
UC Irvine
ICS Technical Reports

Title
A study on program graphs and their generated message flow

Permalink
https://escholarship.org/uc/item/9420349x

Author
Pickens, John R.

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9420349x
https://escholarship.org
http://www.cdlib.org/

A JY CN P30GRAH G?A?HS AND
':::'HE TR G ~ N E 2 A I' f D :·1 ESSA G E PL 'J W

John 11 .. Pickens

Technical Report ~ 67

May 1973

Notice: This Material
may be protected
by Copyfight Law
(Title 17 U.S.C.)

Department of Infcrmation and Computer Science

University of Califcrnia, Irvine

This work was· supported by a cont r:act in Network Security
from the Advanced Research Projects Agency.

John Pickens is currently attending UCI as a gradu~te
student under intercampus exchange. His heme department
is th0 Department of Electrical Engineering and Computer
3 cienc~ at UCSB a

I wish to thank my doctoral committee co-chairmen Dr.
Roger c. Wood {UCSB) and Prcfesscr David J. Farber (UCI)
for their discussions on the work iu this paper.

s pe c i al th an ks is d 11 •2 Pro £es so r Farber for t he count L~ s s
discussions and special meetings arranged ge~graphically
eguid~stant between Santa Barbara and Irvine, and for his
master plan of which this work is only a small part.

My deepest felt thanks is due to my wife Melinda and son
Jeremy for their patience in enduring the ongoing trials
0£ pursuing an advanced degree.

The thesis of this working raper is that much

information may· be derived regarding distributed program

behavio~ by observiny and augmenting message flow. The

progr ;;ming environment whicr1 is imflied here is one in

which modules with well defined boundariBs, such as

machines or independent address spaces,

communicate with each ether via a message

interprocess communications system.

oriented

Graph models may be used tc represent distributed

processes. e.g. see GOST, Chapter 3 for a machine

distributed at a ver}~ primitive level> However, little

has been.done td-examine the r~lation~hi~ of~ distributed

program's graph model to the message traffic it generates.·

Thus, this paper repotts on the study of using the UCLA

Graph Moael of Computation to model a distribu~ed process,

and concentrates particularly on the observed message

flow. The sections which follow explain tbe choice of the

ARPA Initial Connection Protoccl (ICP) as the example t-0

study, discusses the issues which surface because of this

example, and suggests topics wh~~h might ~e candidates for

future research. This papar assumes familiarity with the

ARPANET Host-Host protocol {MCKENZIE), Initial Connection

Protocol (POSTEL 1, FOST3L2) , and th~ UCLA Graph Model of

Compu ta:tion {C'23F, GOST, POSTE12) • One more comment,

before proceeding, is that the frimary contribution of

this paper is seen as providing heuristics rather than

formal algorithms with respect to monitoring distributed

process~s.

The research within this paper fits into a larger

project which is investigating tcp down designs of

distributed programming systems. A number of. assumptions

are made about program environments for this project; they

are stated here in order to outline the context of this

w or.k ..

distributed program is a collection of

i nde pendent, asynchronous, cooperating processes. Each

process, or module, communicates with other processes only

via message sending. The address Sfaces cf the processes

are independent and, in practice, rna.y be ·affiliated with

separate machines. Control flow is specified indepen~e~t

of module function, and in a way that may be used to build

a program graph.

module, contrcl flow, and intermodule

3

communications specif ica·tions, it is desirEd to

investigate several issues relatsd tc the monitoring of

such an environm~nt.

First, littl~ insight exists into the nature of the

message tra£fic generatea by actual frcgram·graphs. Thus

a study of the relationship between program graphs and

message traffic is a necessary precursor to any proposal

for a monitor.

Second, it should be determined to what extent

program graphs may be verified via an examination of

message flow .. E.G. Can all grapb vertices bE seen to

initiate and/or terminate?

