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Abstract

An efficient method for the dynamic analysis of an equipment-structure
system, modeled here as a simply supported beam to which some concentrated
masses are attached, is developed. By using matrix perturbation, the modal
properties of the combined system are obtained in terms of the known
properties of the individual subsystems. A closed form result for the estimate
of the maximum response of the equipment, including the cases when the
equipment frequency is tuned or nearly tuned to a natural frequency of the
beam, is obtained in terms of the response spectrum describing the impact
force applied to the beam. A numerical example shows that the modal propeties
of the combined system and the maximum response of the equipment obtained by
the proposed method is in good agreement with the results obtained from a

direct numerical integration of the governing equation of motion.

Introduction

Many systems encountered in engineering practice can be characterized as
equipment-structure systems. For example, an aircraft with devices mounted
inside it, which are light compared to the aircraft, may be considered to be
such a system. In the recent past, modal properties and equipment response of
equipment-structure systems have been studied by many investigators. To our
knowledge, in most of these studies the results derived for the equipment
response are based on modeling the structure as a discrete lumped mass
subsystem.[2,4,7,8] In many practical instances, it might be necessary to use
a continuous model of the structure, especialy if the modal properties of the

continuous model are readily available. Reference [6] studied modal properties



of an equipment-continuous structure system by the Rayleigh quotient
functional method. The secondary subsystem considered in that study was
limited to be a single one-degree-of-freedom oscillator. The equipment
response caused by dynamic excitation of the structure was not studied.

In this paper, a systematic and efficient approach is presented for
estimating the modal properties and equipment response of an
equipment—-continuous structure system, modeled as several concentrated masses
attached to a simply supported beam which is subjected to a transverse impact
force. The procedure includes the effect of interaction between the equipment
and the structure, which is particularly significant in the case of tuning.
After setting up the equation of motion of the combined system, a matrix
perturbation method is employed to derive the modal properties of the combined
system in terms of that of the individual subsystems. Once this has been done,
a modal analysis approach is applied to determine the response of the
equipment.

In the case of tuning or nearly tuning, the two tuned modes are still
coupled after modal transformation. To obtain their contribution to the
equipment response, it is found convenient to use the Laplace transform.. An
estimate of the maximum response of the equipment items, which turns out to be
a quite simple expression, convenient for engineering practice, is obtained
in terms of the response spectrum describing the transverse impact on the
structure. A numerical example is calculated for both the modal properties and
the equipment response, and a comparision is made between the proposed method
and results obtained by a direct numerical integration of the governing

differential equations of motion using the CAL computer program [9] with the



Newmark integration method. The comparision shows good agreement between the

two results.

Analysis
1. Equation of motion of the combined system
Consider an equipment-continuous structure system, modeled as a simply

supported uniform beam to which m concentrated masses are attached. If we let

v t) = ) e (U (1) and u (¢)
i=1

be the displacements of the beam and the equipment, respectively, where the
wi(x) are modal functions of the beam and the Ui(t) are the generalized

coordinates of the beam, the Lagrangian of the combined system is ‘then given

by
n m
1 - - 1 -2 1
L=3) M, U (U (0) + 3 Y mu (t) - : } K, U5 (), (¢)
i, j=1 = i,j=1
m
1 2
-5 ) K Ivix0) - u (0] (1.2)
r=1
where
d?¢, (x) d2<pj(><)
Mij = pawi(x)wj(x)dx Kij = | EI dx
0 0 dx? dx>2

In the above, pa is the linear mass density of the beam, EI is the beam

stiffness and X is the location of the attachment point to the beam of the
th . .

T equipment item.

The generalized forces related to the loading and the damping are,



respectively,

m n
Fyo= p(0)es(x,) = ) epoy(x) ) [os(x U, () = u ()] (1.3)
r=1 j=1
n
£= e [u (t) - ) o (x )U,(t) (1.4)
i=1

The beam is taken to be undamped, c. represents the damping coefficient of the
th . . . . .

