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Abstract

Background and Objective: To model hepatic steatosis in adult humans with non-alcoholic 

fatty liver disease based on stereology and spatial distribution of fat droplets from liver biopsy 

specimens.

Methods: Histological analysis was performed on 30 adult human liver biopsy specimens with 

varying degrees of steatosis. Morphological features of fat droplets were characterized by gamma 

distribution function (GDF) in both two-dimensional (2D) and three-dimensional (3D) spaces 

from three aspects: 1) size distribution indicating non-uniformity of fat droplets in radius; 2) 

nearest neighbor distance distribution indicating heterogeneous accumulation (i.e., clustering) of 

fat droplets; 3) regional anisotropy indicating inter-regional variability in fat fraction (FF). To 

generalize the morphological description of hepatic steatosis to different FFs, correlation analysis 

was performed among the estimated GDF parameters and FFs for all specimens. Finally, Monte 

Carlo modeling of hepatic steatosis was developed to simulate fat droplet distribution in tissue.

Results: Morphological features, including size and nearest neighbor distance in 2D and 3D 

spaces as well as regional anisotropy, statistically captured the distribution of fat droplets by 

the GDF fit (R2 > 0.54). The estimated GDF parameters (i.e., scale and shape parameters) and 
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FFs were well correlated, with R2 > 0.55. In addition, simulated 3D liver morphological models 

demonstrated similar sections to real histological samples both visually and quantitatively.

Conclusions: The morphology of hepatic steatosis is well characterized by stereology and 

spatial distribution of fat droplets. Simulated models demonstrate similar appearances to real 

histological samples. Furthermore, the model may help understand MRI signal behavior in the 

presence of liver steatosis.
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1. INTRODUCTION

As a manifestation of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) 

is commonly associated with comorbidities such as obesity, diabetes mellitus, and 

dyslipidemia, and it affects approximately 25% of the world’s adult population (1,2). 

NAFLD is characterized by hepatic steatosis (i.e., excessive accumulation of triglycerides 

in hepatocytes), which can progress to non-alcoholic steatohepatitis, fibrosis, and even 

cirrhosis (3). The current reference standard for assessment of hepatic steatosis is 

percutaneous liver biopsy, which permits comprehensive evaluation of liver fat content as 

well as other key histological features in the sampled tissue.

In histological assessment of hepatic steatosis, fat droplets (i.e., cytoplasmic vacuoles) are 

identified as ovoid clear voids in histology slides. Hepatic steatosis severity is typically 

determined by visual estimation of the percentage of hepatocytes with intracellular fat 

droplets, and graded using an ordinal 0–3 scale (4). To reflect the actual amount of fat, fat 

fraction (FF) can be quantified as the volume fraction of liver parenchyma comprised by fat 

(5,6). The size of fat droplets, in addition to the overall quantity of fat, may be important in 

evaluating fatty liver disease and liver function, and there is a need to develop methods to 

assess fat droplet size and its statistical distribution (7). Other histological features, such as 

steatosis type (microvesicular, macrovesicular, or mixed) and zonality (zone 1 predominant, 

zone 3 predominant, azonal, or panacinar), are also relevant for fatty liver evaluation (8,9) 

and might benefit from quantitative analysis.

Previous work by Shrestha et al. (10) characterized fat droplet distribution with respect to 

two-dimensional (2D) morphological features (size, nearest neighbor distance and regional 

anisotropy) for 16 mouse liver samples, and developed virtual steatosis models for the 

calibration of MRI transverse relaxation rate (R2*) and FF. However, fat droplets show 

differences in size and other morphological features for human versus mice livers (11,12). 

