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Abstract

Determining the net charge and protonation states populated by a small molecule in an 

environment of interest or the cost of altering those protonation states upon transferto another 

environment is a prerequisite for predicting its physicochemical and pharmaceutical properties. 

The environment of interest can be aqueous, an organic solvent, a protein binding site, or a lipid 

bilayer. Predicting the protonation state of a small molecule is essential to predicting its 

interactions with biological macromolecules using computational models. Incorrectly modeling 

the dominant protonation state, shifts in dominant protonation state, or the population of 

significant mixtures of protonation states can lead to large modeling errors that degrade the 

accuracy of physical modeling. Low accuracy hinders the use of physical modeling approaches for 

molecular design. For small molecules, the acid dissociation constant (pKa) is the primary quantity 

needed to determine the ionic states populated by a molecule in an aqueous solution at a given pH. 

As a part of SAMPL6 community challenge, we organized a blind pKa prediction component to 

assess the accuracy with which contemporary pKa prediction methods can predict this quantity, 

with the ultimate aim of assessing the expected impact on modeling errors this would induce. 

While a multitude of approaches for predicting pKa values currently exist, predicting the pKas of 

drug-like molecules can be difficult due to challenging properties such as multiple titratable sites, 

heterocycles, and tautomerization. For this challenge, we focused on set of 24 small molecules 

selected to resemble selective kinase inhibitors—an important class of therapeutics replete with 

titratable moieties. Using a Sirius T3 instrument that performs automated acid- base titrations, we 

used UV absorbance-based pKa measurements to construct a high-quality experimental reference 

dataset of macroscopic pKas for the evaluation of computational pKa prediction methodologies 

that was utilized in the SAMPL6 pKa challenge. For several compounds in which the microscopic 

protonation states associated with macroscopic pKas were ambiguous, we performed follow-up 

NMR experiments to disambiguate the microstates involved in the transition. This dataset provides 

a useful standard benchmark dataset for the evaluation of pKa prediction methodologies on kinase 

inhibitor-like compounds.

Keywords

acid dissociation constants; spectrophotometric pKa measurement; blind prediction challenge; 
SAMPL; macroscopic pKa; microscopic pKa; macroscopic protonation state; microscopic 
protonation state

Introduction

SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) is a recurring 

series of blind prediction challenges for the computational chemistry community [1, 2]. 

Through these challenges, SAMPL aims to evaluate and advance computational tools for 
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rational drug design. SAMPL has driven progress in a number of areas over seven previous 

rounds of challenge cycles [3–7, 7–15] by focusing the community on specific phenomena 

relevant to drug discovery poorly predicted by current models, isolating that phenomenon 

from other confounding factors in well-designed test systems, evaluating tools prospectively, 

enabling data sharing to learn from failures, and releasing the resulting high-quality datasets 

into the community as benchmark sets.

As a stepping stone to enabling the accurate prediction of protein-ligand binding affinities, 

SAMPL has focused on evaluating how well physical and empirical modeling 

methodologies can predict various physicochemical properties relevant to binding and drug 

discovery, such as hydration free energies (which model aspects of desolvation in isolation), 

distribution coefficients (which model transfer from relatively homogeneous aqueous to 

nonpolar environments), and host-guest binding affinities (which model high-affinity 

association without the complication of slow protein dynamics). These physicochemical 

property prediction challenges—in addition to assessing the predictive accuracy of quantities 

that are useful in various stages of drug discovery in their own right—have been helpful in 

pinpointing deficiencies in computational models that can lead to substantial errors in 

affinity predictions.

Neglect of protonation state effects can lead to large modeling errors

As part of the SAMPL5 challenge series, a new cyclohexane-water distribution constant (log 

D) prediction challenge was introduced, where participants predicted the transfer free energy 

of small drug-like molecules between an aqueous buffer phase at pH 7.4 and a nonaqueous 

cyclohexane phase [16,17]. While octanol-water distribution coefficient measurements are 

more common, cyclohexane was selected for the simplicity of its liquid phase and relative 

dryness compared to wet octanol phases. While the expectation was that this challenge 

would be relatively straightforward given the lack of complexity of cyclohexane phases, 

analysis of participant performance revealed that multiple factors contributed to significant 

prediction failures: poor conformational sampling of flexible solute molecules, 

misprediction of relevant protonation and tautomeric states (or failure to accommodate shifts 

in their populations), and force field inaccuracies resulting in bias towards the cyclohexane 

phase. While these findings justified the benefit of future iterations of blind distribution or 

partition coefficient challenges, the most surprising observation from this initial log D 
challenge was that participants almost uniformly neglected to accurately model protonation 

state effects, and that neglect of these effects led to surprisingly large errors in transfer free 

energies [16–18]. Careful quantum chemical assessments of the magnitude of these 

protonation state effects found that their neglect could introduce errors up to 6–8 kcal/mol 

for some compounds [18]. This effect stems from the need to account for the free energy 

difference between the major ionization state in cyclohexane (most likely neutral state) and 

in water phase (which could be neutral or charged).

To isolate these surprisingly large protonation state modeling errors from difficulties related 

to lipophilicity (log P and log D) prediction methods, we decided to organize a set of staged 

physicochemical property challenges using a consistent set of molecules that resemble small 

molecule kinase inhibitors—an important drug class replete with multiple titratable moieties. 
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This series of challenges will first evaluate the ability of current-generation modeling tools 

to predict acid dissociation constants (pKa). It will be followed by a partition/distribution 

coefficient challenge to evaluate the ability to incorporate experimentally-provided pKa 

values into prediction of distribution coefficients to ensure methodologies can correctly 

incorporate protonation state effects into their predictions. A third challenge stage will 

follow: a new blinded partition/distribution coefficient challenge where participants must 

predict pKa values on their own. At the conclusion of this series of challenges, we will 

ensure that modern physical and empirical modeling methods have eliminated this large 

source of spurious errors from modeling both simple and complex phenomena.

This article reports on the experiments for the first stage of this series of challenges: 

SAMPL6 pKa prediction challenge. The selection of a small molecule set and collection of 

experimental pKa data are described in detail.

Conceptualization of a blind pKa challenge

This is the first time a blind pKa prediction challenge has been fielded as part of SAMPL. In 

this first iteration of the challenge, we aimed to assess the performance of current pKa 

prediction methods and isolate potential causes of inaccurate pKa estimates.

The prediction of pKa values for drug-like molecules can be complicated by several effects: 

the presence of multiple (potentially coupled) titratable sites, the presence of heterocycles, 

tautomerization, the conformational flexibility of large molecules, and ability of 

intramolecular hydrogen bonds to form. We decided to focus on the chemical space of small 

molecule kinase inhibitors in the first iteration of pKa prediction challenge. A total of 24 

small organic molecules (17 drug-fragment-like and 7 drug-like) were selected for their 

similarity to known small molecule kinase inhibitors, while also considering properties 

predicted to affect the experimental tractability of pKa and log P measurements such as 

solubility and predicted pKas. Macroscopic pKa values were collected experimentally with 

UV-absorbance spectroscopy-based pKa measurements using a Sirius T3 instrument, which 

automates the sample handling, titration, and spectroscopic measurements to allow high-

quality pKa determination. The Sirius T3 is equipped with an autosampler which allowed us 

to run 8–10 measurements per day. Experimental data were kept blinded for three months 

(25 Oct 2017 through 23 Jan 2018) to allow participants in the SAMPL6 pKa challenge to 

submit truly blinded computational predictions. Eleven research groups participated in this 

challenge, providing a total of 93 prediction submission sets that cover a large variety of 

contemporary pKa prediction methods.

Our selected experimental approach determines macroscopic pKa values

Whenever experimental pKa measurements are used for evaluating pKa predictions, it is 

important to differentiate between microscopic and macroscopic pKa values. In molecules 

containing multiple titratable moieties, the protonation state of one group can affect the 

proton dissociation propensity of another functional group. In such cases, the microscopic 
pKa (group pKa) refers to the pKa of deprotonation of a single titratable group while all the 

other titratable and tautomerizable functional groups of the same molecule are held fixed. 

Different protonation states and tautomer combinations constitute different microstates. The 
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macroscopic pKa (molecular pKa) defines the acid dissociation constant related to the 

observable loss of a proton from a molecule regardless of which functional group the proton 

is dissociating from, so it doesn’t necessarily convey structural information.

Whether a measured pKa is microscopic or macroscopic depends on the experimental 

method used (Figure 2). For a molecule with only one titratable proton, the microscopic pKa 

is equal to the macroscopic pKa. For a molecule with multiple titratable groups, however, 

throughout a titration from acidic to basic pH, the deprotonation of some functional groups 

can take place almost simultaneously. For these multiprotic molecules, the experimentally-

measured macroscopic pKa will include contributions from multiple microscopic pKas with 

similar values (i.e., acid dissociation of multiple microstates). Cysteine provides an example 

of this behavior with its two macroscopic pKas observable by spectrophotometric or 

potentiometric pKa measurement experiments [19, 20].

While four microscopic pKas can be defined for cysteine, experimentally observed pKa 

values cannot be assigned to individual functional groups directly (Figure 1, top). More 

advanced techniques capable of resolving individual protonation sites—such as NMR [21], 

Raman spectroscopy [22, 23], and the analysis of pKas in molecular fragments or derivatives

—are required to unambiguously assign the site of protonation state changes. On the other 

hand, when there is a large difference between microscopic pKas in a multiprotic molecule, 

the proton dissociations won’t overlap and macroscopic pKas observed by experiments can 

be assigned to individual titratable groups. The pKa values of glycine provide a good 

example of this scenario (Figure 1, bottom) [19, 20, 22]. We recommend the short review on 

the assignment of pKa values authored by Ivan G. Darvey [20] for a good introduction to the 

concepts of macroscopic vs microscopic pKa values.