Finally, it should be deternined just how such a

programming environment might be mcnitored. Since it is

desired to give the corumunicat~ons system enough

information to monitor tbe status .of program graphs,

several approaches.can be taken. First, investigate ·a

communications structure in which no redundant ~antral

infcrmation is transmitted with each -message. Second~

investigate a communications strircture which eases the

task of the mcnitor by adding central information to each

messa9e. A tradeoff exists between monitor complexity and

message complexity which should be studied.

4

B~tiQ~~l~ for the ~RQ1~~ 21 1nl1ial ~fBrrgcti~D £~2t2co1

The approach of this work is to adoft an existing

distributed process, ICP, and study its message and graph

behavior. The results of this work may serve a~ input to

future research. There are several motivations for

investigating the Initial connection Protocol.

First, the ICP process is gisj;_£i b~_tEd. ·Mutual

action on the part of two processes is reguired £or ICP to

~e succe~s£ully. acco~plisbed. In addition one may not be

_abl€ to determine the comflete state of a particular ICP

only by looking at the state of OLe or the other 0£ the

two processes.

Second, thB ICP process is a ~~ra11~1 one. At its

maximum, ea.ch party to an ICP may- have 3 farallel requests

o utstandin'.J (two connects for the send and receive

connections and one close for the initial Hcontact"

connection) •

Third, the I c P is fQ mm on to, and is a .R.1!ild.il.l.9]2_1oc_!s

for., other more complicated distributed processes, For

exampl~, the File Transfet · Prctocol, th2 Remote Job

Submission Protocol, and Telnet all defend upon ICP to

initiate their sessions. Since the ICP is a building

5

block, it is hop(~d that 1J y studying it c ne might see how

law level processes may be represented on higher level

program graphs.

Fourth, the ICP can be and already has been modeled

with the UCLA Graph Model of Ccmputation (POSTEL2), and

thus part of the effort of generating a correct graph is

alleviated.

?he ICP graph found in Jon Postel' s Thesis' {POSTEL2,

pps. 104-105) has

purposes of this study

graph) • Namely, the

been adopted and simplified for the

(Appendix I contains the resultant

arcs modeling sockets as resources

{U3,U2,IT,S1,S0) and diagnostic arcs

{NG?U,NOTL,NU3,NU2,NS0,NS1) have been removed.· Also the

vertices 18, 19,.20,21,22,.23 ha'le been removed. 'The graph

data therefore is much simplified and only contains

pertinent to our study of communications behavior. The

arcs remainin.g represent message transmissions and

sequencing rules~

One inadeguacy which should be noted is ·that the

program graph does not allow for asynchronous events. For

example, it is perfectly valid for the SERVER to respond

6

to th e U S ER • s in it i a 1 cc n n ec t (C U 2 L) w i th a c 1 o s e , w hi c h

should be interpreted as a refusal. Or a netwo~k error

might occur at any time during the graph 1 s execution which

should b~ handled in a sfecial way. These problems,

though important, are seen a applying to a future study on

using graph models in programming language·s.

It may also be pointea out that while most arcs

passing between the User and Server portions of the graph

represent normal ARPANET messages, there is one exception

and that is the arc labeled RFNM. RFNM represents an

acknowledgement, which actually accompanies every message

transmission~ At least one reason for this arc is to

prevent a race condition between the server 1 s data (13ATA)

and the server 1 s close (CLSL) .. If the close request

passes the data in the network, then the data may be lost.

In addition, EFNM represents a r~sponse from an NCP and

does not imply terminaticn of vertex 7. Stated

differently, RFNM is a pbencrnenon associated with a lower

level process, namely single message . delivery, which is

not explicitely modeled on this graph. If one specifies

that a message on a given link must be acknowledged before

another one may be transmitted, then RFNM may be

eliminated. Notwithstanding such deficiencies, we will

leave the graph as it is.

7

Given the ICP program gLaph, let us new froceed to

study the ICP comrnunicaticns behavior. We first note taat

what is desired is to identify how control fldw

information is irnbeaded within me~sages. We are trying to

identify what information a communications monitor needs

in order to follow the execution· of the ICP program graph.

