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Abstract. The statistical power of Lyman-α forest Baryon Acoustic Oscillation (BAO) mea-
surements is set to increase significantly in the coming years as new instruments such as
the Dark Energy Spectroscopic Instrument deliver progressively more constraining data.
Generating mock datasets for such measurements will be important for validating analy-
sis pipelines and evaluating the effects of systematics. With such studies in mind, we present
LyaCoLoRe: a package for producing synthetic Lyman-α forest survey datasets for BAO anal-
yses. LyaCoLoRe transforms initial Gaussian random field skewers into skewers of transmitted
flux fraction via a number of fast approximations. In this work we explain the methods of
producing mock datasets used in LyaCoLoRe, and then measure correlation functions on a
suite of realisations of such data. We demonstrate that we are able to recover the correct BAO
signal, as well as large-scale bias parameters similar to literature values. Finally, we briefly
describe methods to add further astrophysical effects to our skewers — high column density
systems and metal absorbers — which act as potential complications for BAO analyses.
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1 Introduction

Our understanding of the expansion history of the Universe has progressed enormously over
the last quarter of a century. The discovery of accelerating expansion from the “standard-
isable candles” of supernovae [1, 2] brought the idea of dark energy to the fore, and it is
now considered a vital component of the cosmic inventory. Indeed, efforts to improve our
measurements of its properties are at the forefront of current cosmological research, and it is
a primary motivation behind a number of surveys past, present and future.

Several of these surveys have focussed on using the “standard ruler” of Baryon Acoustic
Oscillations (BAO) [3] in their efforts to understand the Universe’s expansion. This fixed-
scale imprint on structure formation was first measured from the correlation function [4] and
power spectrum [5] of galaxy samples from the Sloan Digital Sky Survey (SDSS) and 2dF
Galaxy Redshift Survey respectively. A number of similar measurements have been made in
subsequent years, focussing on using galaxies [e.g. 6–9] and quasars (QSOs) [e.g. 10] as tracers
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of the matter density. These tracers cover redshift ranges z ∼ 0.1 − 1.0 and z ∼ 1.2 − 1.7
respectively.

An alternative tracer exists in the form of the Lyman-α (Lyα) forest: a sequence of
absorption features that appears in the spectra of high-z QSOs as a result of Lyα absorption
of light in the neutral hydrogen gas between QSO and observer. These spectral features thus
trace the density of neutral hydrogen gas in the inter-galactic medium (IGM) along the line of
sight [11]. Indeed, analytical models developed during the 1990s showed that the Lyα forest
absorption closely traces the distribution of dark matter on scales larger than the Jeans length
[e.g. 12–14]. The Lyα forest should, then, provide a suitable means to extend measurements
of cosmic expansion via BAO to earlier in the Universe’s history. Measuring such a signal
was first discussed in [15], while the 3D correlation of flux transmission was first studied
in [16]. The BAO signal was first detected from measurements of the Lyα auto-correlation
using data from data release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS)
of SDSS-III [17–19], with subsequent improvements in DR11 [20] and DR12 [21], as well as
DR14 of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) [22]. The cross-
correlation between the Lyα forest and QSOs was first measured in BOSS DR9 [23], with
the first detection of BAO coming in DR11 [24], and improvements made in DR12 [25] and
eBOSS DR14 [26].

The upcoming Dark Energy Spectroscopic Instrument (DESI) [27] will be able to ad-
vance these measurements greatly. Over the 5 years of its operation, it will measure approx-
imately 800,000 QSO spectra with z > 2.0, 3 times as many as in the final eBOSS dataset
(approximately 270,000). Ahead of such an increase in statistical power, it is vital to be
able to sufficiently test analysis pipelines to ensure that they do not introduce any biases.
Equally, it is important to be able to quantify exactly how secondary astrophysical effects will
impact upon BAO measurements. The best way to carry out both of these tests is through
the development of mock datasets [e.g. 28–30] — synthetic realisations of a survey for which
cosmological and astrophysical parameters can be easily controlled. Producing such datasets
must be computationally inexpensive in order to allow for generation of a large number of
realisations, but the data must also provide realistic representations of the survey itself.

In this work, we introduce a package designed to produce mock datasets for current and
future Lyα forest BAO analyses, LyaCoLoRe. In § 2, we describe the methods used to generate
such datasets, including the use of a Gaussian random field to generate the 3D correlations
and the subsequent post-processing to yield realistic skewers of transmitted flux fraction.
The methods to determine the optimal values of parameters used in these transformations
are detailed in § 3. We then verify that the datasets are able to fulfil their purpose for BAO
analyses in § 4, measuring correlation functions in the same way as recent analyses from
BOSS and eBOSS. In § 5, we introduce and briefly test additional astrophysical effects that
LyaCoLoRe is able to include, before summarising and concluding in § 6.

2 Making the mocks

The requirement of mocks to be computationally inexpensive but also large in volume pro-
hibits the use of hydrodynamical or N-body simulations in their construction. Instead, Gaus-
sian random field methods can be used to generate a linear density field in a large box. This
method does not capture non-linear evolution, generating data based solely on an initial
power spectrum, but is orders of magnitude faster than state of the art simulations. Fur-
ther, the presence of non-linear structure is not of vital importance to BAO measurements,
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particularly at z > 2 where the Lyα forest is observed [19]. As such, Gaussian random field
methods are particularly well suited to the production of Lyα BAO mock datasets. Having
generated such a box, tracers such as QSOs can be placed at peaks in the density field via
Poisson sampling according to an input bias and number density, and line-of-sight skewers
can be drawn by interpolating within the box.

Converting these skewers to mimic the transmitted flux fraction of the Lyα forest then
requires a significant degree of post-processing. Despite the speed of Gaussian random field
methods, resolution higher than O(1) Mpc/h is not possible within the computational bounds
of mock production due to memory limitations. As a result, the 1D power spectrum of the
skewers P1D(k‖) — the power spectrum measured only from modes lying along the line of
sight of each skewer — is greatly suppressed. This subsequently affects the errors on our BAO
measurements, as the 3D flux power spectrum of the Lyα forest has a significant contribution
to its error that is proportional to the 1D power spectrum, known as aliasing noise [15]. As
such, we must boost the 1D power spectrum by the addition of small-scale fluctuations in
order to ensure that our BAO errors behave correctly. Further, we must convert from density
to optical depth at each point of each skewer. The details of this relationship are complex,
but in the context of Gaussian random field mocks we are constrained to using a simple
approximation such as the fluctuating Gunn-Peterson approximation (FGPA) [31]. Finally,
we must add redshift-space distortions to our skewers. These distortions occur as a result
of peculiar velocities in the IGM, and we observe them as an anisotropy in measurements of
power spectra and correlation functions.

In this work, we use CoLoRe [32] to generate our initial Gaussian skewers, as described
in § 2.1. We then present the package LyaCoLoRe, which is able to convert CoLoRe’s output
into realistic skewers of transmitted flux fraction. The methods used in this transformation
are described in § 2.2. Finally, in § 2.3, we discuss the computational requirements of running
both of these packages. The output skewers from LyaCoLoRe then require the addition of
instrumental noise and combination with a QSO continuum before they can be considered
realistic spectra. This can be carried out in the context of DESI by a package called desisim1,
which is not discussed in this work.