T equipment item, and p(t) is the transverse impact force applied at the
location X  on the beam.

Substitution of expressions (1.2) and (1.3) into Lagrange’'s equation
d [ aL ] aL

ac F (1.5)

aq - qu= s

results in the differential equation of motion of the combined system:

MY + CY + KY = P (1.6)
Here
= mrﬁrk
I
- T
3 Crérk L Cr¢i{xr)]
C = m
—Crwi(xr) E Crwi(xr)wj(xr)
~ r=1
k 6 [k o (x )]
r rk r'i‘vr
K = m
2
SO R T E kpes (200 (%)
1 r=1 J




Y= (. Ut P = (0. po(x))
where 5rk is the Kronecker delta. The superscript T denotes matrix
transposition.

Classical matrix perturbation theory, which is the main method used in
this paper to determine the modal properties of the combined system, has
proved to be a powerful and convenient tool for the analysis of
equipment~-structure systems. Since the procedures for utilizing this method in
our analysis is straightforward, only the main results are given in this
paper, without details. The interested reader can find the basic principles of
classical matrix perturbation theory elucidated in reference [1].

The eigenvalue problem associated with equation (1.6) is given by
-AMy + Ky = 0 (1.7)
Using the linear transformation
v =Ty’ (1.8)
and premultiplying equation (1.7) with TT, the egation (1.7) takes the new

form suitable for using matix perturbation

A o= By (1.9)
where
_ Te 4]
T =
0 T
s

in which Te is the normalized modal matrix of the fixed base equipment and Ts
is an nxn unit matrix.

and



r iT
2 eyl 2
“r°rk [ “r'r ]
— T
E-_—TKT= 1 m 1 1
_— > —
~p3~2 Q 5..+§ w3272 ~2
TTr i7ij rrirj
& r=1 J
m X
P 2 a P
in which «~ = 2 sin is the effective mass ratio, and w 1is the
Pq palL L r

. th . .
undamped natural frequency of the fixed-base r equipment item.
Attention is now restricted to the case where the mass of each equipment

item (mp, p=1,2,...,m) is small compared to the mass of the beam (pal), so

1

that all of the 7Zt terms appearing in E will be small compared to 1. Assuming

1 1

that all of the wgé are of the same order, namely, +2 << 1, these can be used
as the perturbation parameter in the analysis. Classical matrix perturbation
establishes that the second order terms in E can be neglected in the
computation for the eigenvalues Ai and the associated eigenvectors ¢£. Thus,

equation (1.9) can be rewritten as

AN = [H + W]y (1.10)
where
2
mrérk 0
H = (1.11)
0 035, .
i7ij
and
1
o ey
W o= s (1.12)
-w3+2, ¢}
r ri



2. Completely detuned case
For the completely detuned case, none of the w; are equal, or nearly
equal to the Qj' Classical matrix perturbation then yields the following
results for the eigenvalues and eigenvectors.
2.1 Modal properties

The zeroth order problem of equation (1.10) gives

Aio)z wi k=1,2,....m
(2.1.1)
A0) _ g2 i=1.2,....n
m+1 1
and ¢§O) = e, j=1.2,....m*n (2.1.2)

where ejis a (m+n)xl vector whose ith component is one and zero otherwise.

It can be easily verified that A(l), which is the first correction of A,
is equal to zero. Thus the eigenvalues to the first order are given by (2.1.1)
and (2.1.2). In other words, the natural frequencies of the combined system
can be approximated by the frequencies of the individual subsystems. However,

there are certain corrections to the eigenvectors of the combined system which

are
m+n =
0
(1) _} (0) _
j=1 k
(2.1.3)
m+n
B
(1) _} .(0) _ s
¢m+s - Cm+s,j\pj I A
j=1 0
My i
where Ak is a nxl vector with components ‘;zfj7¥;” and Bs is a mxl vector
k i



r,s
with components
P wZ - Q?