The most common methods for measuring small molecule pKas are UV-absorbance 

spectroscopy (UV-metric titration) [28–30], potentiometry (pH-metric titration) [30, 31], 

capillary electrophoresis [32, 33], and NMR spectroscopy [21], with NMR being the most 

time-consuming approach. Other, less popular pKa measurement techniques include 

conductometry, HPLC, solubility or partition based estimations, calorimetry, fluorometry, 

and polarimetry [34]. UV-metric and pH-metric methods(Figure 3) of Sirius T3 are limited 

to measuring aqueous pKa values between 2 and 12 due to limitations of the pH electrode 

used in these measurements. The pH-metric method relies on determining the stoichiometry 

of bound protons with respect to pH, calculated from volumetric titration with acid or base 

solutions. Accurate pH-metric measurements require high concentrations of analyte as well 

as analytically prepared acid/base stocks and analyte solutions. By contrast, UV-metric pKa 

measurements rely on the differences in UV absorbance spectra of different protonation 

states, generally permitting lower concentrations of analyte to be used. The pH and UV 

absorbance of the analyte solution are monitored during titration.

Both UV-metric and pH-metric pKa determination methods measure macroscopic pKas for 

polyprotic molecules, which cannot be easily assigned to individual titration sites and 

underlying microstate populations in the absence of other experimental evidence that 

provides structural information, such as NMR (Figure 2). Macroscopic populations observed 

in these two methods are composed of different combinations of microstates depending on 
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the principles of measurement technique. In potentiometric titrations, microstates with same 

total charge will be observed as one macrostate, while in spectrophotometric titrations, 

protonation sites remote from chromophores might be spectroscopically invisible, and 

macrostates will be formed from collections of microstates that manifest similar UV-

absorbance spectra.

For UV-metric method to resolve populations of microstates, sufficiently different UV 

spectra between microstates and sufficiently non-overlapping change of populations with 

respect to pH are needed. However, relative tautomer populations of microstates with the 

same total charge do not depend on pH and stay constant while pH is titrated (Figure 2B), 

therefore they cannot be resolved by UV-metric method. The pH-metric method also cannot 

resolve microstates that have the same total charge as shown in Figure 2C.

Spectrophotometric pKa determination is more sensitive than potentiometric determination, 

requiring low analyte concentrations (50–100 μΜ)—especially advantageous for compounds 

with low solubilities—but is only applicable to titration sites near chromophores. For 

protonation state changes to affect UV absorbance, a useful rule of thumb is that the 

protonation site should be a maximum of four heavy atoms away from the chromophore, 

which might consist of conjugated double bonds, carbonyl groups, aromatic rings, etc. 

Although potentiometric measurements do not suffer from the same observability 

limitations, higher analyte concentrations (~5 mM) are necessary for the analyte to provide 

sufficiently large enough buffering capacity signal above water to produce an accurate 

measurement. The accuracy of pKas fit to potentiometric titrations can also be sensitive to 

errors in the estimated concentration of the analyte in the sample solution, while UV-metric 

titrations are insensitive to concentration errors. We therefore decided to adopt 

spectrophotometric measurements for collecting the experimental pKa data for this 

challenge, and selected a compound set to ensure that all potential titration sites are in the 

vicinity of UV chromophores.

Here, we report on the selection of SAMPL6 pKa challenge compounds, their macroscopic 

pKa values measured by UV-metric titrations using a Sirius T3, as well as NMR-based 

microstate characterization of two SAMPL6 compounds with ambiguous protonation states 

associated with the observed macroscopic pKas (SM07 and SM14). We discuss implications 

of the use of this experimental technique for the interpretation of pKa data, and provide 

suggestions for future pKa data collection efforts with the goal of evaluating or training 

computational pKa predictions.

Methods

Compound selection and procurement

To select a set of small molecules focusing on the chemical space representative of kinase 

inhibitors for physicochemical property prediction challenges (pKa and lipophilicity) we 

started from the kinase-targeted subclass of the ZINC15 chemical library [35] and applied a 

series of filtering and selection rules as depicted in Figure 4A. We focused on the availability 

“now” and reactivity “anodyne” subsets of ZINC15 in the first filtering step [http://

zinc15.docking.org/subclasses/kinase/substances/subsets/now+anodyne/]. The “now” label 
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indicates the compounds were availabile for immediate delivery, while the “anodyne” label 

excludes compounds matching filters that flag compounds with the potential for reactivity or 

pan-assay interference (PAINs) [36,37].

Next, we identified resulting molecules that were also available for procurement through 

eMolecules [38] (free version, downloaded 1 June 2017), the supplier that would be used for 

procurement in this exercise. To find the intersection of ZINC15 kinase subset and 

eMolecules database, we matched molecules using their canonical isomeric SMILES strings, 

as computed via the OpenEye OEChem Toolkit (version 2017.Feb.1) [39].

To extract availability and price information from eMolecules, we queried using a list of 

SMILES (as reported in eMolecules database) of the intersection set. We further filtered the 

intersection set (1204 compounds) based on delivery time (Tier 1 suppliers, two-week 

delivery) and at least 100 mg availability in powder form (format: Supplier Standard Vial). 

We aimed to purchase 100 mg of each compound in powder form with at least 90% purity. 

We calculated 100 mg was enough for optimization and replicate experiments to measure 

pKa, log P, and solubility measurements with the Sirius T3. Each UV-metric and pH-metric 

pKa measurement requires a minimum of 0.01 mg and 1.00 mg compound (solid or 

delivered via DMSO stock solution), respectively. log P and pH-dependent solubility 

measurements require around 2 mg and 10 mg of solid chemical, respectively.

Filtering for predicted measurable pKas and lack of experimental data—The 

Sirius T3 (Pion) instrument used to collect pKa and log P/log D measurements requires a 

titratable group in the pKa range of 2–12, so we aimed to select compounds with predicted 

pKas in the range of 3–11 to allow a ~1 pK unit margin of error in pKa predictions. pKa 

predictions for compound selection were calculated using Epik (Schödinger) sequential pKa 

prediction (scan) [40, 41] with target pH 7.0 and tautomerization allowed for generated 

states. We filtered out all compounds that did not have any predicted pKas between 3–11, as 

well as compounds with two pKa values predicted to be less than 1 pKa unit apart in the 

hopes that individual pKas of multiprotic compounds could be resolved with 

spectrophotometric pKa measurements. With the goal of selecting compounds suitable for 

subsequent log P measurements, we eliminated compounds with OpenEye XlogP [42] 

values less than −1 or greater than 6. Subsets of compounds with molecular weights between 

150–350 g/mol and 350–500 g/mol were selected for fragment-like and drug-like categories 

respectively. Compounds without available price or stock quantity information were 

eliminated. As the goal was to provide a blind challenge, compounds with publicly available 

experimental log P measurements were also removed. The sources we checked for publicly 

available experimental log P values were the following: DrugBank [43] (queried with 

eMolecules SMILES), ChemSpider [44] (queried by canonical isomeric SMILES), NCI 

Open Database August 2006 release [45], Enhanced NCI Database Browser [46] (queried 

with canonical isomeric SMILES), and PubChem [47] (queried with InChIKeys generated 

from canonical isomeric SMILES with NCI CACTUS Chemical Identifier Resolver [48]).

Filtering for kinase inhibitor-like scaffolds—In order to include common scaffolds 

found in kinase inhibitors, we analyzed the frequency of rings found in FDA-approved 

kinase inhibitors via Bemis-Murcko fragmentation using OEMedChem Toolkit of OpenEye 
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[49, 50]. Heterocycles found more than once in FDA-approved kinase inhibitors are shown 

in Figure 4B. In selecting 25 compounds for the fragment-like set and 10 compounds for the 

drug-like set, we prioritized including at least one example of each heterocycle, although we 

failed to find compounds with piperazine and indazole that satisfied all other selection 

criteria. We observed that certain heterocycles (shown in Figure 4C) were overrepresented 

based on our selection criteria; therefore, we limited the number of these structures in the 

SAMPL6 challenge set to at most one in each set. To achieve broad and uniform sampling of 

the measurable log P dynamic range, we segregated the molecules into bins of predicted 

XlogP values and selected compounds from each bin, prioritizing less expensive 

compounds.

Filtering for UV chromophores—The presence of UV chromophores (absorbing in the 

200–400 nm range) in close proximity to protonation sites is necessary for 

spectrophotometric pKa measurements. To filter for molecules with UV chromophores, we 

looked at the substructure matches to the SMARTS pattern [n,o,c][c,n,o]cc which was 

considered the smallest unit of pi-conjugation that can constitute a UV chromophore. This 

SMARTS pattern describes extended conjugation systems comprised of four heavy atoms 

and composed of aromatic carbon, nitrogen, or oxygen, such as 1.3-butadiene, which 

possesses an absorption peak at 217 nm. Additionally, the final set of selected molecules was 

manually inspected to makes sure all potentially titratable groups were no more than four 

heavy atoms away from a UV chromophore.