2.1 CoLoRe: Cosmological Lognormal Realisations

The LyaCoLoRe mocks originate from a program called CoLoRe2, a highly parallelised code
initially designed to produce large catalogues of multiple tracers with the same underlying
density field [32]. In this work, we use CoLoRe’s lognormal density model for speed, though
first and second order Lagrangian perturbation theory methods are also available. From this
density field, CoLoRe can produce a number of observables such as cosmic shear, intensity
maps, CMB lensing and integrated Sachs-Wolfe maps. Most importantly in the context of
this work, it is also able to draw line-of-sight skewers from each object to a central observer,
interpolating the Gaussian field at intermediate points. This final functionality makes CoLoRe
well suited for Lyα forest mocks. The basic steps that CoLoRe takes in computing such skewers
are outlined in the 5-stage process below:

1. Generate a Gaussian random field δC at z = 0 in a Cartesian box according to an input
power spectrum.

1Publicly available at https://github.com/desihub/desisim.
2Publicly available at https://github.com/damonge/CoLoRe.
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2. Compute a corresponding radial velocity in each cell using the gradient of the Newto-
nian gravitational potential φ:

vr(z = 0) = − 2f0

3H2
0 ΩM

(er · ∇)φ(z = 0), (2.1)

where f0 is the logarithmic growth rate at z = 0, H0 is the Hubble constant, ΩM is the
matter density parameter, and er is the radial unit vector.

3. Calculate the redshift of each cell (taking the centre of the box as the observer) using a
given input cosmology, and de-evolve the fields to that redshift using the corresponding
linear growth factor.

4. Carry out a lognormal transformation of the Gaussian field, and Poisson sample it using
an input number density n(z) and bias b(z) to obtain a set of sources (QSOs in our
case).

5. Compute line-of-sight skewers from each source to the centre of the box by interpolating
the initial Gaussian field and the radial velocity field.

The final output from CoLoRe is a set of QSOs and corresponding Gaussian field skewers,
as well as values of cosmological variables along the skewers. The QSOs have the correct 3D
clustering properties on large scales, as demonstrated briefly in Appendix A and in more
detail in [32]. The skewers also have the correct 3D correlations, as demonstrated in § 4.

2.2 LyaCoLoRe

While CoLoRe is able to produce skewers with 3D, large-scale correlations matching a given
input in a short timeframe, its “raw” output requires significant post-processing before it
can be considered a realistic representation of the Lyα forest. To implement these stages
of processing, we have developed a Python module under the name LyaCoLoRe3. This code
transforms CoLoRe’s output into realistic skewers of transmitted flux fraction. The following
sections describe the key methods that LyaCoLoRe uses to do so, with each step represented
visually in Figure 1.

2.2.1 Adding small-scale power

In order that the memory requirements of running CoLoRe do not become overwhelmingly
large, we are limited to using a grid of 40963 cells. Requiring that this encloses the volume of
a full Lyα survey limits us to using a low-resolution grid, with cells in CoLoRe’s raw output
of O(1) Mpc/h. In the context of the Lyα forest, we observe clustering on scales down
to the Jeans Length, approximately 100 kpc/h [33] and an order of magnitude lower than
the resolution we can feasibly achieve. While BAO is a large-scale phenomenon, imposing
that the synthetic data has approximately the right small-scale properties ensures that the
covariance matrices in our final analyses are realistic. We address this by first interpolating
CoLoRe’s Gaussian skewers — labelled as δC — to a smaller cell size, using nearest grid point
(NGP) interpolation in order to avoid introducing additional smoothing.

3Publicly available at https://github.com/igmhub/LyaCoLoRe.
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Figure 1. A sample skewer shown at the different stages of transformation from “raw” Gaussian
CoLoRe output to a final LyaCoLoRe flux skewer. The top panel shows the addition of small-scale
power to the skewer as described in § 2.2.1, converting δC to δG. The transition to the second panel
shows the lognormal transformation from § 2.2.2, and moving to the dotted line of the third panel
shows the fluctuating Gunn-Peterson approximation (FGPA) transformation from the same section.
The application of redshift-space distortions (RSDs), as described in § 2.2.3, shifts the dotted line to
the solid line in this third panel. The final transformation from optical depth to flux, as described
in § 2.2.4, maps the third to the bottom panel. Here, the Hubble flow is used to map distances (top
horizontal axis) to observed wavelengths (bottom horizontal axis).
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We then generate a set of new, independent Gaussian skewers δε on the grid of smaller
cells according to an input 1D power spectrum. We take the k-dependence of this 1D power
spectrum to follow that used in [34]:

P1D(k) ∝ [1 + (k/k1)n]−1, (2.2)

where the normalisation is chosen to ensure unit variance. The additional skewers are then
scaled by a common factor in order to control the variance in the extra power added. This fac-
tor is allowed to vary along the length of the skewers, effectively adding a redshift-dependency
to the extra power. Hence, we write this factor as σε(z). The parameters n and k1, as well
as the function σε(z) are free, and we choose them according to the process described in
§ 3, aiming to achieve the correct 1D power spectrum across a range of redshifts. The new
skewers are then simply added to each of the existing ones to form our final Gaussian skewers
δG:

δG(z,x) = δC(x) + σε(z)δε(x). (2.3)

The top panel of Figure 1 shows a sample skewer before and after the extra small-scale
power is added. As the additional skewers are independent from one another, there are no
correlations between the structures added to each of the skewers. When we measure the 3D
correlation function, we ignore contributions from pixel-pairs in the same skewer and so this
process of adding small-scale power will not affect the 3D correlations of the Gaussian field
beyond simply adding noise.

It is worth noting that we could have chosen to add extra small-scale fluctuations to the
velocity field and achieved the same correct 1D power spectrum. However, allowing parame-
ters describing extra small-scale velocities to vary freely would require the re-computation of
the redshift-space distortions weights matrix (see § 2.2.3) at each step of the tuning process
(see § 3). This is a considerably more time-consuming procedure than simply carrying out
the inverse Fourier transform of equation (2.2). As such, we choose to only add small-scale
fluctuations to the Gaussian field and assign to each of the small cells the velocity of the
nearest large CoLoRe cell.

2.2.2 Transformation to optical depth

In LyaCoLoRe, the transformation from skewers of the Gaussian field to ones of optical depth
is governed by two equations. The first of these is known as a lognormal transformation.
This approximates the density of the baryonic matter field closely by using a lognormally-
distributed variable [35], introducing a degree of non-linearity. This is normalised so that we
may define a deviation δ from the mean density as:

1 + δ(z,x) =
ρ(z,x)

ρ(z)
= exp

[
D(z)δG(z,x)−D2(z)

σ2
G(z)

2

]
, (2.4)

where D(z) is the linear growth factor at redshift z; δG(z,x) is the Gaussian field value
from equation (2.3); σG(z) is the standard deviation of this Gaussian field and ρ(z,x) is
the lognormal density at redshift z and position x. This transformation is shown by the
transition from the top to the second panel in Figure 1.

The second equation allows us to transform these deviations in density into an approx-
imation of the optical depth at each point. Assuming adiabatic expansion implies a tight
relationship between temperature and density of the form d lnT/d ln ρ = γ − 1 [36]. If we

– 6 –



further assume photoionization equilibrium, the temperature of the gas approximately de-
termines the number of neutral hydrogen atoms nHI ∝ ρ2T−0.7 for a given baryonic matter
density ρ [37]. As the optical depth τ is proportional to nHI [38], these two assumptions
allow us to provide an approximation for τ given ρ known as the fluctuating Gunn-Peterson
approximation (FGPA) [31, 35]:

τ(z,x) = τ0(z)[1 + δ(z,x)]α(z), (2.5)

where τ0(z) is a normalisation determined by the gas temperature and the photoionisation
rate, and α(z) = 2− 0.7(γ(z)− 1) is determined by the temperature-density relation. These
parameter functions τ0(z) and α(z) are free, and the method for choosing them is described
in § 3. The transformation to optical depth is shown by the transition from the second panel
to the dotted line of the third panel in Figure 1.

