
UC Berkeley
UC Berkeley Previously Published Works

Title
Quantum Ratcheted Photophysics in Energy Transport

Permalink
https://escholarship.org/uc/item/942646nm

Journal
The Journal of Physical Chemistry Letters, 11(19)

ISSN
1948-7185

Authors
Bhattacharyya, Pallavi
Fleming, Graham R

Publication Date
2020-10-01

DOI
10.1021/acs.jpclett.0c02351
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/942646nm
https://escholarship.org
http://www.cdlib.org/


Quantum Ratcheted Photophysics in Energy Transport
Pallavi Bhattacharyya and Graham R. Fleming*

Cite This: J. Phys. Chem. Lett. 2020, 11, 8337−8345 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: In this paper, we explore the scope of vibrations as quantum ratchets
that serve as nonthermal routes to achieving population transport in systems where
excitation transport between molecules is otherwise energetically unfavorable. In
addition to their role as channels of transport, we investigate the effect of resonance
of the vibrations, which are described by Huang−Rhys mixing, with excitonic energy
gaps, which leads to strongly mixed vibronic excitons. Finally, we explore the
interplay of resonance and Huang−Rhys mixing with electronic coupling between the
molecules, in the presence of a dissipative bath, in optimizing transport in such
systems. We find that while resonance is desirable, a moderate electronic coupling has a stronger positive effect in contrast to a large
electronic coupling, which results in delocalized excitations across molecules and hampers unidirectional transport. We also report a
special resonance regime that is able to circumvent the transport problems arising from large electronic couplings.

To exploit coherences to aid the architecture of synthetic
light-harvesting machinery is an area of rapidly

proliferating interest. Coherences in molecular systems occur
due to large electronic couplings between molecules, resulting
in delocalized excitations/excitons, which offer a route to
manipulating molecular systems away from bath-induced
dissipation and Boltzmann statistics. Theoretical calculations
by Ishizaki and Fleming suggest that quantum coherence could
be beneficial in overcoming local energy traps, thus mediating
efficient EET (electronic energy transport) in the Fenna−
Matthews−Olson photosynthetic complex.1 A key benefit,
thus, can be realized in the potential to control molecular
dynamics and direct energy/charge transport by harvesting
coherences. Conjugated molecular aggregates, for instance, are
promising candidates for such control, due to the extended π-
stacking prevalent in such systems due to the highly ordered
microscopic assemblies. A major disadvantage, however, is
posed by the fragility of molecular coherences, since they are
extremely susceptible to destruction by their surroundings/
bath. As a consequence, disorder and imperfections in the
molecular assemblies will diminish the exciton length and limit
coherence. A plethora of theoretical studies report that
vibrationally enhanced transfer achieves an optimal transfer
efficiency in such scenarios.2,3 Also, vibrations, if they are
resonant with an excitonic energy gap and are strongly coupled
to the electronic transition, have the capacity to provide a
means to circumvent this difficulty. This is because the
excitation can switch back and forth between the exciton and
the vibration that is less susceptible to decoherence, resulting
in longer-lived coherences.4−7 For instance, calculations by
Plenio and co-workers suggest that nonequilibrium processes
due to spectrally sharp vibrational modes can effectively
compete with dissipative pathways induced by the thermal
bath.8 In another work reported by Cao and co-workers, it is

proposed that underdamped vibrations resonant with energy
gaps in the system can drive excitation transport, in addition to
retention of coherences for longer time scales.9 The work by
Bennett et al. suggests that incoherent vibronic transport
results in more efficient excitation transfer, compared to
coherent transport, if the energetic disorder is greater than the
coupling between the donor and the vibrationally excited states
on the acceptor.10 A recent work from our group suggests that
underdamped vibrations, resonant with excitonic energy gaps
in the LHCII complex, can drive population transport across
large energy gaps that are thermally inaccessible.11 Therefore,
vibrations and coherences are important tools that can be
exploited for the design of efficient energy-harvesting and
charge transport devices. Key advances that utilize such design
principles are actively studied by Therien and co-workers,
where they report the synthesis of “supermolecules”, which are
composed of highly conjugated and strongly coupled PZnn
porphyrin arrays.12−21 The studies suggest that these molecules
enjoy resonances between vibrations and excitons, as well as
strong vibronic coupling between vibrations and excitonic
transitions. This is expected to lead to vibronic mixing, which
could pave the way to robust coherences. The studies also
report transition dipole moments for the S0 → S1 transition
that increase progressively as the number of PZnn units
increase. A key manifestation of this is large electronic
couplings across the porphyrin assemblies, which again ensures
large exciton coherence lengths. In this work, we explore the
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interplay between resonance and electronic coupling and
Huang−Rhys mixing, in an effort to formulate design
principles that would ensure efficient energy harvesting in
synthetic devices. We specifically investigate the role of
vibrations as nonthermal routes to ratcheting populations
between molecules.
In this work, our focus is on the scope of quantum ratcheted

