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Introduction

The +thesis of this working —faper 1is that much

information may - be derived regarding distributed prograan

behavior by observiny and augmenting message flow. The

progr=ming environment which 1is implied here is cne in

which modules with well defined boundaries, such as

independent machines or 1independent address spaces,

communicate with each «cther via a message  oriented

interprocess communications systemnm.

.

Grapnh models may be wused +tc¢ represent distributed

processes, e.9, see GOST, Chapter 3 for a nmachine

distributed at a very primitive level, However, 1little

has been . done to examine the relationship of a distributed

pfogram’s graph model to the message traffic it generates.

Thus, this paper reports on the study of using‘the UCLA

Graph Model of Computaticn tc model a distributed process,

and concentratss particularly on the observed message

‘flow. The sections which follow explain the choica of the

ARPA Initial Connection Protoccl (ICP) as the example to

study, discusses the issues which surface because of this

example, and suggests topics which might be candidates for

future resesarch, This papar assumes familiarity with the

ARPANET Host-Host protocol {HCKENZIE), Initial Connection
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Protocol ({PI3TELT, POSTELE}, and th2 UCLA Graph Model of
Computation {CERF, GO3T, PO3STEL2). One more comument,
before proceeding, is that the ©primary contnibution of
this paper 1is seen as providing heuristics rather than
fermal algorithams with respect to ‘monitoring distributed

processs=s,

Some Goals

o

f the Research Underlying this Paper

The research withian this paper fits dinto a larger
project which is inﬁestigatinq tcp dowﬁ desigas of
distributed programming systems. A number of assumptions
are made about program environments for this project; they
are stated here in crder tc outline the context of this

work.

A distributed program is " a collection of
independant, - asynchronous, 'cooperating processes., Each
process, or module, communicates with other processes only
via message sending. The adaréss sraces cf the processes
are independent and, in practice, nay be"affiliated with
éeparate machines. Control flow is specifiéd independient
of module function, and in a way thét may be used to bﬁild

a program graph, .

Given module, centrcl flow, and intermodule
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communications spacifications, it is desired to

investigate several issues relat=sd tc the monitoring of

such an environm=nt,

First, little insight exists into the nature of the
message traffic generated by’actual trcgram- graphs. Thus
a study ofvthe relationship between progran graphé and
message traffic 1s a necessary precursor to amy proposal

for a monitor.

Second, 1t should be determined to what extent

program graphs may be verified via an examination of
message flow. IE.G,

e

Can all graph vertices be seen to

initiate and/or terminate?

Finally, it should be deterwined Just how such a

programming environment wmight be mcnitored. Since it is

desired to give the communications systen enough

information to monitor the status of program graphs,

séveral approaches can be taken. ‘First, investigate -a
communications structure in which no redundant control
infcrmation is transmitted Vwith each -~ message, Second,
investigate a

communications structure which eases the

task of the mcnitor by adding ccntrol information to each

3 tradeoff exists between monitor complexity and

message complexity which should be studied.



The approach of this work is to adort an axisting
distributed process, ICP, and study its message and graph
behavior. The résults.of this work méy servé as.inéut to
future rasearch., There are several motivations for

investigating the Initial Connection Protocol.

First, the ICP process 1is distributed. ‘Mutual

action on the part of two processes is required for ICP to
be successfully accomplished. In additicn one may not be
.able to determine the comglete state of a particular ICP
only by looking at the state of ore or the other of the

two processes,

Second, the ICP proccess is a parailel one, At its
maximum, each party to an ICP may-have 3 parallel regquests

outstanding (two <connects for the send and Tecelve

conna2ctions and one close for the 1initial ‘'contact',

ceonnection) .

Third, the ICP is common to, and is a building bhlock

1

fFor, other more complicated distributed processes, Fo
example, the File Transfer Prctocel, the Kemote Job
Submission Protocol, and Telnet all degend upcn ICP to

initiate their sessions. Since the ICP 1is a building
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block, it is hoped that by studying it cune might see how
low level procasses may be represanted on  higher level

program graphs.