In addition, the morphological droplet features were based on 2D histology slides, and may 

not reflect fat droplet distribution in three-dimensional (3D) liver parenchyma. Stereology, 

which assesses samples in 3D space, has been used for quantitative assessment of steatosis 

in liver biopsies, and has shown superior performance to morphometry (9,13). Description of 

fat droplet distribution in 3D space could serve as a model for the real histologic appearance, 

and help understand the relevant MRI signal behaviors (e.g., R2*-FF calibration).
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Therefore, the purpose of this study was to characterize morphological features (size and 

nearest neighbor distance in both 2D and 3D spaces, as well as regional anisotropy) of 

fat droplets from human liver biopsy samples using stereology and spatial statistics. In 

addition, characterization of steatosis morphology was generalized to FFs in the clinically 

relevant range. Finally, a Monte Carlo model of hepatic steatosis was developed to model 

the distribution of fat droplets in 3D space. The main contributions of this work can be 

summarized as follows:

1. Liver biopsy specimens from adult humans with NAFLD are histologically 

analyzed to characterize and model hepatic steatosis.

2. The morphological features of fat droplets, including size, nearest neighbor 

distance and regional anisotropy, are statistically described using stereology over 

a clinically relevant range of FFs.

3. The model for hepatic steatosis demonstrates striking similarity with respect to 

real liver samples both visually and quantitatively.

2. MATERIALS AND METHODS

This study was performed as a secondary analysis at one site of a prospective two-center 

study. For the prospective two-center study, severely obese adult subjects who underwent 

weight loss surgery were enrolled. Potential participants with excess alcohol consumption 

or clinical, laboratory, or histological evidence of any liver disease other than NAFLD, and 

participants with contraindications to MRI (e.g., claustrophobia and metallic implants) were 

excluded. All subjects had intraoperative biopsy, and biopsies were scored by a pathologist 

using the Non-alcoholic Steatohepatitis Clinical Research Network scoring system (14). For 

this secondary analysis, a total of 30 subjects (6 males and 24 females, 50 ± 12 years, range 

28 to 68) were selected randomly at one of the two sites, and thus all subjects either had 

normal livers or had NAFLD with varying degrees of steatosis. The study was approved by 

the local ethics committee, and all subjects gave their written informed consent.

Subjects underwent wedge biopsy from the left lobe at the time of weight loss surgery, 

and liver biopsy specimens were obtained. The specimens were formalin-fixed and paraffin-

embedded, serially sectioned to 5 μm, mounted onto adhesive slides, and stained with 

hematoxylin and eosin (H&E). High-resolution digitized histology images were captured at 

× 40 magnification. A sufficiently large region of interest was selected from each histology 

image, and then processed using Image Pro Plus 6.0 software (Media Cybernetics, Inc., 

Rockville, MD). Preliminary segmentation of fat droplets was first achieved by the color 

cube based technique. Specifically, a color cube based threshold was created by selecting the 

pixel value within the region of interest, and was used to segment white pixels in the image. 

Refinement step was then employed to manually process the inaccurate segmentations, 

such as the mismarked, unmarked, or adherent cases. Each fat droplet was approximated 

as a sphere, and represented as a circle in the 2D biopsy slide. Radii and coordinates of 

fat droplets were then obtained, and statistical analysis was implemented using MATLAB 

(R2016b, MathWorks, Natick, MA). In addition, the source code and MATLAB-based 
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graphical user interface were shared to enable widespread dissemination of this work 

(https://github.com/ChangqingWangAHMU/Monte-Carlo-Modeling-of-Hepatic-Steatosis).

