hydroxide. Given that Th$^\text{IV}$ is most susceptible to hydrolysis, Pa$^\text{V}$ is identified as a bridge between the 6d-block transition elements, including Th, and the true 5f-block actinide elements that start with U. The structures ofPu(OH)$_4^+$ and Pr(OH)$_4^+$ are distinctive among the studied M(OH)$_4^+$, with imposition of a quasi-linear HO-M-OH linkage indicating participation of Pu 5f and Pr 4f orbitals in covalent bonding.

The results demonstrate utility of gas-phase reactivity to reveal and understand chemistry of d-block and f-block metals. Behavior such as hydrolysis of Pa$^\text{V}$, and contrasting hydration of uranyl, appear in both gas and solution phases. The gas-phase results show that this change across the actinide series can be traced to a shift from 6d-orbital bonding in Pa$^\text{V}$ to 5f-orbital bonding in U$^\text{V}$, the latter being a central attribute of actinide chemistry. In view of the doubtful stability of oxidation state Pr$^\text{V}$ in condensed phases, the present gas-phase results provide important insight into the essential nature of this species as praseodymyl, a genuine 4f-block lanthanyll.

Supporting Information

Complete citations for references 61 and 85; mass spectra showing formation of ions used for results in Figures 1 and 2; mass spectra as in Figures 1 and 2 but using different reaction times; PEPs for addition of water to bare MO$_2$ and hydrated (H$_2$O)MO$_2$ showing effect of solvation on hydration/hydrolysis; computed bond distances, vibrational frequencies, and NBO charges and populations; bond angles for species in Figure 7; optimized coordinates for each species on the PEPs.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Heavy Element Chemistry Program, at Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 (PDD, JKG), at The University of Alabama through Grant No. DE-SC0018921 (MV,
DAD), and at Argonne National Laboratory contract DE-AC02-06CH11357 (REW). D.A.D. thanks the Robert Ramsay Fund at The University of Alabama. Part of the computational work has been performed using the MSCF in the EMSL at PNNL. The EMSL is funded by the Office of Biological and Environmental Research in the U.S. Department of Energy.

Table 1. Products expected for addition of 1, 2 and 3 acetone (aco) molecules to different isomers of species with aggregate compositions \([MO_2 + 2H_2O]\) and \([(aco)MO_2 + 2H_2O]\)^a,b

<table>
<thead>
<tr>
<th>Reactantc</th>
<th>+ 1 aco</th>
<th>+ 2 aco</th>
<th>+ 3 aco</th>
</tr>
</thead>
<tbody>
<tr>
<td>([MO_2 + 2H_2O]) [M = V^V, Nb^V, Ta^V]</td>
<td>(aco)(H_2O)MO_2 (4) + H_2O</td>
<td>(aco)_2MO_2 (4) + 2H_2O</td>
<td>(aco)_3MO_2 (5)d + 2H_2O</td>
</tr>
<tr>
<td>[a] (H_2O)_2MO_2 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[b] (H_2O)MO(OH)_2 (4)</td>
<td>(aco)MO(OH)_2 (4) + H_2O</td>
<td>(aco)_2MO(OH)_2 (5) + H_2O</td>
<td>(aco)_3MO(OH)_2 (6) + H_2O</td>
</tr>
<tr>
<td>[c] M(OH)_4 (4)</td>
<td>(aco)M(OH)_4 (5)</td>
<td>(aco)_2M(OH)_4 (6)</td>
<td>-</td>
</tr>
<tr>
<td>([(aco)MO_2 + 2H_2O]) [M = Pr^V, Pa^V, U^V, Pu^V, Am^V]</td>
<td>(aco)(H_2O)MO_2 (5) + H_2O</td>
<td>(aco)_2MO_2 (5) + 2H_2O</td>
<td>(aco)_4MO_2 (6) + 2H_2O</td>
</tr>
<tr>
<td>[a’] (aco)(H_2O)_2MO_2 (5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[b’] (aco)(H_2O)MO(OH)_2 (5)</td>
<td>(aco)_2MO(OH)_2 (5) + H_2O</td>
<td>(aco)_3MO(OH)_2 (6) + H_2O</td>
<td>-</td>
</tr>
<tr>
<td>[c’] (aco)M(OH)_4 (5)</td>
<td>(aco)_2M(OH)_4 (6)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^a “Expected” results assume aco displaces H_2O from hydrates but not from hydroxides.
^b Coordination number (CN) is in parentheses.
^c The M for which the reactant composition was employed in the experiments are as specified.
^d Addition of another aco to yield (aco)_4MO_2 (CN = 6) is also feasible.
Table 2. Isomers resulting from addition of two H₂O to M⁷O₂⁺, initially inferred from reaction with acetone (E) and computationally predicted (C).