2.2.3 Adding redshift-space distortions

The Lyα forest exists as a sequence of absorption features due to the gradient in the re-
cessional velocity of the IGM caused by the Universe’s expansion. Features are redshifted
according to their distance from the observer, appearing in a spectrum at an observed wave-
length λobs = λα(1 + z) for λα the Lyα wavelength, and z the absorption redshift. However,
peculiar velocities in a region of gas cause its redshift to differ from that due to expansion
alone. These effects are known as redshift-space distortions (RSDs), and can be induced
by a number of different effects. In particular, RSDs due to gravitationally-induced linear
velocities in the IGM are calculated by CoLoRe: as mentioned in § 2.1, it produces velocity
skewers quantifying this effect by calculating the gradient of the Newtonian gravitational
potential.

The transition from real- to redshift-space in each skewer can be thought of as an integral
over velocity space of the real-space optical depth field multiplied by a kernel K:

τ(s) =

∫
τ(x)K

(
s− x− vr

(
x|T (x)

))
dx, (2.6)

where x and s are velocity coordinates along the skewer in real- and redshift-space respec-
tively, vr is the radial peculiar velocity, and T is the temperature. The choice of K depends
on the complexity of the physical effects that you wish to capture. Choosing a suitable
Gaussian kernel allows the inclusion of thermal broadening effects: the apparent spreading
of the gas’s optical depth contribution in redshift-space due to random thermal velocities of
the gas atoms. This is implemented as an option within LyaCoLoRe, the details of which are
described in Appendix B. However, we find that the width σv of this Gaussian kernel is often
smaller than the typical cell size used in LyaCoLoRe when adding small-scale fluctuations.
Thus, the net effect of accounting for this physical process is small, and so for the purposes of
this work we choose the most straightforward option, setting K(x) = δD(x) for δD the Dirac
delta function. This shifts the optical depth along each skewer according to the peculiar
velocity, and does not attempt to include any further physical effects.

In order to implement equation (2.6), we determine a matrix of weights Wij for each
skewer to map its real-space cells τxj to redshift-space cells τ si via the matrix equation
τ si = Wijτ

x
j . The matrix Wij depends on the velocities in the skewer as well as the

choice of kernel K, and the details of its calculation can be found in Appendix B. Our im-
plementation conserves the integrated optical depth along each line of sight (ignoring pixels
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which are shifted to un-observed wavelengths). The matrix Wij is near-diagonal and filled
mostly by zeros. It can thus be stored in the form of a sparse matrix, and applied to any ad-
ditional absorption transitions (see § 5.2), reducing both the computation time and memory
requirements of adding RSDs to the skewers.

The addition of RSDs (without thermal broadening) to a sample optical depth skewer
is shown by the transition from the dotted to the solid line in the third panel of Figure 1.

2.2.4 Final transmission skewers

In one final stage, we convert from skewers of optical depth τ to transmitted flux fraction F
via the equation:

F (s) = exp
[
− τ(s)

]
, (2.7)

and interpolate onto a wavelength grid of the user’s choice to obtain F (λ), where λ =
λα(1 + z). These skewers are then written to disc.

This final transformation can be seen in the transition between the solid lines in the
third and fourth panels of Figure 1. It is worth noting that, while the signal in the lognormal
density deviation 1 + δ and optical depth τ skewers is dominated by over-dense regions, the
signal in flux F becomes saturated (equal to 0) at these points and does not carry a great
deal of information. Rather, the intermediate density regions — where the density is high
enough to cause some absorption but not so high that saturation occurs — are those from
which the most information can be gleaned.

2.3 Computational requirements

In the realisations presented in this work, we specify that CoLoRe generates a 40963 cell box
as a compromise between resolution and memory usage, given the large volume that we must
cover in order to realistically represent a Lyα forest survey. Generating approximately 7.5M
QSOs (across the whole sky) and drawing subsequent skewers produces a dataset sufficient
for a DESI-like survey, allowing for a significant degree of flexibility in the final survey
strategy and number densities. The computational cost of producing one such dataset is
relatively low, provided suitable multi-node, multi-core computational facilities are available.
Running CoLoRe using the input data and options specified in § 4.1 in parallel across 32
Haswell compute nodes (each with 32 cores and 128GB of memory) on the National Energy
Research Scientific Computing Centre’s Cori machine requires approximately 18 minutes to
run, equivalent to approximately 300 CPU hours. The large number of nodes is necessary
to improve the speed of the code and to satisfy its memory requirements — a total of
approximately 920 GB is needed for each run of this size. If such facilities are not available,
then the box size must be reduced or the resolution lowered.

The precise requirements for running LyaCoLoRe depend strongly on the exact choices
of input options. As an example, converting 800k skewers — similar to the number that
will be observed by DESI — from CoLoRe’s Gaussian output to realistic transmission skewers
including RSDs (though not thermal broadening effects) requires only 4 minutes when spread
across the same 32 nodes mentioned previously. If such computational facilities are not
available, then running LyaCoLoRe is still possible as its memory requirements are much
lower than CoLoRe.

A very small test dataset of 1000 skewers is available within the LyaCoLoRe repository.
It is straightforward to run LyaCoLoRe on this data on any standard laptop to generate
sample skewers or to explore the functionality of the code.
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3 Parameter tuning

A number of parameters are defined in the various transformations described in § 2.2, namely
n, k1, σε(z), τ0(z) and α(z) (see equations (2.2), (2.3) and (2.5) for definitions). These are all
free parameters, and we would like to be able to choose their values so that our final skewers
have particular properties. Specifically, we aim to match the 1D power spectrum P1D(k, z),
mean transmitted flux fraction F̄ (z) and large-scale bias bδ,F (z) (as defined in equation (4.2))
to literature values. Ignoring RSDs and the shape of the 1D power spectrum would allow the
problem to be treated analytically, but unfortunately such simplifications are unrealistic. As
such, it is not obvious how to choose our parameters correctly, and a more complex process
is necessary.

We aim to solve this problem via a minimisation process. We first define a function
that we will aim to minimise, and which takes the following steps:

1. Generate sample skewers in F corresponding to a given set of parameter values using
the methods described in § 2.2.

2. Measure the 1D power spectrum, mean flux and large-scale bias of these skewers at a
selection of redshift values.

3. Evaluate the deviation of each measurement at each redshift from literature results.

4. Quantify this deviation with a single number.

In step 2, we measure P1D and F̄ straightforwardly, excluding cells that sit at a rest frame
wavelength above 1200 Å. We measure bδ,F by calculating the response of F̄ to a small
deviation in the average density field: bδ,F = (1/F̄ ) dF̄ /dδ [39]. The literature values referred
to in step 3 are the fitting function from the BOSS DR9 P1D measurement from [40], the
fitting function of the mean flux measurement from [41] and the bias value and redshift
evolution determined by the BOSS DR12 combined Lyα auto- and cross-correlation analysis
in [25]. Using these literature results as targets, we compute a weighted error for each
measurement at each redshift value. When computing the error on the P1D, we prioritise
the low-k modes by using a k-dependent error weighting. For k < 0.02 s km−1, this is
proportional to 1/(1 + (k/k0)2) where k0 = 0.01 s km−1. This ensures the modes most
relevant for a BAO analysis — those with k / 0.005 s km−1 [15, 42] — are prioritised over
less important, high-k modes. Beyond k = 0.02 s km−1, we ignore any errors as our finite
cell size makes it unreasonable to expect realistic power at these scales, and these modes
were not measured by BOSS. We sum the errors in quadrature over all k-modes using this
weighting to produce an overall error on P1D. In step 4, the errors on each measurement at
each redshift value are summed in quadrature, and a single number produced. This number
quantifies how well a given parameter set is able to produce realistic data, as measured by our
specified properties. A standard minimisation routine can then be used to minimise it over
the space of input parameters. We use Minuit [43], as implemented by the python module
iminuit4 to do so.