photophysics in model systems where energy transport is
otherwise energetically unfavorable. This is demonstrated in
Figure 1a, where the objective is to achieve a fast and efficient

transport of excitation from the electronically excited donor
molecule D1* to an acceptor molecule A. A favorable electronic
coupling between D1* and A would potentially lead to coherent
transport but the spatial separation between them is large,
resulting in small electrostatic couplings. The other possibility
is incoherent Forster transport, which again is unfavorable due
a large spatial separation. Also, the energetic constraint ED1

<
EA necessitates an uphill transport from D1* to A. This pathway
is thermally inaccessible if the energy gap ΔEA,D1

> kBT, where
T is the temperature of the thermal bath. To circumvent the
transport problems, we use a second intermediate donor
molecule D2, which acts as a bridge between D1 and A, given
that we have an efficient, nonthermal route to transporting
excitation from D1* to D2*. Here, D2* is the electronically
excited S1 state on D2. The excitation, then, undergoes a
downhill transport from D2* to A. We propose to accomplish
this by exploiting a vibrational mode that ratchets population
from D1* to D2* through the mechanism discussed below.
Denoting the electronic excitons formed from a two-level
electronic Hamiltonian defined by the S1 states of D1* and D2*
as m and n, the transport between m and n can be effectively
mediated by a vibrational mode that is resonant/quasi-
resonant with the excitonic energy gap Δϵmn. In the simplest
model, the presence of the vibrational mode is incorporated
through its Huang−Rhys mixing. We consider A to be an
energy sink, thus the energy transport from D2* to A is
unidirectional and irreversible. Therefore, for a minimal
description of the system Hamiltonian that adequately
describes quantum ratcheting, we will consider only the
electronic/vibronic states of D1* and D2*, while the excitation
transfer from D2* to A is easily evaluated by a simple kinetic
equation. We investigate the interplay between the Huang−
Rhys mixing, the resonance/quasi-resonance of the vibrational
mode with the excitonic energy gap and coherence, arising
from the electronic coupling between D1* and D2*, in dictating

the transport between these molecules, in the presence of a
dissipative bath. It is important to note here that the relaxation
of the vibrationally excited state on D1*, due to its interaction
with the bath, serves as a competing pathway to transport from
D1* to D2*. In our calculations, we incorporate the effects of
such relaxation.
To model the ratcheting dynamics, we define a system

Hamiltonian that explicitly includes the vibrational mode,
along with the electronically excited states of D1 and D2. For
efficient yet adequate calculations, we define our local basis as
follows: {|D1vD1,0′

e vD2,0
g ⟩, |D1vD1,1′

e vD2,0
g ⟩, |D2vD1,0

g vD2,0′
e ⟩}, where the

first term in the ket indicates the species that is electronically
excited. vD,l

k contains the vibrational information on the donor
species D (D ∈ {D1, D2}), given by the vibrational quantum
number l in the k electronic state, where k ∈ {g, e}, implying
the ground and excited electronic states, respectively. The
prime symbol “′” on the vibrational state l on e indicates that
this vibrational wave function is structurally different from its
counterpart on g due to a different charge distribution on e. It
is worth emphasizing that it is always possible to add more
vibrational information to the Hamiltonian, by incorporating a
larger vibrational basis. In our studies, however, the focus is the
ratcheting dynamics stemming from the excitation of the
vibrational mode on D1* that places D1 at a higher energy
compared to D2* and the subsequent excitation transfer due to
resonance. Therefore, including up to the first vibrationally
excited state on D1*, while considering the vibrational ground
state on D2*, is adequate to infer more about the ratcheting
photophysics.
The vibronic Hamiltonian of the system, with respect to the

local basis described above, can be written as follows:

= + Ω

′ ′

′ ′

′ ′ ′ ′

i
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jjjjjjjjjjjjjjjj
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Here, ED1
and ED2

are the energies of the ground vibrational
states in the electronically excited e states for D1 and D2,
respectively. The vibrational mode has a frequency Ω, J is the
electronic coupling between D1 and D2, and Svv′

D measures the
overlap between the nuclear wave functions describing the
vibrational states v (residing on the ground electronic state)
and v′ (residing on the electronically excited state)
respectively, on D (D ∈ {D1, D2}) and is expressed in terms
of the Huang−Rhys factors. While Hsys describes the electronic
and vibrational excitations, we use the following total
Hamiltonian H that incorporates the phonons, also referred
to as the bath/environment, which are modeled as harmonic
oscillators in Hph, and the system−bath interaction described
by Hsys−ph.

= + +−H H H Hsys sys ph ph (2)

where

∑ ω= +
i

k

jjjjjjj
y

{

zzzzzzzH
p

m
m q

2
1
2j k

jk

jk
jk jk jkph

,

2
2 2

(3)

and Hsys−ph = ∑jQj|j⟩⟨j|, where

ν= ΣQ m qj k jk jk jk (4)

Figure 1. Schematic depicting ratcheted energy transport. Direct
transfer of excitation from D1* to A is unfavorable, both energetically
and owing to a large spatial separation between them. To address this,
we use an intermediate molecule D2, which is placed between D1 and
A. A vibration is used as a quantum ratchet to achieve nonthermal
transport of population from D1* to D2*, followed by a unidirectional
decay to A, which acts as an energy sink. The relaxation of the
vibrational mode on D1*, due to its interaction with the bath, serves as
a competing pathway.
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Here, mjk, qjk, pjk, and ωjk describe the mass, position,
momentum, and angular frequency, respectively, of the kth
bath oscillator pertaining to the jth system state. The system−
bath interaction, in eq 4, is diagonal with respect to the local
basis and is considered to be adequately described by a linear
dependence of the position coordinate qjk. νjk describes the
coupling strength of the kth oscillator with the jth site.
For simulating dynamics, we will employ a reduced density

matrix description of the system and use a near-analytic
approximate approach.22−24 This approach uses a unitary
mapping that transforms to a stationary adiabatic basis, formed
by diagonalizing Hsys + Hsys−ph, and frozen at the equilibrium
geometry. The technical definition for stationary adiabatic
states, therefore, differs from that of excitons, which are
eigenstates formed by diagonalizing only the system Hamil-
tonian and do not reflect any contribution from the bath. It is
important to note here that though they differ in their
definitions, the energies of the excitons formed by diagonal-
izing the system Hamiltonian are the same as those of the
stationary adiabatic states.11

The chief benefit of the unitary mapping arises from a
decoupling between decoherence, described by fluctuations in
the energies of the dynamically evolving adiabatic states due to
shifting of the bath position coordinates, and phonon-mediated
population relaxation, described by a derivative operator that
drives a change in electronic state, in conjunction with bath
momenta. This is followed by a nonperturbative treatment of
decoherence that captures the effects of the dynamically
fluctuating energies of the stationary adiabatic states (see eqs 6
and 7), while the population relaxation is described
perturbatively. The method has been described in rigorous
detail in previous work; therefore, we will only discuss the final
expression for the reduced density operator we use to describe
the system.
While |α⟩⟨α| describes the initial density operator at t = 0,

where α denotes a local state, we intend to determine the
extent of overlap of the excitation at time t with the local basis
coherence |γ⟩⟨β|. In the expression below, m, n, m′, and n′
denote the stationary adiabatic states, ϵn denoting the energy of
the stationary adiabatic state n. The bath is described by the
spectral density function S(ω), defined below, at temperature
T.