<table>
<thead>
<tr>
<th>M</th>
<th>(H₂O)₂MO₂</th>
<th>(H₂O)MO(OH)₂</th>
<th>M(OH)⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>V⁷</td>
<td>E</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Nb⁷</td>
<td>E</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>Ta⁷</td>
<td>-</td>
<td>-</td>
<td>E, C</td>
</tr>
<tr>
<td>Pr⁷a</td>
<td>E, C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pa⁷a</td>
<td>E (minor)</td>
<td>E (major), C</td>
<td></td>
</tr>
<tr>
<td>U⁷a</td>
<td>E, C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pu⁷a</td>
<td>E, C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Am⁷a</td>
<td>E, C</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a Experiments were performed for species resulting from addition to MO₂ of two H₂O and one acetone, \((aco)MO₂ + 2H₂O\), rather than \([MO₂ + 2H₂O]\).

b As discussed in the text, this initial assignment from experiments is considered incorrect; the species is instead assigned as that which is computationally predicted.

Table 3. Terminal observed complexes and coordination number (CN).

<table>
<thead>
<tr>
<th>M⁷</th>
<th>Major Species (CN)</th>
<th>Minor Species (CN)</th>
<th>IR[M⁷]¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>V⁷</td>
<td>(aco)₃VO₂⁺(5)</td>
<td>-</td>
<td>0.54 Å</td>
</tr>
<tr>
<td>Nb⁷</td>
<td>(aco)₂NbO(OH)₂⁺(5)</td>
<td>(aco)₃NbO(OH)₂⁺(6)</td>
<td>0.69 Å</td>
</tr>
<tr>
<td>Ta⁷</td>
<td>(aco)₂Ta(OH)₄⁺(5)</td>
<td>(aco)₂Ta(OH)₄⁺(6)</td>
<td>0.64 Å</td>
</tr>
<tr>
<td>Pr⁷</td>
<td>(aco)₃PrO₂⁺(5)</td>
<td>-</td>
<td>~0.74 Å</td>
</tr>
<tr>
<td>Pa⁷</td>
<td>(aco)₂Pa(OH)₄⁺(6)</td>
<td>-</td>
<td>0.78</td>
</tr>
<tr>
<td>U⁷</td>
<td>(aco)₄UO₂⁺(6)</td>
<td>-</td>
<td>0.76</td>
</tr>
<tr>
<td>Pu⁷</td>
<td>(aco)₄PuO₂⁺(5)</td>
<td>(aco)₄PuO₂⁺(6)</td>
<td>0.74</td>
</tr>
<tr>
<td>Am⁷</td>
<td>(aco)₃AmO₂⁺(5)</td>
<td>(aco)₄AmO₂⁺(6)</td>
<td>0.73</td>
</tr>
</tbody>
</table>

¹ Ionic radius (Å) from Shannon.⁹３ IR[Pr⁷] roughly estimated as described in the text. IR[Am⁷] estimated as ~0.01 Å smaller than IR[Pu⁷].
Table 4. Energies (ΔH(298 K) in kcal/mol) for the species on the PEPs in Figures 3-6 computed at different levels of theory.\(^a\)