We introduce a number of simplifications to improve the speed of the minimisation. We
assume that log τ0 and log σε follow the functional form:

log(X) = A0 +A1 log[(1 + z)/(1 + z0)], (3.1)

4Publicly available at https://github.com/iminuit/iminuit.
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where z0 = 3.0 and the Ai are scalar parameters. In the case of X = τ0, we fix A1 = 4.5 [44].
Further, we assume that α(z) takes a constant value of 1.65 across redshifts [45] (equivalent to
a value of γ = (2−α)/0.7+1 of 1.5, in reasonable agreement with the literature [e.g. 46, 47]).
With these simplifications, we end up with a 5-parameter minimisation problem: 1 parameter
describing the normalisation of τ0(z); 2 describing the normalisation and z-dependence of
σε(z); and 2 describing the shape of the 1D power of the small scale fluctuations (n and
k1). At each call of the routine, we produce sample skewers at a point in parameter space,
and compute their 1D power spectra, mean flux and bias parameter values in 7 redshift
bins of width ∆z = 0.2 centred at points evenly spaced between z = 2.0 and 3.2. We run
this procedure using ∼ 55, 000 skewers to obtain an initial estimate, and increase this to
∼ 220, 000 skewers in order to fine tune the optimisation.

We also introduce a parameter av by which we multiply the velocities in our skewers
in order to match the amount of anisotropy in the clustering of the Lyα forest to literature
values. This is not because the velocities from CoLoRe are incorrect — when using CoLoRe’s
unmodified velocities, we obtain the correct level of anisotropy in the QSO auto-correlation
(see Appendix A) — but is a result of the approximations in our recipe to estimate F . We fix
av = 1.3 when tuning; it is computationally costly to leave it free as a change in av requires
re-computation of the RSD weights matrix Wij (see § 2.2.3). The value is chosen on an ad
hoc basis to match approximately the RSD parameter β (defined in § 4.3) measured from
BOSS DR12 data [25].

The final values of the transformation parameters are log[τ0(z)] = 1.48 + 4.5 log x,
α(z) = 1.65, log[σε(z)] = 6.02 + 0.276 log x, n = 0.732, k1 = 0.0341 and av = 1.3, where
x = [(1 + z)/(1 + z0)] and numerical values are rounded to three significant figures where
appropriate. These are the default values used by LyaCoLoRe. The tuning process is effective,
matching literature values of P1D, F̄ and bδ,F to within 10% at almost all relevant k-modes
and z values. As an example, the P1D measured across ∼ 7.5M skewers is shown in Figure 2.
We only plot 4 redshift bins and a limited number of k-modes here for clearer visualisation.

4 Verifying the mocks

The primary motivation for creating the LyaCoLoRe mocks is to provide realistic sets of test
skewers for BAO analyses from Lyα forest surveys. Evidently then, it is important to verify
that the fundamental physical quantities studied by such analyses are correctly reproduced in
the mock datasets. We thus seek to test that the BAO signal is present and unbiased in our
mock datasets. § 4.1 describes the inputs we use in generating a collection of mock datasets;
§ 4.2 explains how we measure the correlation functions from each realisation, taking the
skewers in F directly from LyaCoLoRe’s output; and finally § 4.3 shows how we fit to a
model. We do not visually compare the correlation functions measured from mocks to those
from data, since our mock measurements are not affected by distortions from continuum
fitting. Instead we compare fitted parameter values in order to assess the performance of our
mock datasets.

4.1 Generating realisations

The input power spectrum that we use in step 1 of § 2.1 is generated by the Boltzmann solver
CAMB [48] using the Planck Collaboration’s 2015 parameters for a flat, ΛCDM cosmology [see
column 1 of Table 3 in 49]. We generate the field in a box of 40963 cells, stipulating that
this covers a redshift range 0.0 6 z 6 3.79: a volume large enough to contain a DESI-like
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Figure 2. The 1D power spectrum as measured from one realisation of LyaCoLoRe mocks. The tuning
process aims to match the measured P1D to that from BOSS DR9 data [40] for k-modes that affect
BAO analysis, as described in detail in § 3. Modes to the left of the dot-dash line at k = 0.01 s km−1

are the most important in this respect [15, 42], and these all lie within 10% of our target P1D, as
indicated by the shaded areas. Modes to the right of the dot-dash line are not important in the
context of BAO, and are not prioritised in our tuning procedure.

survey. This results in a grid of total size ∼ (9.8 Gpc/h)3, with each cell ∼ (2.4 Mpc/h)3

in dimensions. The QSO number density function is based on estimates from SDSS-III data
in Stripe 82 [50]. This is considered to represent an optimistic estimate of the photometric
capability of targeting for DESI, and results in ∼ 3.7M QSOs5 above z = 1.8 across the whole
sky. We use as an input QSO bias the fitting function defined in equation 19 of [51], which
is based on clustering measurements from the BOSS DR12 QSO sample [52]. When running
LyaCoLoRe, we use a cell size of 0.25 Mpc/h, and tune the parameters of our transformations
according to the methods described in § 3.

For the purposes of this work we generate 10 such realisations, each with unique random
seeds, and stack our results in order to test LyaCoLoRe as stringently as possible. This is
approximately equivalent to 30 times the final number of Lyα QSOs with z ≥ 2.1 that will
be observed by DESI. It is worth noting that the signal to noise ratio will be significantly
greater than 30 times that of DESI, as our skewers of F (λ) do not include any instrumental
noise, nor do they require any continuum fitting (as mentioned in § 2).

4.2 Measuring correlation functions

We test the BAO signal in our mock realisations in the standard way, by measuring correlation
functions using the contrast in flux transmission:

δF (λ) =
F (λ)

F̄ (λ)
− 1, (4.1)

where F̄ (λ) is the mean value of F (λ) in each pixel over all skewers for which that cell
corresponds to rest-frame wavelength λr ∈ [1040, 1200] Å. The skewers of F (λ) are taken

5This is lower than the 7.5M quoted in § 2.3 as we no longer require the previously mentioned flexibility
to adapt to different observing strategies in our realisations, and thus can reduce the QSO number density to
more realistic values (approximately 59 QSOs per square degree).
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straight from the processes described in § 2, with no further steps such as addition of continua
or instrumental noise. This allows us to test the methods of § 2 to as high a degree of precision
as possible, but consequently our covariance matrices may not necessarily be representative
of true measurements.

We would like to measure the 3D Lyα auto-correlation and the 3D Lyα-QSO cross-
correlation, the standard measurements made by recent Lyα BAO analyses from BOSS
and eBOSS. Both are estimated using the Package for IGM Cosmological-Correlations

Analyses (picca)6. We measure these correlations separately in 3,072 HEALPix [53] pixels
on the sky for each of the 10 realisations, and treat the resultant measurements as a set of
30,720 independent subsamples. In order to compute the correlation functions more quickly,
we rebin pixels in our final transmission skewers into larger pixels of width 3× 10−4 log(Å)
in log-wavelength. This enables us to use a larger number of skewers and thus reduce our
errors, without compromising the large-scale properties of the correlations or incurring large
computational costs.

Our computation of the 3D Lyα auto-correlation follows that of recent Lyα forest BAO
analyses [21, 22]. We first define a grid of bins in parallel and perpendicular separation be-
tween pairs of pixels — r‖ and r⊥ respectively — where each bin is 4 Mpc/h × 4 Mpc/h in
size, and the maximum separation is 200 Mpc/h in each direction. Pixel pairs are assigned to
one of these bins by using a fiducial cosmology to convert from wavelength and angular sepa-
rations to comoving distances parallel and perpendicular to the line-of-sight. The correlation
is then computed as a weighted sum of products of pixel pairs of δF within each bin. We
restrict ourselves to include only contributions from the Lyα absorption in the Lyα region,
ignoring delta pixels outside the rest-frame wavelength range [1040,1200] Å. The covariance
matrix is estimated straightforwardly by calculating the scatter between our set of 30,720
subsamples.

