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Abstract

Limits Under Conjugacy of the Diagonal Cartan Subgroup

in SLn(R)

Arielle Leitner

A conjugacy limit group is the limit of a sequence of conjugates of the positive

diagonal Cartan subgroup, C ≤ SL3(R). In chapter 6, we prove a variant of

a theorem of Haettel, and show that up to conjugacy in SL3(R), the positive

diagonal Cartan subgroup has 5 possible conjugacy limit groups. Each conjugacy

limit group is determined by a nonstandard triangle. We give a criterion for a

sequence of conjugates of C to converge to each of the 5 conjugacy limit groups.

In chapter 8, we give a quadratic lower bound on the dimension of the space

of conjugacy classes of subgroups of SLn(R) that are limits under conjugacy of

the positive diagonal subgroup. We give the first explicit examples of abelian

(n− 1)-dimensional subgroups of SLn(R) which are not such a limit, however all

such abelian groups are limits of the positive diagonal group iff n ≤ 4.

In chapter 4, we classify all subgroups of PGL4(R) isomorphic to (R3,+), up

to conjugacy, and Haettel shows each is a limit of the positive diagonal Cartan

subgroup. By taking subgroups of these groups satisfying certain properties, we

show there are 4 possible families of generalized cusps up to projective equivalence

in dimension 3, and describe each cusp.

xi
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Chapter 1

Summary of Results

This dissertation concerns the study of transitions between different homo-

geneous spaces, G/H, associated with a fixed Lie group, G, obtained by taking

limits of conjugates of the subgroup H. The idea of geometric transition may

be studied from the perspectives of geometry, topology, algebraic geometry, and

dynamics. Types of questions we discuss in this dissertation include:

• How does one geometry transition to another at infinity?

• What are the possible cusps at infinity on a manifold?

• Under what conditions does one group limit to another, in the Chabauty

topology on the space of all closed subgroups of a group?
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• What properties characterize limits of the diagonal subgroup of the general

linear group?

Imagine blowing up a ball with air so that eventually the ball is so large, it

looks like the earth. Locally, the ball looks flat. This example is given in [16]:

a sequence of spheres tangent to a plane, with increasing radius, will limit to

the tangent plane in the Hausdorff topology on closed sets. Such a process is an

example of a geometric transition: a continuous path of geometric structures that

abruptly changes type in the limit.

There are several ways of making the idea of inflating a ball mathematically

precise. Envision the curvature of the ball approaching zero. Or, choose coordi-

nates on the ball, and parametrize the radius increasing. A sphere is intrinsically

different from the plane. On a sphere, the angles in a triangle will sum up to more

than 180 degrees, since the edges bulge outwards. In the plane, the angles in a

triangle sum to exactly 180 degrees. This property about triangles is intrinsic to

the geometry of the space, and will hold true no matter how large or small the

triangle is. Blowing up a ball is an example of a transition between two different

kinds of geometry: spherical and Euclidean.

This dissertation uses the unfamiliar technique of working with hyperreal num-

bers [23]. These are an extension of the real numbers, but include numbers that

are infinitesimally small and others that are infinitely large. They were discov-
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ered in the 1960s by a logician: Abraham Robinson. The hyperreals provide a

convenient method of imagining and describing phenomena that appear after an

infinite amount of time, by giving a precise way to measure the infinities involved.

The way certain groups transition can be described by triangles with infinitesimal

sides and angles, and such geometric transitions are controlled by very precise

measurements of these quantities. In three dimensions, there are exactly 5 types

of triangles, corresponding to the 5 conjugacy classes of limit groups that arise. In

four dimensions there are 15 conjugacy classes of limit groups, and in dimension

7 and larger, there are infinitely many non-conjugate limit groups!

There was a famous conjecture of Thurston (recently proved by Perelman)

that every compact 3-dimensional manifold is composed of pieces, each of which

has one of 8 kinds of 3-dimensional geometry, two of which are spherical and

Euclidean, [57]. These Thurston geometries are (almost) subgeometries of real

projective geometry, and one may study geometric transitions in this context as

paths of conjugacies, [16]. We will study geometric transitions given by conjugacy

limits.

Definition 1.0.1. Let G be a Lie group. A subgroup, H ≤ G, limits under

conjugacy to another subgroup, L ≤ G, if there is a sequence of elements, (pn),

such that pnHp
−1
n → L in the Hausdorff topology.
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In chapters 6 and 8 we build on work of Haettel, [26], to study geometric

transitions of the diagonal Cartan subgroup in SLn(R), (the group of positive

diagonal matrices). For example, when n = 3, a diagonal matrix with distinct

eigenvalues determines a projective triangle, since each eigenvector of the matrix

designates a vertex of the triangle. The limits of the positive diagonal group are

determined by identifying some of the vertices or edges of the triangle to obtain

a degenerate triangle.

Two degenerate triangles are equivalent if they have the same number of points

and lines. Let G be a group. A degenerate triangle, T , is characteristic for G if:

1. G preserves every point and line of T

2. T is maximal in the partial order given by inclusion, subject to this condi-

tion.

We will show in chapter 6 in Theorems 6.0.64, and 6.0.65:

Theorem 1.0.2. 1. Any subgroup of SL3(R) isomorphic to R2 is conjugate to

exactly one of the following groups:

C F N1 N2 N3
a 0 0

0 b 0

0 0 1
ab




a t 0

0 a 0

0 0 1
a2




1 s t

0 1 s

0 0 1




1 s t

0 1 0

0 0 1




1 0 t

0 1 s

0 0 1
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where a, b > 0 and s, t ∈ R.

2. Each of these groups is a conjugacy limit of the Cartan subgroup.

3. There is a bijection, θ, from conjugacy class of limit groups to equivalence

classes of characteristic degenerate triangles, where θ(G) = T if and only if

T is characteristic for G.

F
N1

N2

N3

C

Figure 1.1: The 5 equivalence classes of characteristic degenerate triangles

Parts 1 and 2 are due to Haettel, [26]. In general, it is an open problem to

classify conjugacy limits of the Cartan subgroup in SLn(R). In this dissertation,

we give a classification for n ≤ 4.

To study degenerate triangles, we use the hyperreals, a non-Archimedean or-

dered field containing the reals. The hyperreals are formed by taking equivalence

classes of sequences of real numbers, much in the way that the reals are formed by

taking Cauchy sequences of rational numbers. However, in this case, the equiva-

lence relation is given by a non-principal ultra-filter, which requires the axiom of

5



choice. The motivation for working over the hyperreals is to eliminate the need

to use sequences and take limits going to infinity.

A sequence of matrices determines a single hyperreal matrix, which represents a

hyperreal projective transformation taking the standard basis (triangle for n = 3),

to a nonstandard basis (infinitesimal triangle for n = 3). Instead of taking the

limit of images of the diagonal group under conjugation by a sequence of matrices,

conjugate the hyperreal diagonal group by a single hyperreal matrix, and take

the shadow: this is like like projecting back down into the real numbers, and

eliminating the infinitesimal information. Using this approach, we will classify

nonstandard triangles, and show in Theorem 6.0.66:

Theorem 1.0.3. A limit group of the Cartan subgroup in SL3(R) is determined

by two hyperreals: the length of the longest side of the nonstandard triangle, and

the ratio of the largest infinitesimal angle to the largest side.

A nonstandard triangle is in one of five equivalence classes, corresponding to

the 5 limit groups. As a result, we classify the conjugacy limit of the positive

diagonal Cartan subgroup under any sequence of matrices. We show also:

Theorem 1.0.4. There are precisely 15 conjugacy classes of subgroups of SL4(R)

isomorphic to R3. Each is a limit of the Cartan subgroup.

6



Let G be a group, and S(G) be the set of all closed subgroups of G. Then

S(G) is a compact Hausdorff topological space with the Chabauty topology on

closed sets: [3], [13], [22], [26]. We define two closed subspaces of S(SLn(R)):

Âb(n) is the space of all subgroups isomorphic to Rn−1; and (following notation

in [31]), R̂ed(n) is the closure of all conjugates of the diagonal Cartan subgroup.

The quotient by the conjugacy action of SLn(R) on S(SLn(R)) gives two spaces:

Ab(n) and Red(n). These are typically not Hausdorff. Since limit groups of the

Cartan subgroup are isomorphic to Rn−1, then Red(n) ⊂ Ab(n).

Suprenko and Tyshkevitch, [56], have classified conjugacy classes of maximal

commutative nilpotent subalgebras over C, for n ≤ 6. Their results imply Ab(5)

is finite, and so Red(5) is finite. Iliev and Manivel, [31], ask if Red(n) is finite

when n ≥ 6. We will give a partial answer to this question in Theorem 8.0.90

using an invariant that shows:

Theorem 1.0.5. If n ≥ 7, then n2−8n+8
8

≤ dim(Red(n)) ≤ n2 − n.

The case n = 6 is open. When n ≤ 4, we know Ab(n) = Red(n). When n ≥ 7,

[31] shows dimRed(n) < dimAb(n), but there were no known explicit examples of

abelian groups which are not limits. In chapter 8 we give the first explicit example

of an element of Ab(5)−Red(5). This allows us to show in Theorem 8.0.91:

Theorem 1.0.6. Ab(n) = Red(n) if and only if n ≤ 4. Red(n) ( Ab(n) if and

only if n ≥ 5.

7



In chapter 8 we give two more necessary properties satisfied by elements of

Red(n), but there is not yet a sufficient criterion for deciding when an abelian

group is a limit group. In the future, I hope to find an invariant of abelian groups

that distinguishes limit groups. Optimistically, perhaps we can characterize when

a group is a limit of the Cartan subgroup. Even more optimistically, can one

classify all limit groups in higher dimensions?

Let B ⊂ GLn(R) be the Borel subgroup. The subspace of conjugates of the

diagonal group in S(B) has closure which is a (semi-algebraic) variety V , called the

Chabauty compactification of the associated homogeneous space. These methods

give information about the dynamics of the action of GLn(R) on V .

For n = 3, Haettel shows V is a CW complex with 2-skeleton the wedge sum of

RP 2 and S2, see [26]. The cells of the CW complex correspond to conjugacy classes

of groups, [G]. Let NB(G) denote the normalizer of G in B. Then dim cell(G) =

dimB−dimNB(G). If L is a conjugacy limit of G, then dimNB(G) < dimNB(L),

so dim cell(L) < dim cell(G). Moreover, the boundary of cell(G) is glued onto

cell(L), so the attaching maps give information about conjugacy limits.

Another application of these ideas is to study generalized cusps on convex pro-

jective manifolds (see [1], [18], [19]). A convex projective manifold is the quotient

of convex subset of projective space by a discrete group of projective transfor-

mations. A generalized cusp in dimension 3 is a properly convex manifold, M ,

8



with ∂M strictly convex, and M is diffeomorphic to T 2 × [0,∞). The holonomy

of a generalized cusp centralizes a 1 parameter subgroup of PGL4(R). Using the

classification of Red(4), we classify all generalized cusps in dimension 3. We show

in chapter 4:

Theorem 1.0.7. A generalized cusp on a properly convex projective 3-dimensional

manifold is projectively equivalent to one of 4 possible families of cusps.

In the future, I will try to extend these results to higher dimensions. General-

ized cusps on projective manifolds also give rise to affine structures on the torus

(see [2], [47]).

Geometric transitions may be used to understand the interplay between dif-

ferent types of geometry, by describing the range of possible geometries within

some given parameters. For instance, geometric transitions give a sense in which

some geometries are more unipotent than the original. Furthermore, diagonal

subgroups and matrices are central to much of mathematics. A classification of

limits of the diagonal group might be useful to many different areas of research.

Understanding geometric transitions provides a new viewpoint for questions

about 3-manifolds, dynamics, and algebraic geometry. Applying the hyperreal

techniques developed in this dissertation might give new insight into some older

questions. For example, how many components are in the variety that is the

Zariski closure of the space of conjugates of the Cartan subgroup? Or, what types

9



of cusps may appear on a convex projective manifold? Geometric transitions may

lead to studying types of geometry that have not previously been considered.

The idea of continuously deforming one kind of geometry into another ap-

pears in many areas of mathematics and physics. For instance, the theory of

Inönü-Wigner contractions in physics (see [10]). Physicists use deformations of

Lie algebras in several ways, for example the “classical limit” in relativity where

the speed of light, c→∞; and in transitioning from quantum mechanics to New-

tonian mechanics, when ~ → 0. Representations of Lie groups describe different

particles (for example the fundamental representation of SU(2) describes the elec-

tron). Using geometric transitions may help us to understand the ways in which

systems of particles can collapse. These ideas appear in string theory, and in the

study of gauge symmetries.

Introduction

to

the

Hy-

per-

re-

als,

∗R

One of the main innovations in this dissertation is the use of the hyperreals.

We present a brief introduction to them here. For a more thorough exposition,

see [23].

The hyperreal numbers, ∗R, are an extension of the real numbers which in-

cludes numbers that are infinitesimally small and infinitely large. The hyperreals
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provide a framework for imagining and describing phenomena that appear after an

infinite amount of time, by giving a precise way to measure the infinities involved.

Definition 1.0.8. A nonzero number ε ∈ ∗R is infinitely small, or infinitesimal, if

|ε| < 1
n
, for all n ∈ N. The reciprocal, ω = 1

ε
is infinitely large or infinite, meaning

|ω| > n for all n ∈ N.

The hyperreals are a non-Archimedean ordered field containing the reals. The

hyperreals are formed by taking equivalence classes of arbitrary sequences of real

numbers, much in the way that the reals are formed by taking Cauchy sequences

of rational numbers. However, in this case, the equivalence relation is finer and is

given by taking a non-principal ultra-filter (which requires the axiom of choice).

To construct the hyperreals, we will define a non-principal ultra filter. This

filter should capture some of the way that sequences converge- for example,

{1, 1
2
, 1

3
, 1

4
...} and {1, 1

2
, 1

4
, 1

6
...} both converge to 0, but the second sequence con-

verges twice as fast. The non-principal ultra filter gives a finer equivalence relation

than Cauchy sequences, and encodes this extra information. The goal is to define

a relation so that if two sequences agree on a ‘large’ number of places, then they

have the same limit.

Definition 1.0.9 (Goldblatt, [23], p.18). Let I be a nonempty set, and denote

by P(I) the power set of I. A filter on I is a nonempty collection F ⊂ P(I)

satisfying the following axioms:
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• Intersections: If A,B ∈ F then A ∩B ∈ F .

• Supersets: If A ∈ F and A ⊂ B ⊂ I, then B ∈ F .

A filter contains the empty set ∅ if and only if F = P(I). A filter F is proper if

∅ 6∈ F . Every filter contains I, and in fact {I} is the smallest filter on I.

An ultrafilter is a proper filter that satisfies:

• For any A ⊂ I either A ∈ F or Ac ∈ F where Ac = I − A.

If B ⊂ I, then the principal filter generated by B is FB = {A ⊂ I : A ⊃ B}.

One may check (see [23] p. 19) that if an ultrafilter contains a finite set then

it contains a one element set and is principal. Hence a non-principal ultra filter

contains all co-finite sets. Furthermore, using the axiom of choice, any infinite set

has a non-principal ultra filter on it ([23], Corollary 2.6.2).

To construct the hyperreals, take the ring of all real valued sequences RN,

with component wise addition and multiplication. Let F be a fixed non principal

ultrafilter on N, and define a relation, ≡, on RN by {rn} ≡ {sn} if and only if

{n ∈ N : rn = sn} ∈ F . When the relation holds, we say the two sequences agree

almost everywhere. The hyperreals, ∗R = {[r] : r ∈ RN} are the quotient ring.

Then ∗R is an ordered field. The absolute value is defined in any ordered field.
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Identify a real number r ∈ R with the constant sequence {r, r, r, r, r, ...}, so

the map r 7→ ∗r is an order preserving field isomorphism from R into ∗R ([23],

Theorem 3.7.1).

Definition 1.0.10 ([23], p.49). A hyperreal number b is

• limited or finite if r < b < s for some r, s,∈ R;

• unlimited if |b| > r for all r ∈ R;

• infinitesimal if 0 < |b| < r for all r ∈ R>0;

• appreciable if it is limited but not infinitesimal, i.e., r < |b| < s for some

r, s ∈ R+.

Let I denote the set of infinitesimals, and L the set of limited numbers. Since

arithmetic in ∗R works in the expected way (see [23], p. 50), I is an ideal and L

is a subring of ∗R.

Definition 1.0.11 ([23], p.52). The hyperreals b, c are a limited distance apart if

b − c is limited. Denote the galaxy of b by Gal(b) = {c ∈ ∗R : b − c is limited}.

The ε-galaxy of b is Galε(b) = {c ∈ ∗R : |b− c| ≤ k · ε for some k ∈ R}.

Every limited hyperreal b is infinitesimally close to exactly one real number,

called the shadow or standard part of b, and denoted sh(b), ([23], Theorem 5.6.1).
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The map sh : L → R is an order preserving epimorphism. Notice ker(sh) = I,

and the quotient ring L/I ∼= R, ([23], Theorem 5.6.3).

A finite hyperreal may be either appreciable or infinitesimal. Clearly Gal and

Galε define equivalence relations on ∗R. In chapter 6, we denote hyperreal objects

in script G or L , and denote their standardizations G or L. We use the usual

inner product, 〈x, y〉 = x · y for x, y ∈ Rn or ∗Rn.

The transfer principle says a statement in first order logic is true over the real

numbers if and only if the transferred statement is true for the hyperreal numbers,

[23] p.44. Thus we may prove facts about real numbers in the hyperreal setting.

In fact, convergence of sequence and series, continuous functions, differentiation,

and Reimmanian integration may all be defined in the hyperreal setting. For

example, proving a real function is differentiable may be done without the use of

any limits in the hyperreal setting!
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Chapter 2

Lie Groups, Lie Algebras,

Homogeneous Spaces and

Symmetric Spaces

Lie

GroupsLie theory provides a beautiful perspective on the interplay of topology and

group theory. We provide only a brief overview here, but some excellent texts on

the subject include: [12], [27] [48], [49], [55], and [59].

Definition 2.0.12. Let K be a field (usually R or C). A Lie Group over K is a

group, G, which also carries the structure of a differentiable manifold over K so

15



that the multiplication map

µ : G×G→ G, where µ((x, y)) = xy

and inversion map

ι : G→ G, where ι(x) = x−1

are differentiable.

A Lie group over R is a real Lie group and a Lie group over C is a complex Lie

group.

Some examples of commonly known Lie groups include the real line, R; the

circle, S1; the general linear group, GLn(K); and the special linear group, SLn(K).

LetG be a Lie group. A subgroupH ≤ G is a Lie subgroup if it is a submanifold

and a closed (topological) subset of the manifold G. For example, SLn(K) is a

Lie subgroup of GLn(K).

Let G and G′ be Lie groups. A map φ : G→ G′ is a Lie group homomorphism

if it is both an abstract group homomorphism and a differentiable map. A ho-

momorphism is an isomorphism if it has an inverse which is differentiable. The

usual theorems on homomorphisms and isomorphisms are true in the context of

Lie groups (see [48]).
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LetG be a Lie group, andX a manifold with group of diffeomorphisms Diff(X).

A G-action on X is a homomorphism α : G→ Diff(X) where the map

G×X → X given by (g, x) 7→ α(g)x

is differentiable. Common group actions of G on itself are left-multiplication,

right-multiplication, and conjugation.

Let x ∈ X be a point. Consider the map

αx : G→ X where αx : g → α(g)x.

The image of αx is the orbit of the point x. For any x ∈ X, the derivative of αx

has constant rank, k. If the orbit is a submanifold in X, then dimα(G)x = k.

Note that any orbit of a compact Lie group is a closed submanifold.

Every Lie group has a Lie algebra, and the structure of the Lie algebra de- Lie

Al-

ge-

bras

termines many of the properties of the Lie group. Given a Lie group, G, the Lie

algebra of G is the tangent space at the identity, g := Te(G). The Lie algebra is

endowed with a bilinear operation [·, ·] : g × g → g, called the Lie bracket. For

matrix Lie groups, [x, y] = xy − yx. If G is a commutative Lie group, then the

Lie algebra has zero bracket.

If f : G → H is a Lie group homomorphism then def : Te(G) → Te(H) is

a homomorphism of Lie algebras. Many properties of Lie groups correspond to
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properties of the Lie algebras. For example, if H is a normal subgroup of G, then

h is an ideal of g.

A one parameter subgroup is a homomorphism φ : R→ G, sometimes thought

of as the image subgroup φ(R). This subgroup need not be closed. For any

differentiable path t 7→ g(t) in G, define a path t 7→ ζ(t) in the Lie algebra by

dg(t)

dt
= ζ(t)g(t) with exp(ζ) = gζ(1). (2.1)

For any ζ ∈ g, there is a one parameter subgroup, gζ(t), defined by (2.1), where

ζ(t) ≡ ζ. The exponential map, exp : g → G is defined by exp(tζ) := gζ(t).

The exponential map is a diffeomorphism from a neighborhood of 0 ∈ g to a

neighborhood of e ∈ G.

Abelian

Lie

Groups

and

Lie

Al-

ge-

bras

When the Lie group is commutative, the exponential map has additional nice

properties. If G is a connected commutative Lie group, then exp g = G, see [48]

p.29. Therefore any n-dimensional connected commutative Lie group over a field,

K, is isomorphic to Kn/Γ where Γ ⊂ Kn is a discrete subgroup. Thus any n-

dimensional connected commutative real Lie group is isomorphic to (S1)k×Rn−k.

The part isomorphic to (S1)k is the compact factor. For example, SO(2) ∼= S1.
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If G1 and G2 are isomorphic commutative Lie groups, then there is an iso-

morphism of their tangent algebras which maps the kernel of the homomorphism

exp : g1 → G1 to the kernel of the homomorphism exp : g2 → G2.

Definition 2.0.13. A full flag in a vector space, V , is a chain of vector subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn = V , where dimVi = i.

Let Tn(K) denote the subgroup of upper triangular matrices in GLn(K), and

denote by tn(K) the respective subalgebra of gln(K). Elements of Tn(K) (re-

spectively tn(K)), are operators preserving a full flag. The group Tn(K) and Lie

algebra tn(K) are solvable.

Theorem 2.0.14 (Lie, [49] p.8). Let g be a solvable Lie algebra, and ρ : g→ gl(V )

a complex linear representation. There is a full flag in V invariant under ρ(g).

A corresponding theorem of Engel is true for nilpotent Lie algebras (groups):

Theorem 2.0.15 ([49] p.11). Let ρ : g → gl(V ) be a linear representation over

a field K. Suppose that for all x ∈ g, the operator ρ(x) is nilpotent. Then there

is a basis for V such that every operator ρ(x) may be written with respect to that

basis as an upper triangular matrix with zeros on the diagonal.

As a consequence of Theorem 2.0.15, every solvable complex matrix Lie algebra

(or Lie group) has a basis with respect to which every element is an upper trian-
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gular matrix. In particular, any abelian complex matrix Lie group is conjugate to

a group of upper triangular matrices.

Recall that a Lie algebra is simple if it is not abelian and the only ideals are 0

and itself. A Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

A connected Lie group is semisimple if its Lie algebra is semisimple.