<table>
<thead>
<tr>
<th>MO(_2)</th>
<th>CCSD(T)(^a)</th>
<th>(H(_2)O)MO(_2)</th>
<th>TS1</th>
<th>MO(OH)(_2)</th>
<th>TS2(^b)</th>
<th>(H(_2)O)MO(OH)(_2)</th>
<th>TS3</th>
<th>M(OH)(_4)</th>
<th>(H(_2)O)(_2)MO(_2)</th>
<th>TS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1)ThO(_2)</td>
<td>CBS</td>
<td>-20.7</td>
<td>-19.3</td>
<td>-58.9</td>
<td>NB</td>
<td>-79.3</td>
<td>-78.3</td>
<td>-121.6</td>
<td>-40.7</td>
<td>-39.5</td>
</tr>
<tr>
<td>(^1)PaO(_2^+)</td>
<td>CBS</td>
<td>-37.0</td>
<td>-7.2</td>
<td>-36.4</td>
<td>NB</td>
<td>-69.7</td>
<td>-43.6</td>
<td>-85.0</td>
<td>-70.0</td>
<td>-43.8</td>
</tr>
<tr>
<td>(^2)UO(_2^+)</td>
<td>CBS</td>
<td>-35.1</td>
<td>-0.6</td>
<td>-21.3</td>
<td>-21.2</td>
<td>-56.4(^c)</td>
<td>-25.2(^c)</td>
<td>-47.4</td>
<td>-65.5</td>
<td>-36.5(^c)</td>
</tr>
<tr>
<td>(^4)PuO(_2^+)</td>
<td>awT-DK</td>
<td>-35.4</td>
<td>6.6</td>
<td>-7.4</td>
<td>0.8</td>
<td>-42.9</td>
<td>0.2(^d)</td>
<td>-25.8</td>
<td>-66.7</td>
<td>-27.8</td>
</tr>
<tr>
<td>(^5)AmO(_2^+)</td>
<td>awT-DK</td>
<td>-33.7</td>
<td>13.6</td>
<td>2.1</td>
<td>21.2</td>
<td>-31.0</td>
<td>6.2(^d)</td>
<td>-17.1</td>
<td>-63.9</td>
<td>-20.2</td>
</tr>
<tr>
<td>(^1)VO(_2^+)</td>
<td>CBS</td>
<td>-55.1</td>
<td>-15.8</td>
<td>-60.4</td>
<td>NB</td>
<td>-114.3</td>
<td>-67.1</td>
<td>-102.1</td>
<td>-105.3</td>
<td>-71.9</td>
</tr>
<tr>
<td>(^1)NbO(_2^+)</td>
<td>CBS</td>
<td>-49.5</td>
<td>-16.8</td>
<td>-66.6</td>
<td>NB</td>
<td>-117.6</td>
<td>-83.6</td>
<td>-129.5</td>
<td>-95.3</td>
<td>-67.3</td>
</tr>
<tr>
<td>(^1)TaO(_2^+)</td>
<td>CBS</td>
<td>-58.8</td>
<td>-32.7</td>
<td>-88.4</td>
<td>NB</td>
<td>-145.3</td>
<td>-118.6</td>
<td>-172.1</td>
<td>-111.4</td>
<td>-88.4</td>
</tr>
<tr>
<td>(^1)PrO(_2^+)</td>
<td>CBS-DK</td>
<td>-31.5</td>
<td>12.8</td>
<td>1.9</td>
<td>4.2</td>
<td>-28.5</td>
<td>14.1</td>
<td>-1.9(^e)</td>
<td>-59.5</td>
<td>-18.8</td>
</tr>
<tr>
<td>(^1)UO(_2^{2+})</td>
<td>CBS</td>
<td>-66.5</td>
<td>-8.0</td>
<td>-36.2</td>
<td>-33.8</td>
<td>-93.5</td>
<td>-40.6</td>
<td>-70.8</td>
<td>-124.3</td>
<td>-68.6</td>
</tr>
</tbody>
</table>

\(^a\)CCSD(T)/CBS using (a)V\(_n\)Z(-PP) basis sets for Th, Pa, U, V, Nb and Ta; CCSD(T)/awT-DK: aug-cc-pVTZ-DK(H)/aug-cc-pwCVTZ-DK(O)/cc-pwCVTZ-DK3(Pu, Am); CCSD(T)/CBS-DK: aug-cc-pV\(_n\)Z-DK(H)/aug-cc-pwCV\(_n\)Z-DK(O)/cc-pwCV\(_n\)Z-DK3(Pr); See text.

\(^b\)TS2 is for rearrangement of OH moieties upon hydration of MO(OH)\(_2\) to (H\(_2\)O)MO(OH)\(_2\). NB = no barrier. For simplicity, TS2 is not included on the PEPs.

\(^c\)CCSD(T)/aug-cc-pVTZ(H,O)/cc-pVTZ-PP(U) value.

\(^d\)B3LYP/aug-cc-pVTZ(H,O)/Stuttgart basis & ECP-60(Pu,Am) value.