The 3D Lyα-QSO cross-correlation is also computed in line with recent analyses of
BOSS and eBOSS data [25, 26], as a weighted sum of pixels of δF within bins of parallel
and perpendicular separation. We use the same bin size as in the auto-correlation, but are
able to extend our minimum value of r‖ to −200 Mpc/h as the pixel-pixel pair symmetry
of the auto-correlation is not present in the pixel-QSO pairs of the cross-correlation. As for
the Lyα auto-correlation, we restrict the rest-frame wavelength range of our δF pixels to
[1040,1200] Å, and we estimate our covariance matrix from the scatter between our 30,720
subsamples.

4.3 Fitting the correlation functions

Having measured the 3D Lyα auto- and Lyα-QSO cross- correlations, we fit a model to our
measurements to obtain the location of the BAO peak and check that no significant shift has
been introduced. We also seek to measure the bias parameters of our tracers: Lyα flux F
and QSOs. These are defined by the relationship between the power spectra of the tracers,
PF (k) and PQSO(k), and the power spectrum of dark matter P (k) [54]:

PF (k) = [bδ,F + bη,F fµ
2]2P (k), (4.2)

PQSO(k) = [bδ,QSO + fµ2]2P (k). (4.3)

Here, the large-scale biases of flux and QSOs are bδ,F and bδ,QSO. The parameter bη,F is
the velocity gradient bias of flux, which serves to quantify the effect of RSDs. This is often

6Publicly available at https://github.com/igmhub/picca.
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expressed alternatively using β = fbη,F /bδ,F . The value of bη,QSO is 1 by default as QSOs
are conserved under RSDs (unlike F ) and so it is held fixed [54]. The Lyα-QSO cross- power
spectrum follows naturally from (4.2) and (4.3) as:

PF×QSO(k) = [bδ,F + bη,F fµ
2][bδ,QSO + fµ2]P (k). (4.4)

We fit a model of the correlation functions to each of the measurements individually,
and then to both correlations jointly. We use the same models as recent eBOSS analyses
[22, 26] but ignore terms relating to systematics not present in our realisations, such as metal
absorbers and high column density systems (HCDs). As we do not add continua to our
skewers, we need not worry about the distortion of the correlations by the removal of long
wavelength modes in the continuum fitting process, as occurs in real analyses. Thus, we do
not need to consider distortion matrices, the standard method for taking these effects into
account [introduced for the auto- and cross- correlations respectively in 21, 25]. The relevant
terms are described using Kaiser models [54], as described in section 4.1 of [22] for the Lyα
auto-correlation, and section 5.1 of [26] for the Lyα-QSO cross-correlation. We use the same
cosmology as used to generate the input power spectrum of CoLoRe to produce the smooth
and peak components of the fiducial model power spectrum.

The fit is carried out leaving free the parameters describing the position of the BAO
peak in the perpendicular and parallel directions:

α‖ =
DH(z)/rd

[DH(z)/rd]fid
, α⊥ =

DA(z)/rd
[DA(z)/rd]fid

, (4.5)

where DH(z) = c/H(z), as well as parameters describing the bias and RSDs of the Lyα-forest,
bη,F and βF = fbη,F /bδ,F . We also leave free 2 parameters that describe the smoothing of the
model power spectrum in the parallel and perpendicular directions, which help to account
for the effects of the low-resolution of our CoLoRe grid. When fitting the Lyα-QSO cross-
correlation individually, we fix the value of the QSO bias bδ,QSO to the input value in order
to avoid degeneracies, though when we fit jointly with the Lyα auto-correlation we are able
to leave it free.

Having defined our models, the fits are then carried out using picca. We fit only on
separations 40 < r [Mpc/h] < 160 as the lognormal density approximation used in both
CoLoRe and LyaCoLoRe begins to break down on scales smaller than this, and we are not
able to fit the shape of the correlation function well at these separations. Further, the QSOs
cannot be expected to be correctly clustered on the smallest scales due to the low-resolution
of the CoLoRe box. To determine an effective redshift of our measurements, we consider
pixel-pixel/pixel-QSO pairs which fall in bins A which satisfy 80 < rA [Mpc/h] < 120, i.e.
the bins that cover the BAO peak. The value of zeff is then given by a weighted average of
the redshifts of pairs in these bins.

The measured Lyα auto- and Lyα-QSO cross-correlations are shown in the left and right
panels of Figure 3 respectively, along with the model from the combined fit7. We plot the
correlations as ξ(r) in bins of |µ| = |r‖|/r, where |µ| close to 0 indicates correlations close to
perpendicular to the line of sight, and |µ| close to 1 indicates correlations close to parallel to
the line of sight. The model appears to be a good fit to the measurement on the scales that
we fit over, and the BAO peak is correctly placed. The two measurements deviate slightly

7Note that error bars are present for all points, but are often exceedingly small and thus obscured by the
points themselves.
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Figure 3. The correlation functions measured from 10 realisations of LyaCoLoRe datasets combined,
and the best fit lines with parameters as described in the third column of Table 1. The left panel
shows the Lyα auto-correlation, while the right panel shows the Lyα-QSO cross-correlation. Each plot
panel shows the same 4 bins in |µ| = |r‖|/r. Note that the correlations presented here do not have any
distortion from continuum-fitting and so should not be visually compared with the equivalent plots
from recent BOSS/eBOSS data.

from the model either side of the BAO bump in the highest |µ| bin, but this deviation is very
small and is noticeable due to the extremely small error bars on our measurements.

The parameters from the individual and combined fits are shown in Table 1. The
α parameters for each fit are all consistent with 1 to within 1σ. Any deviation in the α
parameters from 1 is certainly less than 0.2%, and so can be considered insignificant in the
context of a DESI-like survey. Thus, the mock production pipeline up to this stage can be
said to introduce no clear systematic bias within the capabilities of a current or near-future
instrument.

In order to compare the values of biases and βs to BOSS DR12 values [table 4 of 25],
we first use the published functional forms of each parameter’s redshift evolution to match
the effective redshift of the BOSS DR12 measurements to that of our measurements. Having
done so, we find that the two sets of values are very similar, with our measurements all lying
within the 1σ errors on the BOSS DR12 values. In particular, the values of bδ,F in each of
our fits are almost identical to the BOSS DR12 value, demonstrating the effectiveness of our
tuning of this parameter (see § 3). We do not compare the value of βQSO to BOSS DR12
measurements as our input QSO bias takes a different value at this redshift. However, the
value of bδ,QSO deduced from the joint fit is consistent with the input value (as shown at the
bottom of the column showing the Lyα-QSO only fit). As such, we can consider the mocks
to fulfil the basic criteria required of them, and thus they appear sufficient for a DESI-like
survey. We do not assess the χ2 of the fits as we do not expect our covariance matrices to
be representative of those one would expect from a real survey given the lack of noise in our
skewers.
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LyaCoLoRe BOSS DR12

Parameter Lyα Lyα-QSO Lyα + Lyα +
name Lyα-QSO Lyα-QSO

α‖ 1.000± 0.002 1.001± 0.002 1.000± 0.001

α⊥ 0.998± 0.002 1.000± 0.002 0.999± 0.001
bη,F −0.204± 0.0004 −0.201± 0.0009 −0.203± 0.0004 −0.206± 0.012
βF 1.627± 0.008 1.624± 0.012 1.624± 0.007 1.650± 0.081
βQSO 0.261 0.261± 0.0007

bδ,F −0.121± 0.0006 −0.120± 0.0009 −0.121± 0.0005 −0.121± 0.004
bQSO 3.701 3.700± 0.009

Table 1. Parameters from model fits of the Lyα auto-correlation and Lyα-QSO cross-correlation
functions measured from 10 realisations of LyaCoLoRe mocks combined. The relevant results from the
BOSS DR12 combined fit [25] — those to which our values of bδ,F and bη,F are tuned — are presented
in the rightmost column at the same effective redshift as our measurements. The parameters in the
first segment of the table are those used in the minimisation process which determines the best fit to
our correlations, while those in the second segment are calculated subsequently.