Definition 2.0.16. Let g be a Lie algebra. A Cartan subalgebra of g is a nilpotent

subalgebra h ⊂ g that is self normalizing: if [x, y] ∈ h for all x ∈ h, then y ∈ h.

For example, in g = Mn(R) the set of a diagonal matrices is a Cartan subal-

gebra. See [49] chapter 1.9.3 for the following results: If g is a finite dimensional

Lie algebra over an infinite field, then it has a Cartan subalgebra. If the field is

algebraically closed and of characteristic zero, then all Cartan algebras are con-

jugate. However, sl2(R) has two non-conjugate Cartan subalgebras: the diagonal

one and so(2). Any Cartan subalgebra of g is abelian if g is a finite dimensional

semisimple Lie algebra over an algebraically closed field.

Definition 2.0.17. Let g be a Lie algebra. Given x ∈ g, the adjoint map is

ad(x) : g→ g where ad(x)(y) = [x, y].

The Killing form on g is the symmetric bilinear form

B : g× g→ g where B(x, y) = trace(ad(x)ad(y)).
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The Killing form has several nice properties: It is invariant under automor-

phisms of g, that is, B(φ(x), φ(y)) = B(x, y) for φ ∈ Aut(g). If g is a simple Lie

algebra then any invariant symmetric bilinear form on g is a scalar multiple of B.

A Lie algebra is semisimple if and only if B is non-degenerate.

The

Car-

tan

De-

com-

po-

si-

tion

The Cartan decomposition of a real semisimple Lie group is analogous to the

polar decomposition of an invertible linear operator, A = PK where K ∈ O(n)

and P is positive semi-definite symmetric. The polar decomposition is the same as

Cartan decomposition with the global Cartan involution θ(A) = transpose(A−1).

IfG is a semisimple real linear algebraic Lie group, the polar decomposition and

Cartan decomposition are the same. The Cartan decomposition gives information

on the conjugacy of maximal compact subgroups of a connected Lie group, and is

an important ingredient in the classification of connected semisimple Lie groups.

Definition 2.0.18. Let g be a real semisimple Lie algebra, with Lie bracket

[·, ·] : g× g→ g. A decomposition of g = k⊕ p into a direct sum of vector spaces

is a Cartan decomposition if

(1) the map θ : k⊕p→ k⊕p, where θ(k+p) = k−p is an automorphism of g and

(2) the bilinear form bθ(x, y) := −B(x, θy) is positive definite on g, (where B is

the Killing form).
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Notice that θ is an involution, so the bilinear form bθ is symmetric. Condition

(1) is equivalent to

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k

which mirrors multiplication for positive and negative eigenspaces. Condition (2)

is equivalent to the bilinear form, bθ, being positive definite on p and negative

definite on k.

The group K = exp k is a maximal compact subgroup of G. Further p is the

orthogonal complement to k with respect to bθ, and p is the Cartan subspace in g.

For example, if g = sln(R) then k = son(R) and p is the subspace of traceless

symmetric matrices. The involution is θ(X) = −XT for X ∈ g. Here are some

more properties of the Cartan decomposition proven in [48] section 4.3.2.

Theorem 2.0.19. Every real semisimple Lie algebra has a Cartan decomposi-

tion. Any two Cartan decompositions can be taken to each other by an inner

automorphism.

Proposition 2.0.20. Suppose g =
⊕s

i=1 gi is a decomposition into simple ideals

with Cartan decompositions gi = ki⊕pi. Then k :=
⊕s

i=1 ki and p =
⊕s

i=1 pi are a

Cartan decomposition of g, and every Cartan decomposition is obtained this way.

If G is a real semisimple Lie group (not necessarily connected), then the Cartan

decomposition of G is G = KP . Here K is a Lie subgroup of G with Lie algebra k,
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and P = exp p. The mapping Θ : G→ G given by Θ(kp) = kp−1, is an involution

called the global Cartan involution, with dΘ = θ. This decomposition has several

properties (see [48] section 4.3.3):

Corollary 2.0.21. 1. The group G is diffeomorphic to K × Rm where m =

dim p.

2. The group K = GΘ = {g ∈ G : Θ(g) = g} is the fixed point set of Θ.

3. The group K is self-normalizing: K = NG(K).

4. The center Z(G) ⊂ Z(K).

5. The subgroup K is compact if and only if G has finitely many connected

components, and Z(G) is finite.

Theorem 2.0.22 (4.3.5 in [48]). Let G be a Lie group with finitely many connected

components. Then any two maximal compact subgroups of G are conjugate.

Every matrix M ∈ SLn(K), can be written M = KAN , where K is orthog-

onal, N is unipotent, and A is diagonal. This is an example of the Iwasawa

decomposition:

Theorem 2.0.23 ([49], p. 158). Let g be a real semisimple lie algebra. Then

g = k ⊕ a ⊕ n, where n is nilpotent, a is diagonal, and k is a maximal subalgebra

containing the center, according to the Cartan decomposition.
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(Affine)

Sym-

met-

ric

Spaces

Homogenous spaces and symmetric spaces are related to Lie groups and alge-

bras. A symmetric space is a Riemannian manifold (M, g) satisfying: for every

point p ∈ M , there is an isometry σp : M → M such that σ(p) = p, and

dσp = −idTpM . Translation along a geodesic is a composition of involutions, so

M is geodesically complete (every maximal geodesic is defined on R). Since any

two points are connected by a geodesic, the isometry group G = Isom+
0 (M) acts

transitively on M . Identify M ∼= G/K, where K = {k ∈ G : k(p) = p} is a point

stabilizer. Since M is Reimmanian, K is compact.

Examples of symmetric spaces include Euclidean spaces, spheres, and hyper-

bolic space. These are the only simply connected symmetric spaces with constant

sectional curvature. Riemannian symmetric spaces are classified as one of three

types (see [25], chapter 1):

• compact type, M has nonnegative (but not identically 0) sectional curvature

• non-compact type, M has nonpositive (but not identically 0) sectional cur-

vature

• Euclidean type, M has vanishing curvature.
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Definition 2.0.24 ([25] I.2.4). Let X be a symmetric space of non-compact type.

The sphere at infinity of X is the set of geodesics

∂∞X = {r : [0,∞)→ X}/ ∼

where r1 ∼ r2 if

lim supt→∞d(r1(t), r2(t))) <∞.

By Proposition I.2.5 in [25] the isometric action of G on X extends to an action

of G on ∂∞X. By Proposition I.2.3, ∂∞X can be canonically identified with the

unit sphere in the tangent space TxX at any base point x.

Now we generalize to the idea of an affine symmetric space, where point stabi-

lizers are no longer required to be compact. Let G be a non-compact semisimple

Lie group with finite center. A subgroup H ≤ G is symmetric if H = Gσ is the

fixed point set of an involution. σ : G→ G. Let G0 denote the identity component

of G. More generally, H is symmetric if Gσ
0 ⊂ H ⊂ Gσ. The symmetric space for

G is X = G/H where the stabilizer H of a typical point is an open subgroup of

Gσ, the fixed point set of an involution σ ∈ Aut(G).

The coset space G/H is an affine symmetric space (see [16]). An affine sym-

metric space is a symmetric space if and only if H is compact. The structure

theory of affine symmetric spaces generalizes the theory for Riemannian symmet-

ric spaces. There exists a Cartan involution, Θ : G → G, which commutes with
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σ. Let K = GΘ, and g = k ⊕ p be the Cartan decomposition. Then σ defines a

decomposition g = h⊕ q into eigenspaces with eigenvalues ±1.

Affine symmetric spaces have structure theorems analogous to the Cartan de-

composition theorems (see [7], [52]). For example:

[h, q] ⊂ q, [q, q] ⊂ h.

There is a Cartan involution θ : g→ g which commutes with σ. Set K = GΘ, the

fixed point group of Θ, and a maximal compact subgroup of G. Since Θ and σ

commute, we have the decomposition:

g = k ∩ h⊕ k ∩ q⊕ p ∩ h⊕ p ∩ q.

Let a ⊂ p be a maximal abelian subalgebra such that b = a⊕ q is a maximal

abelian subalgebra of p ∩ q. Then b is unique up to the action of H ∩ K. Set

A = exp(a) a connected subgroup of G, and B := exp(b) ⊂ A. There is a well

known factorization theorem (see [28]):

Theorem 2.0.25. Let b ⊂ p∩q be a maximal abelian subalgebra. Then any g ∈ G

may be written g = kbh with k ∈ K, b ∈ B, and h ∈ H. Moreover, b is unique up

to conjugation in the Weyl group WH∩K = NH∩K(b)/ZH∩K(b).

Homogeneous

Spaces

and

Grass-

man-

ni-

ans
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Homogeneous spaces look the same everywhere, and they form some of the

basic objects in the study of geometry, and in this thesis. A homogeneous space

is a differentiable manifold, X, equipped with a transitive action of a Lie group,

G. Any homogeneous space is isomorphic to G/H where H ⊂ G is a closed Lie

subgroup with the induced action, and H fixes a point x ∈ X.

A homogenous space is symmetric if and only if there exists a point with a

symmetry σp. A Lie group acting on itself by left multiplication is an example of

a homogeneous space which is not symmetric.

For example, all of our earlier examples of symmetric spaces are homogeneous:

the sphere Sn = O(n+1)/O(n), Euclidean space An = E(n)/O(n), and hyperbolic

space Hn = O+(1, n)/O(n).

Other homogeneous spaces include projective space, Pn = O(n + 1)/(O(n) ×

O(1)), and the Grassmannians, which are a generalization of projective space:

Grass(k, n) = O(n)/(O(k)×O(n− k))

This can be identified with the set of all k-dimensional vector subspaces of Rn,

and has dimension k(n − k). It is a non-singular affine algebraic variety, ([8] p.

70ff.), because there is a bijection Grass(k, n)↔ A(n, k), where

A(n, k) = {A ∈Mn(R) : At = A,A2 = A, trace(A) = k}.
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The space, P , of positive definite symmetric n by n matrices is homogenous

under the action of GLn(R) by (A,P ) 7→ PAP t.

A lattice is a subgroup of R2 isomorphic to Z2. The space, L, of lattices in R2,

is homogenous under GL2(R), and the space of unimodular lattices (those with

base parallelogram having unit area) is homogeneous under the action of SL2(R).
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Chapter 3

Geometric Structures, and

Convex Projective Structures

Geometric

Struc-

tures

Topological spaces sometimes come equipped with a certain pattern or struc-

ture. Often we study a space by finding structures which fit on it.

Definition 3.0.26. (Thurston, [57] p.110) Let G be a Lie group, and X a con-

nected manifold on which G acts transitively. A (G,X)-manifold is a manifold,

M , with a collection of G-compatible coordinate charts whose domains cover M .

A coordinate chart is a pair (Ui, φi) where Ui ⊂ M is open and φ : Ui → X is a

homeomorphism onto its image. Compatibility means that whenever two charts
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(Ui, φi) and (Uj, φj) intersect, the transition map or coordinate change

γij = φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

is in G.

For example, the torus is a (Isom(R2),R2)-manifold, and the sphere is a (O(n+

1), Sn)-manifold.

Two G-atlases are compatible if their union is also a G-atlas. It is easy to

check that compatibility is an equivalence relation. A manifold is often defined

by a maximal G-atlas.

A G-isomorphism is a homeomorphism, ψ : M → N between manifolds with

G-structure, such that when expressed in terms of local charts, ψ is given by an

element of G. A local G-isomorphism is a local homeomorphism, which is locally

expressible as an element of G. For example, the line R and the circle S1 are

locally isomorphic, but not globally isomorphic.

Fix a base point x0 ∈ M and a chart (U0, φ0) whose domain contains x0, and

let π : M̃ →M be the universal covering map. Recall M̃ may be thought of as the

space of homotopy classes of paths in M starting at x0. Let [α] be a representative

of a path α in M̃ . Subdivide α so

x0 = α(t0), x1 = α(t1), ..., xn = α(tn)
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Figure 3.1: The developing map is constructed by analytic continuation.

where t0 = 0, and tn = 1, and each subpath is contained in a single coordinate

chart (Ui, φi). Traverse α, adjusting so each chart φi agrees in a neighborhood of

xi ∈ Ui−1 ∩ Ui. The adjusted charts are the analytic continuation of φ0 along α.

The last chart is ψ = φα0 := γ01(x1)γ12(x2)....γn−1,n(xn−1)φn.

Definition 3.0.27. [Thurston, [57] p.139] For a fixed base point and initial chart

φ0, the developing map of a (G,X) manifold, M , is the map D : M̃ → X that

agrees with the analytic continuation of φ0 along each path, in a neighborhood of

the path’s endpoint. So, D = ψ ◦ π in a neighborhood of σ ∈ M̃ .

If D : M̃ → X is a covering map, then M is a complete (G,X)-manifold.

The developing map is a local (G,X)-diffeomorphism between M̃ and X. Since

a covering of a simply connected space is a homeomorphism, if M is complete and

X is simply connected, then we think of M̃ and X as being identified by D.
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Let σ ∈ π1(M). Analytic continuation along a loop representing σ gives a

chart, φσ0 , starting at the same base point as φ0. Let gσ ∈ G be the element

such that φσ0 = gσφ0. Then gσ is the holonomy of σ. Thus D ◦ Tσ = gσ ◦ D,

where Tσ : τ 7→ στ is the covering transformation associated to σ. The map

H : π1(M) → G, where H : σ 7→ gσ, is the holonomy of M . It has image the

holonomy group of M . Notice that H depends on the choices for D: when D

changes, H changes by conjugation.

Proposition 3.0.28 ([57] 3.4.5). If G is a group of analytic diffeomorphisms of

a simply connected space, X, any complete (G,X) manifold may be reconstructed

from its holonomy group Γ, as the quotient X/Γ.

For example, the circle, S1 ∼= R/Z, and the Euclidean torus, T 2 ∼= R2/Z2

are constructed as X/Γ. Given a manifold, N , there are often several different

possible (G,X) structures on N . We would like to differentiate between them.

Definition 3.0.29. Suppose N is a closed manifold or the interior of a compact

manifold with boundary. A marked (G,X) structure on N is a pair (M, f) where

M is a (G,X) manifold, and f : N →M is a diffeomorphism, called the marking.

Two markings (M, f) and (M ′, f ′) are equivalent if f ′ ◦ f−1 is isotopic to a G-

isomorphism.

32



One of the most celebrated theorems in geometric topology is Thurston’s ge-

ometrization theorem, [54], (proved by Perelman). It states that every compact

3-dimensional manifold is composed of pieces, each of which has one of 8 kinds of

3-dimensional geometry, known as the Thurston model geometries.

In some cases, the model geometry restricts the type of structure on the man-

ifold. For example, there is the famous Mostow Rigidity theorem, [53]:

Theorem 3.0.30 (Mostow Rigidity). Suppose M and N are complete finite-

volume hyperbolic n-manifolds with n ≥ 3. If there exists an isomorphism f :

π1(M)→ π1(N), then it is induced by an isometry from M to N .

Suppose n ≥ 3, and let M be a finite volume hyperbolic n-manifold. The

holonomy, ρ : π1M → Isom(Hn) is unique up to conjugacy, and we set Γ :=

ρ(π1(M)). Then M ∼= Hn/Γ. The moduli space of hyperbolic structures on M

is a single point. Such rigidity theorems are not always true for other types of

geometric structures. For manifolds with boundary, we have

Lemma 3.0.31 ([11] p.42). Let M0 be a compact n-manifold with boundary and

let M be a thickening of M0, so that M −M0 is a collar neighborhood of ∂M0.

Consider a (G,X) structure on M0 which extends to M . Then any small defor-

mation of the holonomy representation produces a nearby geometric structure on

M0.
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Stephan Tillmann’s notes, [58], provide an excellent background on real convex Real

Pro-

jec-

tive

Ge-

om-

e-

try

projective structures. Here we give a brief overview. View projective space as

a quotient of Rn+1 − {~0} by the relation v ∼ λv, where 0 6= λ ∈ R. Then

P(Rn+1) := RP n is equipped with the quotient topology.

Let {b1, ..., bn+1} be a basis for a real vector space V ∼= Rn+1. Projective

coordinates for a real projective space P(V ), are given by

[t1b1 + · · ·+ tn+1bn+1] = [t1 : · · · : tn+1] = [λt1 : · · · : λtn+1]

where 0 6= λ ∈ R. Let H ⊂ P(V ) be a hyperplane (a co-dimension 1 subspace).

Choose coordinates on P(V ) so that

H = {[x1 : · · · : xn : 0]|xk ∈ R, not all xk = 0}.

An affine patch is the complement of a hyperplane

P(V )−H = {[x1 : · · · : xn : 1]|xk ∈ R} ↔ {(x1, ..., xn)},

which we identify with Rn. Notice

PGL(P(V )−H) := {[M ] ∈ PGLn+1(R) : M = ( A b
0 1 ) where A ∈ GLn(R), b ∈ Rn}.

On the level of groups,

PGL(P(V )−H) ∼= Aff(n) ∼= GLn(R) nRn,

where we embed Aff(n)→ PGLn+1(R) by {x 7→ Ax+ b} 7→ ( A b
0 1 ).
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A set of n + 2 points in RP n is in general position if any subset of n + 1

underlying vectors in Rn+1 is linearly independent. Such a set of n+ 2 points is a

projective basis. Given two projective bases {p1, ..., pn+2}, and {q1, ..., qn+2}, there

is a unique linear transformation, φ : RP n → RP n, such that φ(pi) = qi for all

1 ≤ i ≤ n + 2. In particular, there is a unique projective transformation on a

projective line taking any three distinct points to any three other distinct points.

The cross ratio is a projective invariant defined by 4 points on a line as follows:

Map the first three points to {0, 1,∞}, and the fourth point to [x, y, z, w] :=

(x−z)(w−y)
(x−y)(w−z) . The symmetric group S4 acts on quadruples of points. The cross ratio

is invariant under the action of pairs of disjoint transpositions. So in general, an

unordered quadruple of points has six possible cross ratios.

One type of geometric structure on a manifold is a real convex projective Real

Con-

vex

Pro-

jec-

tive

Struc-

tures

structure. These share many properties with hyperbolic manifolds.

A real projective structure on a manifold, M , is a (G,X)-structure in which

G = PGLn+1(R), and X = RP n, as in Definition 3.0.26. There is a developing

map D : M̃ → RP n, and a holonomy representation H : π1(M) → PGLn+1(R).

Suppose instead of modeling on X = RP n, we want to use a subset of RP n with

certain properties.
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Definition 3.0.32 (Tillmann, [58]). A subset C ⊂ P(V ) is convex if the intersec-

tion of any line with C is connected. A convex set C ⊂ P(V ) is properly convex if

the closure of C is contained in an affine patch. A point p ∈ ∂C is strictly convex

if it is not contained in a line segment of positive length in ∂C. The set C is

strictly convex if it is properly convex, and strictly convex at every point p ∈ ∂C.

A closed projective triangle in RP 2 is convex, but not strictly convex.

Let Ω be a properly convex open set contained in an affine patch. The Hilbert

metric, dΩ, on Ω is

dΩ(a, b) = log[x, a, b, y] = log
||b− x|| · ||a− y||
||b− y|| · ||a− x||

,

where x, y ∈ ∂Ω are the endpoints of a line segment in Ω containing a and b such

that a lies between x and b on the line segment.

a

b

x

y

Ω

Figure 3.2: The Hilbert metric

Define Isom(Ω) to be the set of isometries from Ω to Ω, and PGL(Ω) = {A ∈

PGLn+1(R) : A(Ω) = Ω}. Since projective transformations preserve cross ratio,
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PSL(Ω) is contained in the group of isometries of the Hilbert metric. Projective

transformations preserve cross-ratios, and take affine patches to affine patches,

and convex sets to convex sets.

Lemma 3.0.33 ([58], 2.5). Let Ω be a strictly convex domain, and γ ∈ Isom(Ω, dΩ).

1. The image under γ of the intersection of a line with Ω is again the intersec-

tion of a line with Ω.

2. The map γ extends to a homeomorphism Ω̄→ Ω̄.

3. Cross-ratios of collinear points in Ω are preserved by γ.

Moreover, PGL(Ω) = Isom(Ω, dΩ).

SupposeX is a locally compact Hausdorff space. The subgroupH ⊂ Homeo(X)

acts properly discontinuously if for every compact K ⊂ X, the set K ∩hK is non-

empty for at most finitely many h ∈ H. Let Ω be a properly convex domain

and H ⊂ PGL(Ω). Then Proposition 3.2 in [58] says H is a discrete subgroup of

PGL(n+ 1) if and only if H acts properly discontinuously on Ω.

Let Ω be a convex set, and ρ : Γ→ PGLn+1(R) a discrete and faithful repre-

sentation whose image preserves Ω. Then M := Ω/ρ(Γ) has a convex projective

structure.

Recall Mostow rigidity, 3.0.30: If Hn/Γ1 and Hn/Γ2 are closed hyperbolic 3-

manifolds with n ≥ 3 and Γ1
∼= Γ2, then Γ1 is conjugate to Γ2. The notion of a
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hyperbolic structure may be generalized to a properly convex projective structure,

requiring only Ω ⊂ RP n be properly convex, and M ∼= Ω/ρ(Γ), where the holon-

omy, ρ : π1(M) = Γ → PGLn+1(R) is a discrete and faithful representation with

image preserving Ω. There is no analog of Mostow rigidity in this setting, so the

deformation theory of convex projective structures remains a rich object of study.

When M is closed, Koszul, [36], shows nearby projective structures are prop-

erly convex. If M is not compact, Koszul’s results no longer hold.

Real projective structures on compact surfaces have been classified by Choi Real

Pro-

jec-

tive

Struc-

tures

on

Com-

pact

Sur-

faces

and Goldman, using work of Kuiper, Benzecri, Koszul, Vey, and Kobayashi ([5],

[6], [36], [37], [38], [60], [61], [33], [35], [34]). The survey article [14] gives a nice

summary of the results.

If M is a convex RP 2 manifold with χ(M) < 0, then the universal cover of M

is a strictly convex set Ω ⊂ RP 2, with boundary which is a C1 curve. Then ∂Ω is

either a conic (when the projective structure is hyperbolic), or it is nowhere C1+ε

for some ε > 0.

Goldman and Choi [14] give a nice example (1.4) of a convex RP 2 structure

on an annulus, (with a boundary made up of closed geodesics, each having a

geodesically convex collar neighborhood), and whose holonomy has distinct posi-

tive eigenvalues. To construct this example, let ∆ be the open projective triangle
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in figure 3.3, and T ∈ PGL3(R) be represented by the matrix

T =


a 0 0

0 b 0

0 0 c

 ,

with a > b > c > 0. The cyclic group 〈T 〉 generated by T is discrete and acts

properly and freely on ∆, with quotient space an open annulus.

p1

p2

p3

s23

s13

s12

Δ

Figure 3.3: The Dynamics of

T in RP 2

There are two natural compactifications of ∆/〈T 〉 :

A1 = (∆ ∪ s12 ∪ s13)/〈T 〉 and A3 = (∆ ∪ s13 ∪ s23)/〈T 〉.