2 . where By j = —W

zero vectors, respectively. Thus, the eigenvectors are to first order given by

Cx
s _ ,.(0) A1)
Ve =Vt T s A
" kd
(2.1.4)
(g
T () RN ¢ § T
¢m+s— ¢m+s * ¢m+s - e
\ SJ

Putting expressions (2.1.3) and (2.1.4) together and using the transformation
(1.8) result in the modal matix of the combined system, which is normalized

with respect to the mass

1 —z ]
m_;b " “rj
r rk 02 — o2
- J r
¥ = T\ll' = (215)
Hik I
2 _ 02
W Qi

2.2 Response of the equipment
When the frequencies of the combined system are well spaced, the
model can be uncoupled by the modal analysis method directly. Insert the
transformation Y = yX into equation (1.6) and pre-multiply the resulting
equation by wT. We are led to m+n uncoupled equations on the modal coordinates

X (to first order). That is,
LA - 2 _
X+ 2§rwrxr tox = Drp(t) 2.2.1)



2 -
Xm+i * Qm+iXm+i - ¢i(xp)p(t)

n
where D = }

The solution to equation (2.2.1) can be obtained from ordinary differential

equation theory as

-1 * ~Ew_(t-T)
x (t) = o J‘ D p(r)e >'r sinw_(t-7)dr (2.2.2)
r r JyT r
-1t
Xm+i(t) = Qi Jg ¢i(xp)p(7)51nQi(t—T)dT (2.2.3)
Transforming the response into real space by using Y = yX, we obtain the

displacement response of the equipment as

1 1

nom «pi(xp)uir — nom <Pi(xp)uir | |
rrisinw t + } (Qi ~ wi)Qi 51nQit }*p(t) (2.2.4)

i=1

Y= E (02 - 0o ©
. r i‘Tr
i=1
where

t
F(t)p(t) = fOF(t—r)p(-r)dr

3. Tuned and nearly tuned case
A particular difficulty arises in the modal analysis of the combined
system if closely spaced modes exist. This is due to the existence of a
degeneracy in the unperturbed system, which means that certain (or all)
eigenvalues are associated with more than one eigenvector. By the so-called

subspace method [1], the degeneracy could be broken and the modified



eigenvectors could be obtained to construct the modal matrix which is
available for uncoupling all the well spaced modes to finally get the
equipment responses. An alternate approach, however, is needed to get the
tuned equipment response because the modal matrix fails to uncouple the tuned
modes. In the proceding analysis, a two-fold degenerate problem is studied.
the two tuned modes are set to be WL and Ql' First, the modal matrix is
obtained by a subspace method, which can be applied to get all the responses

of the well spaced modes. Then the Laplace transform is employed to determine

the response of the tuned modes.

3.1 modal properties

The eigenvalues for the tuned case (to first order) are

AL = Aio) + xfl) =v? r=1,2,....m r #k (3.1.1)

- Aé\fz + xrfﬁl_z - i=1,2,....n i # 1 (3.1.2)
1

and A, = 7\}((0) + xf{l) = 2[1 + (v, + a?))?] (3.1.3)
1

A = A0 D) gepy (v + @27 (3.1.4)

where 0 = (wk + Ql)/2 is the average frequency and g = (wk - Ql)/Q is the

detuning parameter.The eigenvectors are

T i
\pr = , \pm+i = r#k, i#l (3.1.5)
a e, :
r 1
and
_ (0) (1) .k k k k T
Y = ot Y o= (\Pl ..... ¥ A . \Pmm)
(3.1.6)
_ (0) (1y _, 1 1,1 1 \T
Vp =¥t vy oE (‘pl """ Yoo ¥me \pm+n)
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where

1 1 i
K mizbi”flg K quﬁi
Yr = ”_55~:'5§—— : Ymbi = "55_:"65"
11 1 r#k, i#1 (3.1.7)
) m£5¢§’§} ) 9273;5
Yr = —65—:~;§—_ Vmti = Q? - 02