25 fragment-like and 10 drug-like compounds were selected, out of which procurement of 

28 was completed in time. pKa measurements for 17 (SM01-SM17) and 7 (SM18-SM24) 

were successful, respectively. The resulting set of 24 small molecules constitute the 

SAMPL6 pKa challenge set. For the other four compounds, UV-metric pKa measurements 

show no detectable pKas in the range of 2–12, so we decided not to include them in the 

SAMPL6 pKa challenge. Experiments for these four compounds are not reported in this 

publication.

Python scripts used in the compound selection process are available from GitHub [https://

github.com/choderalab/sampl6-physicochemical-properties]. Procurement details for each 

compound can be found in Supplementary Table 1. Chemical properties used in the selection 

of compounds are summarized in Supplementary Table 2.

UV-metric pKa measurements

Experimental pKa measurements were collected using the spectrophotometric pKa 

measurement method with a Sirius T3 automated titrator instrument (Pion) at 25°C and 

constant ionic strength. The Sirius T3 is equipped with an Ag/AgCl double-junction 

reference electrode to monitor pH, a dip probe attached to UV spectrophotometer, a stirrer, 

and automated volumetric titration capability. The Sirius T3 UV-metric pKa measurement 

protocol measures the change in multi-wavelength absorbance in the UV region of the 

absorbance spectrum while the pH is titrated over pH 1.8–12.2 [28, 29]. UV absorbance data 

is collected from 160–760 nm while the 250–450 nm region is typically used for pKa 

determinations. Subsequent global data analysis identifies pH-dependent populations of 
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macrostates and fits one or more pKa values to match this population with a pH-dependent 

model.

DMSO stock solutions of each compound with 10 mg/ml concentration were prepared by 

weighing 1 mg of powder chemical with a Sartorius Analytical Balance (Model: ME235P) 

and dissolving it in 100 μL DMSO (Dimethyl sulfoxide, Fisher Bioreagents, CAT: BP231–

100, LOT: 116070, purity ≥ 99.7%). DMSO stock solutions were capped immediately to 

limit water absorption from the atmosphere due to the high hygroscopicity of DMSO and 

sonicated for 5–10 minutes in a water bath sonicator at room temperature to ensure proper 

dissolution. These DMSO stock solutions were stored at room temperature up to two weeks 

in capped glass vials. 10 mg/ml DMSO solutions were used as stock solutions for the 

preparation of three replicate samples for the independent titrations. For each experiment, 1–

5 μL of 10 mg/ml DMSO stock solution was delivered to a 4 mL Sirius T3 glass sample vial 

with an electronic micropipette (Rainin EDP3 LTS 1 −10 μL). The volume of delivered 

DMSO stock solution, which determines the sample concentration following dilution by the 

Sirius T3, is optimized individually for each compound to achieve sufficient but not 

saturated absorbance signal (targeting 0.5–1.0 AU) in the linear response region. Another 

limiting factor for sample concentration was ensuring that the compound remains soluble 

throughout the entire pH titration range. An aliquot of 25 μL of mid-range buffer (14.7 mM 

K2HPO4 and 0.15 M KCl in H2O) was added to each sample, transferred with a 

micropipette (Rainin EDP3 LTS 10–100 μL) to provide enough buffering capacity in middle 

pH ranges so that pH could be controlled incrementally throughout the titration.

pH is temperature and ionic-strength dependent. A peltier device on the Sirius T3 kept the 

analyte solution at 25.0 ± 0.5 °C throughout the titration. Sample ionic strength was adjusted 

by dilution in 1.5 mL ionic strength-adjusted water (ISA water ≡ 0.15 M KCl in H2O) by the 

Sirius T3. Analyte dilution, mixing, acid/base titration, and measurement of UV absorbance 

was automated by the Sirius T3 UV-metric pKa measurement protocol. The pH was titrated 

between pH 1.8 and 12.2 via the addition of acid (0.5 M HCl) and base (0.5 M KOH), 

targeting 0.2 pH steps between UV absorbance spectrum measurements. Titrations were 

performed under argon flow on the surface of the sample solution to limit the absorption of 

carbon dioxide from air, which can alter the sample pH to a measurable degree. To fully 

capture all sources of experimental variability, instead of performing three sequential pH 

titrations on the same sample solution, three replicate samples (prepared from the same 

DMSO stock solution) were subjected to one round of pH titration each. Although this 

choice reduced throughput and increased analyte consumption, it limited the dilution of the 

analyte during multiple titrations, resulting in stronger absorbance signal for pKa fitting. 

Under circumstances where analyte is scarce, it is also possible to do three sequential 

titrations using the same sample to limit consumption when the loss of accuracy is 

acceptable.

Visual inspection of the sample solutions after titration and inspection of the pH-dependent 

absorbance shift in the 500–600 nm region of the UV spectra was used to verify no 

detectable precipitation occurred during the course of the measurement. Increased 

absorbance in the 500–600 nm region of the UV spectra is associated with scattering of 

longer wavelengths of light in the presence of colloidal aggregates. For each analyte, we 
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optimized analyte concentration, direction of the titration, and pH titration range in order to 

maintain solubility over the entire experiment. The titration direction was specified so that 

each titration would start from the pH where the compound is most soluble: low-to-high pH 

for bases and high-to-low pH for acids. While UV-metric pKa measurements can be 

performed with analyte concentrations as low as 50 μΜ (although this depends on the 

absorbance properties of the analyte), some compounds may yet not be soluble at these low 

concentrations throughout the pH range of the titration. As the sample is titrated through a 

wide range of pH values, it is likely that low-solubility ionization states—such as neutral and 

zwitterionic states—will also be populated, limiting the highest analyte concentration that 

can be titrated without encountering solubility issues. For compounds with insufficient 

solubility to accurately determine a pKa value directly in a UV-metric titration, a cosolvent 

protocol was used, as described in the next section (UV-metric pKa measurement with 
cosolvent).

Two Sirius T3 computer programs—Sirius T3 Control v1.1.3.0 and Sirius T3 Refine 

v1.1.3.0—were used to execute measurement protocols and analyze pH-dependent 

multiwavelength spectra, respectively. Protonation state changes at titratable sites near 

chromophores will modulate the UV-absorbance spectra of these chromophores, allowing 

populations of distinct UV-active species to be resolved as a function of pH. To do this, basis 

spectra are identified and populations extracted via TFA analysis of the pH-dependent multi-

wavelength absorbance [29]. When fitting the absorbance data to a titratable molecule model 

to estimate pKas, we selected the minimum number of pKas sufficient to provide a high-

quality fit between experimental and modeled data based on visual inspection of pH-

dependent populations.

This method is capable of measuring pKa values between 2–12 when titratable groups are at 

most 4–5 heavy atoms away from chromophores such that a change in protonation state 

alters the absorbance spectrum of the chromophore. We selected compounds where titratable 

groups are close to potential chromophores (generally aromatic ring systems), but the 

possibility exists that our experiments did not detect protonation state changes of titratable 

groups distal from UV chromophores.

Cosolvent UV-metric pKa measurements of molecules with poor aqueous solubilities

If analytes are not sufficiently soluble during the titration, pKa values cannot be accurately 

determined via aqueous titration directly. If precipitation occurs, the UV-absorbance signal 

from pH-dependent precipitate formation cannot be differentiated from the pH-dependent 

signal of soluble microstate species. For compounds with low aqueous solubility, pKa values 

were estimated from multiple apparent pKa measurements performed in ISA methanol:ISA 

water cosolvent solutions with various mole fractions, from which the pKa at 0% methanol 

(100% ISA water) can be extrapolated. This method is referred to as a UV-metric psKa 

measurement in the Sirius T3 Manual [51]. psKa value is the apparent pKa value measured in 

the presence of a cosolvent.

The cosolvent spectrophotometric pKa measurement protocol was very similar to the 

standard aqueous UV-metric pKa measurement protocol, with the following differences: 

titrations were performed in typically in 30%, 40%, and 50% mixtures of ISA methanol:ISA 
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water by volume to measure apparent pKa values (psKa) in these mixtures. Yasuda-

Shedlovsky extrapolation [52, 53] was subsequently used to estimate the pKa value at 0% 

cosolvent (Figure 5) [31, 54, 55].

psKa + log H2O = A/ϵ + B (1)

Yasuda-Shedlovsky extrapolation relies on the linear correlation between psKa + log[H2O] 

and the reciprocal dielectric constant of the cosolvent mixture (1/ϵ). In Eq. 1, A and B are 

the slope and intercept of the line fitted to experimental datapoints. Depending on the 

solubility requirements of the analyte, the methanol ratio of the cosolvent mixtures was 

adjusted. We designed the experiments to have at least 5% cosolvent ratio difference 

between datapoints and no more than 60% methanol content. Calculation of the Yasuda-

Shedlovsky extrapolation was performed by the Sirius T3 software using at least 3 psKa 

values measured in different ratios of methanol:water. Addition of methanol (80%, 0.15 M 

KCl) was controlled by the instrument before each titration. Three consecutive pH titrations 

at different methanol concentrations were performed using the same sample solution. In 

addition, three replicate measurements with independent samples (prepared from the same 

DMSO stock) were collected.

Calculation of uncertainty in pKa measurements

Experimental uncertainties were reported as the standard error of the mean (SEM) of three 

replicate pKa measurements. The standard error of the mean (SEM) was estimated as

SEM = σ
N

; σ = 1
N ∑

i = 1

N
xi − μ 2; μ = 1

N ∑
i = 1

N
xi (2)

where σ denotes the sample standard deviation and μ denotes the sample mean. x¡ are 

observations and N is the number of observations.