5 Adding secondary astrophysical effects

A key purpose of creating mock datasets is to quantify the impact of secondary astrophysical
effects on our measurements so that we may assess any biases that they could induce in our
cosmological inference. When generating realisations of the synthetic data, we may choose
to add or not to add different effects to each realisation, or to vary the strength of a given
effect across a range of values. The resultant impact on BAO measurements can then be
quantified. In Lyα forest analyses, two of the most pertinent effects are the presence of high
column density systems (HCDs) and additional absorption transitions. LyaCoLoRe is able
to compute both of these effects, and the methods it uses to do so are described in § 5.1
and § 5.2 respectively (alternative implementations of these effects are also possible). Once
computed, LyaCoLoRe stores skewers of metal absorption and a table of HCDs in its output.
These can then be added to the Lyα skewers during subsequent stages of the pipeline by
packages such as desisim.

We do not present here a full study of the effects of HCDs and additional transitions
on a BAO analysis. Rather, we simply illustrate in § 5.3 that their implementations within
LyaCoLoRe are broadly correct and achieve the correct levels of clustering. We leave the
study of these effects as systematics in a BAO analysis for future work.

5.1 Adding HCDs

HCDs occur in particularly dense regions of gas, and contain a number of subclasses de-
termined by HI column density. Typically, we define regions with column density NHI >
2× 1020 cm−2 as Damped Lyα absorbers (DLAs), and regions with column density 1017.2 <
NHI < 2× 1020 cm−2 as Lyman Limit Systems (LLSs) [55]. In detailed Lyα forest analyses,
it is important to be able to identify HCDs as their high densities broaden their absorption
profiles, impacting on inferred values of F over a significant wavelength range [56, 57]. Fur-
ther, HCDs are of scientific interest in and of themselves [e.g. 58–62]. As such, being able to
add HCDs to our mocks is important in maximising their realism.
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We first determine potential HCD locations by computing a threshold value of the
Gaussian field, set by an input bias bHCD(z). In our realisations, we choose bHCD(z) = 2.0
to be constant with redshift, and in line with [62]. This picks out peaks in the field that are
sufficiently dense to host an HCD. We then Poisson sample the potential locations according
to an input number density nHCD(z). This number density is imported from the default
model of the IGM physics package pyigm8 [63], which is fitted to a selection of literature
results [summarised in Table 1 of 64]. The sampling is carried out before adding small-scale
power (§ 2.2.1), as we would like the HCDs to correlate with the 3D fluctuations rather
than the 1D extra power. A column density is then allocated to each HCD using a given
redshift distribution — again from the default model of pyigm — and a radial velocity is
determined using CoLoRe’s output. The resulting catalogue of HCDs can then be interpreted
by a package such as desisim, which is able to calculate the absorption profile of the HCD
using a Voigt template, and insert it into the final spectrum.

5.2 Including additional absorption transitions

As with HCDs, absorption from additional transitions are an important level of detail to add
to our mocks and are of significant scientific interest [e.g. 51, 65–67]. Additional transitions
have a rest-frame absorption wavelength different to that of Lyα, and so absorption from
gas at the same redshift appears at different observed wavelengths in spectra. Conversely,
absorption from two different transitions can appear at the same observed wavelength even
though the regions of gas hosting the absorbers are far apart physically. As a result, the
presence of such absorption transitions acts to contaminate our measurements of Lyα flux,
and thus our correlation functions and resultant BAO measurements. Such transitions include
Lyman-β (Lyβ), as well as from silicon, oxygen and carbon gas, for example.

Similar to the method to add HCDs described in § 5.1, it would also be reasonable to
place additional absorption transitions using a Poisson-sampled “density-peak” approach, as
metals are typically produced in high density regions of the universe. However, we choose
to follow the methods of previous works [16, 30], assuming that the optical depth of each
additional transition is proportional to that of the Lyα absorber. In the context of these
mocks, the most important feature of these additional transitions that we seek to replicate
is the strength of their 3D clustering, as it is this that will quantify any impact upon BAO
measurements. In order to do so, we simply require an absorption strength (relative to
Lyα) and a rest frame wavelength for each additional transition that we wish to include.
Having calculated the skewers of optical depth in real space, we scale them differently for
each absorption transition according to the transition’s relative strength. For an additional
transition X, we obtain τX = AXτα, where AX is the relative strength and τα is the Lyα
optical depth as defined in equation (2.5). We then apply RSDs (using the same weights
matrix Wij as for Lyα), and convert to FX(λ) separately for each X according to its rest
frame wavelength. For each line of sight, the separate FX(λ) skewers are then interpolated
onto a common wavelength grid and are combined multiplicatively.

This method ensures that RSDs are correctly applied to each additional absorption
transition, and we may tune the absorption strength in order to achieve the correct large-
scale bias — and thus the correct 3D clustering — for each transition. A small selection
of additional transitions and their relative strengths are shown in Table 2. These are the
transitions most important to a Lyα BAO analysis, though further transitions can be added

8Publicly available at https://github.com/pyigm/pyigm.
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Name Rest frame Relative
wavelength [Å] absorption strength

Lyα 1215.67 1.0

Lyβ 1025.72 0.1901

SiII (1260) 1260.42 3.542× 10−4

SiIII (1207) 1206.50 1.8919× 10−3

SiII (1193) 1193.29 9.0776× 10−4

SiII (1190) 1190.42 1.28478× 10−4

Table 2. Details of a small selection of additional absorption transition that can be used in LyaCoLoRe.
The absorption strength for each absorber X has been tuned to match approximately the bias value
bδ,X found in literature [21, 22, 25]. It is possible to add more absorbers straightforwardly, but the
absorption strengths have not been calibrated beyond those listed above. These absorbers are those
included in the skewers from which the correlation function in Figure 4 is measured.

straightforwardly if needed. These strengths have been tuned to approximately match bias
values presented in the literature [21, 22, 25].

5.3 Testing astrophysical effects

We assess the methods of § 5.1 and § 5.2 by first computing the 3D Lyα-HCD cross-
correlation. The methods used to do so are largely the same as used to compute the 3D
Lyα-QSO cross-correlation, as described in § 4.2. One significant difference is that we re-
strict the HCDs in our calculation of the Lyα-HCD cross-correlation to lie in the rest frame
wavelength range [1040, 1100] Å, far from the background QSO. This restriction is necessary
to prevent the correlation between Lyα flux and QSOs from significantly affecting our mea-
surements close to the line of sight, as is discussed further in Appendix C. An effect can still
be seen in the two µ-bins closest to the line of sight at large values of r, though this is mostly
beyond the fitted range and so we are still able to measure the degree of clustering in the
HCDs well. Future studies may prefer to model this effect in order to avoid reducing the
HCD catalogue in this way, but such work is beyond the scope of this analysis. As in section
§ 4, we measure correlations on each of our 10 realisations, and combine the measurements.

The measurement of the Lyα-HCD cross-correlation is shown in the right panel of
Figure 4. Here, we fit for a model in the same way as for the Lyα-QSO cross-correlation.
Carrying out a combined fit with the Lyα auto-correlation from § 4 allows us to measure
the HCD bias bδ,HCD(zeff) = 2.26 ± 0.02. Strictly, this is not consistent with the redshift-
constant input value of bδ,HCD = 2.0 (as motivated by [62]). There are a number of potential
reasons for such a shift, but given the errors on current measurements of bδ,HCD from data
(approximately 10% in [62]), we do not investigate the agreement further at this stage.