Fourth, the ICP can be and already has  been modeled
with the UCLA Graph #odel of Ce¢mputation (POSTELQ),'and
thus parct of the effort of gensrating a correct graph 1is

alleviated,

Details of the ICP Program Graph

The ICP graph found in Jon Postel's Thesis (POSTEL2,
pPpS. 104-135) has Dbesn adopted ahd simplified for the
purposas of this study (ippendix I contains the resultant
graph).  VYamely, the arcs modeling sockets as resources
{U3,H2,3;51,SQ) and ‘ diagnostic ' arcs
{NOTU,N¥0TL,N03,¥02,N8S80,851) have Dbeen removed. Also the
vertices 18, 13,22,21,22,23 have been removed, The graph
therefore isv much simplified and cnly «contains dété
pertinent to our study of _communications Abehavior.VA The
3rcs remaining répresent message transwmissions and

seguencing rules, .

One inadequacy which should be noted 1is “that the

program graph does not allow for asynchroncus events. For

sxample, 1t is perfectly valid for the SERVER to respond
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to the USZR's initial ccnnect {CU2L) with a close, which
should be interpreted as a refusal. Or a network errcor
ﬁight occur at any time during the graph’s execution which
should be handled in a special way. These ©problens,
though important, are seen a applying to a future stuay on

using graph models in programming languages.

It may also be pointed cut thatl while most arcs
passing bétweeﬂ‘the User and Server portions of the grapﬂ
represent ﬁormal ARPANET messages, there is one. exception
and that is ‘the arc 1labeled BFNM. BRFNM represents an
acknowledgement, which actually acconmpanies every message
transmission. At least one reascn for this arc is to
prevent a race condition between the server®s data  (LATR)
and ths server’'s close (CLS5L). If the close request

passes the data in the network, then the data may be lost,

In addition, BEFNM represents a rdsponse from an NCP and

does not imply terminaticn of vertex 7. Stated
differently, RFNM is a phencmencn associated with a lower
level process, namely single message..delivery; ‘which is
not explicitely modeled on this gravh., If one specifies
that a message on a given link must be acknowledged before
another one  may be transmitted, then RFIY may be
eliminated. HWotwithstanding éuch deficiencies, we will

leave the graph as it 1is,
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Communications Behavior of ICP Prcgral

Grarh

iven the ICP program graph, 12t us ncw rprocesd tao
study the ICP communicaticns behavior. We first note that
what 1is desired 1s +to identify kow control  flow

information is imbedded within messages., We are trying to

identify what information a communications monitor needs

in order to follow the execution of the ICP program graph.

We may speculate at the outset that there 1is probably a

sequencing relationship between messages, although we
don't know hbw to arrive at that relaticnship Just yeﬁ.
We may also say that messages will prokably have to.be
decode& in order to idantify their «correscondence with
'token flow on the ICP graph. Otherwise, we make no
apriori statements about the relationship hetveen messages

-

and the program graph.

The Study proceeds as followss: Firét, cach arc on
the ICP prograw graph is enumerated, in detail, as to the
message traffic it generates. Then a ©partial ordéring
qraph 1is dgfined which delineates the sequencing »of
" messages, Yith the enum=ratsd message‘ traffic, which
“allows us to correlate arcs and messages, and the Partial
ordering graph, which identifies the valid message

sequancing, we have potentially encugh information with
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which to proqrém a mcnitor for the ICP gprojram graph.
Thus tﬁe next step is to identify the ccntzcl information
<dependencies,r i;e. the dinformation which nust be
extracted from each m=2ssagqe 1in crder to successfully

identify other messages which appear later in time. When

this is done for the ICP graph, it is shown that a

conflict exlists between the timing requirements enforced -

by control dependencies and the timing regquiremeats

allowed by the fully parallél rartial ordering graph.
Fiﬁally, we determine which vertices may be inferred as

having executed hy observing cnly the message flow,

Fh

Let us now enumerate tﬁe message traffic which
corresponds to token amovement on theVICP program graph.
The table which follows details this nessage flow.. To aid
in wunderstanding iﬁe table the following clarifications
are needed. "U-->...-->5" and NUK==, ., <K== indicate ‘the
éirection of message flow, FRCH aﬁd~TO identify the nodes
which lie at the head and tail respectively <¢f each arc
{see Appendix I)., The last column, DATA, containg
symbcolic represéentations of commands and' data sent over
hoth the ccntrel-link and data links., RIS {connect fron
récéiver to sender), S5TR {ccnnect from sender to

receiver), ALL (allocate buffer space for send), and CLS

{close connection) all cccur on the contrcl link, LINKT,
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LINKZ2, and LI¥K3 are
initial contact connection, User-->Server data ccnnection,

and User<--Servar data connection raspectivaly.