Since the Sirius T3 software reports pKa values to only two decimal places, we have 

reported the SEM as 0.01 in cases where SEM values calculated from 3 replicates were 

lower than 0.01. SEM calculated from replicate measurements were found to be larger than 

non-linear fit error reported by the Sirius T3 Refine Software from UV-absorbance model fit 

of a single experiment, thus leading us to believe that running replicate measurements and 

reporting mean and SEM of pKa measurements is better for capturing all sources of 

experimental uncertainty. Notably, for UV-metric measurements, the measured pKa values 

should be insensitive to final analyte concentration and any uncertainty in the exact analyte 

concentration of the original DMSO stock solution, justifying the use of the same stock 

solution (rather than independently prepared stock solutions) for multiple replicates.

Quality control for chemicals

Compound purity was assessed by LC-MS using an Agilent HPLC 1200 Series equipped 

with auto-sampler, UV diode array detector, and a Quadrupole MS detector 6140. 
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ChemStation version C01.07SR2 was used to analyze LC & LC/MS. An Ascentis Express 

C18 column (3.0 × 100 mm, 2.7 μm) was used, with column temperature set at 45° C.

• Mobile phase A: 2 mM ammonium formate (pH = 3.5) aqueous

• Mobile phase B: 2 mM ammonium formate in 90:10 acetonitrile:water (pH = 

3.5)

• Flow rate : 0.75 ml/min

• Gradient: Starting with 10% B to 95% B in 10 minutes then hold at 95% B for 5 

minutes.

• Post run length: 5 minutes

• Mass condition: ESI positive and negative mode

• Capillary voltage: 3000 V

• Drying gas flow: 12 ml/min

• Nebulizer pressure: 35 psi

• Drying temperature: 350°C

• Mass range: 5–1350 Da; Fragmentor: 70; Threshold: 100

The percent area for the primary peak is calculated based on the area of the peak divided by 

the total area of all peaks. The percent area of the primary peak is reported as an estimate of 

sample purity. The purity of primary LC peak was checked by ChemStation software with 

threshold 995, to check that there is no significant impurity underneath the main peak.

NMR determination of protonation microstates

In general, the chemical shifts of nuclear species observed in nuclear magnetic resonance 

(NMR) spectra report on and are very sensitive to the chemical environment. Consequently, 

small changes in chemical environment, such as the protonation events described in this 

work, are manifest as changes in the chemical shift(s) of the nuclei. If perturbation occurs at 

a rate which is fast on the NMR timescale (fast exchange), an average chemical shift is 

observed. This phenomena has been exploited and utilized as a probe for determining the 

order of protonation for molecules with more than one titratable site [56]. In some cases, 

direct observation of the titrated nuclei can be difficult, for example nitrogen and oxygen, 

due to sample limitations and/or low natural abundance of the NMR active nuclei (0.37% for 
15N and 0.038% for 17O)—amongst other factors. In these situations, chemical shifts 

changes of the so-called “reporter” NMR nuclei—1H, 31P, or 13C nuclei, which are directly 

attached to or are a few bonds away from the titrated nuclei—have been utilized as the probe 

for NMR-pH titrations [21,57, 58]. This approach is advantageous since the sensitive NMR 

nuclides (1H and 31P) are observed. In addition, 31P and 13C offer large spectral widths of 

~300 ppm and ~200 ppm, respectively, which minimize peak overlap.

However, reporter nuclei chemical shifts provide indirect information subject to 

interpretation. In complex systems with multiple titratable groups, such analysis will be 

complicated due to a cumulative effect of these groups on the reporter nuclide due to their 
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close proximity or the resonance observed in aromatic systems. In contrast, direct 

observation of the titratable nuclide where possible, affords a more straight-forward 

approach to studying the protonation events. In this study, the chemical shifts of the 

titratable nitrogen nuclei were observed using the 1H-15N-HMBC (Heteronuclear Multiple-

Bond Correlation) experiments — a method that affords the observation of 15N chemical 

shifts while leveraging the sensitivity accrued from the high abundance the 1H nuclide.

The structures of samples SM07 and SM14 were assigned via a suite of NMR experiments, 

which included 1H NMR, 13C NMR, homonuclear correlated spectroscopy (1H-1H COSY), 

heteronuclear single quantum coherence f1 H-13C HSQC), 13C heteronuclear multiple-bond 

correlation f1 H-13C-HMBC) and 15N heteronuclear multiple-bond correlation f1 H-15N-

HMBC)—see SI. All NMR data used in this analysis were acquired on a Bruker 500 MHz 

spectrometer equipped with a 5 mm TCI CryoProbe™ Prodigy at 298 K. The poor solubility 

of the analytes precluded analysis in water and thus water-d2/methanol-d4 mixture and 

acetonitrile-d3 were used as solvents. The basic sites were then determined by titration of the 

appropriate solutions of the samples with equivalent amounts of deutero-trifluoroacetic acid 

(TFA-d) solution.

SM07—5.8 mg of SM07 was dissolved in 600 μL of methanol-d4:water-d2 (2:1 v/v ratio). A 

9% v/vTFA-d solution in water-d2 was prepared, such that each 20 μL volume contained 

approximately 1 equivalent of TFA-d with respect to the base. The SM07 solution was then 

titrated with the TFA-d solution at 0.5,1.0,1.5, and 5.0 equivalents with 1H-15N HMBC 

spectra (optimized for 5 Hz) acquired after each TFA addition. A reference 1H-15N HMBC 

experiment was first acquired on the SM07 solution prior to commencement of the titration.

SM14—5.5 mg of SM14 was dissolved in 600 μΙ. of acetonitrile-d3. A 10% v/v TFA-d 

solution in acetonitrile-d3 was prepared, 20 μ. of which corresponds to 1 equivalent of TFA-

d with respect to the base. Further 1:10 dilution of the TFA-d solution in acetonitrile-d3, 

allowed measurement of 0.1 equivalent of TFA-d per 20 μ. of solution. The SM14 solution 

was then titrated with the TFA-d solutions at 0.0, 0.5, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.0, 2.1, 2.6, 

5.1, and 10.1 equivalents. The chemical shift changes were monitored by the acquisition 

of1H-15N HMBC spectra (optimized for 5 Hz) after each TFA addition.

Results

Spectrophotometric pKa measurements

Spectrophotometrically-determined pKa values for all molecules from the SAMPL6 pKa 

challenge are shown in Figure 6 and Table 1. The protocol used—cosolvent or aqueous UV-

metric titration—is indicated in Table 1 together with SEM of each reported measurement. 

Out of 24 molecules successfully assayed, five molecules have two resolvable pKa values, 

while one has three resolvable pKa values within the measurable pKa range of 2–12. The 

SEM of reported pKa measurements is low, with the largest uncertainty reported being 0.04 

pK units (pKa1 of SM06 and pKa3 of SM18). Individual replicate measurements can be 

found in Supplementary Table 3. Reports generated for each pKa measurement by the Sirius 

T3 Refine software can also be found in the Supplementary Information. Experimental pKa 
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values for nearly all compounds with multiple resolvable pKas are well-separated (more than 

4 pKa units), except for SM14 and SM18.

Impact of cosolvent to UV-metric pKa measurements

For molecules with insufficient aqueous solubilities throughout the titration range (pH 2–

12), we resorted to cosolvent UV-metric pKa measurements, with methanol used as 

cosolvent. To confirm that cosolvent UV-metric pKa measurements led to indistinguishable 

results compared to aqueous UV-metric measurements, we collected pKa values of 12 highly 

soluble SAMPL6 compounds—as well as pyridoxine—using both cosolvent and aqueous 

methods. Correlation analysis of pKa values determined with both methods demonstrated 

that using methanol as cosolvent and determining aqueous pKas via Yasuda-Shedlovsky 

extrapolation did not result in significant bias (Figure 7), since 95% CI for mean deviation 

(MD) between two measurements includes zero. Means and standard errors of UV-metric 

pKa measurements with and without cosolvent are provided in Supplementary Table 5. pKa 

measurement results of individual replicate measurements with and without cosolvent can be 

found in Supplementary Table 4.

Purity of SAMPL6 compounds

LC-MS based purity measurements showed that powder stocks of 23 of the SAMPL6 pKa 

challenge compounds were >90% pure, while purity of SM22 was 87%—the lowest in the 

set (Supplementary Table 6). Additionally, molecular weights detected by LC-MS method 

were consistent with those reported in eMolecules, as well as supplier-reported molecular 

weights, when provided. It is recommended by Sirius/Pion technical specialists to use 

compounds with ~90% purity to minimize the impact on high-accuracy pKa measurements. 

Impurities with no UV-chromophore, or elute too late in LC may not be detected with this 

method, although chances are small. The peak purity check of primary peak can detect the 

presence of a large impurity underneath the main peak, but if the UV spectrum of the 

impurity is exactly same with analyte in the main peak, it may not be resolved. HPLC UV 

detector’s wavelength inaccuracy is <1%. Mass inaccuracy of MS instrument is ~0.13 um 

within the calibrated mass range in the scan mode.