Both compactifications A1 and A3 are convex RP 2 manifolds with boundary, and

have projectively isomorphic interiors. However, the projective isomorphism be-

tween the interiors extends to one between A1 and A3 only if ac = b2.
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Another class of convex RP 2 manifolds consists of hyperbolic manifolds ([14]

1.5). Let Ω ⊂ RP 2 be the interior of a conic, and let G ≤ PGL3(R) be the sub-

group stabilizing Ω. Then G leaves invariant a Riemannian metric, g, of constant

negative curvature. Every isometry of g is realized by a unique projective transfor-

mation preserving Ω. Let M be a surface with hyperbolic structure. Composing

a developing map M̃ → H2 with an isometry H2 → Ω realizes M ∼= Ω/Γ where

Γ ⊂ G is a discrete cocompact subgroup.

The

Char-

ac-

ter

Va-

ri-

ety

Given a manifold N , there are often several possible different projective struc-

tures on N . We would like to differentiate between these structures. We generalize

Definition 3.0.29 to non-closed manifolds. Suppose N is either closed or the inte-

rior of a compact manifold with boundary. A marked projective structure on N

is a pair (M, f) where M is a projective manifold and f : N →M is a diffeomor-

phism, called the marking. Two markings (M, f) and (M ′, f ′) are equivalent if

there is a projective bijection h defined on the complement of a collar neighbor-

hood of ∂M onto the complement of a collar neighborhood of ∂M ′ such that the

following diagram commutes up to isotopy.
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M

M ′

N

f

f ′

h

Let RP (N) be the set of equivalence classes of marked projective structures on

N . There is a natural identification of RP (N) with the quotient of the space of

isotopy classes of developing maps by the action of PGLn+1(R). Then RP (N)

has the smooth compact open topology on the set of functions Ñ → RP n.

Following notation in [1], let R(π1(N), PGLn+1(R)) be the set of represen-

tations ρ : π1N → PGLn+1(R), with the compact open topology. When π1N

is finitely generated, the compact open topology coincides with the notion of

pointwise convergence of images of a fixed generating set. The character variety,

X(π1(N), PGLn+1(R)), is the geometric invariant theory quotient of

R(π1(N), PGLn+1(R)) by conjugation in PGLn+1(R), with the quotient topology

(see [46]). Define

hol : RP (N)→ X(π1(N), PGLn+1(R)) where hol([M, f ]) = [ρM ◦ f∗]

and ρM is a holonomy for the projective manifold M.

Theorem 3.0.34 (Thurston [11] p.45). If N is the interior of a compact smooth

manifold, then hol : RP (N)→ X(π1(N), PGLn+1(R)) is a local homeomorphism.
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Elements of RP (N) are locally parametrized by X(π1(N), PGLn+1(R)). Let

B(N) ⊂ X(π1(N), PGLn+1(R)) be the set of isotopy classes with a properly con-

vex representative. So [(M, f)] ∈ B(N) if and only if there is some (M ′, f ′) ∈

[(M, f)] where M ′ is a properly convex projective manifold. When N is closed

Koszul [36] shows B(N) is open in RP (N), and Benoist [4] shows B(N) is closed.

If N is not compact, there might exist sequences of non-discrete representations

π1(N)→ PGLn+1(R) which converge to the holonomy of a properly convex pro-

jective structure on N . Thus in general, B(N) is not an open subset of RP (N).

In the special case when S is a closed surface with χ(S) < 0, the holonomy

representation defines a local homeomorphism:

hol : RP 2(S)→ X(S).

Then the deformation space RP 2(S) is a Hausdorff real analytic manifold of di-

mension −8χ(S), see [24].

Euclidean

Struc-

tures

on

a

Torus

Recall the notion of a complete Euclidean structure, which is a quotient of

the Euclidean plane by a discrete group of translations, see Definition 3.0.27 and

Proposition 3.0.28. The following is explained in the introduction of [2]. A Eu-

clidean structure on a torus up to scaling is a conformal structure. Conformal
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structures on the 2-torus are elliptic curves, which have been classified by a mod-

uli space that is the quotient of the upper half plane, H2, by the modular group

SL2(Z). Equivalence classes of elliptic curves correspond to orbits of SL2(Z) on

H2. However, H2/SL2(Z) is not a smooth manifold (it is an orbifold with 2 cone

points), so we often study elliptic curves in terms of the action of SL2(Z) on H2.

The action of SL2(Z) on H2 is proper, and the quotient is Hausdorff.

Affine

Struc-

tures

on

a

Torus

An affine structure on a manifold is a maximal atlas with coordinate transfor-

mations in the group of affine transformations. Nagano and Yagi [47] describe the

set A of all affine structures on T 2 modulo Diff(T 2)0, where Diff(T 2)0 is the group

of diffeomorphisims homotopic to the identity. The space A/Diff(T 2)0 endowed

with the correct topology may be seen as an affine version of Teichmüller space.

Nagano and Yagi show affine structures on the torus are determined by their

holonomy groups, and completely describe the space A/Diff(T 2)0. The torus is

the only orientable surface which admits an affine structure (see [5]).

Since the holonomy groups are images of π1(T 2), they are abelian groups with

at most 2 generators. To classify holonomy groups, Nagano and Yagi classify 2-

dimensional abelian Lie subgroups of A(2), the group of affine transformations of

the plane. They show every 2-dimensional abelian subgroup of the affine group is
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conjugate to one of 7 groups. Leta b u

c d v

 denote (x, y) 7→ (ax+ by + u, cx+ dy + v)

as a transformation given in affine coordinates.

Theorem 3.0.35 ([47], Proposition 2.5). Every maximal abelian subgroup of A(2)

is conjugate to one of the following:a b 0

0 a 0

 ,

a 0 0

0 d 0

 ,

 a b 0

−b a 0

 ,

a 0 0

0 1 v

 ,

1 b u

0 1 b

 ,

1 0 u

0 1 v

 ,

1 b v

0 1 0

 .

Later we will see 5 of these groups are limits of the Cartan subgroup in SL3(R),

which are classified in chapter 6. Nagano and Yagi show every affine structure

on the torus is characterized as G/Γ where G is one of their seven groups and

Γ ∼= Z⊕ Z is a lattice in G.

Baues and Goldman [2] study deformations of affine structures on the real

2-torus. They show that the standard linear action of SL2(Z) on R2 is not proper

and the deformation space of complete affine structures is not Hausdorff. They

give coordinates for the deformation space of complete affine structures on T 2,

and show there is a differentiable structure on the deformation space. With this
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structure, the deformation space is diffeomorphic to R2, and “the action of the

mapping class group of T 2 is equivalent in these coordinates with the standard

linear action of SL2(Z) on R2.” They also study the dynamics of the action of

SL2(Z) on R2, and describe how these affine structures arise.

.

Generalized

CuspsIs it possible to deform convex projective structures to get new convex projec-

tive structures? Cooper, Long, and Tillman, [19], have given a sufficient condition

for when small deformations of the holonomy of a properly convex structure re-

main the holonomy of a properly convex projective structure. The ends of the

manifold must have the structure of generalized cusps, defined as follows (see [19]):

A radial flow on RP n is a one-parameter subgroup of PGLn+1(R) which fixes

each point in a projective hyperplane. There is a point p such that the orbit of

every point is contained in a line though p. Let Ω ⊂ RP n be a properly convex

subset in the complement of a hyperplane, and Γ be a subgroup of PGLn+1(R)

which acts freely and properly discontinuously on Ω. A convex projective n-

manifold M = Ω/Γ admits a radial flow if Γ centralizes some radial flow. In

particular, M is foliated by lines which develop into lines intersecting at p. A

generalized cusp is a properly convex projective n-manifold, B = [0,∞) × ∂B
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contained in M , with the product structure given by the flowlines, and ∂B is

strictly convex, and the holonomy of B has a finite index subgroup that preserves

a complete flag (see [19]). For example, a cusp on a hyperbolic manifold is a

generalized cusp.

Let N be a properly convex real projective manifold with compact, strictly

convex boundary and which is a union of a compact part and finitely many ends

that are generalized cusps. Then the set of holonomies of such structures is an open

subset in the representation variety, defined by the condition that the holonomy

takes the right form on each cusp. In particular, Cooper, Long, and Tillman show

Theorem 3.0.36 ([19] Theorem 4.3). Suppose M = A∪B is a properly convex n-

manifold with holonomy ρ, and ∂M is strictly convex, and A is a compact manifold

with boundary ∂A = A ∩ B = ∂B, and each component B of B is a generalized

cusp. Then there is a neighborhood U ⊂ Hom(π1(M), PGLn+1,R)) of ρ with the

property that if ρε ∈ U , and for each component B ⊂ B there is a convex projective

structure on B, which is a generalized cusp with holonomy ρε|π1(B), then there

is a convex projective structure M ε on M with holonomy ρε, and ∂M ε is strictly

convex.

Ballas [1], uses Theorem 3.0.36 to show an open set of the representations of

the fundamental group of figure-eight knot complement are the holonomies of a
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family of finite volume properly convex projective structures on the figure-eight

knot complement. In particular:

Theorem 3.0.37 ([1], Theorem 1.1). Let M be the complement in S3 of the figure-

eight knot. There exists ε such that for each s ∈ (−ε, ε), ρs is the holonomy of a

finite volume properly convex projective structure on M . Furthermore, when s 6= 0

this structure is not strictly convex.

To do so, he constructs a generalized cusp later classified in chapter 4 as F ,

and shows it deforms to the standard cusp N . He shows these cusps are foliated

by horospheres, defined below.

Recall the upper half space model of hyperbolic space gives a coordinate system

with a point at infinity. A generalization of these coordinates for properly convex

domains is introduced in [18]. Let Ω be a properly convex domain, p a point

in ∂Ω, and H a supporting hyperplane containing p. There is an identification

of the affine patch RP n − H with Rn in which lines through p not contained in

H are parallel to the x1 axis. This is achieved by applying a projective change

of coordinates which sends p 7→ [e1] and H to the projective hyperplane dual to

[en+1]. The x1 direction is called the vertical direction. A set of coordinates with

this property is called parabolic coordinates centered at (H, p), or just parabolic

coordinates if H and p are clear from the context.
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Algebraic horospheres are defined using parabolic coordinates as follows: Let

t > 0, and define St as the translation of the part of ∂Ω that does not contain any

line segments through p by the vector te1. These sets are algebraic horospheres

centered at (p,H). See [18] for more on algebraic horospheres.
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Chapter 4

A Classification of Generalized

Cusps on Convex Projective

3-Manifolds

Suppose M is a manifold of dimension greater than 2. Recall Mostow-Prasad

rigidity, 3.0.30, tells us that a finite volume hyperbolic structure on M is unique

up to isometry. The notion of a hyperbolic structure may be generalized to a

properly convex projective structure as follows. Suppose Ω ⊂ RP n is properly

convex, and the holonomy, ρ : π1(M) = Γ→ PGLn+1(R) is a discrete and faithful

representation with image preserving Ω, and M ∼= Ω/ρ(Γ). As we have seen in
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section 3, there is no analog of Mostow rigidity in this setting, so the deformation

theory of convex projective structures remains a rich object of study.

When M is closed, Koszul, [36], shows small perturbations in the holonomy

of properly convex projective structures give properly convex structures. If M is

not compact, Koszul’s results no longer hold. Cooper, Long and Tillman, [19],

show that if M is the interior of a compact manifold, then a small perturbation

remains properly convex if the holonomy of each boundary component preserves

a complete flag.

A generalized cusp in dimension 3 is a properly convex 3 manifold, M , diffeo-

morphic to T 2 × [0,∞), and ∂M is strictly convex. This chapter makes progress

in classifying generalized cusps in dimension 3 up to projective equivalence. It is

closely related to work of [1] and [40].

It is shown in [40] that the holonomy of a generalized cusp is a lattice in a

unique upper triangular subgroup R2 ∼= H ⊂ PGL4(R), called a cusp Lie group.

The groups H are characterized by the property that there is a point x ∈ RP 3

such that H · x ⊂ RP 3 is a strictly convex surface. Moreover there is a one

parameter subgroup Φt = exp(tA) with rank(A) = 1, and H and Φt commute,

and H · Φ ∼= R3.

We classify cusp Lie groups for 3 manifolds:
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Theorem 4.0.38. Each cusp Lie group in PGL4(R) is conjugate to exactly one

of the following groups:

C([r : s : t]) =





ea 0 0 0

0 eb 0 0

0 0 ec 0

0 0 0 e−(a+b+c)


:

a, b, c ∈ R

ar + bs+ ct = 0


,

[r : s : t] ∈ RP 2

r ≥ s ≥ t > 0

E(s) =





eb−a 0 0 0

0 ea ea(bs+ a) 0

0 0 ea 0

0 0 0 e−a−b


: a, b ∈ R


,where 0 < s < 1/2

F =





ea eab 1
2
ea(b2 + 2a) 0

0 ea eab 0

0 0 ea 0

0 0 0 e−3a


: a, b ∈ R


,

N =





1 a b 1
2
(a2 + b2)

0 1 0 a

0 0 1 b

0 0 0 1


: a, b ∈ R


.
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Let Ω ⊂ RP 3 be a properly convex set in the complement of a hyperplane, and

let M ∼= Ω/Γ be a generalized cusp, where Γ = Hol(π1(M)) ∼= Z ⊕ Z. A radial

flow on RP n is a one-parameter subgroup of PGLn(R) which fixes each point in

a projective hyperplane (see section 3). We will use the remainder of this chapter

to prove Theorem 4.0.38.

Sketch of proof of Theorem 4.0.38. It follows from Theorem 3.0.36, that if M ∼=

Ω/Γ is a generalized cusp, there exists a radial flow Φt ⊂ PGL4(R), which cen-

tralizes Γ, and Φt(Ω) ⊂ Ω for t < 0. Therefore, to classify generalized cusps in

dimension 3, we want to find all conjugacy classes of subgroups, H ≤ PGL4(R),

satisfying:

(a) H ∼= (R2,+)

(b) There is a point p ∈ RP 3 with orbit H.p that is strictly convex

(c) There exists a radial flow centralized by H.

It follows that H and Φ generate a subgroup of PGL4(R) isomorphic to R3,

which contains H. All subgroups of PGL4(R) isomorphic to (R3,+) are classified

in Proposition 4.0.39, and they are all closed.

Proposition 4.0.44 lists which of these groups contains a 2-dimensional sub-

group with convex orbit. Proposition 4.0.45 completes the proof of Theorem 4.0.38

by determining which of the 2 dimensional groups are conjugate.
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Subgroups

of

PGL4(R)

Iso-

mor-

phic

to

(R3,+)

As a first step, we classify all the subgroups of PGL4(R) isomorphic to (R3,+).

In higher dimensions, some subgroups of SLn(R) isomorphic to (Rn−1,+) are not

(topologically) closed. An example can be made using a subgroup containing a

line of irrational slope in S1 × S1.

The classification of 3-dimensional abelian subalgebras in gl4(C) is given in [56],

p.134, and in [31], section 3.1. The classification of maximal abelian subalgebras

of sl4(R) is given as the main result of [63], but there are some of dimension larger

than 3. However, the author was unable to find a classification of 3-dimensional

abelian subalgebras over R.

Let G ≤ PGLn+1(R) be a group, and p ∈ RP n. The orbit of p under G is the

set of images {g.p : g ∈ G}. The orbits of G acting on RP n give a partition of

RP n. An orbit closure of G is the closure of an orbit of G.

Proposition 4.0.39. In PGL4(R) there are precisely 15 conjugacy classes of

subgroups isomorphic to (R3,+):

C E1 F0 F1

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 1
abc





a 0 0 0

0 b c 0

0 0 b 0

0 0 0 1
ab2





a b 0 0

0 a 0 0

0 0 1
a

c

0 0 0 1
a





a b c 0

0 a b 0

0 0 a 0

0 0 0 1
a3
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F2 F3 N1 N2

a b c 0

0 a 0 0

0 0 a 0

0 0 0 1
a3





a 0 c 0

0 a b 0

0 0 a 0

0 0 0 1
a3





1 a b c

0 1 a b

0 0 1 a

0 0 0 1





1 a b c

0 1 a 0

0 0 1 0

0 0 0 1


N3 N4 N ′4 N5

1 0 0 c

0 1 a b

0 0 1 a

0 0 0 1





1 a b c

0 1 0 b

0 0 1 a

0 0 0 1





1 a b c

0 1 0 a

0 0 1 b

0 0 0 1





1 0 b c

0 1 a b

0 0 1 0

0 0 0 1


N6 N7 N8

1 a 0 c

0 1 0 0

0 0 1 b

0 0 0 1





1 0 0 c

0 1 0 b

0 0 1 a

0 0 0 1





1 a b c

0 1 0 0

0 0 1 0

0 0 0 1


where each matrix represents a group by taking the union over all possible a, b, c ∈

R or R+, as appropriate.

Proof. We use Haettel’s classification, [26] Proposition 6.1, in which he proves

every 3-dimensional abelian Lie algebra of SL4(R) is one of 10 types, up to con-

jugacy in the Borel group. The proof has two parts. Step 1: exponentiate each of
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Haettel’s algebras into the Lie group, and consider conjugacy in SL4(R), rather

than just the Borel subgroup. We determine how many conjugacy classes of sub-

groups are contained in each of Haettel’s 10 types. Step 2: show none of the

groups are conjugate.

Step 1: We exponentiate Haettel’s algebras.

Type 1: The Cartan subalgebra

a =



a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 −a− b− c


has exp(a) = C.

Type 2: These are algebras with three distinct weights and one off diagonal entry,

which consist of matrices of the forms:

iα =



a b 0 0

0 a 0 0

0 0 c 0

0 0 0 −2a− c


, iβ =



a 0 0 0

0 b c 0

0 0 b 0

0 0 0 −2b− a


,
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iγ =



a 0 0

0 −2b− a 0 0

0 0 b c

0 0 0 b


, iα+β =



a 0 c 0

0 b 0 0

0 0 a 0

0 0 0 −2a− b


,

iβ+γ =



a 0 0 0

0 b 0 c

0 0 −2b− a 0

0 0 0 b


, iα+β+γ =



a 0 0 c

0 b 0 0

0 0 −2a− b 0

0 0 0 a


.

The iδ are all conjugate in sl4(R) by permutation matrices, and exp(iβ) = E1.

Types 3 and 5: These are algebras with 2 distinct weights, that decompose as a

direct sum of a 3-dimensional and 1-dimensional algebra. Let [x : y] ∈ RP 1

be fixed. Types 3 and 5 are algebras consisting of matrices of the forms:

iα,β[x:y] =



c ax b 0

0 c ay 0

0 0 c 0

0 0 0 −3c


, iβ,γ[x:y] =



−3c 0 0 0

0 c ax b

0 0 c ay

0 0 0 c


.

The algebras iα,β[x:y] and iβ,γ[x:y] are conjugate in sl4(R) by a permutation matrix.

Note exp(iα,β[0:1]) = F3, exp(iα,β[1:0]) = F2, and exp(iα,β[x:y]) = F1, for (x, y) 6= (0, 0).
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Type 4: This algebra has 2 distinct weights, and decomposes as a sum of two

2-dimensional algebras. It consists of matrices of the form

iα,γ =



a b 0 0

0 a 0 0

0 0 −a c

0 0 0 −a


,

and exp(iα,γ) = F0.

Type 6: Let [x : y : z] ∈ RP 2 be fixed, with x, z 6= 0, and consider the algebra

consisting of matrices of the form

i[x:y:z] =



0 ax bx c

0 0 ay bz

0 0 0 az

0 0 0 0


.

When y 6= 0, the group exp(i[x:y:z]) is conjugate to N1, and exp(i[x:0:z]) is

conjugate to N4 by a diagonal matrix.
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Type 7: Let (y, t) ∈ R2 be fixed, and consider the algebra consisting of matrices

of the form

iα,y,t =



0 a b c

0 0 ay at

0 0 0 0

0 0 0 0


.

If (y, t) 6= (0, 0), the group exp(iα,y,t) is conjugate toN2, and exp(iα,0,0) = N8.

Type 8: Let (y, t) ∈ R2 be fixed, and consider the algebra consisting of matrices

of the form

iγ,y,t =



0 0 at c

0 0 ay b

0 0 0 a

0 0 0 0


.

If (y, t) 6= (0, 0), the group exp(iγ,y,t) is conjugate to N3, and exp(iγ,0,0) = N7.

Type 9: Let [x : y : z : t] ∈ RP 3 be fixed, and consider the algebra consisting of

matrices of the form

i[x:y:z:t] =

{


0 0 b c

0 0 a d

0 0 0 0

0 0 0 0


∣∣∣∣∣ax+ by + cz + dt = 0

}
.
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By computing orbit closures, it is easy to check exp(i[x:y:z:t]) is conjugate to

N6 if [x : y : z : t] ∈ {[0 : 0 : 1 : t], [1 : y : 0 : 0], [1 : 0 : z : 0], [0 : 1 : 0 : t]},

and exp(i[x:y:z:t]) is conjugate to N5 otherwise.

Type 10: Let (x, y) ∈ R2 be fixed, and consider the algebra consisting of matrices

of the form

ix,y =



0 a by c

0 0 0 ax

0 0 0 b

0 0 0 0


.

If sign(x) = sign(y) then exp(ix,y) is conjugate to N4, and if sign(x) =

−sign(y), then exp(ix,y) is conjugate toN ′4. Finally, exp(i0,0) = N6, exp(ix,0) =

N2 for x 6= 0, and exp(i0,y) = N3 for y 6= 0.

Thus we have shown that every one of the groups is the image under the

exponential map of one of Haettel’s algebras.

Step 2: We show none of the groups are conjugate.

The action of each group on RP 3 partitions RP 3 into orbit closures. We prove

none of the 15 groups in the list are conjugate, by showing they have orbit closures

which are not projectively equivalent. Every orbit closure is a projective subspace.

Let {e1, ...e4} be the usual basis for R4, and let {[e1], ...[e4]} be the projective

images in RP 3. Here is a list of the orbit closures of each group.
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Orbit closures of C: The orbit closures of C form a projective tetrahedron. The

points [e1], [e2], [e3], [e4], are fixed. The lines 〈e1, e2〉, 〈e1, e3〉, 〈e2, e3〉, 〈e1, e4〉,

〈e2, e4〉, 〈e3, e4〉, are orbit closures, as are the planes 〈e1, e2, e3〉, 〈e1, e2, e4〉,

〈e1, e3, e4〉, 〈e2, e3, e4〉. The orbit closure of any point not in one of these

subspaces is all of RP 3 ∼= 〈e1, e2, e3, e4〉.

Orbit closures of E1: The group E1 fixes the points [e1], [e2], [e4]. The lines

〈e1, e2〉, 〈e2, e3〉, 〈e1, e4〉, 〈e2, e4〉, and the planes 〈e1, e2, e3〉, 〈e1, e2, e4〉, 〈e2, e3, e4〉

are are orbit closures of E1. The orbit closure of any point not in one of

these subspaces is all of RP 3.

Orbit closures of F0: The group F0 fixes [e1] and [e3]. The lines 〈e1, e3〉, 〈e1, e2〉,

and 〈e3, e4〉, and the planes 〈e1, e2, e3〉 and 〈e1, e3, e4〉 are orbit closures. The

orbit closure of any point not in one of these subspaces is all of RP 3.