∑

∑

ρ β α α γ

β α α γ

≈ ⟨ | ⟩⟨ | ⟩⟨ | ⟩⟨ ′| ⟩

+ ⟨ | ⟩⟨ | ⟩⟨ | ′⟩⟨ ′| ⟩

×

βγ

ϕ

′
′

′ ′
′ ′

− ϵ −′ ′

t m n n m p t

m n n m p t

( ) ( )

( )

e e

m n m
mm nn

m n n m
mm nn

i t t

, ,
,

, , ,
,

( )nn n n, (5)

Here, ϵnn′ = ϵn
0 − ϵn′

0 , ϕn,n′(t) = Re[ϕn,n′(t)] + i Im[ϕn,n′(t)],
where ϕn,n′(t) describes the effects of decoherence, with the
real and imaginary components given as
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Here, S(ω) is the spectral density of the environment, defined
as

∑ω
ν

ω
δ ω ω= −S

m
( )

2
( )

k

jk jk

jk
jk

2

(8)

While ϕ− ′e t( )n n, is evaluated nonperturbatively and describes the
effects of decoherence, the term pmm′,nn′(t) addresses the effects
of relaxation arising from a perturbative treatment of the
nonadiabatic derivative operator, in conjunction with bath
momenta, and is evaluated using a Markovian master equation,
which is solved using matrix algebra. The relaxation rates,
arising from the perturbative treatment of relaxation, for a pair
of stationary adiabatic states m and m′ are given as

∑π
ω

Γ =
−

⟨ ′| ⟩⟨ | ⟩ω′
′

′

S
m j j m2

( )

e 1
( )mm

mm
k T

j
/

2
mm B

(9)

and

Γ = Γ′ω
′ ′em m

k T
mm

/mm B (10)

In the above expression, ωmm′ > 0, where ωmm′ = ϵm
0 − ϵm′

0 .
We will now apply the above formalism to investigate

quantum ratcheted energy transport in various model systems.
In our discussion forward, we will loosely refer to stationary
adiabatic states as adiabatic states, for convenience. However, it
is important to keep in mind the subtle distinction between
excitons and adiabatic states.
Table 1 enumerates the system parameters for the various

models we consider. In Figures 2 and 4, we demonstrate the

energy level diagrams for each of these models, where l1, l2, and
l3 label the local states. l1 and l2 are localized on D1 and label
the states |D1vD1,0′

e vD2,0
g ⟩ and |D1vD1,1′

e vD2,0
g ⟩, respectively. l3 is

localized on D2 and labels the state |D2vD1,0
g vD2,0′

e ⟩. a1, a2, and a3
label the stationary adiabatic states. We list the eigenvector
contributions for the adiabatic states with respect to the local
states, for all the six models, in the Supporting Information.
The quantity we wish to investigate here is the population
transport to l3, while l2 is considered the initial seat of

Table 1. System Parameters for the Various Models We
Considera

model 1 model 2 model 3 model 4 model 5 model 6

ΔED2,D1

(cm−1)
800 800 400 800 400 400

J (cm−1) 200 200 400 200 400 400
Ω (cm−1) 895 800 895 700 646 646
σ 0.01 0.01 0.01 0.01 0.01 0.1
aΔED2,D1

denotes the difference between the bare electronic excitation
energies on D2 and D1, respectively. J denotes the electronic coupling
between D1 and D2, and Ω is the excitation frequency of the
vibrational mode. σ denotes the Huang−Rhys factor for the
vibrational mode.
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excitation. This is achieved by directly exciting l2 from the
ground electronic state, by using a UV−vis radiation field of
suitable frequency. A second way of placing the initial
population at l2 is by first exciting l1 using a UV−vis pulse,
followed by an IR pulse that creates the vibrational excitation,
leading to the population being transported from l1 to l2.
Therefore, for ratcheted photophysics, we consider the
temporal evolution of population, considering l2 to be the
initial state.
For model 1, the vibronic system Hamiltonian and the

energy level diagram are depicted in Figure 2a. If we consider
the electronic-only Hamiltonian formed by the basis states |D1⟩
and |D2⟩,