We may speculate at the outset that there is probably a.

sequencinq relationship between messages, although we

don•t know how to arrive at that relationship just yet.

We may also say that messages will Frot~bly have to.be

decoded in order to identify their correspondence with

t ok:en £.low on the ICP graph. Otherwise 1 we make no

apriori statements about the relationship between ~essages

and the proqcam graph.

The study proceed~ as follows: First, Each arc on

the ICP program qraph is enumerated, in detail, as to the

message traffic it generates. Then

qraph is defined which delineates

a partial ordering

the sequencing of

messages. With the enumerated message traffic, which

allows us to correlatA arcs and messages, and the partial

ordering qraph, which identifies the valid message

sequencinq, we have potentially encugh ihfcrmation with

8

which to pro1ram a mcnitor for the ICP proJram graph.

Thus the next step is to identify the ccntrcl information

dependencies, i.e. the information which must be

extracted from each message in crder to successfully

identify other messages which appear later in time~ When

this is done for the ICP graph, it is shown that a

conflict exists between the timing requirements enforced

by control dependencies and the timing requirements

fartial ordering graph. allow€d by the fully parallel

Final 1 y, we determine which vertices may be inferred as

having executed by observing cnly the message flow.

Let us now enumerate the message traffic which

corresponds to token movement on the ICP program graph.

The table which follows details this message flow. To aid

in understanding the table the foilowing clarifications

a re nee·ded. "U--> ••. -->S" and "U<-- <--S" indicate the

direction of message flow. FROM and TO identify the nodes

which lie at the bead and tail respectively of each arc

(see Appendix I) • The last column 1 DATA 1 contains

symbolic repres~ntations of commands and Bat~ sent over

both the ccntrcl-link and data links. RlS {connect from

receiver to sender}, S7P {connect from sender to

receiver) , ALL (allocate buffer space for: send), and CLS

(close connection) all cccur on th8 control link. LINK 1 ,

LINK2, ana LI~K3 are the symbclic link numbers for the

initial contact connection, Oser~->Server data ccnnection,

and User<--server data connection raspectively.

~-m~ £]Qi1 .IQ t.1]2.§~g~

CU2L 2 4 u --> ? 'Is (u I L , LINK1 } --> s
CL2U 4 5 u <-- S'l'H { L , u SIZE1) <-- s
OPEN

,...
6 u --> ALL (LINK1 MSGS1 BITS1 --> s ::i , ,

r: AT A 6 7 u <-- nu m-er ic va 1 ue of s on LINK1 <-- s
RFNM 7 8 u --> rfnm --> s
C.LSU 7 V' •J u --> CLS (u .Y L } --> s
CLSL B· 9 D <-- CLS (L , u) <-- s
CS1D2 12 13 u <-- STR (S+1 , U+2 I S IZE3) <-- s
CSU3 12 14 u --> RT S (s U+3 I LINK2) --> s
CU2S1 1 1 16 u -..:.> .rtTS (U+2 I S+1 I LINK3) ·--> s
CUJS 1 1 15 u <-- STR U+ 3 , s I SIZE2) <-- s

Eiqure 1 Enumera tior1 of ICP Graph Message Traffic

Note that eleven messages, counting RFNM, flow

between user .and server process. Note also that nothing

is said about what happens after the ICP completes. I.E.

The arcs which denote success of ICP may feed into another

·arbitrarily complex program graph ..

We next apply to the messages a partial ordering on

the time at which they each may be transmitted. ~he

partial ordering we use ~era is a relationship tetween the

messages such that any message's predecessor must occur

. t prior -~o the rnessay-e itself. partial orderinq is

represented as a tree where any m2ssages with a ccmmon

ancestor may occur in parallel. For thB · ICP graph the

partial orrterinq is:

~
!--------------------
1 ' @ e ~ e ·~

!