Orbit closures of F1: The group F1 fixes [e1] and [e4]. The lines 〈e1, e2〉 and

〈e1, e4〉, and the planes 〈e1, e2, e3〉 and 〈e1, e2, e4〉 are orbit closures of F1.

The orbit closure of any point not in one of these subspaces is all of RP 3.

Orbit closures of F2: The group F2 fixes [e1] and [e4]. Every line through [e1]

contained in the plane 〈e1, e2, e3〉 is an orbit closure. The line 〈e1, e4〉 and

the plane 〈e1, e2, e4〉 are also orbit closures of F2. The orbit closure of any

point not in one of the subspaces in this list is all of RP 3.
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Orbit closures of F3: The group F3 fixes [e4], and fixes every point on the line

〈e1, e2〉. The line 〈e1, e4〉 and the planes 〈e1, e2, e4〉, 〈e1, e2, e3〉 are orbit clo-

sures of F3. The orbit closure of any point not in one of these subspaces is

all of RP 3.

Orbit closures of N1: The group N1 has orbit closures that are a full flag:

[e1], 〈e1, e2〉, 〈e1, e2, e3〉, and 〈e1, e2, e3, e4〉.

Orbit closures of N2: The group N2 fixes [e1]. Every line through [e1] in the

plane 〈e1, e2, e4〉 is an orbit closure of N2. The orbit closure of any other

point is a projective plane containing 〈e1, e2〉.

Orbit closures of N3: The group N3 fixes every point on the line 〈e1, e2〉. Every

line through [e2] in the plane 〈e1, e2, e3〉 is an orbit closure of N3. The orbit

closures of any point not in one of these subspaces is all of RP 3.

Orbit closures of N4 and N ′4: The groups N4 and N ′4 have the same orbit closures.

Both fix the point [e1]. Every line through [e1] in the plane 〈e1, e2, e3〉 is an

orbit closure. The orbit closure of any other point is all of RP 3. Lemma

4.0.40 shows N4 and N ′4 are not conjugate.

Orbit closures of N5: The group N5 fixes every point on the line 〈e1, e2〉, and

the orbit of any other point is a projective plane containing 〈e1, e2〉.
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Orbit closures of N6: The group N5 fixes every point on the line 〈e1, e3〉, and

every line through the point [e1] in the plane 〈e1, e2, e3〉 is an orbit closure

of N6. The orbit of any other point is a projective plane containing 〈e1, e3〉.

Orbit closures of N7: The group N7 fixes every point in the plane 〈e1, e2, e3〉 and

the orbit of any other point is all of RP 3.

Orbit closures of N8: The group N8 fixes [e1] and every line through [e1] is an

orbit closure of N8.

None of the orbit closures of the groups in the list are projectively equivalent,

except N4 and N ′4, which are shown not to be conjugate in Lemma 4.0.40. Thus

these are all conjugacy classes of subgroups of SL4(R) isomorphic to R3.

Lemma 4.0.40. The groups N4 and N ′4 are not conjugate in PGL4(R), but they

are conjugate in PGL4(C).

Proof. Consider the respective Lie algebras:

N4 =



0 a b c

0 0 0 b

0 0 0 a

0 0 0 0


and N′4 =



0 a b c

0 0 0 a

0 0 0 b

0 0 0 0


.

We will consider images of subalgebras under the exponential map to show N4

and N′4 are non-isomorphic Lie algebras. Notice exp(N4) has c+ ab
2

in the upper
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right corner, and exp(N′4) has c+ a2+b2

2
in the upper right. The subalgebra of N4

with a = 0 is a 2-dimensional subalgebra which exponentiates linearly. There is

no 2-dimensional Lie subalgebra of N′4 which exponentiates linearly (since a2 + b2

is positive definite as a real quadratic form).

The groups N4 and N ′4 are conjugate by a complex matrix, but not a real ma-

trix. Over C, the algebra N′4 has a 2-dimensional subalgebra which exponentiates

linearly, when a = ib. Iliev and Manivel prove there are 14 conjugacy classes of

3-dimensional abelian subalgebras in sl4(C), see [31] section 3.1. Their list is the

same as in Proposition 4.0.39, with only one representative for the conjugacy class

{N4,N
′
4} over C.

Description

of

cusp

Lie

sub-

groups

of

E1

We must determine which 2-dimensional subgroups of the groups in Proposi-

tion 4.0.39 have a strictly convex orbit. In this section, we do the case of E1 in

detail. We produce a 2 parameter family, E(r, s), of cusp Lie groups. In Proposi-

tion 4.0.45, we show they are all conjugate to the groups E(s) in Theorem 4.0.38.

Ballas describes the cusps arising from N (the standard cusp), and F in [1].

Gye-Seon Lee has described the family of cusps arising from C([r : s : t]). We will

follow the notation and ideas outlined in [1].
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Recall the second fundamental form is a symmetric bilinear form on the tangent

plane of a smooth surface in three-dimensional Euclidean space (see [62]). It

is given explicitly for the graph of a twice continuously differentiable function

f : R2 → R3 which is tangent to the xy plane at the origin by

II(f) =
∂2f

∂x2
dx2 + 2

∂2f

∂x∂y
dxdy +

∂2f

∂y2
dy2.

This gives the curvature of f at the origin.

The Gauss curvature, G, is the determinant of II(f), see [45] p.13. Let p be a

point in a twice differentiable surface f(x, y) ⊂ R3. Proposition 3.5 in [45] says

the second fundamental form at p, written II(f)p, is similar to

g−1

 ∂2f
∂x2
· ~n ∂2f

∂x∂y
· ~n

∂2f
∂x∂y
· ~n ∂2f

∂y2
· ~n

 ,
where ~n is the normal vector to f at p, and g is the metric. Proposition 3.5 in [45]

also implies the sign of the curvature at p depends only on the sign of det II(f)p.

Therefore if det II(f)p is positive, then f is convex at p.

Suppose there is a transitive affine group action on the graph of f . Since affine

maps preserve convexity, the graph of f is convex if there is one point at which f

is convex. In particular, there is a transitive group action on the graph of f if it

is the orbit of a group action. We summarize this as:

Proposition 4.0.41. Suppose the graph of f(x, y) ⊂ R3 is the orbit of an affine

group action, and p ∈ f(x, y). If det II(f)p is positive, then f is convex.
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Given [r : s] ∈ RP 1, define

E(r, s) :=





ea−b 0 0 0

0 eb eb(ar + bs) 0

0 0 eb 0

0 0 0 e−b−a


: a, b ∈ R


.

Then E(r, s) ∼= (R2,+) is a subgroup of E1.

Proposition 4.0.42. The cusp Lie groups contained in E1 are the subgroups

E(r, s) with |s| < |r|/2.

Proof. Every 2-dimensional Lie subalgebra of Lie(E1) is defined by an equation

ar + bs + ct = 0, where r, s, t ∈ R are fixed. After a coordinate permutation, we

may assume t 6= 0, and take t = −1, so c = ar+ bs. Exponentiating gives the Lie

group E(r, s).

Let p = [x0 : y0 : z0 : 1] ∈ RP 3. The orbit of p under E(r, s) is the surface

S := {[ea−bx0 : eby0 + eb(ar + bs)z0 : ebz0 : e−a−b] : a, b ∈ R}.

Scale by e−a−b so

S = {[e
a−bx0

e−a−b
:
eby0 + eb(ar + bs)z0

e−a−b
:
ebz0

e−a−b
: 1] : a, b ∈ R},

and S is in the affine patch that is the complement of the hyperplane [∗ : ∗ :

∗ : 0]. Moreover, elements E(r, s) preserve the 3-dimensional affine subspace
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{[x1 : x2 : x3 : 1]}, so view E(r, s) as affine transformations on R3. Consider the

map f : R2 → R3 given by

f(a, b) = (e2a, ea+2b + ea+2b(ar + bs), ea+2b).

Then S is the graph of f . Perform the coordinate change A = e2a, B = ea+2b. So

S = {(A,B(1 + r(
1

2
lnA) + s(

−1

4
lnA+

1

2
lnB)), B)|A,B ∈ R>0}.

Then S is the graph of f(A,B) = B(1 + r(1
2

lnA) + s(−1
4

lnA+ 1
2

lnB)) ⊂ R3.

The determinant of the second fundamental form is det II(f) = (r2−4s2)
16A2 , which

is positive when |s| < |r|/2. So by Proposition 4.0.41, E(r, s) has a convex orbit

if |s| < |r|/2.

Algebraic horospheres were defined using parabolic coordinates in section 3.

Proposition 4.0.43. If |s| < |r|/2, the cusp Lie group E(r, s) acts on a convex

set foliated by algebraic horospheres, each of which is a convex surface preserved

by the action of E(r, s).

Proof. Notice

Ω = {(x1, x2, x3) ∈ R3|x1, x3 > 0, (1 +
1

4
(2r − s) lnx1 +

1

2
s lnx3) > x2)}

is a convex set preserved by the action of E(r, s). Let Hk be the orbit of (0, k, 0)

under E(r, s). So, Hk is the graph of the strictly convex function

(1 +
1

4
(2r − s) +

1

2
s) ln k =

1

4
(4 + 2r + s) ln k.
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Then
⋃
k>0Hk is a foliation of Ω by horospheres around the point (0, 1, 0).

Let Γ be a lattice in Ω. Then Ω/Γ is a generalized cusp, diffeomorphic to

T 2 × [0,∞), by a diffeomorphism which sends Hk/Γ → T 2 × {k}. The map

[x1 : x2 : x3 : 1] → (x1, x3) restricted to Hk is a developing map for an affine

structure on Hk/Γ.

Figure 4.1: A representation of E(s)

Convex

Or-

bits

To finish the proof of Theorem 4.0.38, it remains to decide which of the 15

groups in Proposition 4.0.39 have a subgroup that is a cusp Lie group, and to

determine conjugacies between these cusp Lie groups. We prove Proposition 4.0.44

using the methods of Proposition 4.0.42.

Suppose θ : R3 → g is an isomorphism of Lie algebras. Given [r : s : t] ∈ RP 2,

define the subalgebra g[r : s : t] := θ{(a, b, c) ∈ R3 : ra + sb + tc = 0}. Every

2-dimensional subalgebra of g is obtained this way. Set G[r : s : t] = exp g[r : s : t].
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Proposition 4.0.44. Suppose G is one of the groups in Proposition 4.0.39, and

H is a cusp Lie subgroup of G. Then G is one of C,E1, F1 or N ′4, and H is

conjugate in PGL4(R) to one of

• C[r : s : t] with rst(r + s+ t) > 0,

• E1[r : s : −1] = E(r, s) with |s| < |r|/2,

• F1[r : s : −1] with r > 0

• N ′4[r : s : −1].

Proof. Since every 2-dimensional subalgebra of a 3-dimensional Lie algebra is

obtained as g[r : s : t], all possible subgroups of the groups in Proposition 4.0.39

isomorphic to (R2,+) are realized as G[r : s : t]. In all cases except G = C, we

may perform a change of basis in the Lie algebra so that t 6= 0. So unless G = C,

we assume without loss of generality that t 6= 0, and take t = −1 so c = ar + bs.

Set H := G[r : s : t] = exp g[r : s : t] ∼= (R2,+).

Let p = [x0 : y0 : z0 : 1] ∈ RP 3, and let S := {h.p : h ∈ H} be the orbit of p.

The elements of H preserve the affine patch {x1 : x2 : x3 : 1}, so we regard H as

a set of affine transformations of R3, and S as a surface that is the image of an

orbit of H. As in Proposition 4.0.42, use projective equivalence to scale S to be in

the complement of the hyperplane [∗ : ∗ : ∗ : 0], and dehomogenize (and perhaps

perform a change of coordinates) so S is the graph of a function f : R2 → R3. By
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Proposition 4.0.41, if det II(f)p > 0, then f is convex. We wrote a Mathematica

program to execute this process, and ran it on all subgroups isomorphic to (R2,+),

of the groups in Proposition 4.0.39.

The second fundamental form depends on r, s. The only groups which give

rise to positive definite second fundamental forms are C,E1, F1, and N ′4. Below

is a chart showing the results of the computations for each of the groups. The

computations are similar to those for E1 given in Proposition 4.0.42.
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Group
Orbit of Generic Point p = [x0 : y0 : z0 : 1]

det II(f)p [up to scaling] : r, s, t are fixed and a, b, c are variables

C
(e

ar
−ar−bs−ctx0, e

bs
−ar−bs−cty0, e

ct
−ar−bs−ct z0)

rst(r + s+ t)x2
0y

2
0z

2
0

E1

(eax0, e
by0 + eb(ar + bs)z0, e

bz0, e
−a−2b)

16(r − 2s)(r + 2s)x2
0z

4
0

F0

(eax0 + beay0, e
ay0, e

−az0 + e−a(ar + bs), e−a)

−16r2y4
0

F1

(eax0 + ea(bs+ ar)z0, e
ay0 + beaz0, e

az0, e
−3a)

64rz6
0

F2

(eax0 + eaby0 + ea(ar + bs)z0, e
ay0, e

az0, e
−3a)

0

F3

(eax0 + beay0 + 1
2
ea(b2 + 2bs+ 2ar)z0, e

ay0 + beaz0, e
az0, e

−3a)

0

N1

(x0 + ay0 + (a
2

2
+ b)z0 + (a

3

6
+ bs+ a(b+ s), y0 + az0(a

2

2
+ b), z0 + a, 1)

−1

N2

(x0 + ay0 + (a
2

2
+ b)z0 + ar + bs, y0 + az0, z0, 1)

0
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N3

(x0 + (ar + bs)z0, y0 + az0 + (a
2

2
+ b), z0 + a, 1)

0

N4

(x0 + ay0 + bz0 + (ar + bs)ab, y0 + b, z0 + a, 1)

−1

N ′4
(x0 + ay0 + bz0 + (ar + bs)1

2
(a2 + b2), y0 + a, z0 + b, 1)

1

N5

(x0 + az0 + ar + bs, y0 + bz0, z0, 1)

0

N6

(x0 + ay0 + ar + bs, y0, z0 + b, 1)

0

N7

(x0 + ar + bs, y0 + b, z0 + a, 1)

0

N8

(x0 + ay0 + bz0 + ar + bs, y0, z0, 1)

0

Notice Theorem 4.0.44 provides an alternate proof that N4 and N ′4 are not

conjugate: N ′4 has a 2-dimensional subgroup with convex orbit, and N4 does not.

Since convexity of the cusp Lie group F [r : s : −1] depends only on r, define

F (r) := F [r : 0 : −1].
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The cusp Lie group C([r : s : t]) has a convex orbit if rst(r + s+ t) > 0. The

convexity condition is shown in figure 4.2 in an affine patch where t = 1.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 4.2: rs(1 + r + s) > 0 if and only if (r, s) is in a shaded region.

Conjugacy

Clas-

si-

fi-

ca-

tion

of

Cusp

Lie

Groups

Proposition 4.0.39 shows the groups C,E1, F1, and N ′4 are not conjugate since

they have orbit closures which are not projectively equivalent. It is easy to see

the cusp Lie groups C([r : s : t]), E(r, s), F (r), and N have orbit closures which

are not projectively equivalent, and so the cusp Lie groups are non-conjugate for

any values of r, s, t. In this section, we give conditions for when two groups in the

same family are conjugate, and parametrize conjugacy classes in each family by

subsets of projective space. This will conclude the proof of Theorem 4.0.38.

Proposition 4.0.45. 1. Every cusp Lie group C([r : s : t]) is conjugate to

exactly one cusp Lie group where r ≥ s ≥ t > 0.
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2. Every cusp Lie group E(r, s) is conjugate to exactly one cusp Lie group with

1/2 > s > 0 and r = 1.

3. If r 6= 0, then F (r) is conjugate to F (1).

[r:0:0]

[0
:s
:0
]

[0:0:t]

[0:t:t]

[r:0:r][s:s:0]

Figure 4.3: A fundamen-

tal domain for S4 y RP 2,

where r ≥ s ≥ t > 0

Proof. Conjugacy in C([r : s : t]): Work in the setting of Lie algebras. Let

a ∼= R3 be the Cartan subalgebra and a∗ be the dual. So

a =

{


x1 0 0 0

0 x2 0 0

0 0 x3 0

0 0 0 x4


∣∣∣∣∣xi ∈ R, Σxi = 0

}
.

Let φ ∈ a∗ be a linear functional. Then kerφ is a 2-dimensional subalgebra

of a. Notice kerφ is unchanged by scaling φ. There is a bijection between

points of RP 2 ∼= P(a∗) and 2-dimensional subalgebras of a. We will find
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the subset of RP 2 which parametrizes conjugacy classes of 2-dimensional

subalgebras. Given [r : s : t] ∈ RP 2, recall the Lie algebra

c([r : s : t]) =

{


x1 0 0 0

0 x2 0 0

0 0 x3 0

0 0 0 −(x1 + x2 + x3)


∣∣∣∣∣rx1 + sx2 + tx3 = 0

}
.

By Proposition 4.0.44, C([r : s : t]) is convex when

rst(r + s+ t) > 0. (4.1)

We will describe a fundamental domain in RP 2 which parametrizes convex

subgroups C([r : s : t]). Conjugacy must permute the weight spaces, so

C([r : s : t]) is conjugate to C([r′ : s′ : t′]) only if there is some P ∈ GL4(R)

which is a signed permutation of the standard basis of R4, and C([r : s :

t]) = PC([r′ : s′ : t′])P−1.

Let {e1, e2, e3, e4} be the coordinate vectors in R4, then S4 acts on this set by

permutations. Thus S4 preserves the Cartan algebra, 〈e1 + e2 + e3 + e4〉⊥ =

a ∼= R3. Define fi ∈ R3 to be the orthogonal projection of ei onto a. So

f1 + f2 + f3 + f4 = 0. The fi are the vertices of a regular tetrahedron, T ,

centered at the origin. The action of S4 permutes {f1, f2, f3, f4}. So S4 acts

on a ∼= R3 as the group of symmetries of T . Therefore the subset of RP 2 for
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which C([r : s : t]) is convex is divided into 24 fundamental domains under

the action of S4.

Perform a change of coordinates:

α1 = r, α2 = s, α3 = t, α4 = −(r + s+ t)

then the convexity condition becomes

α1α2α3α4 < 0. (4.2)

Notice

α1 + α2 + α3 + α4 = 0, (4.3)

and (4.3) is preserved under the action of S4 on R4. In fact, this is the only

linear equation preserved by the action of S4.

Now S4 acts transitively on {e1, ..., e4}, so S4 acts transitively on the pro-

jection of {e1, ..., e4} in the plane (4.3). This divides the double cover of

P(a∗) ∼= RP 2 into 14 regions as follows. Let S2 ⊂ R3 be the unit sphere,

with the tiling of a cubeoctahedron shown in figure 4.4. There are 8 triangu-

lar regions where rst(r+ s+ t) > 0 and C([r : s : t]) is convex; and 6 square

regions where C([r : s : t]) is not convex. The great circles correspond to

r = 0, s = 0, t = 0, and r + s+ t = 0.

The group of symmetries of a cubeoctahedron is the same as the group of

symmetries of the cube: signed 4 × 4 permutation matrices. Projecting
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Figure 4.4: A cubeoctahedron.

down to RP 2, the group S4 acts transitively on the triangles in figure 4.2,

and a fundamental domain for the action is pictured in figure 4.3, where

r ≥ s ≥ t > 0. Therefore every cusp Lie group C([r : s : t]) is conjugate to

a cusp Lie group with r ≥ s ≥ t > 0.

Conjugacy in E(r, s) : If (r, s) 6= (0, 0), then E(r, s) has 3 eigenvectors, {e1, e2, e4},

so any conjugacy must permute them. The dimension of the generalized

eigenspace associated to e2 is 2, which is larger than the dimension of the

generalized eigenspaces associated to e1 and e4. So, any conjugacy must

fix e2, permute {e1, e4}, and sends e3 to any vector in the the generalized

eigenspace spanned by 〈e2, e3〉. Thus any conjugacy is by Q or QP where

Q =



α1 0 0 0

0 α2 α3 0

0 0 α4 0

0 0 0 α5


, and P =



0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0


,
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with α1, ..., α5 ∈ R. Since QE(r, s)Q−1 = E(α2

α4
r, α2

α4
s), and [r : s] =

[α2

α4
r, α2

α4
s] ∈ RP 1, conjugating by Q does not change the group, and any

conjugacy must be by P .

Notice E(0, 0) is conjugate to C([−2 : −1 : 0]), so assume (r, s) 6= (0, 0),

and [r : s] ∈ RP 1. Finally E(r, s) is conjugate to E(−r, s) by P . Since

(r − 2s)(r + 2s) > 0, every E(r, s) is conjugate to a group where r = 1 and

1/2 > s > 0.

Conjugacy in F (r): Given r, s ∈ R, the group

F (r, s) =



ea eab 1
2
ea(b2 + 2ar + 2bs) 0

0 ea eab 0

0 0 ea 0

0 0 0 e−3a


,

is the image of f1[r : s : −1] under the exponential map. First check F (r, s)

is conjugate to F (r) by conjugating by S.

S =



1 0 0 0

0 1 s 0

0 0 1 0

0 0 0 1


, R =



1√
r

1 1 0

0 1
√
r 0

0 0
√
r 0

0 0 0 1


.
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If r 6= 0, then F (r) is conjugate to F (1) by R. Recall from Proposition

4.0.44 that F (r) has a convex orbit if and only if r > 0. Thus there is only

one cusp in this family.
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Chapter 5

Geometric Transitions

A geometric transition is a continuous path of geometries which abruptly

changes type in the limit. An intuitive example is given in chapter 1 of a se-

quence of balls with increasing radius, which limits to a plane. This chapter

defines these ideas more precisely, and gives an overview of some results on geo-

metric transitions by Haettel [26], Iliev and Manivel [31], Cooper, Danciger and

Weinhard [16], and others.

To describe limits of sequences of groups, we will use the Chabauty topology, Chabauty

Topol-

ogy

which is defined on the set of all closed subgroups of a locally compact group (see

[22], [9], [3], [11]).
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Definition 5.0.46 (Chabauty Topology, see [22]). Let X be a topological space,

and let 2X denote the set of closed subsets of X. For a compact subset K, and a

nonempty open subset U of X, set

OK = {F ∈ 2X |F ∩K = ∅} and O′U = {F ∈ 2X |F ∩ U 6= ∅}.

The finite intersections OK1 ∩ · · · ∩ OKm ∩O′U1
∩ · · · ∩ O′Un , for m,n ≥ 0, form a

basis of the Chabauty topology on 2X .

Proposition 2 in [22], shows for any space X that 2X with the Chabauty

topology is compact. Convergence in 2X is given by the following.

Theorem 5.0.47. [[11] p.60] A sequence (Fj) of closed subsets of X converges to

a closed subset, F , if and only if the following 2 conditions hold:

• for all x ∈ F , there exists for all i ≥ 1 a point xi ∈ Fi such that xi → x

• for all strictly increasing sequences (ij) and for all sequences xij such that

xij ∈ Fij and xij → x ∈ X then x ∈ F .