When r=k and i=1, the elements are

1

v =m? Wt
. (3.1.8)
W = v = 1
where
r r
C = [(atl + )7 - a 12 (3.1.9)

3.2 Response of equipment

Because of the tuning effect between modes k and 1, the modal
matrix ¢ fails to diagonalize the system as occured in the completely untuned
case . Although we could uncouple all the detuned modes by applying the
transformation Y = yX, and obtain their response by modal superposition,
further work is needed to obtain the response of the tuned modes. This can be
done by several alternate approaches. One is to use the Laplace transform
method. Applying the transformation Y = YyX to equation (1.6) and

pre-multipling by wT result in a set of uncoupled equations

11



X+ 28 © R min = Drp(t) r#k (3.2.1)

2 — <
X]m+i + Qm+1xm+1 = m+1(x Ip(t) il (3.2.2)

and two coupled equations

1"

mX + cX + kKX =p

(3.2.3)
where
_ 1 0 _ 1
n=0)| 5 9] -0 [} L] (3.2.9)
(L40)+2072 4y | (1-C2)  (C2-1)72 +2a
k =0 (3.2.5)
(€ -1)22 420, (€ (1+0)-20+2 - | (10 )

and p = p(t)[ak, ale with

1

2
noog, (x )%~ kl
ak = ‘Pl(xp)g + E 02 - Qf
i=1
i#l
1
2.2
n «pi(xp)ﬂ LY
ap = ¢y(x)) + 2 Q2 - 02

i=]

i#£l
In order to get the response of the tuned modes, we use the Laplace
transformation and residue theory to solve equation (3.2.3). The transformed

equation is

2 v Y o
(s%my g+ sepp* Ry )X+ (sepot k)X, = ap

11

_ (3.2.6)
2
k21)X1+ (s®m,,+ sc

(seqq+ oot S99t Koo)Xy = ajp

12



where s is Laplace transform parameter. The solution of equation (3.2.6), by

Cramer’s rule , is
Xl(s) =3 P XZ(S) =3 P (3.2.7)
where A, Al’ A2 are the usual determinants employed in Cramer’s rule. The

inversion of expression (3.2.7) directly gives the displacement response of

the two tuned modes in the transformed space. That is

1 A.
_ J = st
Xj(t) =50 J;X__pe ds (3.2.8)
r
If p(s) is taken to be 1, then (3.2.8) yields Green's function XG for the
solution. Thus (3.2.8) can be rewritten as

t —_—

X.(t) = J\X (t-T)p(T)dr (3.2.9)
J o ©

By using residue theory, the Green’s function can be obtained as follows (to

first order)

§
" wl(x )e-—;":Qt pQt 60t
XG = P [—eklsinh“g_bosﬂtcos‘g‘ -
Q1+02) (p+6%)
pflt 00t

- eklcosh“g"sinﬁtsin‘i—‘+

pQt pQlt 80t

+ (ekgsinh“g“'~ ek3cosh‘5‘)sinﬂtcos 5 ~

pflt pflt a0t

- (ekzcosh‘g“'— ekBSinh“g—)cothsin“g“'] (3.2.10)

£

L e x)e 20t POt 60t
XG = [~ellsinh“§“Cothcos_§_ -
Q(1+02) (p®+67)
pQt 80t

ellcosh‘é”sinﬂtsin—é—'+

pilt pQt 80t

+(e12sinh‘§“‘— e13cosh“§“)sin0tcos““' -

2
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pflt pllt 60t

—(elzcosh”i“’~ elBSinh“E“)cothsin—g‘j (3.2.11)
where
z L
ekl = p’Yil + §(9§ - ap) ell = p(a + g712{l) - 6%
L Lz
ek2 = 9’712{1 - {(pE + aB) 812 = p§ + e(a + cwil)
ekB = C(pz + 82) 613 = —(pz + 92)
and
) =vé {[(7k1 - E2 + a?)? + E202]? + (v - E°+ az)}2 (3.2.12)
1 L
P =vé {[(wkl - E2 + a?)? + F202]2 - (v, - €+ a2)}2 (3.2.13)