ARC  FROA ID HESSAGE

cu2L 2 4 g -=->=r1Is (0 , L , LINKT ) -=> 3
CL2U 4 5 U<K-- 3Tk (L, U, SIZE1l ) ~  <=='5
OPEN 5 6 J --> ALL { LINK1 , HMSGS1 , BITS1 ) --> 5
LATA o 7 U <=- numeric valune of S on LIHK] <-- 5
RFNH 7 8 U --> rina : -=> S5
CLSU 7 1 U -=>CLS (U , L) -=> 3
CLSL 8 g Jg<==-CLS (L , U) , {-~ S
8102 12 13 U <-- ST& ( s+1 , U+2 , SIZE3 ) <{-- 35
c503 12 M4 U -=> RIS ( 8 , U+3., LINK2 ) -=> 3
CU2s51 11 16 U ~-=> RTS ( U+2 , S+1 , LINK3 ) -=> 5
cu3s 11 15 U <~- STR { U+3 , S , SIZE2 ) <--'5

Figure 1 -- Enuwmeration of ICP Graph Hessage Traffic

Note that eleven nmessages, «counting RFNH, flow

betyeen user and server process. Note also that nothing

is said about what happens after the ICP conmpletes. I.E,

The arcs which d=znote success of ICP may £feed into ancther

arbitrarily complex program graph.

#e next apply to the messages a partial ordering on

~the time at which they each wmay be transmitted. The

partial ordering w2 us=a

.

2r2 15 a relationship Letween the

messages such that any message's predecessor nust occur

w

{

prior to the message it 5

21f. The partial ordering is

represented as a tree where any messages With a ccmmon

the symbclic link numbers for the
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ancestor may occur 1n parallel, For the

partial ordering is:

Figure 2 -- Partial Crdering cf ICP #Massages

Now that we know the message conteat and ordering

for this vparticular graph, w2 'may sState the ancestral

,ofiqins,of each item of infermaticn that an intelligent
monitor would need in order to fcllcw the ccntrel flcw of
the ICP program graph. The total set of information

required by the monitor is as follows: Sccket numbers U,

3+2, U+3, L, 8, S+1; control link message types RIS, SIR,

CLS, ALL; and the 1link opuaber, LINK1, for the initial

contact connection, Additicnal infcrmation which wmay be

determined, but i5 not us=d within the ICPE program graph,

"ICF graph the
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includes the link numbers c¢f the final <c¢cnnections, and

- the byte sizes of all conanections.

The socket numbers U and L must Dbe provided, along
with‘ the proggam graph {or partial ordering), tgo the
monitor explicitly, This is equivalent to saying that the
user and server parties to an ICP pust each inform thé

monitor - of their intenticn to participate in the

distributed process represepted by the ICP program graph,
The pair U, L initially uniquely identifies each instance
of the ICP .program gragh for each pair cf communicating

processes, . The rest of ‘the informaticn required to fcllow
the execution of the program graph is derivable once the

socketrts U and I ar= known,. The following figure

delineates the informaticon reguirements of éach arc aon the
ICcp qrapb;r'The'three colu@ns contaln for sach arc the arc
name, the message type, and the information extracted fron
thevmeséaqef;egresegtinq this arc. 7The arcs are 1in four

gIoups:



Arcs reguiriag U,L Jdzssage Iyps  Can Extract
CU2L aTSs LINKT
CL20 S1R SIZE1
CL30 CL5 -——-
CL3L CLS -———=
Arcs reguiring LINK]
OPEY ALL N
DATA  LINK? -data Socket nsn
Arcs reguiring U+2,5+1
cu2s1 RT3 . LINK3
CsS102 STR SIZE3
Arcs requiring U+3,S
cu3s .. STR - - SIZE2
Csu3 ' FTS LINK2