Characterization of SM07 microstates with NMR
15N Chemical shifts (ppm, referenced to external liquid ammonia at 0 ppm) for N-8, N-10 

and N-12—measured from the 1H-15N HMBC experiments—were plotted against the 

titrated TFA-d equivalents (0.0, 0.5,1.0,1.5, and 5.0 equivalents) (Figure 8 A). A large 

upfield shift of ~82 ppm is observed for N-12. The initial linear relationship between 

chemical shift and TFA equivalents, shown in Figure 8A for N-12, is expected for strong 

monoprotic bases—as is the case for SM07. The large upfield chemical shift change (82 

ppm) is consistent with a charge delocalization as shown in the resonance structures in 

Figure 8A. Further evidence for this delocalization is observed for N-8, which exhibited a 

downfield chemical shift change of ~28 ppm compared to just ~1.5 ppm for N-10. Titration 

of SM07 with more than 1 equivalent of TFA-d did not result in further significant chemical 

shift changes—establishing that SM07 is a monoprotic base.
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Characterization of SM14 microstates with NMR

Determining the protonation sites for SM14, which has pKa values of 2.58 and 5.30 (Table 

1), was more challenging due to multiple possible resonance structures in the mono- and di-

protonated states. We noticed that the water/methanol co-solvent exhibited strong solvent 

effects, which complicated the data interpretation for SM14. For instance, titration of SM14 

in methanol/water (Figure SI 36) showed incomplete protonation of N-9 even after 5 

equivalents of TFA-d were added. This observation is consistent with UV-metric psKa 

measurements done in the presence of methanol as cosolvent, where both psKa values were 

decreasing as the percentage of methanol was increased, making observation of these 

protonation states more difficult. Thus the utilization of an aprotic solvent was necessary for 

unambiguous interpretation of the data.

Due to the problem just delineated for the methanol/water cosolvent, acetonitrile-d3 was 

selected as our solvent of choice. Titration of SM14 (5.5 mg) with up to 10 equivalents of 

TFA-d in acetonitrile-d3 (0.0, 0.5, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.0, 2.1, 2.6, 5.1, and 10.1 

equivalents), provided a much clearer picture of its protonation states (Figure 8 B). N-9, with 

the large upfield chemical shift change ~72 ppm at 1 equivalent of TFA-d, clearly is the site 

of first protonation. Concurrently, the downfeld chemical shift changes were observed for 

N-7 (∆δ ≈ 6.5) and N-16 (∆δ ≈ 5) that can be attributed to electronic effects rather than a 

direct protonation. The large upfield shift for N-9 indicates this to be the site of first 

protonation; complete protonation was attained at roughly 2.5 equivalents of TFA-d, 

suggesting that SM14 is a weak base under these experimental conditions. Following the 

protonation of N-9, a second protonation event occurs at N-16 nitrogen as evident by the 

upfield chemical shift change observed for N-16. However, a continuous change in the 

chemical shift of N-16 even after addition of 10 equivalents of TFA-d indicates that this 

protonation event is incomplete but provides evidence for N-16 being the second protonation 

site. This observation is consistent with N-16 being even a weaker base than N-9, which is 

expected of the aniline-type amines. Other notable observations were the slight downfeld 

chemical shift changes for N-7 and N-9, during the second protonation event. These changes 

were attributed to electronic effects from the protonation of N-16.

Discussion

Effect of sample preparation and cosolvents in UV-metric measurements

Samples for UV-metric pKa measurements were prepared by dilution of up to 5 μL DMSO 

stock solution of analyte in 1.5 mL ISA water, which results in the presence of ~0.3% 

DMSO during titration, which is presumed to have a negligible effect on pKa measurements. 

For UV-metric or pH-metric measurements, it is possible to prepare samples without 

DMSO, but it is difficult to prepare samples by weighing extremely low amounts of solid 

stocks (in the order of 0.01 −0.10 mg) to target 50 μΜ analyte concentrations, even with an 

analytical balance. For experimental throughput, we therefore preferred using DMSO stock 

solutions. Another advantage of starting from DMSO stock solutions is that it helps to 

overcome kinetic solubility problems of analytes.
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A lower analyte concentration is needed for spectrophotometric pKa measurement than 

potentiometric method. With spectrophotometric method, very dilute analyte solutions as 

low as 10−5 - 10−6 M can be used [28] with strength of the UV signal as limiting factor. In 

this study we used analyte concentrations around 50 μM, which is 2 orders of magnitude 

lower than the minimum concentration required for typical potentiometric pKa 

measurements. Theoretically, low analyte concentrations lead to more accurate pKa 

measurements by minimizing the potential for the solute to influence solvent properties. In 

the extreme, if it were possible to measure the pKa at the infinite dilution of the analyte that 

would be the best. But of course, in practice the minimum analyte concentration is limited 

by the detection strength of the UV signal. The higher the analyte concentration the more it 

affects the solvent properties such as ionic strength and dielectric constant. Also, the risk of 

analyte aggregation or precipitation increases with higher concentration.

In UV-metric measurements, both water and methanol (when used as cosolvent) stock 

solutions were ionic strength adjusted with 150 mM KCl, but acid and base solutions were 

not. This means that throughout pH titration ionic strength slighly fluctuates, but on average 

ionic strength of samples were staying around 150–180 mM. By using ISA solutions the 

effect of salt concentration change on pKa measurements was minimized.

If an analyte is soluble enough, UV-metric pKa measurements in water should be preferred 

over cosolvent methods, since pKa measurement in water is more direct. For pKa 

determination via cosolvent extrapolation using methanol, the apparent pKas (psKa) in at 

least three different methanol:water ratios must be measured, and the pKa in 0% cosolvent 

computed by Yasuda-Shedlovsky extrapolation. The number and spread of psKa 

measurements and error in linear fit extrapolation influences the accuracy of pKas 

determined by this approach. To test that UV-metric methods with or without cosolvent have 

indistinguishable performance, we collected pKa values for 17 SAMPL6 compounds and 

pyridoxine with both methods. Figure 7 shows there is good correlation between both 

methods and the mean absolute deviation between two methods is 0.12 (95% CI [0.07, 

0.18]). The mean deviation between the two sets is −0.04 (95% CI [−0.12, 0.03]), showing 

there is no significant bias in cosolvent measurements as the 95% CI includes zero. The 

largest absolute deviation observed was 0.41 for SM06.

Impact of impurities to UV-metric pKa measurements

Precisely how much the presence of small amounts of impurities impact UV-metric pKa 

measurements is unpredictable. For an impurity to alter UV-metric pKa measurements, it 

must possess a UV-chromophore and a titratable group in the vicinity of the chromophore—

otherwise, it would not interfere with absorbance signal of the analyte. If a titratable 

impurity does possess a UV-chromophore, UV multiwavelength absorbance from the analyte 

and impurity will be convoluted. How much the presence of impurity will impact the 

multiwavelength absorbance spectra and pKa determination depends on the strength of the 

impurity’s molar absorption coefficient and concentration, relative to the analyte’s. In the 

worst case scenario, an impurity with high concentration or strong UV absorbance can shift 

the measured pKa value or create the appearance of an extra pKa. As a result, it is important 
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to use analytes with high purities to obtain high accuracy pKa measurements. Therefore, we 

confirmed the purities of SAMPL6 compounds with LC-MS.

Interpretation of UV-metric pKa measurements

Multiwavelength absorbance analysis on the Sirius T3 allows for good resolution of pKas 

based on UV-absorbance change with respect to pH, but it is important to note that pKa 

values determined from this method are often difficult to assign as either microscopic or 

macroscopic in nature. This method potentially produces macroscopic pKas for polyprotic 

compounds. If multiple microscopic pKas have close pKa values and overlapping changes in 

UV absorbance spectra associated with protonation/deprotonation, the spectral analysis 

could produce a single macroscopic pKa that represents an aggregation of multiple 

microscopic pKas. An extreme example of such case is demonstrated in the simulated 

macrostate populations of cetirizine that would be observed with UV-metric titration (Figure 

2).

If protonation state populations observed via UV-metric titrations (such as in Figure 3B) are 

composed of a single microstate, experimentally measured pKas are indeed microscopic 

pKas. Unfortunately, judging the composition of experimental populations is not possible by 

just using UV-metric or pH-metric titration. Molecules in the SAMPL6 pKa challenge 

dataset with only one pKa value measured in the 2–12 range could therefore be monoprotic 

(possessing a single titratable group that changes protonation state by gain or loss of a single 

proton over this pH range) or polyprotic (gaining or losing multiple protons from one or 

more sites with overlapping microscopic pKa values). Similarly, titration curves of 

molecules with multiple experimental pKas may show well-separated microscopic pKas or 

macroscopic experimental pKas that are really composites of microscopic pKas with similar 

values. Therefore, without additional experimental evidence, UV-metric pKas should not be 

assigned to individual titratable groups.

Sometimes it can be possible to assign pKas to ionizable groups if they produce different 

UV-absorbance shifts upon ionization, but it is not a straight-forward analysis and it is not a 

part of the analysis pipeline of Sirius T3 Refine Software. Such an analysis would require 

fragmentation of the molecule and determining how UV-spectra of each chromophore 

changes upon ionization in isolation.

UV-metric pKa values for nearly all compounds in our dataset with multiple resolvable pKas 

are well-separated (more than 4 pKa units), except for SM14 and SM18. Tam et al. states 

that spectrophotometric pKa values of multiprotic molecules can be unambiguously assigned 

to the functional groups as microscopic pKas “if the pKa values are at least 4 pH units apart 

(i.e. pKa2 - pKa1 ≥ 4)” based on general knowledge of functional groups and consideration 

of electronic and inductive effects [28]. In this study, we refrained from reporting such a 

knowledge-based assignment of pKa values to functional groups without experimental 

evidence.