Expression (3.2.9) is the response of the two tuned modes. The response of all
the other detuned modes are similar to those given by expressions (2.2.3) and
(2.2.4). It follows that the responses of the equipment items of the combined

system in real space are, by taking the transformation Y=yX, given by

?y(x) . |
Yk = p(t)*{ 1 [XG(t) + gXG(t)] +
,72
kl
n ‘Pl(xp)‘Pl(Xk)Qz n ‘pl(xp)‘pl(xk)n _'E—Qt
) sin t + ) e 2 sinﬂt} (3.2.13)
2 _ z 2 _ 2
i=1 (@ Qi)Qi i=1 (Qi %)
i#l i#l
oy (x )02 . 1
Y, = p(OM{ > (X - xieo)] +
n ¢y (xp)ey (x)of ey (e (el £ ¢
sinQ t + E e 2 T sinwrt} (3.2.14)
2 _n2 2 _ .2
=1 (op 7099 =1 (9 )
i#l i#1
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We can see from expression (3.2.13) that the first term in the braces is
dominant because the second and the third, which are the contribution from the
nontuning modes and nondominant terms of the tuned modes, are higher order in

comparision with the first one.

4. Analysis of response spectrum

The results obtained in the previous sections can be employed for
equipment response analysis in the time domain if a specified time history
were available. In most cases, however, the quantity of interest 1is the
maximum response of the equipment not the response as a function of time.
Because the design spectrum usually is readily available, the following
section will focus on the procedures to derive an estimate of the maximum
response of the equipment in terms of the design response spectrum. The
maximum response, for the completely detuned case, can be expressed by the

conventional square root of the sum of the square procedure in the form
‘Pl(xp)‘Pl(xr) 2

_ 2
Tmax = { [ w? - Q2 wrSD(Ur’Er)] *
i=1 r 1

n e (x )e (%)) o

*) [ 22 - o2 “rp(%,0) ] }; (4.1.1)

i=1

where SD(w,f) is the given design response spectrum evaluated at frequency
and damping £. For the tuned or nearly tuned case, the maximum response of the
equipment given in expression (3.2.13) consists of two parts. One is dominant

and takes a fairly long time to attain its maximum value because it is

15



governed by energy transfer from the structure to equipment through beating.
The other one, representing the nondominant contribution, is conventional and
would achieve its peazk during the excitation or shortly thereafter. In the
perfectly tuned case, the nondominant terms are much smaller than the
dominant one and could be neglected. Thus expression (3.2.13) can then be

simplified as
¢y ()
RO e CH ORI

2

kl

-
144

Y

t
B J\e"f(t—T)/z[klsinhu(t—T)cosg(t*T)COSK(t‘T) +
0

+ klcoshu(t~T)sinQ(t-T)sinA(t—T) +
+ kzsinhu(t—T)sinQ(t-T)cosK(t-T) -
- kZCoshu(t—T)cosQ(t—T)sink(t—T)]p(T)dT (4.1.2)
where here p = §Q0/2 and A = 6(/2 and
o1 (x;)e) ()
B = 1
M2 (1 + (?)(p” + 6°)

i 1
Y 2 _ a2 2
k1 = pvkl(l + (%) k2 = Gvkl(l + (2)
Following a procedures similar to that presented in [7], expression (4.1.2)

can further simplified as

\01 (Xp)‘Pl (Xk)

v F RE(t-T)/2
kY a7+ 62) |,

- pcoshutsinAtsinQ(t-7) + BsinhutcosAtsinQ(t-1) -

[—psinhutcosktcosﬂ(t—T) -

- Qcoshptsinktcosﬂ(t~T)}p(T)dT (4.1.3)