Figure 3 -- Informaticn Ccntent cf Messages

h

0]

To compare the timing requirements 1imposed by -

‘ﬁ-

0]

flow of control informationrwiﬁhin ressages let us do th
following: Superimpose on the partial ordering gragh an
ancestral graph in which each node has - an arc to a
pradacessor node in which its required-sét §f informafion

is defined, This is done in Figure #4:
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Figure 4 -- AncestralsPartial Crdering Graph

Note that arcs C5102 and CSU3 may pass through the
communications system pricr to the sccket namber ST,
{"S" and "S+1" are reguired by the last tuc groups of

figure 3) Two solutions suggest themselves:

1. Supply *"S" uron program graph imitiation in the sans
way that i ig suppiied. This may ke 4difficult if the

~

liocation of “s" is dcne dynanically.

2. Ignore M"3¢ and RS R ccopletely, Uron close

inspection - it may be  geen that these sockets are’

redundant informaticn, HU+2" and "U+3" may not legally

cccur with ‘any other combinaticn than "S+19 and "sv,




14

respectivaly., - Thus, evan though we sacrifice detail,

it is possible tc ccompletely mcnitor, i.=2. detect all

state transiticns within, the ICP Program graph.

Now let us consider to what extent -  a given program

graph may be verifi=sd via communications monitoring. In
the case of this graph we infer that the passing of a
‘message through - the cdmmuniCatidnsA systenm {which

represents the fLow of a token co  an arc) rimplies' the
‘termiﬁatiqn of a“veftex.4kln-the“ICE gragh most. vertices
comnunicate directly with the nétwork ugon termination,
In qeneral graphs, fewer verticesr nay border'upbn the
cémmunications system, and ocre ccmpiicatéd mechanisms may
be requited to validate vertex terminaticn,

-

Figure 5 shows the vertex terminaticns which may be
implied as a

function of cessage flow cn the ICP graph.

Note that vertices 13,1&,15,16' may nct be observed as

having terminated by observing only message flow.



Vertax Termination Implicd by Arc
1,2 CU2L

3,4 CL2U

5 , CPEN

6 , , CATA

7 EFNM,CLSU

8 CLSL

9,11 : CU3S,CU251

10,12 4 Cs$1U2,CsU3

13,14,15,15 ——

Figure 5 -=- Implied Vertex Terminaticns

Up till now we have been investiqating an unﬁodified
““protocol and asking the quésiion,Aﬁaséﬁming an infinitely
intelligent‘monitor, may ws accurately monitor the state
of a program graph without introducing éktra structure

within nessages?! We have determined, fcr the ICP 'graph,

that this is possible, However, if this techn

-

ique were
aextended to more ccamplex envircnments, where an arc

might

represent an arbitrarily complex series of pessages, it is
i 7

possible that the overhead and necsssary descriptive

requir=ments might be expensive bcth in terms of execution

~and storaje, Another apprcach is fpossible, which  nmay

simplify the operaticn of the mcnitcr, and is sketched
helow,
In this alternate apprcach each message which nmoves

into the communications system repressents the traversal by
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an arc of a token {at lszast in the ICP graph). Thus two

items c¢f information are required for the ccmmunications

system to be able to mcnitor the flow. First is some sort

of identification of the grecise progranm graph to which
this message pertains. For a commcn program graph 1like
-

ICP ther= may beAan arbitrary number of actual instances

of the graph (scmewhat analcgcus tc reentrant code). Thus

the - identification should identify both the basis prcgram

graph and the particular instance cf the prcgram graph.

Secoend is an indicatiof of the particular arc-on the graph -

o which the message partains,. These two items of
information, 1f appended tc the messages which flow

through the conmunicaticns system allow compleate

monitoring of the state of a graph without decoding the

actual'messa@es'themselves. An approach like this has the

cbvious advantage of low 2xecution dverheaa, tut has the
disadvantage that- somewhere must he generated thev correct.
identifying numbers vfo: eagh graph and each arc. dJust
where such information Ais generated and  how 1t is
ccmmunicéted to the monitor 1is nct discussed in this

StUdY.