€W
v v

--------------------!---------
'f 1 l f

~ .~ e ~
$! .

v v v

v

Figure 2 -- Partial Crdering cf ICP Messages

N6w that we know the message content and ordering

for this particular graph, we may state the ancestral

.origins_ of each item of inf crma·ticn that an intelligent

monitor would need in order to fellow the central flew of

the ICP program graph. The total set of information

required by the monitor is as follows: ~ccket numbers IT,

U+2, U+3, L, s, S+1; control link message types RTS, STR,

CLS, ALL; and the link number, LINK1, for the initial

contact connection. Additicnai information which may be

determined" but is not us~d within the ICP program graph,

1 1

includes the link numbers cf th2 final ccnnections, and

the byte sizes of all connections.

The socket number3 U and L must be provided~ along

with the proqram qraph (or partial ordering), to the

monitor explicitly. This is equivalent to saying that the

user and server parties to an ICP must Each inform the

monitor ·of their intenticn ta participate in

distributed process represented by the ICP program graph.

Th~ pair U,L ~itially uniquely identifies each instance

of t~~ ICP .program graph fer each· fair cf communicating

processes. The rest of ·the informaticri required to fellow

the exectltion of the proqram graph is derivable once the

sockets U and I are known. The following figure

delinaates the information reguirements of each arc on the

ICP graph~ The· three columns contaip for each arc the arc

name, the message type, and the information extracted from

the message rerresenting this arc.

qroups~

The arcs are in ·four

1 2

~.P2.§ £§..:JlJ4:I_i !lg_ l!.L.1]~_§§£.Sl.§ .'.Lil2~ ~.311 ~K~.f.Stf.t

CU2L RTS LTNf\1
CL2fJ SIR SI ZE1
C13U CIS
CL31 CLS

A I:£.§ f:§gJJi£in.g 11!iU

OPEN ALL
DATA LINK1 ·data Socket Ifs"

li.I£§ r__g_g_g_ir iQg U+~L.~:±1

CU2S1 RTS LINK3
CS1U2 S'l'R SIZE3

A.f:£§ £sgJJi£ing 1!±].L.§

CIT3S -STR SIZE2
CSU3 STS 1INK2

Fir-rure 'j 3 Informaticn Content cf Messages

To compare the timing requiremsn~s imposEd by the

flow of control information within messages let us do the

follow inq: Superimpose on the partia i' orderin·g graph an

~ncestral graph in which each node has an arc to a

predece~sor node.in. which its required set of information

is defined. This is done in Figure 4:

13

!
v v ; v

1
v

.Figure 4 Ancestral/Partial Crdering Graph

Note that arcs CS1D2 and CSU3 may pass through the

communications system prier to the socket number "Sn ..

rnsn dlld US+1H are I€guir£G by the }ast tWC gIOUpS Of

figure· 3)
. .

Two solutions suggest themselves:

1. Supply HSH UFOn _p.rograrn graph initiation in the sarn€

way that 111.H is supplied. This may be aif£icult if the

allocation of 0 s 11 is dcne dynanically.

2. Ignore *'S" and ns+1" cc rrr;letely. U~on close

inspection it may be seen th2t these sockets are

redundant inform~ticn. HTJ+2" and 11 U+311 may not .legall'l

CCCt)r with ·any other CDm.bina-r.icn than ns+1n ar:cf 11 5"_,

1 4

respectively. ·Thus; e~en though we sacrifice detail,

it is possible to ccmfletely mcnitor, i.e. detect all

state transiticns within, the ICP Program graph.

Now let us consider to what exte~t a gi~en program

graph may be verified via communications monitoring. In

the case of this graph we infer that the passi.n9 cf a

message through· the ccrnmunications system (which

represents the flow of a token on an arc) implies the

termination of a vertex.· In ·the ICP graph most. vertices

communic~te directly with the network UFOn termination.