Because we are trying to find the maximum value of equipment response, it

16



could be concluded that the response should achieve its peak within time T
which is the beat period of a tuned or nearly tuned system. Suppose t’ is the
time when the response of the equipment attains its peak, than we have t' < T
= 2n/N and pt’ = 2mu/N = 2wp/6. If we consider the special cases £=0, or a=0,
then p/6 = 0. If af << v-f%+a® then it is easy to see that p/0 is of higher
order, i.e., p/8 << 1. This leads us to anticipate that in general, for
parameter ranges of interest, p/6 << 1. This is illustrated in Figs. 2a and 2b
where p/6 is shown for a range of values of the parameters «,f and ~. (For
example, p/6 is less than .04 when v = 0.01 and § = 0.01) Thus, expression

(4.1.3) can be approximated as

"‘Pl(xp)‘pl(xk) te—Qf(t-T)/2

Yk ™ 00 sinAt J;

To express (4.1.4) in terms of the response spectrum of the excitation, the

cos({ t-1)p(7)dr (4.1.4)

reader is referred to [7] in which the derivation is given in detail.

The estimate of the maximum displacement of the equipment is

oy (x)e ()

I Y, ImaX = S, (2.8/2) (4.1.5)

062 + £2)2

where

I' = arctg(ANp)/(Nu) = arctg(8/8)/(6/8)
and SV(Q,§/2) is the relative velocity response spectrum for a lightly damped
single-degree-freedom oscillator of frequency 0 and damping factor §/2
subjected to the impact force p(t). The derivation gives the result naturally
in the form of the relative velocity spectrum, but design information is
generally provided in the form of a pseudo-velocity spectrum. However, the

pseudo-velocity response spectrum is nearly equal to the relative velocity

17



spectrum for systems with moderate or high frequencies and differs only for
very low-frequency systems. Thus, for most cases, Srv in Eq.(4.1.5) can be

replaced by Sv' the pseudo-~velocity response spectrum. Recalling that

0°S; =S =S (4.1.6)
we have
0y ()0 O e
’ Yk Imax = y Sd(Q,§/2) (4.1.7)
(62 + §2)2

5. Numerical example
The results obtained in the previous section are applicable to a
system with m equipment items. For simplicity and with no loss of generality,
however, a system with a single equipment item is studied as a numerical

example to test the effectiveness of the results developed in this paper.

5.1 Modal properties

The modal frequencies and mode shapes are first computed. Two

examples are considered, one with the equipment on the beam at X, = L/4 and
the other with equipment at Xy = L/2. The effective mass ratios are set to be
v = 0.001, 0.01 and 0.1, respectively. For each of these cases, results are

obtained for the equipment tuned to the first mode of the beam (Table 1), and
then for tuning to the third mode (Table 2). The modal properties calculated
by expressions (3.1.1) - (3.1.8) are compared with the results obtained by the

CAL program which represents an ‘exact’ result. To describe the error in the

18



ith mode shape, a difference function e, = ¢§al - W?px. [8] is introduced

cal . . .
where wia is the exact mode shape normalized with respect to the mass of the

PX is the approximate mode shape computed according to

combined system and ¢?
the approximate formula developed in this paper. Then the % error in the mode
shape is calculated as eZMei. It can be seen from Table 1 and Table 2 that
the frequencies by the approximate formula are quite accurate in comparision
with the exact one. Even for the tuned modes there is only a slight error. We
can see that the maximum error when the equipment is tuned to the first mode
of the beam does not exceed about 3% . The error in the mode shape, just as is
true for the error in the frequency, is concentrated at the tuned modes. An
interesting point to observe is that the error in the mode shape is

essentially independant of the mass ratio for the range of parameters

considered in this study.