If X = G is a locally compact group, and S(G) ⊂ 2G is the space of closed

subgroups, then S(G) is a closed subspace of 2G, and therefore compact (see [11]

p.61). A basis of neighborhoods for a closed subgroup C ∈ S(G) is given by

NK,U(C) = {D ∈ S(G)|D ∩K ⊂ CU and C ∩K ⊂ DU}.
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For example, if G = R, then S(R) is homeomorphic to a compact interval

[0,∞]. The points 0, λ and ∞ correspond respectively to the subgroups {0}, 1
λ
Z

and R. If G = Z, then S(Z) is homeomorphic to { 1
n
}n≥1 ∪ {0} ⊂ [0, 1], with 1

n

corresponding to nZ, and 0 to {0}, see [22].

Proposition 5.0.48 ([3] E.1.3). If X is a compact metric space, then the Haus-

dorff distance induces the Chabauty topology on 2X .

For more information on the Chabauty topology, see [13], [3], and [26].

Limits

of

Ge-

ome-

tries

Cooper, Danciger and Weinhard, [16], discuss limits of geometries embedded in

a larger ambient geometry, and classify the geometric limit of any geometry with

an isometry group that is a symmetric subgroup of PGLn(R). As an application,

they classify which Thurston geometries are limits of hyperbolic geometry inside

of projective geometry.

A geometry (H, Y ) is a subgeometry of (G,X), written (H, Y ) ⊂ (G,X), if H is

a closed subgroup of G, and Y is an open subset of X on which H acts transitively.

For example, spherical and Euclidean geometry are both subgeometries of real

projective geometry, and we study transitions between them in this context.
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Definition 5.0.49. [[16]] Let (H,Y ) and (L,Z) be subgeometries of the ambient

geometry (G,X). Then (L,Z) is a limit of (H,Y ), if there exists a sequence

cn ∈ G so that

• the sequence of conjugates cnHc
−1
n → L in the Chabauty topology,

• there exists z ∈ Z ⊂ X so that z ∈ cnY for n sufficiently large.

There are several other notions of limit discussed in [16], among them: con-

nected geometric limit, local geometric limit, expansive limit, Lie algebra limit,

and intrinsic limit. We will focus on the notion of geometric limit given in Defi-

nition 5.0.49. The main theorem of [16] shows limits of symmetric subgroups of

semisimple Lie groups are 1-parameter limits:

Theorem 5.0.50. Let H be a symmetric subgroup of a semisimple Lie group, G,

with finite center. Then any limit L′ of H in G is the limit under conjugacy by

a one parameter subgroup. More precisely, there exists X ∈ b such that the limit

L = limt→∞ exp(tX)H exp(−tX) is conjugate to L′. Furthermore,

L = ZH(X) nN+(X)

where ZH(X) is the centralizer of X in H, and N+(X) is the connected nilpotent

subgroup

N+(X) := {g ∈ G : lim
t→∞

exp(tX)−1g exp(tX) = 1}.
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In the case G = PGLn(R), Theorem 5.0.50 implies limits of symmetric sub-

groups have a block matrix form. Let H ≤ PGLn(R) be a symmetric subgroup,

and L be a limit of H. Then there is a basis of Rn with respect to which L has

the form: 

A1 0 0 . . . 0

∗ A2 0 . . . 0

∗ ∗ A3 . . . 0

...
...

...
. . .

...

∗ ∗ ∗ . . . Ak


,

where the blocks ∗ are arbitrary, and diag(A1, ..., Ak) ∈ H. The symmetric sub-

groups of PGLn(R) are P (GLp(R) ⊕ GLq(R)), PO(p, q) where p + q = n, or

P (GLm(C)), P (Sp(2m,R)) where n = 2m, and their limits are classified in [16].

They also show there are finitely many limits of any symmetric subgroup.

Properties

of

Ge-

o-

met-

ric

Tran-

si-

tions

Several important properties of geometric transitions are proven in [16], and

since they will be used later in chapters 6 and 8, we present them here. Cooper,

Danciger and Weinhard give several examples (3.2), of limits with unexpected

properties. For example, the geometric limit of a connected group might not be
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connected, and there is a one-dimensional group with a two-dimensional conjugacy

limit.

Recall a linear algebraic group is a subgroup of GLn(R) or GLn(C) that is

defined by polynomial equations.

Proposition 5.0.51 (3.1 in [16]). Let G be a linear algebraic group (defined over

C or R). Suppose that H is an algebraic subgroup and L a conjugacy limit of H.

Then L is algebraic and dimL = dimH.

Note that [16] proves Theorem 5.0.51 in the more general setting of algebraic

groups, but in this thesis, we shall only apply it to linear algebraic groups. Denote

by H0 the component of H containing the identity.

Proposition 5.0.52 (3.2 in [16]). Let G be an algebraic Lie group (defined over

C or R), let H be an algebraic subgroup and let L be any limit of H. Then

dimNG(H0) ≤ dimNG(L0) with equality if and only if L and H are conjugate.

This says the dimension of the normalizer must always increase in a limit.

Thus, the length of a chain of limits is finite. As a corollary, if H → L and

L→ H, then L is conjugate to H.

Theorem 5.0.53 (3.3 in [16]). Let G be an algebraic Lie group. The relation

of being a connected geometric limit induces a partial order on the connected,

algebraic, subgroups of G. Moreover the length of every chain is at most dimG.
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If L is a limit of H, then the eigenvalues of L are closely related to those of

H. In a limit, eigenvalues are either unchanged, or become equal. Let h denote

the Lie algebra, and Char(h) ⊂ R[x] be the set of characteristic polynomials

of all elements in h. It is easy to check Char(h) is closed and invariant under

conjugation.

Proposition 5.0.54 (3.4 in [16]). Suppose H is a closed algebraic subgroup of

GLn(R), and L is a conjugacy limit of H. Then Char(l) ⊂ Char(h), where h, l ⊂

gl(n) denote the Lie algebras of H and L respectively.

Haettel:

Com-

pact-

i-

fi-

ca-

tion

of

the

Space

of

Lim-

its

of

the

Car-

tan

Sub-

group

in

SLn(R),

for

n =

3, 4

Haettel, [26], studies the homogeneous space of Cartan subgroups of a Lie

group G. The Chabauty compactification is the closure of the set of all closed

subgroups of G endowed with the Chabauty topology. In the case when G has

rank 1, or when G = SLn(R) for n = 3, 4, the Chabauty compactification is the

same as the set of all closed connected abelian subgroups with dimension the real

rank of G. In the case of SL3(R), Haettel shows the Chabauty compactification

is a simply connected cell complex.

Let G be a real semisimple Lie group with a finite number of connected compo-

nents, finite center, and no compact factors. The space S(G) of closed subgroups
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of G is naturally equipped with the Chabauty topology, and is compact. Let

Cartan(G)
S
⊂ S(G) denote the closure of the space of Cartan subgroups of G.

This is the Chabauty compactification of Cartan(G). Let B ⊂ G denote the Borel

subgroup. Define A(G) to be the set of closed connected abelian subgroups of B

with dimension the real rank of G. Notice Cartan(G)
S
⊂ A(G) ⊂ S(G). Haettel

shows the following fact about the orbits of Gy G by conjugation:

Theorem 5.0.55. Suppose G is a semi direct product of real rank 1 groups or of

copies of SL3(R) and SL4(R). Then Cartan(G)
S

= A(G) and is the union of a

finite number of orbits of G.

For SL3(R) and SL4(R), Haettel classifies these orbits. In the case n ≥

7, Haettel uses a dimension count to show the inclusion Cartan(SLn(R))
S
⊂

A(SLn(R)) is proper. Since this will be of importance in chapter 8, we present

Haettel’s proof here.

Lemma 5.0.56 (3.4 in [26]). When m ≥ 7, there is an abelian subalgebra of

dimension m − 1 contained in the Borel subalgebra, which is not the limit of a

Cartan subalgebra.

Proof. Haettel adapts Iliev and Manivel’s proof in [31] to the real setting. Let

V ⊂ Rm be a vector subspace of dimension p = bm
2
c. The set of endomorphisms

XV = {f ∈ End(Rm) : Im(f) ⊂ V ⊂ Ker(f)}
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is a vector subspace of dimension p(m − p), and it is an abelian Lie subalgebra

of slm(R) contained in the Borel subalgebra. Every (m − 1)-dimensional vector

subspace of XV is an (m− 1)-dimensional abelian subalgebra of slm(R) contained

in a Borel subalgebra, so it is an element of A(slm(R)). Any generic (m − 1)-

dimensional subspace of XV uniquely determines V . The set of m−1 dimensional

vector subspace of XV , as V runs over all p dimensional subspaces of Rm, is a

subvariety of A(slm(R)) of dimension

dim Grass(m−1, p(m−p))+dim Grass(p,m) = (m−1)(p(m−p)−m+1)+p(m−p),

which is strictly larger than m(m − 1) = dim Cartan(slm(R)) as soon as m ≥ 7.

By [8], 2.8.13, Cartan(slm(R)) is a proper subset of A(slm(R)).

Thus the inclusion Cartan(SLn(R))
S
⊂ A(SLn(R)) is proper when n ≥ 7, and

Cartan(SLn(R))
S

= A(SLn(R)) when n = 3, 4. It is a natural question to ask

what happens for n = 5, 6.

Following notation in section 2, let X be the symmetric space of non-compact

type associated to the Lie group, G, and let ∂∞X be the sphere at infinity defined

in section 2. In the case G has rank 1, Haettel has completely determined the

topology of Cartan(G)
S
:
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Theorem 5.0.57. Suppose G has real rank 1. Denote by ∂∞X
(2) the space of

pairs of points that are identified in ∂∞X. Then Cartan(G)
S

is naturally G-

homeomorphic to the blow up of ∂∞X
(2) along the diagonal.

When G = SL3(R), Haettel shows

Theorem 5.0.58. The space Cartan(G)
S

is simply connected.

Recall the definition of convergence in the Chabauty topology 5.0.47 on the

level of groups. Haettel shows convergence in the Lie algebra is equivalent to

convergence in the Lie group:

Proposition 5.0.59. The map

η : Cartan(G)
S
→ Cartan(g)

S
by H 7→ Lie(H)

is a G-equivariant homeomorphism. Here Cartan(g)
S

is a subspace of the Grass-

mannian, Grass(r, g), and G acts on Cartan(g) and on Cartan(G) with the adjoint

action.

Let A be a fixed Cartan subgroup of G, and denote by NG(A) the normalizer of

A in G. Recall Cartan(G) is homeomorphic to the homogenous space G/NG(A).

Proposition 5.0.60. The maps

Φ : G/NG(A)→ S(G) and φ : G/NG(A)→ Grass(r, g)
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gNG(A) 7→ gAg−1 gNG(A) 7→ Ad(g(a))

are G-equivariant homeomorphisms.

Haettel gives several more properties of the Chabauty compactification cited

from [31] and [39]. Denote by Cartan(g)
Zar

the Zariski closure of Cartan(g) in

Grassr(g).

Theorem 5.0.61. Let G be an algebraic real semi-simple Lie group with a finite

number of connected components, finite center, and no compact factors.

1. Every Lie subalgebra of g belonging to Cartan(g)
Zar

is the Lie algebra of an

algebraic subgroup of G.

2. If the G orbit of a Lie subalgebra l ⊂ g belonging to Cartan(g)
Zar

is closed,

then l contains only nilpotent operators.

3. The variety Cartan(sl3(R))
Zar

is smooth.

Haettel goes on to classify 2-dimensional subalgebras of sl3(R), and shows

there are 8 2-dimensional subalgebras up to conjugacy in the Borel group. He

shows each is a limit of the Cartan subgroup using the convergence of various

sequences under the adjoint action. He does the same for sl4(R).

Iliev

and

Manivel:

Va-

ri-

eties

of

Re-

duc-

tions
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Iliev and Manivel, [31], study varieties of reductions associated to the variety

of rank 1 matrices in gln. Throughout, they study varieties over a normed algebra

R,C,H, or O (reals, complexes, quaternions, octonions). Denote by R̂ed(n)0 the

space of Cartan subalgebras of gln. Let a be a fixed Cartan subalgebra of sln.

There is an isomorphism R̂ed(n)0 ∼= PGLn/N(a). Then R̂ed(n) is the Zariski

closure of R̂ed(n)0 in the Grassmannian, Grass(n− 1, sln). Iliev and Manivel call

R̂ed(n) the variety of reductions. It is easy to see that R̂ed(n) is isomorphic to

Haettel’s Cartan(G)
S
. Notice R̂ed(n) is a subvariety of the space Âb(n) of abelian

(n− 1)-dimensional subalgebras of sln.

Iliev and Manivel show Âb(n) = R̂ed(n) for n = 3, 4, and that in general the

variety R̂ed(n) is an irreducible component of Âb(n). They show Red(n) 6= Ab(n)

for large n (when n ≥ 7) as in Lemma 5.0.56. Some questions in [31] are:

Question 5.0.62. 1. Does R̂ed(n) = Âb(n) for n = 5, 6?

2. What properties characterize points of R̂ed(n) in Âb(n)?

They show the action of PGLn on Âb(n) has finitely many orbits only for

n ≤ 5. In particular, this implies the action of PGLn on R̂ed(n) has finitely many

orbits if n ≤ 5. They also ask

Question 5.0.63. Does R̂ed(n) contain infinitely many orbits when n ≥ 6?
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Iliev and Manivel describe several orbits of R̂ed(n). For example, if an algebra

a ∈ Âb(n) can be described as the centralizer of two of its elements, then a ∈

R̂ed(n). They go on to prove properties of the variety R̂ed(n): for instance,

R̂ed(n) contains a smooth codimension one orbit, but R̂ed(n) is always singular

for n ≥ 4. For any n, the variety R̂ed(n) is an irreducible component of Âb(n).

The last section classifies all of the orbits in R̂ed(4) over C, and shows there

are precisely 14 orbits. They give a graph showing the degeneracies of the orbits,

which corresponds to a digraph of conjugacy limits of groups. Several of Iliev and

Manivel’s questions are answered in [43].

Regenerations,

De-

gen-

er-

a-

tions,

De-

for-

ma-

tions,

and

Con-

trac-

tions

Geometric transitions and regenerations have also been studied extensively

by Porti, Danciger, Kerckhoff, Hodgson and others in [20], [21], [30], [32], [50],

[51], [17], [15], [29], [1], [10], [32]. The idea of a limit is related to degeneration,

regeneration, deformation, and contraction.

Geometric transitions appear in physics as contractions of a Lie algebra. A

Lie algebra is determined by the values of [·, ·] : g× g→ g on a basis, and hence

by structure constants. We may continuously change the structure constants as

long as [·, ·] still determines a Lie algebra. Changing the basis changes theses
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constants. A limit under such a change of basis given by the adjoint action is a

contraction.

This is related to theory of Inönü-Wigner contractions in physics (see [10],

[32]). Note this construction is independent of embedding g in a larger Lie alge-

bra. Physicists use deformations of Lie algebras in several ways, for example the

classical limit in relativity where the speed of light, c → ∞; and in transitioning

from quantum mechanics to Newtonian mechanics, when ~→ 0.

The simplest example of regeneration and degeneration is studied in [29] and

[50]: a hyperbolic structure which may be collapsed to a point, and then rescaled

to a Euclidean metric. A spherical structure may be collapsed to a point as

well, and rescaled to a Euclidean one, so this provides a continuous path from a

hyperbolic structure to a spherical structure. Figure 5.1 shows spherical structures

on a sphere with three cone points (of equal angle) which collapse down to a point

as the cone angles increase to 2π
3

. After rescaling the metric, the structures limit

to a Euclidean cone sphere and then transition to hyperbolic cone structures.

The process of rescaling to the structure is called regeneration, and the col-

lapsing process is called degeneration.

Porti and collaborators have studied regenerating hyperbolic structures in [30],

[50], [51]. They study a sequence of hyperbolic cone structures on a manifold,

parametrized by the cone angle, which collapse to a fibration. They then rescale
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Figure 5.1: A transition between spherical and hyperbolic structures.

the metric to a sol structure [30]. In [50], [51] Porti studies limits of hyperbolic

structures on orbifolds which regenerate (respectively) to nil and Euclidean struc-

tures. These results are based on Hodgson’s work in his thesis, [29].

Some of these ideas are used in [17] in the discussion of cone manifolds. De-

formations of hyperbolic cone manifolds lead to new geometric structures. Hyper-

bolic cone manifolds are classified in [17].

Deformations of hyperbolic structures inside projective structures are studied

in [15]. In the case of some smoothness conditions, Cooper, Long, and Thistleth-

waite show that such deformations of real hyperbolic structures exist if and only if

the deformation may be considered as one of a complex hyperbolic structure. The

image of such deformations inside Isom(CHn) ∼= PU(n, 1) is discrete and faithful.

Manifolds which deform projectively are flexible. They conjecture that all closed

hyperbolic 3-manifolds have finite sheeted covers which are flexible.
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Danciger [20] constructs a geometric transition from 3-dimensional hyperbolic

geometry to Anti de Sitter (AdS) geometry, and produced a new intermediate

geometry, called half pipe geometry, known as X((1, 2)(1)) in the classification of

[16], which arises in the following way. A limit of conjugates of 3 -dimensional

hyperbolic geometry may collapse onto a hyperbolic plane, P , but H3 may be

rescaled to prevent collapse. This rescaling preserves P but stretches transverse

to P . As the hyperbolic structures degenerate, the collapsing direction is rescaled

so that the structures converge to half-pipe geometry. Interpreting the hyperbolic

structures as projective structures, this rescaling is a projective change of coordi-

nates. If Σ is a knot in a closed manifold N , then [20] shows how to construct a

path of hyperbolic structures on N − Σ which degenerate to AdS structures, for

some Σ ⊂ N .

Danciger shows in [21] how to construct the aforementioned transverse hy-

perbolic foliations by gluing ideal tetrahedra (as prescribed by Thurston’s gluing

equations) in which some of the tetrahedra are collapsed. He describes when such

transverse hyperbolic foliations can be regenerated to give hyperbolic or AdS

structures. Gluing constructions of ideal tetrahedra and triangulations give new

examples of geometric transitions as paths of projective structures, [21].
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Chapter 6

Conjugacy Limits of the Cartan

Subgroup in SL3(R)

This chapter classifies conjugacy limits of the positive diagonal Cartan sub-

group C ≤ SL3(R) using hyperreal techniques. Let G be a Lie group and H

a closed subgroup. Recall Definition 5.0.49: a sequence of subgroups Hn of G

converges to H if the following two conditions are satisfied:

(a) For every h ∈ H there is a sequence hn ∈ Hn converging to h

(b) For every sequence hn ∈ Hn, if there is a subsequence which converges to h,

then h ∈ H.

This definition is logically equivalent to convergence in the Chabauty topology,

5.0.47. A subgroup L ≤ G is a conjugacy limit of a subgroup H ≤ G if there is
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a sequence of elements Pn ∈ G such that PnHP
−1
n converges to L. The identity

component of a conjugate of C is the stabilizer of the vertices of a triangle in RP 2.

We will show in Theorem 6.0.65 that a conjugacy limit of C is characterized in

terms of the stabilizer of a configuration, which is a set whose elements are points

and lines in RP 2.

Let Q = {C,F,N1, N2, N3} be the set consisting of the following 5 subgroups

of SL3(R) with a, b > 0,

C F N1 N2 N3
a 0 0

0 b 0

0 0 1
ab

 ,


a t 0

0 a 0

0 0 1
a2

 ,


1 s t

0 1 s

0 0 1

 ,


1 s t

0 1 0

0 0 1

 ,


1 0 t

0 1 s

0 0 1

 .

Let Γ be the directed graph shown below whose vertices are the elements of Q.

C F N1

N2

N3

Theorem 6.0.64. 1. Every subgroup of SL3(R) isomorphic to R2 is conjugate

to exactly one element of Q.

2. If G1 6= G2 ∈ Q then G2 is a conjugacy limit of G1 if and only if there is a

directed path in Γ from G1 to G2.

96



3. If G is a conjugacy limit of C, then G is a 1-parameter limit of C. Moreover

every directed path in Γ is a 1-parameter path of conjugacies.

A configuration is a finite set T each element of which is a point or projective

line in RP 2. Define T Q = {TC, TF, TN1, TN2, TN3} to be the set of 5 elements

which are the configurations shown below.

TC

TF
TN1

TN2

TN3

[e1] [e2]

[e3]
[e1] [e2]

〈[e1],[e3]〉
[e1]

[e1]

[e1+e2]

[e2]

[e1]

Figure 6.1: The 5 configurations in T Q

There is a partial order on T Q given by inclusion.

Theorem 6.0.65. There is a bijection θ : Q −→ T Q defined by θ(G) = T if and

only if

1. G preserves each element of T

2. T is maximal (in the partial order) subject to this condition

The hyperreals ∗R are an ordered field that contains R. (See section 1.) A non-

standard triangle is a subset T ⊂ ∗RP 2 consisting of three points p, q, x ∈ ∗RP 2
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in general position, and the three lines between p, q and x. Let G = G (p, q, x) ≤

SL3(∗R) be the conjugate of the positive diagonal subgroup which fixes p, q, and

x . The shadow of G is the subgroup sh(G ) ≤ SL3(R) consisting of those matrices

whose entries differ by an infinitesimal from some matrix in G .

The next theorem determines exactly when a sequence Pn ∈ SL3(R) has the

property PnCP
−1
n converges, and if it does, the conjugacy class of the limit under

any sequence of matrices. See section 6 for the definition of α.

Theorem 6.0.66. Let T be a nonstandard triangle. Then sh(G (p, q, x)) is con-

jugate to a group in Q, determined by the following table, where α is a particular

hyperreal that depends on T .

# infinitesimal angles # infinitesimal sides α nonstandard triangle

0 0 appreciable C

1 1 finite F

2 3 appreciable N1

∗ 3 infinitesimal N2

2 ∗ infinite N3

This result is used to determine conjugacy limits of the positive diagonal group

C ≤ SL3(R) as follows. The columns of a matrix in SL3(R) determine a triangle in

RP 2. Given a sequence of conjugating matrices Pn we choose a subsequence so the
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corresponding triangles Pn(TC) converge to a nonstandard triangle T ⊂ ∗RP 2.

Theorem 6.0.66 determines the conjugacy class of the limit PnCP
−1
n .

Most of the work in this chapter follows Haettel, [26]. The cells correspond to

the strata in the digraph Γ. The dimension of a cell decreases as the dimension of

the normalizer of a group increases. To find limits of Lie algebras, Haettel works

with sequences under the adjoint action. This chapter follows his work, but from

the perspective of Lie groups, and introduces the geometric notions of charac-

teristic degenerate triangles, nonstandard triangles, and a maximal configuration

preserved by a group.

Sections 6 and 6 prove Theorems 6.0.65 and 6.0.64, respectively. The second

part of the chapter is dedicated to the hyperreal Theorem 6.0.66. We first ex-

plain the lower dimensional case, SL2(R), and then build the theory of projective

geometry over the hyperreals, to prove Theorem 6.0.66 in Proposition 6.0.84.

Degenerate

Tri-

an-

gle

Con-

fig-

u-

ra-

tions:

Proof

of

The-

o-

rem

6.0.65

This section proves Theorem 6.0.65. We derive the 5 configurations in T Q,

and explain how each configuration in T Q determines a conjugacy limit group in

Q.