Morphological features of hepatic steatosis were characterized with respect to three criteria: 

1) size (i.e., radius) distribution in 2D and 3D spaces; 2) nearest neighbor distance 

distribution in 2D and 3D spaces; 3) regional anisotropy indicating inter-regional variability 

in FF. As an asymmetrical distribution, the gamma distribution has wide applications and 

is the general form of exponential, chi-squared and Erlang distributions (15). Thus, the 

morphological features of hepatic steatosis were characterized by the Gamma distribution 

function (GDF) fit, which is formulated as:

GDF (x) = 1
β × Γ (γ) × x

β
(γ − 1)

× exp  − x
β [1]

where the scale parameter β and the shape parameter γ are unknown positive values, 

describing the width and skewness of the distribution respectively, x is non-negative value 

denoting size or nearest neighbor distance of fat droplet (unit in micrometer), or subregional 

FF (unit in percentage) in the following analysis, and the gamma function Γ(γ) is defined as:

Γ (γ) = ∫
0

∞

xγ − 1e−xdx [2]

2.1 Morphological analysis

1) Size distribution—For each specimen, the 2D size histogram was directly obtained 

from the radii of fat droplets with class interval of 1 μm. In Figure 1, the 3D size histogram 

was indirectly estimated by a sphere unfolding procedure based on the Scheil-Schwartz-

Saltykov method (16).

Specifically, given a 2D size histogram with number of bins m and relative frequency NA, 

the corresponding frequency in 3D space (Nv) can be estimated by the following formula:

Nv(j) = ∑i = 1

m αjiNA(i) [3]

where i, j define the histogram bins (1, 2, 3, …, m), and αji are computed from the inverse of 

the matrix coefficients kji, which is defined as:

kij = (j2 − (i − 1)2) − (j2 − i2) [4]

2) Nearest neighbor distance distribution—The nearest neighbor distance is 

defined as the distance between centroids of a fat droplet and of its nearest fat droplet. For 

each specimen, the nearest neighbor distance for each fat droplet in 2D space was estimated 

from the coordinates of fat droplets, and the 2D nearest neighbor distance histogram was 

then obtained. The distribution of nearest neighbor distance for fat droplets in 3D space 

cannot be calculated directly, so an indirect procedure was adopted (Figure 2).
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Specifically, grid coordinates were generated over reasonable ranges (0, 25] for GDF 

parameter β and (0, 5] for GDF parameter γ with spacing of 0.1. For each grid coordinate, 

a virtual 3D liver volume was simulated by incorporating the corresponding 3D size 

distribution, regional anisotropy, and 3D nearest neighbor distance distribution with the 

provided grid coordinate (see the following sections for details). A random section with 

thickness of 5 μm was sliced from the simulated 3D liver volume, and 2D nearest neighbor 

distance histogram of fat droplets in the section was fitted to the GDF. For all liver volumes 

generated with above grid coordinates (number of 250 × 50), the fitted GDF parameters 

were compared with those from the real histological section to select the optimal 3D liver 

model. For each specimen, the nearest neighbor distance for each fat droplet in 3D space 

was estimated according to the coordinates of fat droplets in the corresponding 3D liver 

model, and the 3D nearest neighbor distance histogram was obtained.

3) Regional anisotropy—Regional anisotropy was performed to characterize 

heterogeneity in the spatial distribution of fat droplets across different regions of the 

liver biopsy sample. Liver biopsy samples were gridded into 160 μm side square regions, 

which was approximately the size of eight hepatocytes. A random point was produced for 

each liver biopsy sample, and grids (or subregions) were generated along the orthogonal 

dimensions with step size of 160 μm. FFs for all subregions were calculated to produce the 

regional anisotropy histogram.

4) Generalization of morphology description to other FFs—To generalize the 

morphology description to different FFs in the clinically relevant range, regression analysis 

was respectively performed among FFs and the estimated GDF parameters, which were 

marked as βsize and γsize in scenarios of size distribution in 3D space, βnnd and γnnd in 

scenarios of nearest neighbor distance distribution in 3D space, βra and γra in scenarios of 

regional anisotropy. The regression analysis was performed using OriginPro 2021 software 

(OriginLab, Northampton, MA), and statistical significance was accepted when P < 0.05. 

Outliers were identified by examining the absolute value of standardized residuals over a 

critical value according to t-distribution (17).