5.2 Response of equipment
The maximum response of the equipment for a range of the detuning
parameter was computed by both the formula developed in this paper and by the
use of the CAL program (employing Newmark step-by-step integration). The beam

used in this example had the properties, EI = 49.59MNm? (1.728x1010

1b.inch?),
pA = 2.571x104kg/m (0.3729 1b.sec.?/inch®), L = 3.658m (120 inch), resulting
in a fundamental period Tf = 0.0426 sec. The equipment was located at X, =
L/4, and the mass ratios v = 0.001, 0.01 and 0.1 were used. Damping was set at
€ = 0.001, and the impact force history was taken to be a rectangular pulse of

duration 0.05 seconds applied at xp = 3L/4. From Figs. 3a,b and ¢, we see good

agreement between the exact and approximate results for v = 0.001. Eq.(4.1.7)
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was used for the tuned case and Eq.(4.1.1) was used for the detuned cases. It
is seen that as the mass ratio increases, the error increases, especially when
the equipment is nearly tuned. But for the case of perfect tuning, which is
the most important one, the error is still within acceptable accuracy. Another
interesting fact is that all of the maximum responses estimated by the
response spectrum method are seem to be upper bounds on that obtained by the
Newmark integration algorithm. Fig.4 shows the displacement response history
(computed from Eq.(3.2.13)) for a system with a = O, € =0.05and v+ = 0.01. It
is seen that the response history represents a damped beating phenomenon with

a beat period of approximately 0.5 seconds.

Conclusion

In this paper, we present an approximate method for determining the
response of an equipment-continuous structure system. The modal properties of
the combined system are obtained based on the modal properties of the
individual subsystems by the use of classical matrix perturbation theory. By
employing a modal analysis approach and the Laplace transform, the response
of the equipment is obtained. An estimate of the maximum response of the
equipment is presented in terms of the response spectrum of the excitation. A
numerical example shows that the modal properties of the combined system are
in close agreement with the exact results. The maximum of the transient as
estimated by the results of this paper also show good agreement with exact
results, when the mass ratio is small. As the mass ratio increases, the

accuracy of the estimation deteriorates, as is to be expected.
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Appendix 1

Notation

Ak nxl vector (see (2.1.4))

BS mx1 vector (see (2.1.4))

c. damping of equipment

C damping matrix of combined system

Dr factor (see (2.2.1))

e, (m+n)x1 vector

E matrix (see (1.9}))

H diagonal matrix of fixed base natural frequencies
kr stiffness of equipment

Kij generalized stiffness of beam

K stiffness matrix of combined system
m_ mass of equipment

Mij generalized mass of combined system
M mass matrix of combined system

P(t) 1impact force

SD response spectrum for impact excitation

T transformatiom matrix (see (1.8))
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u displacement of equipment

U displacement of beam

X displacement of equipment in transformed space
X, Green’s function

Yr displacement of equipment in real space
a detuning parameter

v mass ratio

6ij Kronecker delta

A determinant

¢ factor (see (3.1.9))

6 factor (see (3.2.12))

¢. mode shape of beam

wi eigenvector of combined system in real space
wi eigenvector of combined system in transformed space
w natural frequency of equipment

{2, natural frequency of beam
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concentrated mass attached concentrated mass attached

at x=1/2 at x=1/4
error error error error
exac fre. in fre. 1in mode exact fre. in fre. 1in mode
mode (rad./s) (%) shape (%) (rad./s) (%) shape (%)