Determination of the exact microstates populated at different pH values via NMR can 

provide a complementary means of differentiating between microscopic and macroscopic 

pKas in cases where there is ambiguity. As determination of protonation microstates via 
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NMR is very laborious, we were only able to characterize microstates of two molecules: 

SM07 and SM14.

In UV-metric pKa measurements with cosolvent, the slope of the Yasuda-Shedlovsky 

extrapolation can be interpreted to understand if the pKa has dominantly acidic or basic 

character. As the methanol ratio is increased, psKa values of acids increase, while psKa 

values for bases decrease. However, it is important to remember that if the measured pKa is 

macroscopic, acid/base assignment from cosolvent psKa trends is also a macroscopic 

property, and should not be used as a guide for assigning pKa values to functional groups 

[60].

NMR microstate characterization

The goal of NMR characterization was to collect information on microscopic states related 

to experimental pKa measurements, i.e., determine exact sites of protonation. pKa 

measurements performed with spectrophotometric method provide macroscopic pKa values, 

but do not provide information on the specific site(s) of protonation. Conversely, most 

computational prediction methods primarily predict microscopic pKa values. Protonation 

sites can be determined by NMR methods, although these measurements are very laborious 

in terms of data collection and interpretation compared to pKa measurements with the 

automated Sirius T3. Moreover, not all SAMPL6 molecules were suitable for NMR 

measurements due to the high sample concentration requirements (for methods other than 

proton NMR, such as 13C and 15N based 2D experiments) and limiting analyte solubility. 

Heavy atom spectra that rely on natural isotope abundance require high sample 

concentrations (preferably in the order of 100 mM). It is possible that drug or drug-

fragment-like compounds, such as the compounds used in this study, have insufficient 

aqueous solubility, limiting the choice of solvent and pH. It may be necessary to use organic 

cosolvents to prepare these high concentration solutions or only prepare samples at pH 

values that correspond to high solubility states (e.g., when the charged state of the 

compound is populated).

We performed NMR based microstate characterization only for SM07 and SM14. We were 

able to identify the order of dominant protonation microstates, as shown in Figure 8. These 

pairs of microstates and the order of microscopic transitions can be associated with 

experimental pKas determined by UV-metric titrations, under the assumption that different 

organic solvents used in NMR measurements will have negligible effect on the sequence of 

microstates observed as the medium was titrated with acid, although shift in pKa values is 

expected. NMR measurements for SM07 and SM14 were done in water:methanol (1:2 (v/v)) 

and acetonitrile solutions, respectively. On the other hand, pKa values of these two 

compounds were determined by UV-metric titrations in ISA water. Additional UV-metric 

pKa measurements of these compounds with methanol as a cosolvent showed that their psKa 

values decreased as the cosolvent ratio increased (i.e., dielectric constant decreased) as 

expected from base titration sites. Identification of SM07 and SM14 titratable sites type as 

base is consistent between NMR based models and UV-metric cosolvent titrations. The order 

of microstates observed in the titration of NMR samples are very likely to corresponds to the 

dominant microstates associated with UV-metric pKa measurements. N-12 of SM07 was 
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observed as the only protonation site of SM07 during TFA-d titration up to 5 equivalents 

which supports that SM07 is mono-protic and UV-metric pKa value 6.08 ± 0.01 corresponds 

to microscopic protonation of N-12. For SM14, two protonation sites were observed (N-16 

and N-9, in the order of increasing psKa). Microstate pairs shown in Figure 8B were 

determined as dominant contributors to UV-metric pKas 2.58±0.01 and 5.30±0.01, although 

minor microspecies with very low populations (undetected in NMR experiments) could be 

contributing to the macroscopic pKa values observed by the UV-metric method.

In addition to SM07, there were five other 4-aminoquinazoline derivatives in the SAMPL6 

set: SM02, SM04. SM09, SM12, and SM13. For these series, all the potential titratable sites 

are located in 4-aminoquinazoline scaffold and there are no other additional titratable sites 

present in these compounds compared to SM07. Therefore, based on structural similarity, it 

is reasonable to predict that N-12 is the microscopic protonation site for all of these 

compounds. We can infer that UV-metric pKa values measured for the4-aminoquinazoline 

series are also microscopic pKas and they are related to the protonation of the same 

quinazoline nitrogen with the same neutral background protonation states as shown for 

SM07 in Figure 8A.

Recommendations for future pKa prediction challenges

Most high-throughput pKa measurement methods measure macroscopic pKas. One way to 

circumvent this problem is to confine our interest in future pKa challenges to experimental 

datasets containing only monoprotic compounds if UV-metric or pH-metric pKa 

measurements are the method of choice, allowing unambiguous assignment of pKa values to 

underlying protonation states. However, it is important to consider that multiprotic 

compounds are common in pharmaceutically interesting molecules, necessitating the ability 

to model them reliably. It might also be interesting to select a series of a polyprotic 

compounds and their monoprotic fragments, to see if they can be used to disambiguate the 

pKa values.

Although relatively efficient, UV-metric pKa measurements with the Sirius T3 do not 

provide structural information about microstates. Even the acid-base assignment based on 

direction of psKa shift with cosolvent is not a reliable indicator for assigning experimental 

pKa values to individual functional groups in multiprotic compounds. On the other hand, 

most computational pKa prediction methods output microscopic pKas. It is therefore difficult 

to use experimental macroscopic pKa values to assess and train microscopic pKa prediction 

methods directly without further means of annotating macroscopic-microscopic 

correspondence. It is not straight-forward to infer the underlying microscopic pKa values 

from macroscopic measurements of a polyprotic compound without complementary 

experiments that can provide structural information. Therefore, for future data collection 

efforts for evaluation of pKa predictions, if measurement of pKas via NMR is not possible, 

we advise supplementing UV-metric measurements with NMR characterization of 

microstates to show if observed pKas are microscopic (related to a single group) or 

macroscopic (related to dissociation of multiple groups), as performed for SM07 and SM14 

in this study.
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Another source of complexity in interpreting macroscopic pKa values is how the 

composition of macroscopic pKas can change between different experimental methods as 

illustrated in Figure 2. Different subsets of microstates can become indistinguishable based 

on the type of signal the experimental method is constructed on. In potentiometric titrations, 

microstates with the same total charge are indistinguishable and are observed as one 

macroscopic population. In spectrophotometric pKa measurements, the factor that determine 

if microstates can be resolved is not charge. Instead, microstates whose populations, and 

therefore UV-absorbance spectra, change around the same pH value become 

indistinguishable.

The “macroscopic” label is commonly ascribed to transitions between different ionization 

states of a molecule (all microstates that have the same total charge form one macrostate), 

but this definition only applies to potentiometric methods. In UV-absorbance based methods, 

the principle that determines which microstates will be distinguishable is not charge or 

number of bound protons, but molecular absorbance changes, and how closely underlying 

microscopic pKa values overlap. To compare experimental macroscopic pKa and 

microscopic computational predictions on common ground, the best solution is to compute 

“predicted” macroscopic pKa values from microscopic pKas based on the detection 

limitations of the experiment. A disadvantage of this approach is that experimental data 

cannot provide direct guidance on microscopic pKa resolution for improving pKa prediction 

methods.

Since analyte purity is critical for accuracy, necessary quality control experiments must be 

performed to ensure at least 90% purity for UV-metric pKa measurements. Higher purities 

may be necessary for other methods. For potentiometric methods, knowing the 

stoichiometry of any counterions present in the original powder stocks is also necessary. 

Identity of counterions also needs to be known to incorporate titratable counterions, e.g. 

ammonia in the titration model.

For the set of SAMPL6 pKa challenge compounds, we could not use potentiometric pKa 

measurements due to the low aqueous solubility of many of these compounds. The lowest 

solubility observed somewhere in the experimental pH range of titration is the limiting 

factor, since for accurate measurements the analyte must stay in the solution phase 

throughout the entire titration. Since the titration pH range is determined with the goal of 

capturing all ionization states, the analyte is inevitably exposed to pH values that correspond 

to low solubility. Neutral and zwitterionic species can be orders of magnitude less soluble 

than ionic species. If a compound has a significantly insoluble ionization state, the pH range 

of titration could be narrowed to avoid precipitation, but it would limit the range of pKa 

values that could be accurately measured.

For future pKa challenges with multiprotic compounds, if sufficient time and effort can be 

spared, it would be ideal to construct an experimental pKa dataset using experimental 

methods that can measure microscopic pKas directly, such as NMR. In the present study, we 

were only able to perform follow up NMR microstate characterization of two compounds 

because we relied on intrinsically low-sensitivity and time-consuming 1H-15N HMBC 

experiment at natural abundance of 15N nuclei. 1H-15N HMBC experiments of SM07 and 
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SM14 required high analyte concentrations and thus the use of organic solvents for 

solubility. Alternatively, it might be possible to determine microstates with 1H-NMR by 

analyzing chemical shift changes of reporter protons [21] in aqueous solutions with lower 

analyte concentrations and with much higher throughput than 15N-based experiments. 