2.2 Monte Carlo modeling of hepatic steatosis

Similar to previous studies (10,18,19), a virtual 3D liver volume was simulated as cube 

with dimensions of 480 × 480 × 480 μm3, consisting of 27 subcubes with dimensions 

of 160 × 160 × 160 μm3. For a given overall FF in the clinically relevant range, FFs of 

subcubes were generated based on the regional anisotropy described above. In addition, 

each fat droplet was modeled as an impenetrable sphere, and spheres were determined with 

sizes and nearest neighbor distances following the aforementioned GDFs for each subcube. 

Fat droplets in each subcube were distributed one by one with a random initial sphere 

placement, and subsequent spheres were randomly placed with their corresponding distances 

in relation to target sphere. Fat droplets were placed in a nonoverlapping manner within 

the model: collision detection was performed after each fat droplet placed, and collision 

between spheres was handled by generating a new random position with the same distance. 

For collisions unresolved after 500 attempts, the reference sphere was regenerated to avoid a 

deadlock.
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To evaluate the performance of the Monte Carlo modeling, simulated 2D section with 

thickness of 5 μm was selected from the corresponding 3D liver volume and visually 

compared with real histological section. In addition, their 2D morphological features 

were also quantitatively compared by using the Mann-Whitney U test, and P < 0.05 was 

considered indicative of statistically significant difference.

3. RESULTS

Based on histological analysis, FFs of the 30 adult human liver biopsy specimens range 

from 0.5% to 24.9%. Number of fat droplets (from 257 to 5563) increases linearly with FF 

(unit in percentage), with a slope of 189.4 fat droplets per FF and an intercept of 423.3 fat 

droplets (R2 = 0.8626, P < 0.001). Three representative samples with FFs of 3.8%, 12.3% 

and 24.2% are shown in Figure 3. Notice non-uniform fat droplet distribution in each case.

3.1 Morphological analysis

Fat droplet radii range from 2.0 to 36.5 μm. Histograms of fat droplet size as well as their 

GDF fits in 2D and 3D spaces are shown for the three representative liver samples in Figure 

4. The distributions are well characterized by GDF fits with R2 > 0.79. As FF increases, the 

rightward shifted histogram peak indicates an increase in the average radius of fat droplets. 

Compared with the GDF fits of 2D radius, higher histogram peak and identical distribution 

mode are observed for 3D radius of fat droplet after the sphere unfolding procedure. The 

histogram peak location is 6.14 ± 0.86 μm in 2D space and 6.19 ± 1.00 μm in 3D space. 

In addition, Figure 5 demonstrates the regression results with respect to distribution of fat 

droplet size in 3D space for the 30 human liver biopsy specimens. A moderate correlation is 

shown between scale parameter β and FF with βsize = exp(0.3631 × log(FF) + 0.6599) (R2 = 

0.5499, P < 0.001). Shape parameter γsize demonstrated a linear relationship with parameter 

βsize, given by γsize = exp(−0.6674 × log(βsize) + 2.0189) (R2 = 0.9260, P < 0.001). These 

findings suggest that fat droplet size increases as FF increases and that the morphological 

description of fat droplet size can be generalized to different FFs.

Nearest neighbor distance of fat droplet ranges from 6.3 to 334.2 μm. In Figure 6, 

histograms of nearest neighbor distance in 2D and 3D spaces are plotted for the three 

representative liver samples, along with their GDF fits. The histograms are well described 

by the GDF fits with R2 > 0.76, and show similar distribution pattern. Peak locations 

of the histograms are relatively insensitive to FFs, while the histogram widths decrease 

significantly due to compact distribution of more fat droplets with increasing FF. Compared 

with the GDF fits of 2D nearest neighbor distance, narrow distributions along with left-

shifted peaks are demonstrated in 3D space (Fig.6B). The histogram peak location is 22.45 

± 2.65 μm in 2D space and 15.38 ± 2.02 μm in 3D space. Additionally, Figure 7 provides 

the regression results with respect to distribution of nearest neighbor distance in 3D space 

for the 30 human liver biopsy specimens. Correlations among GDF parameters (βnnd and 

γnnd) and FF are given by βnnd = exp(−0.2172 × log(FF) − 0.5203) (R2 = 0.5910, P < 0.001, 

Fig.7A) and γnnd = exp(−0.6061 × log(βnnd) + 2.7762) (R2 = 0.8096, P < 0.001, Fig.7B). 