Overall Conclusions on Study of ICP Prodras Graph

This study of the ICE

ap]

rcqgram graph's behavior as  to
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massage communications has generated the <follcwing

observations:

The UCLA Graph Model of Computaticn is a useful model
for studying message behavior within the Initial

Connection Protocol.

For those arcs which - répresent messages a. partial
crdering graph may be constructed which is more concise
than the graph mcdel and which rreserves the >potential
for parallelisnm, The partial ordering graph contains
chly-that structural information which is visikle *o
the coamunications systemr and thus 1is potentially
usable by the communicaticns mcnitcr to tracebthe flow

of ‘a program graph.,.

It éan bhe uéeful to Aerive the ancestry of each bit of
information that 1is —required to associate Va given
message with its graph model and gragh transition.
When meréed with the partial ordering graph this
information makes it pcssible tc identify when to
augment messages in corder tc¢ provide kéy informaticen to
the nwmonitor at an earlier roint 1n the graph?s

execution,




Future Ressarch Directions

Seyeral topics have surfaced as being logical

successors to the research described in this paper. Thay

are:

1, Continue the study of particular distributed processes

‘which .Vmay - be modeled - by graph models. More

Specifically study FTE (File Transfer Protocol) and RJS

- {Remote .Job Submission Vprotocol), Both FTP and RJS

depend ungcn ICP. RJS also uses FTP as a subroutine.
The level at which arcs are traversed is known to be
higher than that of simple wessage transfer (e.g.
consider the token which passes from. ah RJS batch

serve to an FTP server when an output file is

H

retrieved or delivered). Thus 1t 1is expected that some
understanding will be obtained empirically of the macrc

properties ¢f program grarhs,

Investigate +the use of the graph -mcdel. as a

programming language. More specifically study the
modeling of asynchronous conditicns aﬁd . macro graph
replacements. Invastigate the graph/token duality
{i.2, a simple token on one graph may be a complicated

graph when viewad in finer detail).

B
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Investigate th2 monitoring and -dshugging capabilities
Wwhich ncrmally might not exist without observing
nessage traffic, within a message criented

interprocess communicaticn hsystem which 1is able to
fdliow thé behavior of program dgrapas, 1t could be
-feasible‘ to validate that a distributed process passes
through only legal‘states, and that its behavior fits
within prescrihéd bounds, Additicnally, the setting of
breakpoints aﬁd enabling of vCQNY copditions could be

made a function of states #ithin the program graph,

Hithout the program graph  and its associatsd

communications moaniltcring cene wculd ke restricted to

mcnitoring only the local behavior of each individual

process, and thus a more global view of the distributed

program would be difficult to cobtain.

£y

Investigate +the propverties  of the nmonitor itself

Should ths monitor be built within or external to the

“commnunications net (with special filtering propertias

which allow mcnitoring informaticn to be routed to it) ?

H

How intelligent should the monitor Dhe and with what

(3]

¢

information should messages be augmentsd in order tc
most efficiently and ccopletely mcnitcr a distribut=d

progjram? Should infermaticn supplied the monitcr be

¢

static only or shounld procedural informaticn, as @might
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e used to ccmpute 0+2 and U+3 from U, be allowxed? #What
is the total set of services that the acnitor

D

might
rrovide? #what are thes £failsafe propecties of the
mcoitor? (2.4, rcnitoring 1its own  precgram  gragh,

resynchronization c¢cn interrupted mcnitoriang)

5. It may ks possible te develcop a number of analytic

and automat=zd

tools for mcnitoring prcgram graphs., A

fow axamples ars:

a. Derive thne tartial crdering 4gracgh

{1
[
O

it

the prograam
graph.

b, Deriva tha program graph frcm the partial ordering

graph,

c. Derive tha program graph by monitoring

communications behavior.

d. De2tarmine sets of yraphs iscmorphic with res

s

ect to

to communpications,

2, Derive canonical forms fcr rroqgram graphs . according

to given criteria (e.q. maximal rarallelism vs,

strict sequentiality) .
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