Recall a configuration is a set with elements which are points and lines in

RP 2. A configuration, T , is a limit of a configuration, S, if there is a sequence of
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projective transformations, Pn, such that for every x ∈ T , and n sufficiently large,

then x ∈ PnS. (See [16] Definition 2.6). Write PnS → T . A projective triangle

consists of three points and three line segments connected in the usual way. A

triangle configuration in RP 2 is the configuration of three lines in general position,

and their three intersection points, obtained by extending the lines of a projective

triangle in the natural way. A degenerate triangle configuration is a configuration

that is a limit of a triangle configuration. It has at most three points and three

lines. Two degenerate triangle configurations are in the same equivalence class if

they have the same number of points and lines.

TC

TN1

TF

TN'2 TN2

TN'3
TN3

Figure 6.2: Degenerate triangle configurations

Since it is not possible to make a degenerate triangle configuration with 3

lines and 2 points, or 2 lines and 3 points, figure 6.2 shows a representative from

every equivalence class of degenerate triangle configurations. Paths of projective
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transformations from TC to the degenerate triangle configurations in T Q are

given in Proposition 6.0.68.

Proposition 6.0.67. Let C be the positive diagonal Cartan subgroup of SL3(R),

and S ⊂ RP 2, be the projective triangle configuration preserved by C. Let Pt ∈

PSL3(R) be a sequence of projective transformations, such that S converges to

S∞ = lim
t→∞

PtS, a degenerate triangle configuration, and G has conjugacy limit

G∞ = lim
t→∞

PtGP
−1
t . Then G∞ preserves S∞.

Proof. Let Gt := PtCP
−1
t , so that Gt preserves St := PtS for all t. Suppose for

contradiction that G∞ does not preserve S∞. Then there is some x ∈ S∞, and

g ∈ G∞ such that gx 6∈ S∞, or d(gx, S∞) > 0. Take a sequence gt ∈ Gt such that

lim
t→∞

gt = g. Pick a point x0 ∈ S so that lim
t→∞

Ptx0 = x, so Ptx0 ∈ St. But then

lim
t→∞

d(gt(Ptx0), St) = d(gx, S∞) > 0, contrary to d(gt(Ptx0), St) = 0.

The set of degenerate triangle configurations is partially ordered by inclusion.

Given a group, G ≤ SL3(R), a degenerate triangle configuration, T , is character-

istic for G, if G maps each point or line of T to itself, and T is maximal subject

to the partial order. There are degenerate triangle configurations which are not

characteristic for any group in Q. They are shown in figure 6.2: TN ′2 and TN ′3.

Proof. of Theorem 6.0.65: The notation has been chosen so that for every G ∈ Q,

it is easy to check θ(G) = TG ∈ T Q is a characteristic degenerate triangle
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configuration for G. That is, G preserves every point or line of θ(G), and θ(G) is

maximal in the partial order.

Given a group G ≤ SL3(R), a characteristic triangle class, [T ] for G, is an

equivalence class of degenerate triangle configurations such that each S ∈ [T ] is

characteristic for a group conjugate to G. Figure 6.1 shows the set T Q, which

consists of one representative of each characteristic triangle class. By Theorem

6.0.64, Q contains one representative of each conjugacy class of conjugacy limit

group of C. Therefore, θ induces a bijection from conjugacy classes of conjugacy

limit groups of C to characteristic triangle classes. This map is well defined: If

G1 and G2 are conjugacy limits of C, and T1, T2 are their respective characteristic

degenerate triangle configurations, and P ∈ GL3(R), then PG1P
−1 = G2 if and

only if PT1 = T2.

Given a group G ≤ SL3(R), the maximal configuration preserved by G is the

set whose elements are the points fixed by G and the lines preserved by G. It

might be infinite. For example, the maximal configuration for N2 consists of every

line through a point, and the maximal configuration for N3 is every point on a

line.

In configuration TN3, three points on the line are fixed, and any group which

acts on RP 2 and fixes three points on a projective line must fix every point on

the line. In configuration TN2, three lines in the link of the vertex are preserved,
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and similarly, every line in the link is preserved. In this way, each configuration

in figure 6.1 determines a maximal configuration. These ideas will be investigated

further with the hyperreal viewpoint.

The

Di-

graph
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Limit
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rem

6.0.64

In this section we prove Theorem 6.0.64. Part 1 follows easily from work of

Haettel [26], or the classification over C of Suprenko and Tyshkevitch, [56], p.134.

Next we prove part 3: every element of Q is a conjugacy limit of C. If each

element of the sequence of conjugating matrices lies in the same one parameter

subgroup of SLn(R), then G is a conjugacy limit under a 1-parameter path of

conjugacies.

Proposition 6.0.68. Each conjugacy limit group is a limit under a 1-parameter

path of conjugacies.

Proof. Each conjugacy limit group is a limit under the 1 parameter path of con-

jugacies (as n→∞):

C → F C → N1 C → N2 C → N3
1 n 0

0 1 0

0 0 1

 ,


1 n n2

2

0 1 n

0 0 1

 ,


1 n n

0 1 0

0 0 1

 ,


1 0 n

0 1 n

0 0 1

 .
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To finish the proof of Theorem 6.0.64. We must show:

(1) there is a 1-parameter path of conjugacies for every arrow in the digraph, and

(2) no other arrows are possible.

The path C → F is given in Proposition 6.0.68. For the rest of the arrows, use

the paths:

F → N1 N1 → N2 N1 → N3
1 n n2

2

0 1 n

0 0 1




1 0 0

0 1 0

0 0 1
n




1
n

0 0

0 1 0

0 0 1

 .

as n→∞. This shows every directed path in Γ is realized by a 1-parameter limit.

To show these are all possible arrows, use Proposition 5.0.52.

As a corollary, if we have both conjugacy limits A → B and B → A, then

A and B are conjugate. Computing the dimension of the normalizer shows there

are no arrows going backwards in the digraph: dimNG(C) = 2, dimNG(F ) =

3, dimNG(N1) = 4, and dimNG(N2) = dimNG(N3) = 5, where G = SL3(R).

It remains to show neither N2 or N3 is a limit of the other. Since dimNG(N2) =

dimNG(N3), if N2 → N3, then Proposition 5.0.52 would imply N2 and N3 are

conjugate, which is false. Therefore, neither N2 or N3 can limit to the other. This

finishes the proof of Theorem 6.0.64.

104



Remark 6.0.69. Notice N3 fixes every point on a line, and N2 preserves every

line through a fixed point. The maximal configurations for N2 and N3 are dual.

Moreover, duality induces an automorphism of the digraph of conjugacy limits.

Suppose H,L ≤ SLn(R) are not conjugate, and H → L. The limit from H to

L is decompressed if there is an orbit closure of H which is a union of infinitely

many orbit closures of L. The conjugacy limit N1 → N2 is decompressed, since

every line through the fixed point [e1] is preserved under the action of N2. This is

the maximal configuration for N2: a single point is fixed and every line through the

point is preserved. The conjugacy limit N1 → N3 is decompressed, since every

point on the line 〈e1, e2〉 is fixed under the action of N3. This is the maximal

configuration for N3: a line with every point on the line fixed.

We concluded this section with a final property satisfied by real conjugacy

limits, which we will use in Corollary 6.0.86.

Lemma 6.0.70. Suppose H is a subgroup of SL3(R), and Pn is a sequence of

conjugating matrices such that PnHP
−1
n has conjugacy limit L ≤ SL3(R). There

is a sequence of upper triangular matrices, P ′n such that P ′nHP
′
n
−1 converges to a

conjugate of L.

Proof. Recall the Iwasawa decomposition of a matrix, P = KNA, where K is

orthogonal, N is unipotent, and A is diagonal. Writing each Pn in this way,
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PnHP
−1
n = Kn(NnAnHA

−1
n N−1

n )K−1
n . The orthogonal group is compact, so ev-

ery sequence has a convergent subsequence, and in particular, every sequence

KnH
′K−1

n converges to a conjugate of H ′. Thus we may assume Pn = NnAn, so

Pn is upper triangular.

PGLn(∗R)

and

∗RP n

The second part of this chapter is devoted to proving Theorem 6.0.66. In this

section we prove some properties about the action of the group PGLn(∗R) on

∗RP n. Section 1 provided an introduction to ∗R.

Definition 6.0.71. 1. A projective basis for RP n (or ∗RP n) consists of n+ 2

equivalence classes of vectors, such that any n + 1 vectors form a basis for

the underlying vector space. The word basis means either vector space basis

or projective basis, depending on the context.

2. The usual basis for ∗Rn+1 (or Rn+1) is {e0, e1, ..., en}. The usual basis for

∗RP n (or RP n) is {[e0], ..., [en], [e0 + e1 + · · ·+ en]}.

3. The shadow map is sh : ∗RP n → RP n where sh([v]) = [sh( v
||v||)], and we

take the shadows of the coordinates. The shadow of a basis B ⊂ ∗RP n is

sh(B) = {[sh(v)]|v ∈ B} ⊂ ∗RP n.
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4. A hyperreal projective basis B is appreciable if sh(B) is a projective basis

for RP n. A hyperreal projective transformation is appreciable if the image

of some appreciable basis is an appreciable basis.

Notice the shadow of a hyperreal basis may not be a real basis, since shadows

of basis elements could be the same! A hyperreal transformation [A] ∈ PGLn(∗R)

is called finite if and only if there exists [B] ∈ PGLn(R) and λ ∈ ∗R such that

B − λA is infinitesimal. Every finite hyperreal projective transformation differs

from a real projective transformation infinitesimally.

Definition 6.0.72. Given G ≤ SLn(∗R), the finite part, Fin(G ), is the subset of

all elements that have finite entries. The subset of infinitesimal elements, I , is

the set of matrices that are the identity matrix plus a matrix with infinitesimal

entries.

Lemma 6.0.73. Fin(G ) and I are subgroups of G .

Proof. Sums and products of finite hyperreals are finite, so Fin(G ) is closed under

multiplication. Let A ∈ Fin(G ) ≤ SLn(∗R). Since sums and products of finite

hyperreal numbers are finite, AdjA is finite. Since detA = 1, then A−1 = AdjA
detA

∈

Fin(G ). Thus Fin(G ) is a group. Similarly, I is a group.
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Definition 6.0.74. Given G ≤ SLn(∗R) and A ∈ Fin(G ), the shadow, sh(A ), of

A , has entries that are the shadows of entries of A . The standard part or shadow

of G is sh(G ) := {sh(A )|A ∈ Fin(G )}.

Lemma 6.0.75. sh(Fin(G )) ∼= Fin(G )/(I ∩ Fin(G )).

Proof. Note sh : Fin(G ) → sh(Fin(G )) is a homomorphism since the map is

defined by taking the shadow of each entry, and sh : F → R is a ring homomor-

phism. The kernel is I ∩ Fin(G ). The map sh is surjective since sh(r) = r for

any r ∈ R ⊂ F (see section 1). Apply the first isomorphism theorem.

Instead of writing this discussion in terms of matrices, we could have considered

nonstandard projective transformations in the context of appreciable (vector space

or projective) bases. It is easy to show a hyperreal projective transformation is

appreciable if and only if the image of every appreciable basis is an appreciable

basis.

A nonstandard triangle configuration consists of three lines in general position

in ∗RP 2, which intersect in three distinct points. Let P be a matrix of hyperreals,

and T be the nonstandard triangle configuration which is the image of a projective

triangle configuration under P. Let C ≤ SL3(∗R) be the group of positive

diagonal (hyperreal) matrices. A conjugate of C by P is uniquely determined as

the stabilizer of the vertices of T .
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Theorem 6.0.76. Suppose Pn ∈ GL3(R) and PnCP
−1
n converges to L. Define

P := [Pn] ∈ GL3(∗R), and G := PC P−1. Then

1. sh(Fin(G )) = L

2. G is the conjugate of C that preserves the points P([e1], [e2], [e3]) ⊂ ∗RP 2.

3. the nonstandard triangle configuration T with vertices P([e1], [e2], [e3]) has

shadow T = sh(T ) a degenerate triangle, and L preserves T .

Proof. (1) Conjugating C by P, gives (∗R)2 ∼= G ≤ SL3(∗R). For dimension

reasons, (see Theorem 5.0.53), sh(Fin(G )) ∼= R2. Every subgroup of SL3(R)

isomorphic to R2 is a conjugacy limit of C, so sh(Fin(G )) is a conjugacy limit of

C. By assumption, [Pn] = P, therefore sh(Fin(G )) = L.

(2) Since C preserves ([e1], [e2], [e3]), then G = PC P−1 preserves P([e1], [e2], [e3]).

(3) This follows from Proposition 6.0.67.

Conjugacy

Lim-

its

of

the

Di-
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sub-

group

in

SL2(R)

In this section, we show how to view a limit of the positive diagonal group in

SL2(R) as the shadow of the finite part of a conjugate of the positive diagonal

group in SL2(∗R).

There are three conjugacy classes of 1-parameter subgroups in SL2(R) : ellip-

tic, parabolic, and hyperbolic (see [12]). Elliptic subgroups are isomorphic to S1,
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so any subgroup isomorphic to R must be hyperbolic in which case it is conjugate

to {
( a 0

0 1
a

)
|a > 0}, or parabolic in which case it is conjugate to {

(
1 t
0 1

)
|t ∈ R}.

Theorem 6.0.77. The Cartan subgroup {
( a 0

0 1
a

)
|a > 0} ≤ SL2(R), has two con-

jugacy limits: the Cartan subgroup and the parabolic group {
(

1 t
0 1

)
|t ∈ R}. The

Cartan subgroup preserves the maximal configuration consisting of two fixed points

on a projective line, and the parabolic group preserves the maximal configuration

consisting of a projective line with one fixed point.

Proof. Conjugate by the sequence of projective transformations as n→∞:

(
1 n
0 1

)( a 0
0 1
a

)(
1 n
0 1

)−1
=
( a n(a− 1

a
)

0 1
a

)
→
(

1 t
0 1

)
.

Since we want the conjugacy limit to be finite, i.e., we want n(a− 1
a
) to converge

to some t ∈ R, we need a→ 1. Since a ∈ R is arbitrary, the limit is a group where

t is any real number.

The diagonal Cartan subgroup preserves the maximal configuration of 2 fixed

points an appreciable distance apart on a projective line. Applying this sequence

of projective transformations identifies the points in the limit, so that the limit

configuration consists of one point on a projective line, which is the maximal

configuration preserved by the parabolic group.

Conjugate the Cartan subgroup (given in the usual basis {[1 : 0], [0 : 1]}), by

a hyperreal transformation to change to the basis {[1 : 0], [1 : δ]}. Define
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G (δ) := {
(

1 1
0 δ

)( a 0
0 1
a

)(
1 1
0 δ

)−1
=
( a 1

δ
(a− 1

a
)

0 1
a

)
}.

Set G(δ) = sh(Fin(G (δ))) ≤ SL2(R).

Corollary 6.0.78. If δ is appreciable, then G(δ) is hyperbolic. If δ is infinitesimal,

then G(δ) is parabolic.

Proof. If δ is infinitesimal, the finite part of G (δ) has a is infinitesimally close to

1, so that the upper right entry is finite. Then sh(a) = 1, so G(δ) is conjugate to

the parabolic group, and G(δ) acts on RP 1 with one fixed point.

If δ is appreciable, then G(δ) is conjugate to a group of hyperbolic projective

transformation by a real matrix, and G(δ) acts on RP 1 with two fixed points.

So far, we have shown every conjugacy limit group of C is conjugate to an Non-

Standard
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6.0.66

element of Q, and determined by a characteristic triangle class in T Q (Theorem

6.0.65). In this section, we establish the bijection between conjugacy limit groups

and equivalence classes of nonstandard triangles, given as a partition in the table

in Theorem 6.0.66. Before proving the table gives a partition, we define α.

A nonstandard triangle may be built from a nonstandard 1-simplex as follows.

Consider ∗RP 2 with the positive scalar curvature metric inherited from the sphere.

This metric is not preserved by projective transformations. Three non collinear
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points, p, q, x ∈ ∗RP 2, determine a nonstandard triangle, ∆(p, q, x). Assume

p, q, x satisfy the following labeling conditions. The length of the shortest altitude

is measured from the point x. Let H ∼= ∗RP 1 be the line containing p and q, and

y ∈ H be the foot of the altitude measured from x. Assume d(y, p) ≤ d(y, q),

and without loss of generality, assume p, q, x, y have coordinates p = [1 : 0], q =

[1 : δ], y = [1 : ε] ∈ H and x = [1 : ε : η]. The shortest altitude is measured

from x, so 0 ≤ |η| ≤ |δ| and 0 ≤ |ε| ≤ |δ|. In the remainder of this section,

we denote by G := G (δ) ≤ SL2(∗R) the group preserving p and q, and by Ĝ :=

Ĝ (p, q, x) ≤ SL3(∗R) the group preserving p, q and x. Set G = sh(Fin(G )) and

Ĝ = sh(Fin(Ĝ ))

[0:1]

p=[1:0]

q=[1:Ꮄ]

x=[1:ε:η]y=[1:ε]
Galη(x)

ℋ

Figure 6.3: Adding a

point to a 1-simplex

Lemma 6.0.79. The table in Theorem 6.0.66 is a partition on the set of non-

standard triangles, where α = εδ
η

.

Proof. We show that every nonstandard triangle is in exactly one row of the table.

Consider the first two columns of the table: the number of infinitesimal sides and

112



angles. A nonstandard triangle has 0, 1 or 2 infinitesimal angles, and 0, 1 or 3

infinitesimal sides. If a nonstandard triangle has exactly one infinitesimal side

(angle), then it must have at least one infinitesimal angle (side). It is straightfor-

ward to see all 7 possibilities for a nonstandard triangle with 0,1 or 2 infinitesimal

angles, and 0,1, or 3 infinitesimal sides are listed in the table. Since |δ| ≥ |η|, if

the number of infinitesimal angles and sides is not 2 and 3 respectively, it is easy

to check the order of εδ
η

is determined by the number of infinitesimal sides and

angles, these details appear as part of Proposition 6.0.84.

It remains to show that there is no overlap in the rows. Examining the first two

columns, we see the only repeat is a nonstandard triangle with 3 infinitesimal sides

and 2 infinitesimal angles, which appears three times. The row for a nonstandard

triangle with 2 infinitesimal angles and three infinitesimal sides is determined by

whether εδ
η

is appreciable, infinitesimal, or infinite.

Recall a projective transformation is appreciable if it maps an appreciable basis

to an appreciable basis. Let X ⊂ ∗RP n be a subspace, and extend the usual basis

of X to the usual basis of ∗RP n. A group F acts finitely on X , if f |X is a finite

transformation, for all f ∈ F .

Let [v] ∈ ∗RP n. The link of [v] is L (v) ∼= ∗RP n−1, the set of all lines through

[v]. Given a projective basis {[e0], [e1], ..., [en+1]} for ∗RP n with [e0] = [v], a

projective basis for L (v) ∼= ∗RP n−1 consists of lines {〈[v], [ei]〉|1 ≤ i ≤ n + 1}.
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Recall a basis, B, for L (v) is appreciable if sh(B) is a basis for L(v) := sh(L (v)).

In ∗RP 2 a basis for L (v) is appreciable if and only if the angles between the

projective lines in the basis for L (v) are appreciable.

Let G = G (δ) ≤ SL2(∗R) act on H , and let x ∈ ∗RP 2 − H as in figure

6.3. The action of G on L (x) is defined as follows. In projective space, every

pair of lines intersect in a point, so every line in L (x) intersects H in a point,

z. Thus L (x) = {〈x, z〉 : z ∈ H }, and the action of Fin(G ) on L (x) is given

as 〈x, z〉 7→ 〈x, g(z)〉, for g ∈ G . We will show the conjugacy limit group that

preserves the shadow of the nonstandard triangle is controlled by the action on

the link of the new point, L (x).

Recall Galη(x) = {r ∈ ∗R : x− r ∈ η · R} from Definition 1.0.11.

Lemma 6.0.80. Fin(G ) preserves Galη(y) if and only if Fin(G ) acts finitely on

L (x).

Proof. Let {v1 = [1 : ε + η], v2 = [1 : ε − η], v3 = [1 : ε]} be a basis for H , and

set B = {〈x, vi〉 : i = 1, 2, 3}, a basis for L (x). The basis B is appreciable since

the lines 〈x, v1〉 and 〈x, v3〉 form a 45◦ isosceles triangle with H , and 〈x, v2〉 is

perpendicular to H . The distance a point z ∈H is moved by g ∈ G is |z− g.z|.

The distance a point is moved in L (x) is ∠(〈x, z〉, 〈x, (g.z))〉 ≈ |z−g.z|
η

.

So Fin(G ) acts finitely on L (x) if and only if Fin(G ) acts finitely on B, the

basis for L (x). But Fin(G ) acts finitely on B if and only if Fin(G ) keeps the
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angles between the lines in B appreciable, i.e. if Fin(G ) moves the points vi ∈H

a distance of at most order η. Thus Fin(G ) acts finitely on L (x) if and only if

Fin(G ) preserves Galη(y).

Two nonzero hyperreals α, β ∈ ∗R have the same order if and only if α
β

is

appreciable. Denote this by α ≈ β.

Lemma 6.0.81. Fin(G ) moves a point in Galη(y) a distance of at most order εδ.

Proof. Recall

G (δ) = {
(

1 1
0 δ

)( a 0
0 1
a

)(
1 1
0 δ

)−1
=
( a 1

δ
(a− 1

a
)

0 1
a

)
}.

In Fin(G ), we have 1
δ
(a − 1

a
) = 2t, a finite hyperreal. The action on y = [1 : ε]

depends on η, δ, ε, and we want to find the subgroup of Fin(G ) that preserves

Galη(y). So:

( a 1
δ

(a− 1
a

)

0 1
a

)
[1 : ε] = [a+

ε

δ
(a− 1

a
) :

ε

a
] = [1 :

ε
a

a+ ε
δ
(a− 1

a
)
].

We want to find the distance y is moved. Using 1
a
− a = 2tδ then

∣∣ ε
a

a+ ε
δ
(a− 1

a
)
− ε
∣∣ = ε

∣∣ 1
a
− a+ 2tε

a+ 2tε

∣∣ = 2tε
∣∣ δ + ε

a+ 2tε

∣∣ ≈ 2tε|δ + ε|

since a ≈ 1 in Fin(G ). Since 0 < ε ≤ δ then εδ ≤ ε(δ + ε) ≤ 2εδ. Therefore

2tε|δ + ε| ≈ ε(δ + ε) ≈ εδ,

and y is moved a distance of order εδ.
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Corollary 6.0.82. Fin(G ) acts finitely on L (x) if and only if εδ
η

is finite. More-

over, the action of Fin(G ) on L (x) is infinite if εδ
η

is infinite, and sh(Fin(G ))

acts as the identity on L(x) if εδ
η

is infinitesimal.

Proof. By Lemma 6.0.81, the distance y ∈ Galη(x) is moved in H is of order εδ,

and so by the proof of Lemma 6.0.80, Fin(G ) moves points in L (x) a distance of

order εδ
η

. The result follows.