These findings indicate that fat droplet distribution becomes more crowded as FF increases 
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and that the morphological description of nearest neighbor distance can be generalized to 

different FFs.

Figure 8 shows histograms of regional anisotropy for the three representative liver samples 

along with their corresponding GDF fits (R2 > 0.54). For the specimen with low FF, most 

of the subregions have no or few detectable fat droplets, and account for a large proportion 

in the histogram. For increasing FFs, the right-shifted histogram peaks indicate increased 

subregions with more fat droplets. Figure 9 shows the regression results with respect to 

regional anisotropy, and correlations are given by βra = exp(0.5119 × log(FF) + 3.2968) (R2 

= 0.7040, P < 0.001, Fig.9A) and γra = exp(0.3305 ×log(FF) + 0.8593) (R2 = 0.7571, P < 

0.001, Fig.9B). These findings indicate that regional anisotropy increases as FF increases 

and that the morphological description of regional anisotropy can be generalized to different 

FFs.

The morphological description of hepatic steatosis in 3D space is summarized in Table 1. By 

incorporating the morphological features (i.e., size, nearest neighbor distance and regional 

anisotropy), the Monte Carlo modeling of hepatic steatosis can be generalized to different 

FFs.

3.2 Monte Carlo modeling of hepatic steatosis

For the three representative FFs (3.8%, 12.3% and 24.2%), Figure 10 shows the simulated 

3D liver morphological models, and their 2D sections (thickness of 5 μm) as well as real 2D 

histological sections. In scenarios of same FF, a close qualitative resemblance is observed 

between the simulated 2D section and real histological section. In addition, quantitative 

comparison of 2D morphological features also demonstrates a similar distribution of fat 

droplets between Figures 10D–I and 10J–O with P > 0.085.

4. DISCUSSION

In this work, we have characterized the morphological features of fat droplets for adult 

humans with NAFLD from liver biopsy specimens with various degrees of steatosis, 

including size, nearest neighbor distance and regional anisotropy. The features are well 

characterized by GDF fits, and morphology descriptions indicate increase trends of fat 

droplet size and regional anisotropy, while decrease trend of nearest neighbor distance, 

as FF increases. Furthermore, this study develops a corresponding Monte Carlo model of 

hepatic steatosis, and the model demonstrates a close resemblance with respect to real 

liver samples. These results may be helpful for the understanding of relevant MRI signal 

behaviors, as discussed further below, including the positive correlation between proton 

density fat fraction (PDFF) and R2* (10,20) and the negative correlation between PDFF and 

apparent diffusion coefficient (21).

Hepatic steatosis can be classified as microvesicular or macrovesicular steatosis according 

to fat droplet size, which also plays an important role in evaluating fatty liver disease 

(11,22,23). The severity of fatty liver disease may be associated with fat droplet size rather 

than the significant changes in the quantity of liver fat (7,24). As observed visually in 

H&E stained sections, fat droplets are demonstrated to distribute with non-constant size 
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and in non-uniform pattern. It should be noted that fat droplets in human liver demonstrate 

similar mean size but higher median size than those in mouse liver (11), where more 

fat is contributed by small fat droplets. In accordance with previous studies (10,25,26), 

distribution of fat droplet size in 2D space was well characterized by the GDF fit. In 

addition, different GDF parameters were demonstrated quantitatively for human liver biopsy 

specimens with various degrees of steatosis, and correlation was founded with FF. Though 

3D data were not available, the sphere unfolding procedure was performed to obtain the 3D 

size histogram, which may helpful for discrimination of steatosis type (microvesicular or 

macrovesicular).