However, it should be noted that1H NMR titration data may not always be sufficient for 

unambiguous microstate characterization. In this case, other reporter nuclei such as 13C, 19F 

and 31P can be used where appropriate to supplement 1H data To prepare sample solutions 

for NMR at specific pH conditions, the Sirius T3 can be used to automate the pH adjustment 

of samples. Another advantage of using the Sirius T3 for NMR sample preparation includes 

preparing ionic strength adjusted NMR samples and minimizing consumption of the analyte 

since small volumes (as low as 1.5 mL) of pH adjusted solutions can be prepared.

In the future pKa challenges, it would be especially interesting to expand this exercise to 

larger and more flexible drug-like molecules. pKa values are environment dependent and it 

would be useful to be able to predict pKa shifts based on on ionic strength, temperature, 

lipophilic content, with cosolvents or in organic solvents. Measuring the pKa of molecules in 

organic solvents would be useful for guiding process chemistry. To test such predictions, 

special pKa experiments would need to be designed to measure pKas under different 

conditions.

The next iteration of the SAMPL log D prediction challenge will include a subset of 

compounds from pKa challenge. We therefore envision that the collected dataset of pKa 

measurements will also be of use for this challenge. Experimental pKa values will be 

provided as an input to separate the pKa prediction issue from other problems related to log 

D predictions. We expect that the experimental pKas can be used as an indication if 

protonation states need to be taken into account for a log D prediction at a certain pH and for 

the validation of protonation state population predictions in the aqueous phase. Even for 

compounds for which microstates were not experimentally determined, macroscopic pKa 

value can serve as an indicator of how likely it is that protonation states will have a 

significant effect on the log D of a molecule. Additionally, the information from NMR 

experiments in this study provided the site of protonation for six 4-aminoquinazoline 

compounds, which could be incorporated as microstate information for log D predictions. 

For predicting log D we suggest as a rule of thumb to include protonation state effects for 

pKa values at least within 2 units of the pH of the log D experiment. pKa values of six 4-

aminoquinazoline compounds in this study were determined to be within 2 pKa units from 7.

Conclusion

This study reports the collection of experimental data for the SAMPL6 pKa prediction 

challenge. Collection of experimental pKa data was performed with the goal of evaluating 

computational pKa predictions, therefore necessary quality control and uncertainty 

propagation measures were incorporated. The challenge was constructed for a set of 

fragment-like and drug-like small molecules, selected from kinase-targeted chemical 

libraries, resulting in a set of compounds containing heterocycles frequently found in FDA-

approved kinase inhibitors. We collected pKa values for 24 compounds with the Sirius T3 

UV-metric titration method, which were then used as the experimental reference dataset for 
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the SAMPL6 pKa challenge. For compounds with poor aqueous solubilities we were able to 

use the Yasuda-Shedlovsky extrapolation method to measure pKa values in the presence of 

methanol, and extrapolate to a purely aqueous phase.

In our work, we highlighted the distinction between microscopic and macroscopic pKas 

which is based on the experimental method used, especially how underlying microstate 

composition can be different for macroscopic pKa values measured with UV-metricvs pH-

metric titration methods. We discuss how macroscopic pKa values, determined by UV, 

introduce an identifiability problem when comparing to microscopic computational 

predictions. For two compounds (SM07 and SM14) we were able to alleviate this problem 

by determining the sequence of microscopic protonation states using1H-15N HMBC 

experiments. Microstates of five other compounds with 4-aminoquinazoline scaffold were 

inferred based on the NMR characterization of SM07 microstates which showed that it is 

monoprotic.

The collected experimental data constitute a potentially useful dataset for future evaluation 

of small molecule pKa predictions, even outside of SAMPL challenges. We expect that this 

data will also be useful for participants in the next SAMPL challenge on small molecule 

lipophilicity predictions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

MI, ASR, and JDC acknowledge support from the Sloan Kettering Institute. JDC acknowledges support from NIH 
grant P30 CA008748. MI, JDC, ASR, and DLM gratefully acknowledge support from NIH grant R01GM124270 
supporting SAMPL blind challenges. MI acknowledges support from a Doris J. Hutchinson Fellowship. DLM 
appreciates financial support from the National Institutes of Health (1R01GM108889-01), the National Science 
Foundation (CHE 1352608). IEN acknowledges support from the MRL Postdoctoral Research Program. The 
authors are extremely grateful for the assistance and support from the MRL Preformulations and NMR Structure 
Elucidation groups for materials, expertise, and instrument time, without which this SAMPL challenge would not 
have been possible. MI and DL are grateful to Pion/Sirius Analytical for their technical support in the planning and 
execution of this study. We are especially thankful to Karl Box (Sirius Analytical) for the guidance on optimization 
and interpretation of pKa measurements with the Sirius T3, as well as feedback on the manuscript. We thank Brad 
Sherborne (MRL; ORCID: 0000-0002-0037-3427) for his valuable insights at the conception of the pKa challenge 
and connecting us with TR and DL who were able to provide resources for experimental measurements. We 
acknowledge Paul Czodrowski (Merck KGaA; ORCID: 0000-0002-7390-8795) who provided feedback on multiple 
stages of this work: challenge construction, purchasable compound selection, and manuscript. We acknowledge 
contributions from Caitlin Bannan who provided feedback on experimental data collection and structure of pKa 
challenge from a computational chemist’s perspective. We are also grateful to Marilyn Gunner (CCNY) for her 
feedback on this manuscript. We thank anonymous reviewers for their input and constructive comments that 
improved this manuscript. MI, ASR, and JDC are grateful to OpenEye Scientific for providing a free academic 
software license for use in this work. The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.

Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands

pKa log10 acid dissociation equilibrium constant

psKa log10 apparent acid dissociation equilibrium constant in cosolvent
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DMSO Dimethyl sulfoxide

ISA Ionic-strength adjusted

SEM Standard error of the mean

TFA Target factor analysis

LC-MS Liquid chromatography - mass spectrometry

NMR Nuclear magnetic resonance spectroscopy

HMBC Heteronuclear Multiple-Bond Correlation

TFA-d deutero-trifluoroacetic acid
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Figure 1. Assignment of cysteine and glycine pKa values.
pKa1, pKa2, and pKa3 are macroscopic acid dissociation constants for cysteine and glycine 

[24]. When pKa values of a polyprotic molecule are very different, such as in the case of 

glycine, it is possible to assign the pKas to individual groups since the dissociation of 

protons is stepwise [19]. However, stepwise dissociation cannot be assumed for cysteine, 

because pKa2 and pKa3 are very close in value. Four underlying microscopic pKas (pKa,S, 

pKa,N, pKa,S′, and pKa,N′,) for cysteine were measured using UV spectra analysis of 

cysteine and derivatives [25]. Notice that the proximity of pKa,S and pKa,N values indicates 

similar probability of proton dissociation from these groups. This figure is adopted from 

[19].
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Figure 2. Comparison of macroscopic and microscopic pKa measurement methods.
Filled circles represent protonated sites and empty circles represent deprotonated sites with 

the order of carboxylic acid (1), piperazine nitrogen (2), and piperazine nitrogen (3). 

Protonation state populations shown for pH-metric and UV-metric pKa measurement 

methods are simulations, calculated using NMR-based microscopic pKa values. (A) 

Cetirizine has n =3 titratable sites, shown in bold. (B) Left: The 8 microstates (2n) and 12 

microscopic pKas (n2n−1) of cetirizine. Right: Relative population of microspecies with 

respect to pH. Potentially all microstates can be resolved via NMR. (C) Simulated pH-

metric (potentiometric) titration and macroscopic populations. For a polyprotic molecule, 

only macroscopic pKas can be measured with pH-metric titration. Microstates with different 

total charge (related to the number of protons) can be resolved, but microstates with the 

same total charge are observed as one macroscopic population. (D) Simulated microscopic 

populations for UV-metric (spectrophotometric) titration of cetirizine. Since only 

protonation of the titration sites within four heavy atoms of the UV-chromophore is likely to 

cause an observable change in the UV-absorbance spectra, microstates that only differ by 

protonation of the distal carboxylic acid cannot be differentiated. Moreover, populations that 

overlap may or may not be resolvable depending on how much their absorbance spectra in 

the UV region differ. Both UV-metric and pH-metric pKa determination methods measure 

macroscopic pKas for polyprotic molecules, which cannot easily be assigned to individual 

titration sites and underlying microstate populations in the absence of other experimental 

evidence that provides structural resolution, such as NMR. Note that macroscopic 

populations observed in these two methods are composed of different combinations of 

microstates depending on the principles of measurement technique. Here, the illustrative 

diagram style was adopted from [26], and NMR-determined microscopic pKas for cetirizine 

were taken from [27].
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Figure 3. UV-metric (spectrophotometric) and pH-metric (potentiometric) pKa measurements of 
pyridoxine HCl with Sirius T3.
Spectrophotometic pKa measurement (panels A, B, C) relies on differences in the UV 

absorbance spectra between microscopic protonation states to deconvolute the population of 

macrostate species as a function of pH. While highly sensitive (and therefore requiring a 

very low analyte concentration of ~ 50 μΜ), this approach can only resolve changes in 

protonation states for titratable sites near chromophores and cannot separate the populations 

of microstates that change in the same manner as a function of pH. (A) Multiwavelength UV 

absorbance vs pH. Purple lines represents absorbance at distinct wavelengths in UV region. 