\(^e\)CCSD(T)/aug-cc-pVTZ-DK(H)/aug-cc-pwCVTZ-DK(O)/cc-pwCVTZ-DK3(Pr) value.
Figure 1. Mass spectra acquired after reaction with acetone (aco) for 0.5 s (2.0 sec for Pr at a lower aco pressure) of the species in the box (asterisked peak) for (a) M = VV, (b) M = NbV, (c) M = TaV, and (d) M = PrV. Reaction pathways are replacement of H\textsubscript{2}O by aco (red arrows) and addition of aco (blue arrows). The terminal product identified by a dagger has the indicated composition. The assigned isomer structures in this figure are based on the overly simplistic assumption that aco cannot displace H\textsubscript{2}O from a hydroxide. The results for VV and NbV were later revised as follows: the species labelled here as “(H\textsubscript{2}O)\textsubscript{2}VO2+” is actually (H\textsubscript{2}O)VO(OH)2+, and “(H\textsubscript{2}O)NbO(OH)\textsubscript{2}” is actually Nb(OH)\textsubscript{4}+.
Figure 2. Mass spectra acquired after reaction with acetone (aco) for 0.5 s of the species in the box (asterisked peak) for (a) M = PaV, (b) M = UV, (c) M = PuV, and (d) M = AmV. Reaction pathways are replacement of H2O by aco (red arrows) and addition of aco (blue arrows). Terminal product(s) identified by a dagger have the assigned composition. For M = Pa there are two precursors and terminal products. For M = Pu and Am there is indicated addition of a final aco to yield very minor (aco)4MO2. As in Figure 1, the assigned isomer structures are based on the simplistic assumption that aco cannot displace H2O from a hydroxide, which is considered valid for these four M^V such that no changes to the indicated assignments were made.
Figure 3. PEPs for addition of H$_2$O to MO$_2$ corresponding to reactions (4a) and (5a). The shown structures are for the specific case of M = Pav and are different for other M.
Figure 4. PEPs for addition of H_2O to MO(OH)_2 corresponding to reactions (5b) and (5c). The shown structures are for the specific case of $M = \text{Pa}^\text{V}$ and are different for other M. Omitted for simplicity are the following TS2 barriers (in kcal/mol) for addition of H_2O to MO(OH)_2: $\text{Pr}^\text{V} = 2.3; \text{Am}^\text{V} = 19.1; \text{Pu}^\text{V} = 8.2; \text{U}^\text{V} = 0.1; \text{and } \text{U}^\text{VI} = 2.5.$
Figure 5. PEPs for addition of H\textsubscript{2}O to (H\textsubscript{2}O)MO\textsubscript{2} corresponding to reactions (4b), (4c) and (4d). The shown structures are for the specific case of M = PaV and are different for other M.
Figure 6. PEPs for addition of H$_2$O to MO(OH)$_2$ corresponding to reaction (5d). The shown structures are for the specific case of M = PaV and are different for other M. Omitted for simplicity are TS2 barriers for addition of H$_2$O to MO(OH)$_2$ as noted in Figure 4. The final step, elimination of H$_2$O from (H$_2$O)$_2$MO$_2$, elucidates the feasibility of de-hydrolysis and H$_2$O elimination by ligand addition to MO(OH)$_2$.
Figure 7. Prototypical structures (blue = M; red = O; grey = H): PrO$_2^+$, PrO(OH)$_2^+$ and Pr(OH)$_4^+$ (middle column / Pr-type); TaO$_2^+$, TaO(OH)$_2^+$ and Ta(OH)$_4^+$ (right column / Ta-type). Species represented by each structure type are in the inset boxes. Selected O atoms are identified as approximately axial (ax) or equatorial (eq). Values for angles are in Table S6.
Figure 8. Isomerization energies (kcal/mol, left axis) for: (a) Reaction (10), (H₂O)MO₂ to MO(OH)₂ (green); (b) Reaction (11), (H₂O)MO(OH)₂ to M(OH)₄ (blue); and (c) Reaction (12), (H₂O)₂MO₂ to M(OH)₄ (red). Open squares (d) are energies (kcal/mol, right axis) for dissociation of MO₂ to M and 2O (from refs.⁹⁹,¹⁰⁰; estimated IE[NbO₂] ≈ 7.4 eV; no value for Pr⁵⁺).
Figure 9. Selected bond angles: (a) O=M=O angle in MO$_2$; (b) largest O=M-OH angle in MO(OH)$_2$; (c) largest O$_{OH}$-M-O$_{OH}$ angle in M(OH)$_4$. Linear structural moieties are associated with f-orbital bonding, whereas bent are associated with d-orbital bonding.
Figure 10. Two structure types for dihydrates (H₂O)₂MO₂, *Pr-type* with nearly linear MO₂, and *Ta-type* with highly bent MO₂. Selected bond angles (α in degrees) for the specific members of both structure types. The distinctive pyramidal-like structure of (H₂O)₂ThO₂ is shown.
Figure 11. Top: Hydration energy for addition of H₂O to (a) MO₂ (1ˢᵗ hydration), and (b) (H₂O)MO₂ (2ⁿᵈ hydration). Middle: Bond distance for (c) M-O in MO₂, (d) M-OH in M(OH)₄, and (e) M-OH₂ in (H₂O)MO₂. Bottom: NBO charge on M in (f) MO₂, and (g) (H₂O)MO₂. Energies and distances suggest enhanced dative bonding inhydrates of VO₂⁺, NbO₂⁺ and TaO₂⁺.
References

$\text{(H}_2\text{O)}_2\text{PrO}_2^{+}$

\text{Hydrate \hspace{1cm} f-block}

Pa(OH)_4^-

\text{Hydroxide \hspace{1cm} d-block}

109.5°

178°