In general graphs, fewer vertices may border upon the

communications system, and mere ccrnplicated mechanisms may

be required to validate vertex termination.

Fiqure 5 shows the vertex terminations which may ·be

implied as a function of message flow en the ICP graph.

Note that vertices 13,14,15,1E may not be observed as

having terminatEd by observing only message flow~

1 '2
3_, 4
5
6
7
8
9 J' 1 -1

10 _, 12
13,14,15_,16

Piqure 5

1 5

CU21
CL20
OPEN
I: A 'IA
EFN.M,CLSU
CLSL
cu 3S I cu 2S l
CS1U2,CSU3

Im~lied Vertex Terminaticns

Up till.now we have been investigating an unmodified

· prot.oc61 and asking the guestic n, ''assuming an infinitely

intelligent monitor, may we accarately ... rnonitor the state

of a program qraph without introducing extra structure

w it hi n mes s a q As? ,, W e ha v e deter rn i n e d , f c r the I CP gr a p h ,

that this. is possible. However, if this technique were

·ext ended to more comp 1 ex en vi r c n men ts , w he re an a re m i g ht

represent an arbitrarily complex series of messages, it is

possible that the overhead and necessary descriptive

requirements migh~ be expensive beth in terms of execdtion

and stora"Je. Another approach is fossible, which may

simplify the· operation of the mcnitcr, and is sketched

below.

In this alternat9 approach each message which moves

into the communications system refresents the traversal by

1 6

an arc of a token (at least in the ICP graph). Thus two

items cf information are required for the communications

system to be.able to mcnitor the flow. First is some sort

of identification of the precise program graph to which

this messaqe pertains. ?or a common program graph like

ICP ther~ may be an arbitrary numbBr of actual instances

of the qraph {scmewhat analogous to reentrant code) • Thus

the identification should identify both the basis program

graph and the particular instance of the prcgram graph.

secnnd is an indicatio~ 6£ the particular arc-on the graph

to which the message pertains. These two items of

information, appended to the messages which flow

throuqh the communicaticns system allow complete

monitoring of the state of a graph without 1ecoding the

actual· messages themselves. An approach like this has the

obvious advantage of low execution overhead, but has the

disadvantage that· somewhere must be generated the correct

identifying numbers for each graph and each arc. Just

where such information is generated and how ·it is

ccmmnnicated to the monitor is net discussed in this

study.

~his study of the ICF rrcqr~m gr~ph's behavior as to

1 7

m2ssaqe communications has generated the follcwing

observations:

1. The UCLA Graph Model of Camputaticn is a useful model

for studying message behavior within the Initial

Connection Protocol~

2. For those arcs which · represent messages a. partia 1

orderinq graph may be constructed which is more concise

than the graph model and which ~reserves the potential

for parallelism. The partial ordering graph contains

cnly that structural information which is visible to

the communications system and thus is potentially

usable by the communications rncnitcr to trace the flow

of a program graph.

3. It can be useful to derive the ancestry of each bit of

inforrna ti on tba t is required to associate a given

me ssaqe with its graph model and graph transition.

when mer.qed with the partial ordering g.rapb this

information makes it pcssible tc identify when to

augment messages in order to provide key information to

the monitor at an earlier ~oint in the

execution.

1 8

several topics have surfacEd as being logical

successors to the research described in this paper. They

are:

1~ continue the study of particular· distributed processes

which may be modeled by graph model~~ More

specifically study FTP (File Transfer Protocol) and RJS

{Remote Job Submission protocol}. Both FTP and RJS

depend upon ICP. RJS also uses FTP as a subroutine.

The level at which arcs are traversed is known to be

higher than that of simple message transfer (e • g •

considsr the token which passes from an BJS batch

server to an FTP server when an output file is

retrieved or delivered). Thus it is expected that ~ome

understanding will be obtained empirically of the macro

properties of program grafhs.