(B) Derivative of multiwavelength absorbance with respect to pH (dA/dpH) vs pH is plotted 

with purple lines. In A and B, blue, red, and green triangles represent population of 

protonation states (from most protonated to least protonated) as calculated from a global fit 

to experimental UV absorbances for all pH values, while thin lines denote model fits that 

utilize the fitted model pKas to compute populations. pKa values (green flags) correspond to 

inflection point of multiwavelength absorbance data where change in absorbance with 

respect to pH is maximum. (C) Molar absorption coefficients vs wavelength for each 

protonation state as resolved by TFA. D, E, F illustrate potentiometric pKa measurement 

where molar addition of acid or base is tracked as pH is titrated. (D) Mean molecular charge 

vs pH. Mean molecular charge is calculated based on the model provided for the analyte: 

predicted number and nature of titratable sites (acid or base type), and number of counter 

ions present. pKa values are calculated as inflection points of charge vs pH plot. (E) 

Predicted macroscopic protonation state populations vs pH calculated based on pKa values 

(H2A+: blue, HA: red, and A-: green) (F) Buffering index vs pH profile of water (grey solid 

line, theoretical) and the sample solution (blue triangles represent experimental data points). 

A higher concentration of analyte (~5 mM) is necessary for the potentiometric method than 

the spectrophotometric method in order to provide large enough buffering capacity signal 

above water for an accurate measurement.
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Figure 4. Compound selection for the SAMPL6 pKa challenge, with the goal of running 
subsequent log P/log D challenges on the same compound set.
(A) Flowchart of filtering steps for the selection of compounds that resemble kinase 

inhibitors and their fragments. Numbers next to arrows indicate the number of compounds 

remaining after each filtering step. A total of 25 fragment-like and 10 drug-like compounds 

were selected, out of which procurement and pKa measurements for 17 fragment-like and 7 

drug-like compounds were successful, respectively. (B) Frequent heterocycles found in FDA 

approved kinase inhibitors, as determined by Bemis-Murcko fragmentation into rings [49]. 

Black structures were represented in SAMPL6 set at least once. Compounds with piperazine 
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and indazole (gray structures) could not be included in the challenge set due to library and 

selection limitations. (C) Structures of heterocycles that were overrepresented based on our 

compound selection workflow. We have limited the number of occurrences of these 

heterocycles to at most one.
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Figure 5. Determination of SM22 pKa values with cosolvent method and Yasuda-Shedlovsky 
extrapolation.
A, B, and C show psKa of SM22 determined at various methanol concentrations: 59.07%, 

49.72%, 40.08% by weight. Purple solid lines indicate the derivative of the absorbance 

signal with respect to pH vs pH at multiple wavelengths. psKa values (green flags) were 

determined by Sirius T3 Refine Software. Blue, red, and green triangles show relative 

populations of macroscopic protonation states with respect to pH calculated from the 

experimental data. Notice that as cosolvent concentration increases, psKa1 decreases from 

1.90 to 1.47 and psKa2 increases from 7.84 to 8.24. D Yasuda-Shedlovsky extrapolation plot 
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for SM22. Red datapoints correspond to psKa determined at various cosolvent ratios. Based 

on linear fitting to psKa + log[H2O] vs 1/∈, pKa1 and pKa2 in 0% cosolvent (aqueous 

solution) was determined as 2.45 and 7.42, respectively. R2 values of linear fits are both 

0.99. The slope of Yasuda-Shedlovsky extrapolation shows if the observed titration has 

acidic (positive slope) or basic (negative slope) character dominantly, although this is an 

macroscopic observation and should not be relied on for annotation of pKas to functional 

groups (microscopic pKas).
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Figure 6. Molecules used in the SAMPL6 pKa challenge.
Experimental UV-metric pKa measurements were performed for these 24 molecules and 

discernable macroscopic pKas are reported. Uncertainties are expressed as the standard error 

of the mean (SEM) of three independent measurements. We depicted neutral states of the 

molecules as sites of protonation were not determined by UV-metric methods. 2D structures 

were created with OpenEye OEDepict Toolkit [59]. Canonical isomeric SMILES of 

molecules in this figure and pKa values measured in replicate experiments can be found in 

Table SI 1 and Table SI 3, respectively.
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Figure 7. pKa measurements with UV-metric method with cosolvent and UV-metric method in 
water show good correlation.
17 pKa values (blue marks) of 13 chemicals were measured with both UV-metric pKa 

method in water and UV-metric pKa method with methanol as cosolvent (Yasuda-

Shedlovsky extrapolation to 0% methanol). Dashed black line has slope of 1, representing 

perfect correlation. Dark and light green shaded areas indicate ±0.5 and ±1.0 pKa unit 

difference regions, respectively. Error bars are plotted as the SEM of replicate 

measurements, although they are not visible since the largest SEM is 0.04. MD: Mean 

difference, MAD: Mean absolute deviation, RMSD: Root-mean-square deviation. 

Confidence intervals (reported in brackets) report the 95%ile CI calculated over 10 000 

bootstrap samples. Experimental data used in this plot is reported in Supplementary Table 4.
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Figure 8. Dominant protonation microstates of SM07 and SM14 characterized by NMR.
(A) Sequence of protonation sites of SM07 were determined by1 H-15N HMBC experiments 

in 1:2 water:methanol mixture. Left: The plot of15N chemical shifts of the N-10, N-12, and 

N-8 resonances of SM07 vs titrated TFA-d equivalents, showing the mono-protonation of 

N-12 as evidenced by its large upfield chemical shifts change. Acidity of the medium 

increased as more equivalents of TFA-d were added. Electronic effects due to protonation of 

N-12 caused downfield chemical shift change of N-10 and N-8 between 0–1 equivalents of 

TFA-d. Right: NMR-based model of the order of dominant protonation states for SM07. The 

protonation event was only observed at N-12. Microstates shown in the figure are the most 

likely contributors to the UV-metric pKa of 6.08 ± 0.01. (B) Sequence of protonation sites of 

SM14were determined by1 H-15N HMBC experiments in acetonitrile. Left: The plot of 15N 

chemical shifts of N-9, N-7, and N-16 of SM14 vs titrations of TFA-d equivalents, showing 

two sequential protonation events. The first protonation occured at N-9; a large upfield 

chemical shift change of 71.6 ppm was seen between 0–1 equivalents of TFA-d. Downfield 

chemical shift changes observed for N-7 and N-19 in this region were due the electronic 

effect from the protonation of N-9. N-16 also exhibited a small upfield chemical shift change 

of 4.4 ppm between 2.5–10 equivalents of TFA-d, which indicated N-16 as the second site of 

protonation. Right: NMR based model of the order of dominant protonation states for SM14, 

showing two sequential protonation events. Also, two pKa values were detected with UV-

metric pKa measurements for SM14. Assuming that the sequence of protonation events will 

be conserved between water and acetonitrile solvents, SM140 and SM14+1 microstates 

shown in the figure are the major contributors to the UV-metric pKa value 5.30 ± 0.01. 

SM14+1 and SM14+2 microstates shown in the figure are the major pair of microstates 

contributing to the UV-metric pKa value 2.58 ± 0.01. There could be minor microstates with 

very low populations that could not be distinguished in these NMR experiments.
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Table 1.
Experimental pKas of SAMPL6 compounds.

Spectrophotometric pKa measurements were performed with two assay types based on aqueous solubility of 

analytes. “UV-metric pKa” assay indicates spectrophotometric pKa measurements done with Sirius T3 in ISA 

water. “UV-metric pKa with cosolvent” assay refers to pKa determination by Yasuda-Shedlovsky extrapolation 

from psKa measurements in various ratios of ISA methanol:water mixtures. Triplicate measurements were 

performed at 25.0 ± 0.5° C and in the presence of approximately 150 mM KCl to adjust ionic strength.

Molecule ID pKa1 pKa2 pKa3 Assay Type

SM01 9.53 ± 0.01 UV-metric pKa

SM02 5.03 ± 0.01 UV-metric pKa with cosolvent

SM03 7.02 ± 0.01 UV-metric pKa with cosolvent

SM04 6.02 ± 0.01 UV-metric pKa

SM05 4.59 ± 0.01 UV-metric pKa with cosolvent

SM06 3.03 ± 0.04 11.74 ± 0.01 UV-metric pKa

SM07 6.08 ± 0.01 UV-metric pKa

SM08 4.22 ± 0.01 UV-metric pKa

SM09 5.37 ± 0.01 UV-metric pKa with cosolvent

SM10 9.02 ± 0.01 UV-metric pKa with cosolvent

SM11 3.89 ± 0.01 UV-metric pKa

SM12 5.28 ± 0.01 UV-metric pKa

SM13 5.77 ± 0.01 UV-metric pKa

SM14 2.58 ± 0.01 5.30 ± 0.01 UV-metric pKa

SM15 4.70 ± 0.01 8.94 ± 0.01 UV-metric pKa

SM16 5.37 ± 0.01 10.65 ± 0.01 UV-metric pKa

SM17 3.16 ± 0.01 UV-metric pKa

SM18 2.15 ± 0.02 9.58 ± 0.03 11.02 ± 0.04 UV-metric pKa with cosolvent

SM19 9.56 ± 0.02 UV-metric pKa with cosolvent

SM20 5.70 ± 0.03 UV-metric pKa with cosolvent

SM21 4.10 ± 0.01 UV-metric pKa with cosolvent

SM22 2.40 ± 0.02 7.43 ± 0.01 UV-metric pKa with cosolvent

SM23 5.45 ± 0.01 UV-metric pKa with cosolvent

SM24 2.60 ± 0.01 UV-metric pKa with cosolvent

1
pKa values are reported as mean ± SEM of three replicates.
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