Spatial distribution of fat droplets in 3D space is challenging to capture due to lack of 

3D data, and 2D biopsy section cannot reveal the actual distribution of fat droplets in 3D 

space. This study used nearest neighbor distance and regional anisotropy to characterize the 

clustering accumulation of fat droplets and inter-regional variability in FF. By comparing the 

GDF parameters of random sections and real histological samples to select the optimal 3D 

liver volume, the distribution of nearest neighbor distance in 3D space was obtained based 

on the optimal model. To analyze the inter-regional variability in FF, subregions with side 

length of 160 μm were used considering the size of fat droplets (maximum value is 36.5 μm) 

as well as hepatocyte (approximately 20 μm). These two features were well characterized by 

the GDF fits, which agree well with a previous study for mice liver histology images (10).

In contrast to previous simulations based on morphological features of fat droplets from 2D 

biopsy sections (10,25), this study characterized the features in 3D space and developed a 

corresponding Monte Carlo model. Distributions of fat droplet size and nearest neighbor 

distance were significantly different for fat droplets in 2D and 3D spaces (Fig.4 and Fig.6). 

It was deemed necessary to evaluate the 3D morphological features of fat droplets from 2D 

tissue slices. Through statistical processing, fat droplets in the 2D virtual section showed 

similar distribution pattern with respect to real tissue slices.

Organization of fat deposits in tissue microstructure may be relevant to microscopic 

susceptibility effects, and induce relevant MRI signal behaviors (20,21,27). As an example, 

chemical shift-encoded MRI has been increasingly used to evaluate hepatic steatosis in 

clinical practices. This technique measures PDFF (unit in percentage) and R2* (unit in 

s−1), which are promising biomarkers for triglyceride concentration and iron concentration, 

respectively (28,29). Several studies have demonstrated positive correlations of PDFF and 

R2* for livers without iron overload, suggesting that fat droplets cause susceptibility 

effects (10,20,27). Other studies have shown that steatosis is associated with restricted 

water diffusion, plausibly because fat droplets reduce the space available for water motion 

(30). An accurate morphological description of hepatic steatosis in 3D space might allow 

modeling of the inhomogeneous microscopic magnetic field distributions induced by fat 

droplets to understand MRI signal behavior in the presence of liver steatosis (10,31), such 

as the impact on transverse relaxation rate. Similar models could be developed to better 

understand the restriction of water diffusion.

This study has several limitations. First, liver biopsy suffers from sampling variability due 

to inhomogeneous spatial distribution of fat droplets, which is inherent feature for hepatic 
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steatosis (32,33), and microvesicular fat may be difficult to resolve in H&E sections viewed 

under the microscope (11). Second, an indirect approach was adopted to obtain the size 

distribution and nearest neighbor distance distribution of fat droplets in 3D space, 3D 

construction from a series of biopsy slides is theoretically feasible, however, a tedious and 

challenging process limited by the number and thickness of tissue sections. Third, a simple 

cubic model was used for simulation by incorporating morphological features of fat droplets, 

and spatial distribution of fat droplets with respect to the anatomical structures (e.g., central 

vein and portal tract) in whole biopsy images is also warranted in a future study (25,26). 

Lastly, hepatic steatosis is commonly accompanied by other histological features such as 

inflammation, ballooning, fibrosis and steatohepatitis. Future studies are needed to examine 

how these other features might affect the morphological features of fat droplets.

5. CONCLUSION

In conclusion, Monte Carlo modeling of hepatic steatosis was developed based on the 

morphological features of fat droplets for human liver biopsy samples, and the simulated 

3D model demonstrated high similarity to real tissue samples. Accurate information about 

distribution of fat droplets in tissue microstructure may be helpful for understanding 

complicated MR signal behaviors. Moreover, the proposed method can also be applicable 

to other intracellular particles such as hemosiderin deposition, inclusion bodies or secretory 

vesicles.
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Highlights

• Organization of fat deposits may affect the evaluation of hepatic steatosis.