We have shown the ratio εδ
η

determines the action of Fin(G ) on L (x). Next

we show how to extend G ≤ SL2(∗R) to Ĝ ≤ SL3(∗R).

[y]

[e2]

[e1]

[x] [e3]

Figure 6.4: Choosing B

Lemma 6.0.83. Let G = G (δ) ≤ SL2(∗R) act on H . If Fin(G ) acts finitely

on L (x), define Ĝ ≤ SL3(∗R) to be the set of elements which fix x, act finitely

on ∗RP 2, and for every ĝ ∈ Ĝ , the restriction ĝ|H = g for some g ∈ G . Then
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[x]

[y] g([y]) 

[e2]

[e3]

ĝ([e3])

g([e2])

Figure 6.5: The action on L (x)

extended to ∗RP 2: the image of

B under Ĝ .

Ĝ := sh(Fin(Ĝ )) is a conjugacy limit group, and the action of Ĝ on H coincides

with the action of G on H.

Proof. Pick a projective basis B = {[e1], [e2], [e3], [e1 + e2 + e3]} for ∗RP 2, and

show the image of B under Ĝ is an appreciable basis. By assumption, G fixes

[e1] ∈ H . Let [y] ∈ H be the point closest to [x]. Choose [e3] ∈ 〈[x], [y]〉 an

appreciable distance from [e1]. Then the lines 〈[x], [e1]〉 and 〈[x], [e3]〉 = 〈[x], [y]〉

are at an appreciable angle, since [x] is infinitesimally close to H . Pick [e2] ∈H

an appreciable distance from [e1] and [e3], and such that 〈[x], [e2]〉 and 〈[x], [e3]〉

are at an appreciable angle. Again, 〈[x], [e2]〉 and H are at an appreciable angle,

since [x] is infinitesimally close to H .

If g ∈ Fin(G ), then g([e2]) is an appreciable distance from g([e1]) = [e1]. Let

ĝ ∈ Ĝ , so that ĝ|H = g. Since ĝ([e3]) lies on the line 〈[x], g([y])〉, there is a

1-parameter hyperreal family of choice of image of [e3]. Choose ĝ([e3]) to be an

appreciable distance from ĝ([e1]) = [e1]. The action of Fin(G ) on L (x) is finite,
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so 〈[x], [ĝ(ei)]〉 and 〈[x], ĝ([ej])〉 are an appreciable distance apart, for all i 6= j.

Thus the image of an appreciable basis is an appreciable basis, and {p, q, x} is

the image of the usual basis under a nonstandard projective transformation. By

Theorem 6.0.76, sh(Fin(Ĝ )) is a conjugacy limit group, and by construction Ĝ |H

is isomorphic to a subgroup of G .

By Theorem 6.0.64 there are 5 conjugacy classes of conjugacy limit groups,

and by Theorem 6.0.76 every conjugacy limit group of C is sh(Fin(PC P−1)).

We show next that the conjugacy class of any conjugacy limit group is completely

determined by the hyperreal numbers δ, η and εδ
η

. Recall 0 ≤ |η| ≤ |δ|, and

0 ≤ |ε| ≤ |δ|.

Proposition 6.0.84. Given p, q, x ∈ ∗RP 2 in general position, let Ĝ (p, q, x) ≤

SL3(∗R) be the group preserving p, q, x. Set Ĝ = sh(Ĝ (p, q, x)).

1. If δ is appreciable, and

(a) η is appreciable, then Ĝ is conjugate to C and εδ
η

is appreciable

(b) η is infinitesimal, and p ∈ Galη(x), then Ĝ is conjugate to F and εδ
η

is

finite

(c) η infinitesimal, but p 6∈ Galη(x), then Ĝ is conjugate to N3 and εδ
η

is

infinite

2. If δ is infinitesimal, then η is infinitesimal, and
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(a) if εδ
η

is infinitesimal, then Ĝ is conjugate to N2.

(b) if εδ
η

is appreciable, then Ĝ is conjugate to N1.

(c) if εδ
η

is infinite, then Ĝ is conjugate to N3.

Proof. Case 1a: The points are an appreciable distance apart, and each point

is an appreciable distance from the hyperplane containing the other two

points. Since η is appreciable, Galη(x) ∩H = H , so the action of Fin(G )

preserves Galη(x), and G acts finitely on L (x). The action of Ĝ on each of

the three projective lines is hyperbolic. Thus Ĝ is conjugate to C, since this

is the only group in Q which acts hyperbolically on more than one line.

Since δ, ε and η are all appreciable, then εδ
η

is appreciable.

Case 1b: Suppose p ∈ Galη(x). Then p and x are infinitesimally close, and

q is an appreciable distance away from 〈p, x〉. So, sh(∆(p, q, x)) has two

distinct points, sh(p) = sh(x) and sh(q), and two distinct lines, sh(〈p, q〉) =

sh(〈x, q〉) and sh(〈p, x〉). The action of Ĝ on sh(〈p, x〉) is parabolic, since

sh(〈p, x〉) contains a unique fixed point. The action of Ĝ on H = sh(〈p, q〉)

is hyperbolic, since H contains two distinct fixed points. Thus Ĝ has two 0-

dimensional invariant subspaces, and two 1-dimensional invariant subspaces,

one with a parabolic action, and one with a hyperbolic action. So, Ĝ is

conjugate to F .
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Since δ is appreciable, εδ
η
≈ ε

η
. Since p ∈ Galη(x), then |ε| ≤ |η|, which

implies ε
η

is finite.

Case 1c: Since δ is appreciable, εδ
η
≈ ε

η
. Since η is infinitesimal, and Galη(x)

does not contain p, then |ε| has larger order than |η|, which implies ε
η

is

infinite.

Since εδ
η

is infinite, then the action of Fin(G ) on L (x) is infinite by Corollary

6.0.82. The subgroup of Fin(G ) which acts finitely on L (x) is infinitesimal,

and its shadow in G is the identity. Thus Ĝ is conjugate to N3, since this is

the only group in Q which acts as the identity on a line.

Case 2a: By assumption δ and η are infinitesimal, so the points p, q, x are in-

finitesimally close. Therefore sh(∆(p, q, x)) has one point, sh(p) = sh(q) =

sh(x), which is the fixed point under the action of Ĝ. By Lemma 6.0.85

which follows this proof, Ĝ is unipotent, and so Ĝ acts parabolically on any

line it preserves through sh(p). Since εδ
η

is infinitesimal, Ĝ acts as the iden-

tity on L(x) by Corollary 6.0.82, and Ĝ preserves at least two 1-dimensional

invariant subspaces. There are two groups in Q with a single fixed point,

N1 and N2. But, N1 preserves only one line, and Ĝ preserves at least two

lines, so Ĝ is conjugate to N2.
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Case 2b: Since εδ
η

is appreciable, the action of Fin(G ) on L (x) is finite by Corol-

lary 6.0.82, and G does not fix L(x) point wise. By Lemma 6.0.83, the action

of Ĝ on H coincides with the nontrivial action of G on H. Since δ and η

are infinitesimal, the points p, q, x are infinitesimally close, so sh(∆(p, q, x))

has one point. By Lemma 6.0.85, Ĝ acts parabolically on H, since Ĝ fixes a

single point. Since Ĝ does not fix L(x), then Ĝ has only one 1-dimensional

invariant subspace and one 0-dimensional invariant subspace, so Ĝ is conju-

gate to N1.

Case 2c: Since εδ
η

is infinite, then G acts infinitely on L (x) by Corollary 6.0.82.

The subgroup of Fin(G ) which acts finitely on L (x) is infinitesimal, and its

shadow in G is the identity. Thus Ĝ is conjugate to N3, since this is the

only group in Q which acts as the identity on a line.

Recall from Lemma 6.0.70 that every conjugacy limit group is conjugate to

one under a sequence of upper triangular sequence of matrices, and by Theorem

6.0.76 that any conjugacy limit of C ≤ SL3(R) is Ĝ := Sh(Fin(PC P−1)), where

P =


1 1 1

0 δ ε

0 0 η

 . (6.1)
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Lemma 6.0.85. If δ is infinitesimal, then Ĝ = sh(Fin(Ĝ (p, q, x))) is conjugate

to a unipotent group.

Proof. Since δ is infinitesimal, and |δ| ≥ |η| and |δ| ≥ |ε|, then η and ε are infinites-

imal. It is easy to check that all of the weights must be 1 in sh(Fin(PC P−1)).

This concludes the proof of Theorem 6.0.66, by establishing a bijection be-

tween equivalence classes of nonstandard triangles and conjugacy limit groups.

We reproduce a table here for completeness. The ratio εδ
η

= α in Theorem 6.0.66.

δ η εδ
η

Group

appreciable appreciable appreciable C

appreciable infinitesimal finite F

infinitesimal infinitesimal appreciable N1

infinitesimal infinitesimal infinitesimal N2

finite infinitesimal infinite N3

The shadow of T does not depend on εδ
η

, but sh(Fin(Ĝ (p, q, x)) does depend on

εδ
η

.

Corollary 6.0.86. The columns of P in (6.1) are the coordinates of the vertices

of a nonstandard triangle. The equivalence class of nonstandard triangle deter-

mines the conjugacy limit group Ĝ, the conjugacy limit of C under the sequence

Pn ≤ GL3(R) with sequences in the strictly upper triangular portion, δn, εn, ηn,
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converging to δ, ε, η. By Proposition 6.0.84, Ĝ depends only on the relative orders

of δ, η, and εδ
η

.
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Chapter 7

Interlude: Ab(4) = Red(4)

In this chapter, we will show that every 3-dimensional abelian subgroup in

Proposition 4.0.39 is a conjugacy limit of the Cartan subgroup in SL4(R).

Proposition 7.0.87. Ab(4) = Red(4).

Proof. We will show every abelian group in Proposition 4.0.39 is a limit of C by

exhibiting a path of conjugating matrices. The name of the group, G, appearing

above a matrix, P , indicates that PCP−1 → G.

E1 F0 F1 F2

1 0 0 0

0 1 n 0

0 0 1 0

0 0 0 1





1 n 0 0

0 1 0 0

0 0 1 n

0 0 0 1





1 n n2

2
0

0 1 n 0

0 0 1 0

0 0 0 1





1 n n 0

0 1 0 0

0 0 1 0

0 0 0 1
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F3 N1 N2 N3

1 0 n 0

0 1 n 0

0 0 1 0

0 0 0 1





1 n n2

2
n3

6

0 1 n n2

2

0 0 1 n

0 0 0 1





1 n n2

2
n

0 1 n 0

0 0 1 0

0 0 0 1





1 0 0 n

0 1 n n2

2

0 0 1 n

0 0 0 1


N4 N ′4 N5 N6

1 n n n2

0 1 0 n

0 0 1 n

0 0 0 1





1 n n n2

0 1 0 −n

0 0 1 −n

0 0 0 1





1 0 n n

0 1 n n

0 0 1 0

0 0 0 1





1 n 0 n

0 1 0 0

0 0 1 n

0 0 0 1


N7 N8

1 0 0 n

0 1 0 n

0 0 1 n

0 0 0 1





1 n n n

0 1 0 0

0 0 1 0

0 0 0 1



Corollary 7.0.88. Every group in Red(4) except for possibly N ′4, is a limit under

a 1-parameter path of conjugacies.
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Proof. The paths given in Proposition 7.0.87 are all one parameter limits except

the one for N ′4.

Conjecture 7.0.89. The group N ′4 is not a one parameter limit.
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Chapter 8

Conjugacy Limits of the Cartan

Subgroup in SLn(R)

Let C ≤ SLn(R) be the group of positive diagonal matrices, a Cartan sub-

group. The conjugacy limits of C are classified for n ≤ 4, in chapters 6 and 7,

and in [26], [42], [41]. It is an open problem to classify the conjugacy limits of C

when n ≥ 5 (Questions 5.0.62 and 5.0.63).

The set of all closed subgroups of a group is a Hausdorff topological space

with the Chabauty topology on closed sets (see section 5). Following notation

in [31], the set of all closed abelian subgroups Âb(n) = {G ≤ SLn(R) : G ∼=

(Rn−1,+)}, is then a subspace, as is the set of conjugacy limit groups R̂ed(n) =

{G ≤ SLn(R) : G is a limit of C}. Taking the quotients by conjugacy, there are
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two topological spaces with the quotient topology: Ab(n) = Âb(n)/conjugacy and

Red(n) = R̂ed(n)/conjugacy. In general these are not Hausdorff. For example,

Theorem 6.0.77, shows Red(2) = {C,P}, where P is the parabolic group. Since

C → P , every neighborhood of P contains C.

Since every conjugacy limit of C is isomorphic to Rn−1, then Red(n) ⊂ Ab(n),

see [31], Proposition 1. From chapter 6 we know Ab(3) = Red(3), which has 5

points corresponding to 5 conjugacy classes of groups, and from Theorem 7.0.87,

Ab(4) = Red(4), which has 15 points, listed in chapter 4. When n ≤ 6, Suprenko

and Tyshkevitch, [56], have classified maximal commutative nilpotent (i.e. adx

is nilpotent for all x ∈ X) subalgebras of sln(C). Their results imply Ab(5) has

finitely many points, so Red(5) has finitely many points. Iliev and Manivel, [31],

ask if Red(n) is finite when n ≥ 6 (Question 5.0.63). The answer follows for n ≥ 7

from the main result of this chapter:

Theorem 8.0.90. If n ≥ 7, then n2−8n+8
8

≤ dimRed(n) ≤ n2 − n.

The upper bound is given in [31]. This leaves the case n = 6 open. Haettel,

and Iliev and Manivel show dimRed(n) < dimAb(n) for n > 6. We also give the

first explicit examples of elements of Ab(n)−Red(n) for n = 5, 6, 8 by describing

certain properties of limit groups, which answers Question 5.0.62. In particular,

we show
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Theorem 8.0.91. If n ≤ 4, then Ab(n) = Red(n). If n ≥ 5, then Red(n) (

Ab(n).

A

Fam-

ily

of

Con-

ju-

gacy

Limit

Groups

In this section, we define a family of groups, LT , and show each is a conjugacy

limit of the Cartan subgroup.

Definition 8.0.92. Let T be an m by n matrix, and ρT : Rm+n → SLm+n+1(R)

be the homomorphism given by

ρT ((a1, ..., am, b1, ..., bn)) =



1 0 . . . 0

0 1 . . . 0

...
...
. . .

...

0 0 . . . 1︸ ︷︷ ︸
(m+1)×(m+1)

T11a1 T12a1 . . . T1na1

T21a2 T22a2 . . . T2na2

...
...

. . .
...

Tm1am Tm2am . . . Tmnam

b1 b2 . . . bn

0 0 . . . 0

0 0 . . . 0

...
...
. . .

...

0 0 . . . 0︸ ︷︷ ︸
n×(m+1)

1 0 . . . 0

0 1 . . . 0

...
...
. . .

...

0 0 . . . 1︸ ︷︷ ︸
n×n



.
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The image of ρT is a group, LT ≤ SLm+n+1(R).

One may easily check that ρT is a homomorphism and LT is a group, since

matrix multiplication is given by I P

0 I


 I Q

0 I

 =

 I P +Q

0 I

 .

Lemma 8.0.93. For any m by n matrix T , with at least one nonzero entry in

every row, the group LT is a conjugacy limit of the positive diagonal Cartan sub-

group.

Proof. Let C = diag〈x1, ...xm+n+1〉 ≤ SLm+n+1(R), be the positive diagonal Car-

tan subgroup, so x1 · x2 · · · xm+n+1 = 1. Let {Pr}∞r=0 be the sequence of matrices

Pr =



1 0 . . . 0 0 T11r T12r . . . T1nr

0 1 . . . 0 0 T21r T22r . . . T2nr

...
...
. . .

...
...

...
...

. . .
...

0 0 . . . 1 0 Tm1r Tm2r . . . Tmnr

0 0 . . . 0 1 r2 r2 . . . r2

0 0 . . . 0 0 1 0 . . . 0

0 0 . . . 0 0 0 1 . . . 0

...
...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 0 . . . 1
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Conjugating, PrCP
−1
r = ( A B

0 D ) where

A =



x1 0 . . . 0 0

0 x2 . . . 0 0

...
...

. . .
...

...

0 0 . . . xm 0

0 0 . . . 0 xm+1


, D =



xm+2 0 . . . 0

0 xm+3 . . . 0

...
...

. . .
...

0 0 . . . xm+n+1


,

B =



T11r(x1 − xm+2) T12r(x1 − xm+3) . . . T1nr(x1 − xm+n+1)

T21r(x2 − xm+2) T22r(x2 − xm+3) . . . T2nr(x2 − xm+n+1)

...
...

. . .
...

Tm1r(xm − xm+2) Tm2r(xm − xm+3) . . . Tmnr(xm − xm+n+1)

r2(xm+1 − xm+2) r2(xm+1 − xm+3) . . . r2(xm+1 − xm+n+1)


.

The matrix A is m+ 1 by m+ 1, and D is n by n. The 0 matrix is m+ 1 by

n and the matrix B is m+ 1 by n.

Assume for simplicity that all entries in the first column of T are non-zero.

Given an element lT ∈ LT , we will find a sequence of elements in PrCP
−1
r which

converges to lT . Then the definition of convergence implies that LT is a subgroup

of the limit of PrCP
−1
r .

Given xm+1 for 1 ≤ i ≤ n define

xm+1+i = −r−2bi + xm+1.
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This ensures row m+ 1 of lT and of PrCP
−1
r are equal since

r2(xm+1 − xm+1+i) = bi. (8.1)

For i ≤ m define xi in terms of xm+1 by

xi = r−1ai − r−2b1 + xm+1.

It follows that column m+ 2 of lT and of PrCP
−1
r are equal because

xi − xm+2 = (r−1ai − r−2b1 + xm+1)− (−r−2b1 + xm+1) = r−1ai. (8.2)

The determinant condition x1 · · · xm+n+1 = 1 determines xm+1. Observe that

xi → xm+1 as r → ∞, so the determinant is approximately (xm+1)m+n+1. Thus

every xi → 1 as r →∞.

We have now determined xi for 1 ≤ i ≤ m + n + 1. It remains to show

convergence in the remainder of the entries. Using equation (8.1) since r →∞,

r(xm+1 − xm+1+i)→ 0.

By taking the difference of any two of these terms,

r(xm+1+j − xm+1+k)→ 0,

and, in particular

r(xm+2 − xm+1+k)→ 0. (8.3)
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Consider the (j,m+ 1 + k) entry, for 1 ≤ j, k ≤ n. Using (8.2) and (8.3), implies

Tjkr(xj−xm+k+1) = Tjkr(xj−xm+2)−Tjkr(xm+2−xm+1+k)→ Tjkaj−Tjk0 = Tjkaj.

This completes the proof when the entries in the first column of T are non-

zero. Suppose some entries in the first column of T are zero. By hypothesis,

T has a nonzero entry in every row, say Tjk. Pick xi for 1 ≤ i ≤ m so that

Tjkm(xj − xm+1+k) → ajTjk. Since Tjk 6= 0, proceed as in the rest of the proof.

Thus we have found a sequence diag〈x1, ...xm+n+1〉 such that PrCP
−1
r → lT .

This shows LT is contained in the limit of PrCP
−1
r . For dimension reasons

(Proposition 5.0.51), and since C and LT are connected and isomorphic to Rm+n

(see [31] Proposition 1), then PrCP
−1
r → LT .

A

Con-

tin-

uum

of

Con-

ju-

gacy

Classes

of

Limit

Groups

in

SL7(R)

In this section we find some conjugacy invariants of the group LT and use them

to produce a family of conjugacy classes of dimension at least (n2 − 8n + 16)/8

when n ≥ 7. We first illustrate this when n = 7.

A subgroup G ≤ SLn(R) acts on RP n−1. The orbit of a point, x ∈ RP n−1 is

G.x = {y ∈ RP n−1 : g.x = y for some g ∈ G}. Denote by G.x the orbit closure of

x.
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Lemma 8.0.94. Suppose G,H ≤ SLn(R) and Q ∈ SLn(R) so that G = QHQ−1.

Then [Q] is a projective transformation taking the orbit closures of G to the orbit

closures of H.

Proof. Since Q conjugates G to H, then Q takes the orbits of G to the orbits of

H. Hence Q takes orbit closures of G to orbit closures of H.

Given G ≤ SLn(R). The orbit dimension function, RG : RP n−1 → N, is

RG(x) = dim(G.x). As a corollary of Lemma 8.0.94, RG(Q(x)) = RQGQ−1(x) for

all x ∈ RP n−1.

Next we define some conjugacy invariants of the action of a group on RP n−1.

To do this we need an invariant, the unordered generalized cross ratio, of a collec-

tion of points in general position in projective space, which generalizes the cross

ratio of 4 points on a projective line. This invariant is a finite subset of a product

of projective spaces. Let P(S) denote the power set of S.

Let {e1, ..., en} be the standard basis in Rn. The standard projective basis in

RP n−1 is {[e1], ..., [en], [e1 + · · ·+en]}, and an augmented basis in RP n−1 is a set of

m ≥ n+ 2 points in general position, which means every subset of (n+ 1) points

is a projective basis.

Definition 8.0.95. 1. The ordered generalized cross ratio is the function, C :

(RP n−1)m → (RP n−1)m−(n+1) defined as follows. Given any (ordered) aug-
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mented basis (y1, y2, ..., ym) in RP n−1, there is unique projective transfor-

mation, Q, which maps (y1, ..., yn+1) 7→ ([e1], ..., [en], [e1 + · · ·+ en]). Define

C(y1, y2, ..., ym) := (Q(yn+2), Q(yn+3), ..., Q(ym)).

2. Given an (unordered) augmented basis in RP n−1, the unordered generalized

cross ratio, UC : (RP n−1)m → P((RP n−1)m−(n+1)) is the set of all general-

ized cross ratio tuples, UC(y1, ..., ym) := {C(yσ(1), ..., yσ(m)) : σ ∈ Sm}.

For example, if A = {[1 : 0] : [1 : 1], [1 : 2], [1 : α]} ⊂ RP 1, then

UC(A) =
{2(α− 1)

α
,

α

2(α− 1)
,

α

2− α
,
2− α
α

,
2(α− 1)

α− 2
,
α− 2

2(α− 1)

}
⊂ RP 1.

Thus UC(A) is the set of all possible cross ratios of the points in A. The cross

ratio on RP 1 is a special case of the ordered generalized cross ratio.

Proposition 8.0.96. Let {y1, ..., ym} and {x1, ..., xm} be unordered augmented

bases in RP n−1, so m ≥ n + 2. Then UC(y1, ..., ym) = UC(x1, ..., xm), if and

only if there is a projective transformation, Q : RP n−1 → RP n−1, such that

Q({y1, ..., ym}) = {x1, ..., xm}.