We then compute the 3D auto-correlation from skewers of F that include contributions
from the additional absorption transitions in Table 2 (on top of Lyα absorption). The method
used to do so is identical to that described for the 3D Lyα auto-correlation in § 4.2. We only
include contributions from pixels that lie in the rest-frame wavelength range [1040, 1200] Å,
and so we do not include any absorption from the Lyβ absorber as its rest-frame wavelength
is below this range. As such, from here on we refer to the additional absorption transitions
as “metals”. As in § 4, we measure correlations on each of our 10 realisations, and combine
the measurements.
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Figure 4. The correlation functions measured from 10 realisations of LyaCoLoRe combined, demon-
strating the additional astrophysical effects that can be included in its skewers. The left panel shows
the flux auto-correlation measured from skewers including metal absorption, from which we measure
the metal absorber biases presented in Table 3. The right panel shows the Lyα-HCD cross-correlation.
The subtleties of this measurement — including the discrepancy at large-r — are discussed in Ap-
pendix C. Note that the correlations presented here do not have any distortion from continuum-fitting
and so should not be visually compared with the equivalent plots from recent BOSS/eBOSS data.

bias ×103

Absorber LyaCoLoRe BOSS DR12 eBOSS DR14

SiII (1260 Å) −1.70± 0.04 −1.5± 1.2 −2.5± 1.3
SiIII (1207 Å) −3.3 −3.3± 1.3 −8.2± 1.0
SiII (1193 Å) −3.28± 0.03 −3.5± 0.9 −4.6± 1.0
SiII (1190 Å) −4.55± 0.03 −4.4± 0.9 −5.1± 1.0

Table 3. The biases of the metal absorbers used in our realisations of LyaColoRe, along with the
values from BOSS DR12 [21] and eBOSS DR14 [22] for comparison. The bias of SiIII (1207) is held
fixed to the DR12 value as the “bump” that it creates in the correlation function is at r = 21 Mpc/h,
below the minimum separation of 40 Mpc/h used in our fits. The values from LyaColoRe are all
within 1σ of those from BOSS DR12, indicating that the absorption strengths used in our realisations
(see Table 2) result in the correct levels of large-scale clustering.

The measurement of the auto-correlation with metal absorbers is shown in the left panel
of Figure 4. By comparison with Figure 3, the effect of including these metals in the skewers is
clearly significant, particularly in the near-line of sight 0.95 < |µ| < 1.0 bin. Notably, we can
clearly see a peak at approximately 55-60 Mpc/h as a result of SiII (1190 Å) and SiII (1193 Å)
absorption, as well as a peak at approximately 21 Mpc/h from SiIII (1207 Å). This final peak
is not included in our fit as it is below the minimum separation. Less visually obvious, but
more important to the BAO analysis, is the effect of absorption from SiII (1260 Å), which
causes a bump at 105 Mpc/h, very close to the BAO peak.

In our fit of this correlation, we model the effect of metal absorbers in the same way
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as in [22], summing contributions to the model power spectrum from each combination of
pairs of absorbers. In Table 3, we show the biases for each of our metal absorbers, as well
as the values from BOSS DR12 [21] and eBOSS DR14 [22] for comparison. The bias of
SiIII (1207 Å) is held fixed to the DR12 value as the peak that it creates in the correlation
function is at r = 21 Mpc/h, below the minimum value used in our fits. The LyaColoRe

values sit within 1σ of those from BOSS DR12, demonstrating that the levels of clustering
given by the absorption strengths in Table 2 are similar to those found in data. Of course,
each absorption strength can be tuned further so that the bias of the relevant absorber more
closely matches any given value.

6 Summary & conclusions

In this work we have presented LyaCoLoRe, a tool for creating mock Lyα forest datasets
when used in conjunction with a Gaussian random field code such as CoLoRe. We first
use CoLoRe to generate skewers from a Gaussian random field, avoiding the use of N-body
or hydrodynamical simulations due to the limited volume and high computational cost of
such methods. LyaCoLoRe is then able to transform the output into realistic skewers of
transmitted flux fraction, with a number of properties defined by an automatic tuning process.
The process is computationally efficient, making it suitable for generating large numbers of
realisations of mocks with different input data and parameters.

We then demonstrate the effectiveness of LyaCoLoRe’s output, generating a number of
skewers equivalent to approximately 30 realisations of DESI and measuring the Lyα auto-
and Lyα-QSO cross-correlations. Fitting these measurements with an appropriate model
gives BAO peak positions that are consistent with the input cosmologies to within 0.2%, and
certainly within the capabilities of an instrument such as DESI. In addition, the biases of
the Lyα forest and of QSOs are shown to be very similar to those derived from BOSS DR12
data. As such, we conclude that the mock datasets generated by LyaCoLoRe are suitable for
the BAO analyses of current and upcoming surveys such as eBOSS and DESI.

Finally, we demonstrate two additional capabilities of the LyaCoLoRe package in adding
correlated high column density systems (HCDs) and additional absorption transitions to the
skewers. We leave a full analysis on the impact of such features on a BAO analysis to a future
work, but demonstrate that the HCDs are clustered approximately correctly on large scales,
and that the additional transitions affect the Lyα auto-correlation in the expected manner.

Mock datasets such as those generated by LyaCoLoRe are of use to the BAO analyses
of Lyα forest surveys in a number of ways. They are able to provide robust tests of analysis
pipelines, while they can also help in assessing the impact of astrophysical effects — such
as HCDs and additional absorption transitions — on BAO measurements. Finally, they can
be used to provide evidence when making decisions regarding the planning of large surveys,
such as in targeting and survey strategy. As such, we hope that LyaCoLoRe will be of use for
Lyα BAO surveys both present and future.
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Figure 5. The auto-correlation of QSOs, as measured from ten realisations of CoLoRe. The fit is
generally good in the fitted region, though the correlation on smaller scales than this is evidently too
high.

A The quasar auto-correlation

We measure the quasar (QSO) auto-correlation on ten QSO catalogues from ten realisations
of CoLoRe and combine our results. Correlations are computed as the weighted sum of pairs
of QSOs in a grid of parallel and perpendicular separation bins. We divide the sky into
HEALPix pixels, computing “data-data”, “data-random” and “random-random” correlations
in each one using a random catalogue of QSOs. This random catalogue has the same number
density distribution of QSOs as that in the mock data, and is generated by LyaColoRe. The
different correlation types are then combined using the Landy-Szalay estimator [68], and the
covariance is estimated via sub-sampling across HEALPix pixelisations of all 10 realisations (as
described in § 4.2). As in § 4.2, all correlations are computed using picca9. A Kaiser model
[54] is then fitted to the measurement, leaving free parameters describing the location of the
BAO peak and the QSO bias bδ,QSO. As in § 4.3, we also leave free parameters describing
the smoothing of the input power spectrum in the parallel and perpendicular directions. As
in § 4.3, we fit only in the range 40 < r [Mpc/h] < 160 as the lognormal approximation
begins to break down below this range. The resultant fit is very good in the fitted region, as
shown in Figure 5. We measure a QSO bias of 3.57±0.01 at an effective redshift of z = 2.20,
consistent with the input value of 3.56 to within 1σ.

B Redshift-space distortions: implementation details

As described in § 2.2.3, adding RSDs to our skewers requires the calculation of a matrix of
weights Wij to map each skewer’s real-space cells τxj to redshift-space cells τ si via the matrix
equation τ si = Wijτ

x
j . Wij is determined by representing each cell as a top-hat function in

9Publicly available at https://github.com/igmhub/picca.
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real space, mapping this profile into redshift space according to the choice of kernel K, and
calculating the overlap with each redshift-space cell:

Wij =

∫ suj

slj

P (s− xi − vr,i|Ti, di)ds, (B.1)

where slj and suj are the lower and upper boundaries of cell j in redshift-space, and P (x|T, d)
describes the profile of the real-space cell when mapped into redshift space. P (x|T, d) is
dependent on the distance from the centre of the cell x, the temperature of the gas T and the
half-width of the cell d. The form of P is determined by the choice of K (defined in equation
(2.6)):

P (x|T, d) =
1

2d

∫ d

−d
K(x− y|T )dy. (B.2)

As such, in the case of K chosen to be a Dirac delta function, the redshift-space cell is
represented by a top-hat function (as it was in real space).