• Hepatic steatosis is modeled according to spatial distribution of fat droplets.

• The model demonstrates striking similarity with respect to real liver samples.

• The model can help understand MRI signal behaviors for human liver 

steatosis.
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Figure 1. 
Flowchart depicting the distribution of fat droplet size in 3D space from 2D slide.
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Figure 2. 
Flowchart depicting the distribution of fat droplet nearest neighbor distance in 3D space 

from 2D slide.
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Figure 3. 
Three representative liver biopsy samples (A-C) and their approximation images after 

morphological processing (D-F). Each fat droplet, which can be approximated as sphere, 

is represented as a circle in 2D tissue space.
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Figure 4. 
Distribution of fat droplet size in 2D (A) and 3D (B) tissue spaces for the three 

representative liver biopsy samples.
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Figure 5. 
Correlations among GDF parameters and FF for distribution of fat droplet size. (A) The 

estimated parameters βsize for 30 human liver biopsy samples are plotted against FF 

along with curve fit. (B) Correlation between parameter βsize and its respective parameter 

γsize. Note that the parameters βsize and γsize represent the width and skewness of size 

distribution, respectively.

Wang et al. Page 17

Comput Methods Programs Biomed. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Distribution of fat droplet nearest neighbor distance in 2D (A) and 3D (B) spaces for the 

three representative liver biopsy samples.

Wang et al. Page 18

Comput Methods Programs Biomed. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Correlations among GDF parameters and FF for distribution of nearest neighbor distance. 

(A) The estimated parameters βnnd for 30 human liver biopsy samples are plotted against 

respective FF along with curve fit. (B) Correlation between parameter βnnd and its respective 

parameter γnnd. Note that the parameters βnnd and γnnd represent the width and skewness of 

the nearest neighbor distance distribution, respectively.
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Figure 8. 
Regional anisotropy of fat droplet for the three representative liver biopsy samples. Each 

liver biopsy sample was gridded into 160 μm side square subregions, approximately 64 

hepatocytes, to investigate the inter-regional variability of FF. Horizontal and vertical axes 

shows the subregional FFs and their relative frequencies. The plots indicate the non-uniform 

distribution of fat droplets across regions.
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Figure 9. 
Correlations between GDF parameters and FF for regional anisotropy. (A) The estimated 

parameters βra for 30 human liver biopsy samples are plotted against respective FF along 

with curve fit. (B) The estimated parameters γra are plotted against respective FF along with 

curve fit. Note that the parameters βra and γra represent the width and skewness of regional 

anisotropy, respectively.
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Figure 10. 
Simulated liver fat morphology for FFs of 3.8%, 12.3% and 24.2%. (A-C) Simulated 3D 

liver morphological models with a side length of 800 μm. (D-I) Simulated 2D sections with 

thickness of 5 μm from the corresponding 3D models, solid circles represent fat droplets of 

different sizes. (J-O) Real 2D histological sections extracted from corresponding samples in 

Figure 3.
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Table 1.

Morphological description of hepatic steatosis.

Characterization Equation m b R 2

Size
βsize = exp(m × log(FF) + b) 0.3631 0.6599 0.5499

γsize = exp(m × log(βsize) + b) −0.6674 2.0189 0.9260

Nearest neighbor distance
βnnd = exp(m × log(FF) + b) −0.2172 −0.5203 0.5910

γnnd = exp(m × log(βnnd) + b) −0.6061 2.7762 0.8069

Regional anisotropy
βra = exp(m × log(FF) + b) 0.5119 3.2968 0.7040

γra = exp(m × log(FF) + b) 0.3305 0.8593 0.7571
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