0 9.715 -0.0 8.89 9.714 -0.0 17.32
1 10.027 -0.03 8.27 10.027 -0.03 17.31
2 39.478 0.0 0.0 39.481 -0.0 0.0
3 88.827 0.0 0.0 88.827 -0.0 0.0
.001 4 157.914 0.0 0.0 157.914 0.0 0.0
5 246.740 0.0 0.0 246.740 0.0 0.0
6 355.306 0.0 0.0 355.306 0.0 0.0
7 483.611 0.0 0.0 483.611 0.0 0.0
8 631.655 0.0 0.0 631.655 0.0 0.0
9 799.438 0.0 0.0 799.438 0.0 0.0
0 9.388 -0.27 9.73 9.385 -0.23 17.28
1 10.375 -0.23 7.65 10.371 ~0,19 17.28
2 39.478 0.0 0.0 39.478 -0.07 6.0
3 88.832 -0.0 0.0 88.832 -0.0 0.0
.01 4 157.914 0.0 0.0 157.914 0.0 0.0
5 246.742 -0.0 0.0 246.7472 -0.0 0.0
6 355.305 0.0 0.0 355.309 -0.0 0.0
7 483.611 0.0 0.0 483.612 -0.0 0.0
8 631.655 6.0 0.0 631.655 0.0 0.0
9 799.438 0.0 0.0 799.438 0.0 0.0
0 8.429 -3.17 12.92 8.405 -2.90 18.38
1 11.548 -1.95 6.40 11.503 ~1.56 18.33
2 39.478 0.0 0.0 39.742 ~-0.06 2.12
3 88.881 -0.07 0.0 88.882 -0.0 0.20
.1 4 157.914 0.0 0.0 157.914 0.0 0.0
5 246.760 -0.0 0.0 246.760 -0.0 0.0
6 355.305 0.0 0.0 355.333 -~0.0 0.0
7 483.621 ~-0.0 0.0 483.621 -0.0 0.0
8 631.655 0.0 0.0 631.655 0.0 0.0
9 799.444 -0.0 0.0 799.444 -0.0 0.0

Table 1. Comparision of natural frequencies and mode
shapes of combined system with exact values
(mass tuned to first mode of beam)



concentrated mass attached concentrated mass attached

at x=1/2 at x=1/4
error error error error
exac fre. in fre. in mode exact fre. in fre. in mode
mode (rad./s) (%) shape (%) (rad./s) (%) shape(%)
1 9.865 -0.0 0.02 9.865 -0.0 0.0
2 39.478 -0.0 0.0 39.429 0.12 0.0
0 87.451 -0.05 8.64 87.502 -0.10 17.31
3 90.260 -0.04 8.64 90.313 -0.10 17.28
.001 4 157.914 0.0 0.0 157.914 0.0 0.0
5 246.758 0.0 0.0 246.758 0.0 0.0
6 355.306 0.0 0.0 355.329 0.0 0.0
7 483.619 0.0 0.0 483.619 0.0 0.0
8 631.655 0.0 0.0 631.655 0.0 0.0
S 799.443 0.0 0.0 799.443 0.0 0.0
1 9.820 0.50 0.17 2.820 0.50 0.0
2 39.478 -0.0 0.0 39.003 l.22 0.08
o 84.675 -0.48 8.85 85.150 -1.04 18.50
3 93.554 -0.42 8.41 94,094 -0.99 18.31
.01 4 157.914 0.0 0.0 157.914 0.0 0.0
5 246.924 0.07 0.02 246.924 0.07 0.0
6 355.306 0.0 0.0 355.543 -0.07 0.0
7 483.695 0.02 0.0 483.695 -0.0 0.0
8 631.655 0.0 0.0 631.655 0.0 0.0
9 799.487 0.0 6.0 799.488 0.0 0.0
1 9.405 4.93 1.47 9.399 5.00 0.0
2 39.478 0.0 0.0 35.784 10.32 3.54
0 77.610 -5.36 9.34 81.08¢ ~9.42 31.84
3 105.563 -3.46 9.69 110.639 -7.89 27.24
.1 4 157.914 0.0 0.0 157.914 0.0 0.0
5 248.609 -0.75 0.15 248.607 -0.75 0.14
6 355.306 0.0 0.0 357.726 -0.68 0.12
7 484 .461 -0.18 0.05 484 .477 -0.18 0.02
8 631.655 0.0 0.0 631.655 0.0 0.0
S 799.964 -0.06 0.0 799.939 -0.06 0.0

Table 2. Comparision of natural frequencies and mode
shapes of combined system with exact values
(mass tuned to third mode of beam)
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