2. Investigate the use of the graph ·model. as a

programming language. More specifically study the

modelinq of asynchronous conditicns and macro graph

replacements .. Investigate the graph/token duality

a simple token on one graph may be a complicated

graph when viewed in finer detail).

1 9

3. Investiqate the moni~oring and ·dshugging capabilities

".<1.hich ncrmally miqht not exi::.:t without observin9

traffic. 1Jithin a oriented

in terproce~3s com mun ica ticn sysh~m which is able to

follow the behavior of proqrarn graphs, it could be

feasible to valid~te that a distributed process passes

through only legal states, and that its behavior fits

within prescribed bounds. Additicnally, the setting of

breakpoints and enabling of °CN 11 conr3itions could be

made a function of states within the program graph.

~'l i thou t the program graph and its associated

communications monitoring cne wculd be restricted to

mcnitorinq only the local behavior. of each individual

process, and thus a more global vie~ of the distributed

proqram would be difficult to obtain.

4. Investigate the properties of the monitor itself.

Should ths monitor be built within or external to the

communications net (with special filtering p.rop~r:tiss

w h i c h a 11 ow m c n i tor i n g i ·n £ o L' ma ti c n to b 2 r o u t e d to it) ?

How intelliqent shoul~ the monitor be and with what

information should messages be augment2d in order to

most efficiently and ccmpletely rncnitcr a distributsd

proqram? should infcrma ticn supfli~rl the moni tcr be

static only or should procedural informc1ticn, as rni9ht

l:: e u s e :1 t o c c m p u t e fJ + 2 cJ.D d o + 3 f r c m lJ , b '~ a 11 o ~ e d ? ~I ha t

is th~ total set of S8rvices that the :nonitor might

provide? What are the failsafe propecties of thE

mcnitor? (2. q & monitoring its own prcgram graph,

resynchronization en interruptea mcnitoring)

It may be possible to ievelop a number of analytic

and automated tools for mcnitcring prcgram graphs. A

few examples are:

a. Derive the f~rtial ordering·graph frcru the program

qrap.h.

b. Derive th~ program graph frcm the partial ordering

qr:aph.

c.. Deriv~ the proqram graph by monitoring

communications behavior~

d. Det~rmine ~ets of yraphs isomorphic with respect to

to communications.

e. Derive canonical forms fer rro1raru graphs according

to 1iven criteria (e .. g • maximal faI~llelism vs.

strict sequenti-1lity).

CEFF

GOST

2 1

Cecf, V.G. tY11if~Q~g~~2£§i ~~mgih£f§§i ~nQ ~
QI:2l?.b 112::1£1 of ~f.I0.f.QS£!i.g.n, Ph h D.. Dissertation,
RNG-722Jj Computer Science Department,
University of Californiav los l\frJeles,
April Fr12.

Gostelow, K.P~ fl2~ Qf ~2Bt~21L B~§Q~£~§
~11.Qf.2.tiQI!_L. 9:Tifl :tl.§ £L.Q..E.§±; 1g.fm.1D~!i2n QI
E£2g~~ffi§, Ph.D. tissertation, ENG-7179,
Computer Science Depart~9nt, University of
California, Los Angeles, December 1971

I1CK ENZI.2 l'IcKenzie, Alex 1'tfost;Host frotoccl for the AE PA
N ~~ t w o r k 11 , AR P ~q N I C #: 8 2 4 8 1 .. J an u a r y 1 9 7 2

POS'I~L 1

.POSTEL2

Postel, Jon ncfEicial Initial ConnEction
Protocol 11, A s PA NI C # 7 1C1 , l 1 June 197 1

Postel; ~J.D. ~ Q~32h ~.QQg± An212§i_§ _gf ~2~£Q!g£
~.Q.illl\!QQi.f a t_i_g_rr§ Rf...Q!.Qg.Q}.§, Ph" D. DL:::serta ti on,
ENG-7410, computer Science Department,
University of California, Los Angeles,
;January 1974

DATA

CLSL

US\