Proof. First, suppose UC(y1, ..., ym) = UC(x1, ..., xm). For the generalized cross

ratio tuple coming from the identity permutation, C(x1, ...., xm) ∈ UC(x1, ..., xm),

there is some reordering, σ ∈ Sm, such that C(x1, ...., xm) = (z1, ..., zm−n−1) =

C(yσ(1), ..., yσ(m)) ∈ UC(y1, ..., ym). That is, there exist projective transformations
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Q1, Q2 : RP n−1 → RP n−1 such thatQ1((x1, ...., xn+1)) = ([e1], ..., [en], [e1+···+en])

and Q2((yσ(1), ..., yσ(n+1))) = ([e1], ..., [en], [e1 + · · · + en]), and also Q1(xn+1+i) =

zi = Q2(yσ(n+1+i)), for 1 ≤ i ≤ m− (n+ 1). Set Q := Q−1
2 Q1, so Q is a projective

transformation such that Q((x1, ...., xm)) = (yσ(1), ..., yσ(m)).

Conversely, suppose there exists a projective transformation Q0 : RP n−1 →

RP n−1 such that Q0({x1, ...., xm}) = {y1, ..., ym}. Recall UC(x1, ...xm)

= {C(xσ(1), ..., xσ(m)) : σ ∈ Sm}. Set Qσ : RP n−1 → RP n−1 to be the unique pro-

jective transformation such that Qσ((xσ(1), ..., xσ(n+1))) = ([e1], ..., [en], [e1 + · · ·+

en]). Then UC(x1, ...xm) = {Qσ(xσ(m)) : σ ∈ Sm}. SinceQσQ
−1
0 ((yσ(1), ..., yσ(n+1))) =

([e1], ..., [en], [e1 + · · · + en]), and such a projective transformation is unique, so

UC(y1, ...ym) = {QσQ
−1
0 (yσ(m)) : σ ∈ Sm} = UC(x1, ..., xm).

Proposition 8.0.96 shows that unordered cross ratio of an unordered augmented

basis is a complete projective invariant. As a warm-up, we show Red(7) contains

a subspace homeomorphic to an interval.
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Definition 8.0.97. Let α ∈ R− {0, 1, 2} be fixed, and let ρα : R6 → SL7(R) be

the homomorphism defined by

ρα((a, b, c, d, s, t)) =



1 0 0 0 0 a 0

0 1 0 0 0 b b

0 0 1 0 0 c 2c

0 0 0 1 0 d αd

0 0 0 0 1 e f

0 0 0 0 0 1 0

0 0 0 0 0 0 1



.

The image of ρα is a group, Lα ≤ SL7(R).

An application of Lemma 8.0.93 shows that Lα is a conjugacy limit group. The

unordered generalized cross ratio may be used to distinguish conjugacy classes of

limit groups.

Proposition 8.0.98. Given α, β ∈ R, then Lα is conjugate to Lβ if and only if

β ∈
{2(α−1)

α
, α

2(α−1)
, α

2−α ,
2−α
α
, 2(α−1)

α−2
, α−2

2(α−1)

}
.

Proof. We showed in Lemma 8.0.94 that if two groups are conjugate, there is a

projective transformation taking the orbit closures of the first group to the orbit

closures of the second. The group Lα partitions RP 6 into orbit closures, and we

will use the cross ratio to give an invariant of such a partition.
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Let {e1, ...e7} be the standard basis for R7 := V . Let U = 〈e1, .., e5〉, and

W = 〈e6, e7〉. Then V = U⊕W , and denote the quotient map q : V → V/U ∼= W .

Given [te6 + e7] ∈ P(W ), define the 5-dimensional projective subspace Ht :=

P〈e1, ..., e5, te6 + e7〉 = P〈q−1(te6 + e7)〉. We show the orbit closure of a typical

point x ∈ RP 6 is Ht, but there are 4 exceptional Ht, which are the pre-images of

4 points in P(W ). The unordered cross ratio gives an invariant of these points in

P(W ) ∼= RP 1.

For convenience, denote the orbit dimension function for Lα by Rα := RLα .

Let x = [x1 : · · · : x7] ∈ RP 6. The action of Lα is given by Lα.x =

[x1+ax6 : x2+b(x6+x7) : x3+c(x6+2x7) : x4+d(x6+αx7) : x5+ex6+fx7 : x6 : x7].

(8.4)

If x ∈ P(U), then Rα(x) = 0, since P(U) = Fix(Lα). By (8.4), if x ∈ P(V −U),

then Rα(x) = 5, unless one or more of the coefficients on a, b, c, d are zero, i.e., x

satisfies one of the equations

x6 = 0, x6 + x7 = 0, x6 + 2x7 = 0, x6 + αx7 = 0. (8.5)
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Since x ∈ V − U , at least one of x6, x7 is not zero, and x satisfies at most one

equation in (8.5). Consequently,

Rα(x) =



0 if x ∈ P(U)

4 if x ∈ Ht and t ∈ {0, 1, 2, α}

5 if x ∈ Ht and t 6∈ {0, 1, 2, α}.

Then A := {[1 : t] ∈ RP 1 : t = 0, 1, 2, α}, is an augmented basis in RP 1. The

unordered generalized cross ratio of A is the set of cross ratios of A, permuting

the order of the points. Thus

UC(A) =
{2(α− 1)

α
,

α

2(α− 1)
,

α

2− α
,
2− α
α

,
2(α− 1)

α− 2
,
α− 2

2(α− 1)

}
⊂ RP 1

Therefore Lα is conjugate to Lβ if and only if β ∈ UC(A).

We have shown the map R → Red(7) given by α → Lα is at most 6 to 1.

Therefore Red(7) contains a continuum of non-conjugate limits.

Recall the covering dimension of a topological space, X, is smallest number,

n, such that any open cover has a refinement in which no point is included in

more than n+ 1 sets in the open cover. (See [44]). Denote the covering dimension

of X by dimX. Covering dimension is a topological invariant. We will show later

that dimRed(7) ≥ 1.
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The

Gen-

eral

Case:

Bounds

for

dimRed(n)

In this section, we exploit the unordered generalized cross ratio to obtain

bounds on dimRed(n).

Definition 8.0.99. Let G ≤ SLn(R) and x ∈ RP n−1. Let H be a projective

subspace of RP n−1.

1. Set MG := max {RG(x) : x ∈ RP n−1}.

2. A point, x, is typical if RG(x) = MG. The subspace H is typical if H is the

orbit closure of a typical point.

3. The point x is exceptional if 0 < RG(x) < MG. The subspace H is ex-

ceptional if H is the union of orbit closures of exceptional points, and

dim H = MG.

Thus there are three types of points: fixed points with RG(x) = 0, exceptional

points when 0 < RG(x) < MG, and typical points where RG(x) = MG. In our

previous example, MLα = 5, the dimension of a typical subspace, and Ht is the

orbit closure of a typical point. There are 4 exceptional subspaces {Ht : t =

0, 1, 2, α} that break into orbit closures of smaller dimension. Next we generalize

this example.

Definition 8.0.100. An m by n matrix, T , is generic if all collections of n

row vectors of T are linearly independent. Set T̂ := {T : T is generic}. When
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m ≥ n + 2, the rows of a generic matrix, T , determine an augmented basis,

T̃ ⊂ RP n−1. Define an equivalence relation on T̂ by T ∼ S if UC(T̃ ) = UC(S̃).

Define T := T̂ / ∼, and denote by [T ]T ∈ T the equivalence class of T .

We give T a topology as follows. Take the subspace topology on T̂ ⊂ Rm×n,

then T has the quotient topology. Since T̂ is an open subset of Rn×m, it follows

dim T̂ = nm.

Proposition 8.0.101. dim T = nm− n2 −m.

Proof. Consider the map Φ : T̂ → (RP n−1)m, where Φ(T ) = T̃ ∈ (RP n−1)m, so Φ

projectivizes the rows of T . The unordered generalized cross ratio is the surjective

map UC : (RP n−1)m → (RP n−1)m−(n+1). Given T, S ∈ T̂ , then T ∼ S if and only

if UC(Φ(T )) = UC(Φ(S)). Therefore,

dim T = dim(UC(Φ(T̂ ))) = (n− 1)(m− n− 1)− 1 = nm− n2 −m.

Where we subtract 1 for projectivizing.

A set of hyperplanes is in general position in RP n, if the set of dual points

in the dual projective space to these hyperplanes is in general position. Let [L]

denote the conjugacy class of a group L, and T t denote the transpose of T .

Proposition 8.0.102. Suppose m ≥ n + 2, and n ≥ 2. The function f : T →

Red(m+ n+ 1) given by f([T ]T ) = [LT ] is well defined and injective.
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Proof. First we show f is well defined. Suppose [S]T = [T ]T . Then there is a

linear map Q : Rn → Rn such that Q maps the rows of T to the rows of S. That

is, Q(T t) = St, and taking the transpose of both sides, TQt = S. Set Qt = P .

Then LT is conjugate to LS by Im+1 ⊕ P−1, because:

 I 0

0 P−1


 I T

0 I


 I 0

0 P−1


−1

=

 I TP

0 I

 =

 I S

0 I


So if [T ]T = [S]T then [LT ] = [LS]. This shows f is well-defined.

To prove f is injective, we show if [T ]T 6= [S]T , then the actions of [LT ] and

[LS] partition RPm+n into orbit closures which are not projectively equivalent.

Let {e1, ...em+n+1} be the standard basis for V = Rm+n+1. Define U =

〈e1, ..., em+1〉, and W = 〈em+2, ..., em+n+1〉, then V = U ⊕W . Let q : V → V/U ∼=

W be the quotient map. Given [v] ∈ P(W ), let Hv be the (m + 1)-dimensional

projective subspace Hv = P〈e1, ..., em+1, v〉 = P〈q−1(v)〉. We show the orbit clo-

sure of a typical point x ∈ RPm+n is Hv, and the exceptional subspaces are the

pre-image of m hyperplanes in P(W ), which determine an invariant of LT .
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The orbit dimension function for LT by RT := RLT , has maximum MT :=

MLT . The action of LT on RPm+n is given by

LT .[x1 : · · · : xm+n+1] =

[x1 + a1(
n∑
i=1

T1ixm+1+i) : x2 + a2(
n∑
i=1

T2ixm+1+i) : · · · :

xm + am(
n∑
i=1

Tmixm+1+i) : xm+1 +
n∑
i=1

xm+1+ibi : xm+2 : · · · : xm+n+1].

(8.6)

Set

φj(xm+2, ..., xm+n+1) =
n∑
i=1

Tjixm+1+i, 1 ≤ j ≤ m, (8.7)

a collection of linear functionals φj : Rn → R. Then we may rewrite

LT .[x1 : · · · : xm+n+1] =

[x1 + a1φ1(xm+2, ..., xm+n+1) : x2 + a2φ2(xm+2, ..., xm+n+1) : · · · :

xm + amφn(xm+2, ..., xm+n+1) : xm+1 +
n∑
i=1

xm+1+ibi : xm+2 : · · · : xm+n+1].

(8.8)

Since T ∈ T is generic, any n rows of T are linear independent, so by (8.8),

MT = m + 1. If x ∈ P(U), then the group LT fixes x, so RT (x) = 0. We

want to find the exceptional points. From (8.8) the coefficient on ai is φi. Thus

RT (x) < m+ 1 if and only if φi is zero, i.e., (xm+2, ..., xm+n+1) ∈ ker(φi).

The set Wj := ker(φj) ⊂ W is a hyperplane. Then RT (x) < n+ 3 if and only

if x ∈ q−1(Wj) = U ⊕ Wj, for some 1 ≤ j ≤ m. Thus, the set of exceptional

points is the pre-image of the m hyperplanes, P(Wj) ⊂ P(W ) ∼= RP n−1. Let
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wj ∈ P(W ∗) denote the point in the dual projective space determined by the

hyperplane Wj ⊂ W .

By hypothesis, T ∈ T is generic, so these hyperplanes are in general position.

The points {wj}mj=1 are in general position, and form an augmented basis,

δ(T ) ≡ {w1, · · · , wm} ⊂ P(W ∗) ∼= RP n−1 (8.9)

We are now able finish the proof that f is injective. Suppose [T ]T , [S]T ∈ T

with f([S]T ) = f([T ]T ). That is, LS is conjugate to LT , so Lemma 8.0.94 implies

this conjugacy takes the exceptional hyperplanes in the orbit closures of LT , to the

exceptional hyperplanes in the orbit closures of LS. The dual conjugacy takes the

dual augmented basis, δ(T ), to the dual augmented basis, δ(S). By Proposition

8.0.96, UC(δ(T )) = UC(δ(S)), so there is a projective transformation taking δ(T )

to δ(S). A row of T determines a dual vector, φi, with kerφi = Wi, dual to

wi = [φi] ∈ δ(T ). So the dual transformation takes the (projectivized) rows of T

to the (projectivized) rows of S. Thus [T ]T = [S]T , and f is injective.

Proposition 8.0.102 shows there are infinitely many non-conjugate limits of

the positive diagonal Cartan subgroup in SLk(R) when k ≥ 7. We want to give

bounds for dimRed(k). In the remainder of the section, set k = m+ n+ 1.

Theorem 8.0.103. Let m− 2 ≥ n ≥ 2. The function f̂ : T̂ → R̂ed(k) defined by

f̂(T ) = LT , is continuous and one to one on an open subset, X ⊂ T̂ .
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Proof. Recall from Definition 8.0.92 the linear map ρT : Rm+n → SLm+n+1(R) ⊂

End(Rm+n+1). Thus ρT ∈ Hom(Rm+n,Matm+n+1). Since T ∈ Rm+n = Hom(Rn,Rm),

the map T 7→ ρT is a continuous linear map, as it maps one matrix to a larger

one. Remember LT is defined as the image of ρT , so we view LT ⊂ End(Rk).

Since f̂(T ) = LT , the image f̂(T̂ ) ⊂ End(Rk), and f̂ is continuous.

Define X to be the set containing one representative of each equivalence class

[T ]T . Since LT is conjugate to LS if and only if UC(T̃ ) = UC(S̃), then f̂ : X →

R̂ed(k) is injective.

Corollary 8.0.104. If k ≥ 7, then dimRed(k) ≥ k2−8k+8
8

.

Proof. Proposition 8.0.101 says dim T = nm − n2 − m, and Theorem 8.0.103

implies dim R̂ed(k) ≥ dimX = dim T . Since k ≥ 7, we may choose m−2 ≥ n ≥ 2.

We may change the size of the m by n matrix (as long as m− 2 ≥ n ≥ 2), so

dimRed(n) is bounded below by the maximum of mn−n2−m. Since m+n+1 = k,

and k is fixed, we want to maximize

g(n) = n(k − n− 1)− n2 − (k − n− 1) = kn− 2n2 − k + 1.

The maximum occurs at n = k
4

and m = 3k−4
4

. Therefore the maximum of

mn− n2 −m+ 1 is k2−8k+8
8

.

In particular, k2−8k+8
8

≥ 0 for k ≥ 7. Below is the proof of an upper bound of

dimRed(k), given in [31] for (Krull) dimension of Red(n).
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Theorem 8.0.105. dimRed(k) ≤ k2 − k.

Proof. Let C denote the positive diagonal Cartan subgroup, and let P ∈ GLk(R).

By [48] Theorem 1, or [59] Theorem 2.9.7, the dimension of the set of all conjugates

of C is k2 − k, since PCP−1 = C if and only if P is a diagonal matrix or a

permutation matrix. Since C is a semi-algebraic set ([8] Proposition 2.1.8), the

set of conjugates of C is a semi-algebraic set ([8] Proposition 2.2.7). Thus the set of

conjugacy limits of C is the boundary of the Zariski closure of the set of conjugates.

Applying Propositions 2.8.2 and 2.8.13 from [8], gives dim(Red(k)) ≤ k2 − k.

Corollary 8.0.104 and Theorem 8.0.105 imply Theorem 8.0.90.

Abelian

Groups

which

are

Not

Con-

ju-

gacy

Limit

Groups

In this section, we give examples of elements of Ab(n)−Red(n). There are two

properties of conjugacy limit groups of C which are not universal amongst abelian

groups. The first property is a conjugacy limit group is flat, and the second is that

it contains a one parameter subgroup with a particular Jordan block structure.

Suppose L is a conjugacy limit of C in SLn(R). Then we claim L is the

intersection of a vector space with SLn(R) ⊂ End(Rn), which is a vector space.

The positive diagonal Cartan subgroup is of this form, and conjugacy is a linear
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map, so it preserves this property. Such a group is a flat group. Conjugacy limits

of C are flat groups.

Definition 8.0.106. Let µk : Rk−1 → SLk(R) be the representations below for

k = 5, 6.

µ5((a, b, c, d)) =



1 a 0 a2

2
b

0 1 0 a 0

0 0 1 c d

0 0 0 1 0

0 0 0 0 1


, µ6((a, b, c, d, e)) =



1 a a2

2
0 b c

0 1 a 0 0 0

0 0 1 0 0 0

0 0 0 1 d e

0 0 0 0 1 0

0 0 0 0 0 1


Set Mk ≤ SLk(R) to be the respective images of µk.

It is easy to check that Mk is an abelian group of dimension k − 1. Moreover,

neither is a limit of C, since they are not flat groups.

Thus we have given examples of elements in Ab(n) − Red(n) for n = 5, 6.

This shows Ab(n) 6= Red(n) when n = 5, 6, which answers Question A in [31].

By Lemma 5.0.56 there is an abelian subalgebra of dimension n − 1 which is

not the conjugacy limit of a Cartan subalgebra. Applying Haettel’s result implies

Ab(n) = Red(n) if and only if n ≤ 4. For n = 5, 6, we have shownRed(n) ( Ab(n).

Combined with Haettel’s result, this completes the proof of Theorem 8.0.91.
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We give another property satisfied by conjugacy limit groups of C, and an

example of an element of Ab(8) − Red(8), which is a flat group, but does not

satisfy this additional property. Thus to determine if a group is a conjugacy limit

of C, it is necessary but not sufficient for the group to be a flat group.

Suppose Rn−1 ∼= G ≤ SLn(R). Define the rank of G to be rank(G) = rk(G) :=

max
g∈G

rk(g − In). If rk(g − In) = rk(G), then g is generic. In the special case when

G is a unipotent group, one may compute the rank from the Jordan Normal Form

(JNF) of each group element, by counting the number of off-diagonal entries.

Proposition 8.0.107. Suppose G ≤ SLn(R) is a unipotent group, and L is a

conjugacy limit of G. Then rk(L) ≤ rk(G).

Proof. Proposition 5.0.52 implies that the dimension of the normalizer increases

under taking a conjugacy limit. The dimension of the normalizer of an abelian

group depends on the size of the blocks of the JNF of a generic element: it has

largest dimension when generic elements have JNF closest to the identity, which

is when the size of the Jordan blocks is smallest. Thus the size of the Jordan

blocks of a generic element must remain constant or decrease. Since the rank of a

unipotent group may be computed by counting the sizes of the blocks in the JNF

of a typical element, the rank cannot increase.

Suppose G ≤ SLn(R) is isomorphic to (Rn−1,+). A flag of subgroups in G is

a collection of subgroups Hi with 1 ≤ i ≤ n− 1, and Hi−1 ≤ Hi.
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Corollary 8.0.108. If L is a conjugacy limit of C, then L contains a flag of

subgroups, Hi, with rk(Hi) ≤ i for all i. In particular, L contains a 1 parameter

subgroup H1 with rk(H1) = 1.

Proof. Suppose PCP−1 → L by some P ∈ SLn(R). Set C1 = diag〈a, 1, 1, ..., 1〉,

and let L1 be the conjugacy limit of C1 by P . By Proposition 8.0.107, rk(L1) ≤

rk(C1) = 1. Since L1
∼= R, then L1 cannot be the identity group, so rk(L1) = 1.

All of the elements in C1 are contained in C, and their limits under conjugacy by

P are contained in L. Therefore L1 is a rank 1 subgroup of L.

In general, C has a flag of subgroups with rank 1, ..., n − 1, as more of the

entries on the diagonal are allowed to vary. The conjugacy limits of this flag of

subgroups of C give a flag of conjugacy limits.
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Set E ≤ SL8(R) to be the image of the representation ρ : R7 → SL8(R):

ρ((a, b, c, d, e, f, g)) =



1 0 0 0 0 c g f

0 1 0 0 c b f e

0 0 1 0 b a e d

0 0 0 1 a g d 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



.

It is easy to check that E is an abelian subgroup, since matrix multiplication

is given by  I A

0 I


 I B

0 I

 =

 I A+B

0 I

 .

Proposition 8.0.109. The group E has no 1 parameter subgroups of rank 1.

Proof. A matrix has rank 1 if and only if every 2 × 2 minor is zero. We show

that ρ(a, b, c, d, e, f, g) − I8 has rank 1 if and only if (a, b, c, d, e, f, g) = (0, ..., 0).
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Consider the 2× 2 minors of 

0 c g f

c b f e

b a e d

a g d 0


.

Since the upper left minor must be zero, then c = 0. Looking at the minor

directly below, implies b = 0. Continuing in this fashion, b = 0, a = 0, d =

0, e = 0, f = 0 and g = 0. (Alternatively, take all of the minors, and check

(0, 0, ..., 0) is the only solution.) Thus ρ(a, b, c, d, e, f)−I8 has rank 1 if and only if

(a, b, c, d, e, f, g) = (0, ..., 0). But if (a, b, c, d, e, f, g) = (0, ..., 0) then ρ(0, .., 0)− I8

is the zero matrix, with rank 0. Therefore E (the image of ρ) contains no rank 1

subgroups.

Combining Corollary 8.0.108 and Proposition 8.0.109, shows the abelian group,

E, is not a conjugacy limit of C. Thus there are two necessary conditions for a

group to be a limit group: the group must be a flat group, and contain a rank 1

subgroup.
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Chapter 9

Future Work and Applications

Diagonal matrices are central to much of pure and applied mathematics. Un-

derstanding limits of groups of diagonal matrices provides a coordinate free ap-

proach to studying invariant properties of diagonal matrices.

In future work, I would also like to study limits of other abelian subgroups, or

perhaps nilpotent or solvable groups. Such limits may be related to circle factors

and tori. I would also like to study limits of other types of symmetric spaces.

Geometric structures often arise as a homogeneous space quotiented by a dis-

crete group of isometries. Perhaps it is possible to find a discrete subgroup inside

a conjugacy limit group, and study geometric structures that arise as such quo-

tients. There may be some new types of geometry, giving rise to affine structures

on manifolds.
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Further, some conjugacy limit groups give rise to affine structures on the torus

(in SL3(R), the limits C,F,N1 and N3). Is it possible to find other limit groups

which give rise to affine structures on higher dimensional tori? In particular, I

have a conjecture that a necessary condition is for the action of the group on RP n

must have an orbit closure that is RP n.

There are many more questions we might ask about the spaces Red(n) and

Ab(n). For example: are they connected? Does every component of Ab(n) contain

a component of Red(n), and is it possible to retract from Ab(n) to Red(n)? What

properties characterize Red(n) that are not inherited by Ab(n)? If an element of

Ab(n) is flat and contains a rank 1 subgroup, are these two properties sufficient

to show that it is an element of Red(n)?

The space Red(n) is finite for n = 5. My next project is to write down a

classification theorem, and then to work out the case n = 6. Are there infinitely

many or finitely many conjugacy limits of C when n = 6?

I would also like to extend the hyperreal techniques to higher dimensions, and

use them to classify conjugacy limit groups. Given a complete list of (n − 1)-

dimensional abelian subgroups in each dimension, it might be possible to classify

generalized cusps in higher dimensions.
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