In order to account for thermal broadening when adding RSDs to our skewers, we must
instead choose our kernel K to be defined by

K(x|T ) =
1√

2πσv(T )
exp

(
− x2

2σ2
v(T )

)
, (B.3)

where σv(T ) is the thermal velocity dispersion, which we approximate as in [45] by

σv(T ) = 9.1

(
T

10, 000K

)1/2

km s−1, (B.4)

for temperature T (z,x) = T0(z)ρ(z,x)γ(z)−1. As described in § 3, for the purposes of this
work we fix γ = 1.5. We also fix T0 = 10, 000 K in line with [16] and consistent with
literature values [45–47]. Of course, these values can easily be updated to follow a more
complex redshift dependence for any uses of LyaCoLoRe where thermal broadening effects
become significant. Evaluating equation (B.2) for this choice of K yields a cell profile in
redshift space defined by

P (x|T, d) =
1

4d

[
erf

(
x+ d√
2σv(T )

)
− erf

(
x− d√
2σv(T )

)]
, (B.5)

and the matrix of weights can then be computed as per equation (B.1).

C The Lyα-HCD cross-correlation

In Figure 4, we showed the cross-correlation between Lyα absorption and high column density
systems (HCDs) from ten realisations of LyaCoLoRe, comparing it to a linear theory model
similar to that used to describe the cross-correlation with quasars (QSOs). This model
assumes that HCDs have the same clustering as dark matter halos, with a large-scale bias
of approximately 2.0. However, in a QSO survey, HCDs are only detected when they are
absorbing light from a background QSO, and this observational bias is not taken into account
in our modelling. In this appendix, we propose that this bias results in an asymmetry in the
measured correlation function. We present a qualitative description of this effect and explain
our choice to use only HCDs detected far away from the QSO in Figure 4 in this context.
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Figure 6. The Lyα-HCD cross-correlation, plotted against r‖ for different bins of r⊥. The left panel
shows the combined measurement from ten realisations using an HCD catalogue that only includes
HCDS with rest-frame wavelength less than 1100 Å (as in the right panel of Figure 4). The right
panel shows the correlation measured from one realisation when using an HCD catalogue that includes
HCDs in the full rest-frame wavelength range, up to λLyα = 1215.67 Å. The solid lines in both panels
show the same fitted correlation as in Figure 4: the joint fit of the Lyα auto-correlation and Lyα-HCD
cross-correlation from ten realisations of LyaCoLoRe.

In the left panel of Figure 6 we show the same measurement of the Lyα-HCD cross-
correlation as in the right panel of Figure 4, this time plotting the correlation against r‖ in
3 narrow bins of r⊥. The solid lines show the model obtained by fitting this measurement
jointly with the Lyα auto-correlation. The model is generally able to fit the measurement
well, though some small residuals remain at large r‖. These are visible at large separations
in the right panel of Figure 4, accentuated due to the factor of r2 in that plot.

In the right panel of Figure 6 we plot the Lyα-HCD cross-correlation measured on one
realisation of LyaCoLoRe, this time using a full HCD catalogue (with no maximum rest-frame
wavelength). The solid lines are the exact same lines as in the left panel. It is clear from this
plot that there is a strong asymmetry in the data, and the model used to fit the data in the
left panel does not fit this measurement well.

We propose that this asymmetry is a consequence of the observational bias that is
inherently present in our HCD sample, and the dependence on the Lyα-QSO cross-correlation
that this induces. According to the density-QSO cross-correlation, a QSO q will tend to have
dense regions of gas around it. In relation to an HCD X in q’s spectrum, these dense regions
will be located at small r⊥ and r‖ ' rXq, the distance between X and q (as X is constrained
to lie directly along the line of sight between q and the observer). This preferential location
of dense regions of gas will imprint a feature in the correlation between X and neighbouring
skewers of δF at these specific separations. Referring to the diagram in Figure 7, we can see
that the cells of δF in Region 1 will tend to be significantly biased according to the Lyα-QSO
cross-correlation. Thus, we will see a feature in the correlation between HCD X and its
neighbouring skewer corresponding to this region. The shape of this feature is determined
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Figure 7. A diagram showing the geometry of the setup involved when measuring the Lyα-HCD
cross-correlation between two near-parallel skewers. Given the proximity of the QSO q to “Region 1”
of the lower skewer, we expect to measure biased values of δF for cells corresponding to that region.
The cells’ values will tend to be reduced or boosted according to the Lyα-QSO cross correlation, as
indicated beneath “Region 1”. This biasing is then imprinted on the correlation between an HCD X
and the skewer.

by the shape of the Lyα-QSO cross-correlation at small rt, as shown beneath Region 1. The
cells in Region 2 will not be significantly affected by the presence of q, and so we would not
expect to see a feature here.

Summing over HCD-pixel pairs in order to compute the full Lyα-HCD cross-correlation
will average out most of the signal, but a small, asymmetric residual will remain, as seen in
the right panel of Figure 6. The contribution from each HCD will carry a similar signature
but the signature will be centred at different values of r‖ due to the different values of rXq for
each X-q pair. Certainly though, the sign of rXq will always be the same as an HCD is always
less distant than its host QSO. Using picca’s definition of the sign of r‖, this means that
rXq > 0 for all X and q. As a result, we will see a reduction of the Lyα-HCD cross-correlation
for all r‖ > 0, due to the strong reduction in δF at the centre of regions such as Region 1 in
Figure 7. This is only apparent for r⊥ small as the reduced area shown in Figure 7 is narrow.
We also see a secondary effect: a boost in the Lyα-HCD cross-correlation for small, negative
r‖. This is a result of the small boost in δF on the right-hand side of Region 1 in Figure 7,
which appears at r‖ < 0 for HCDs that are very close to their host QSOs. This effect extends
to larger values of r⊥ due to the greater width of the boosted area (relative to that which is
reduced).

Whilst interesting, these effects are very small. In order to assess their visibility in
current/future studies, we would need to carry out tests using a more realistic mock dataset.
This would involve using the entire data reduction pipeline — including continuum fitting
and the use of a distortion matrix — and is beyond the scope of this work. As an approximate
comparison, we observe that the size of the deviation of points in the 0.0 < r⊥ < 4.0 bin in
the right panel of Figure 6 is approximately an order of magnitude smaller than the size of
the error bars in the uppermost two panels of Figure 2 of [62]10.

Making such an extreme cut in rest-frame wavelength greatly reduces the number of
HCDs in our catalogue. In this work we use approximately 30 times the number of skewers

10It should be noted that [62] includes only HCDs at least 5000 km/s away from their host quasar, equivalent
to a rest-frame wavelength cut of approximately 1195 Å. We choose to use λr,HCD < λLyα in the right panel
of Figure 6 in order to explain the relationship between the geometry of the problem and the observed effect
more clearly.
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as DESI will have, and so this reduction does not cause us any concern. For studies from
real surveys, however, maximising the scientific value of their data will be of much greater
importance. As such, we would recommend the development of a new model to account for
the effects described above using the measured Lyα-QSO cross-correlation. Alternatively, a
catalogue of random HCDs, uncorrelated with the Lyα forest, could be generated and used to
quantify these effects before accounting for them appropriately. Either way, further tests are
needed in order to understand more fully the effect described in this Appendix, particularly
if new modelling is required for future Lyα-HCD cross-correlation measurements.
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