=
i

k

jjjjjj
y

{

zzzzzzH
E J

J E

D

D
electronic

1

2 (11)

the energy gap between the electronic excitons is given as
Δϵelectronic = 895 cm−1, which is used as the frequency of the
vibrational mode. In other words, the vibrational mode is
resonant with the energy gap between the electronic excitons.
We incorporate vibrational relaxation in our calculations, since
the relaxation of the vibrational mode on l2, due to its
interaction with the bath, acts as a competing pathway to l2 →
l3 transport. The electronic and vibrational environments are
both modeled by the Drude spectral density, where the
reorganization energies are given as λelec = 100 cm−1 and λvib =
10 cm−1. λvib, thus, corresponds to a vibrational reorganization

time given as τvib ≈ 3.3 ps. The bath is considered to reside at
T = 300 K, and the phonon relaxation frequency for both
electronic and vibrational excitations is ωc = 30 cm−1. We use
these bath parameters for all the models. To evaluate excitation
transport to the energy sink A, we choose Γl3→A = 1.8 × 1012

s−1, where Γl3→A is the rate of decay of excitation from the local
state l3 to A.
A closer look at the energy level diagram for model 1 tells us

that the lowest energy adiabatic state a1 is mostly localized on
the local state l1, with a small contribution from l3, and the
highest energy adiabatic state a3 is localized on the local state l2
with a small contribution from l3. In contrast, the adiabatic
state a2 is more mixed, with it being localized mostly on l3, but
with modest contributions from both l1 and l2 (see Table S1).
Since the quantity of interest is the temporal evolution of
population at l3, it is easy to see that the adiabatic states a2 and
a3 will play prominent roles in dictating the dynamics, since
they are mostly localized on l3 and l2, respectively. Therefore,
the faster the a3 → a2 pathway is, the faster the l2 → l3 pathway
will be, since a3 → a2 is downhill transport, which has a greater
relaxation rate than uphill transport. The uphill transport,
nevertheless, has a sizable rate because the energy gap between
a3 and a2 is thermally accessible at T = 300 K. The relaxation
rates between pairs of adiabatic states, computed using eqs 9
and 10, are listed in Table 2 for the various models. Apart from
the energetics, the overlap between the local and the adiabatic
states, as seen in eqs 9 and 10, will also dictate the rate of
energy transport. A larger overlap for a pair of adiabatic states

Figure 2. Energy level diagrams for models 1, 2, 3, and 4. l1 and l2 are localized on D1 and label the states |D1vD1,0′
e vD2,0

g ⟩ and |D1vD1,1′
e vD2,0

g ⟩,

respectively. l3 is localized on D2 and labels the state |D2vD1,0
g vD2,0′

e ⟩. a1, a2, and a3 label the stationary adiabatic states, and the color coding of the
adiabatic states indicates the presence of the respective local states.
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with a given local state will contribute to an increased rate
between the adiabatic states. Therefore, a more mixed
adiabatic state that enjoys strong overlap with multiple local
states is expected to boost transport. Strong electronic
coupling between local states will also lead to more mixed
states. Finally, the Huang−Rhys factor also determines mixing
to an extent, since a larger Huang−Rhys factor implies a more
nonlocal vibration that contributes to mixing through the off-
diagonal overlap terms in eq 1. However, we should also note
that a larger off-diagonal term will also lead to greater splittings
between adiabatic states that will have an adverse effect on
rates. Also, a greater mixing implies that the local states are
strongly mixed to form the adiabatic states. Therefore, when
we probe the population evolution at the local states,
unidirectional transport between the local states is reduced
since the adiabatic states are delocalized across the local states,
thus enabling back-transport between the local states. There-
fore, for maximum yield, the system will need to achieve the
limit of optimum mixing, since this will determine both the
energy splittings, and the overlap of adiabatic states with local
states. Figure 3a depicts the local populations evolving with
time for model 1, and we find that the population at l3
increases quite rapidly and overshoots the population at l2
before 100 fs.
We now compare the previous model with model 2, where l2

and l3 are degenerate, and the vibrational mode has a
vibrational frequency 800 cm−1, which is quasi-resonant with
the excitonic energy gap Δϵelectronic = 895 cm−1. The immediate

effects can be observed in the energy level diagram for model 2
in Figure 2b. We see that the mixing in the adiabatic states a3
and a2 is reversed compared with model 1. a3 is now the more
mixed adiabatic state and is localized mostly on l3 with small
contributions from both l1 and l2 (see Table S2). a2 is localized
on l2, with a small contribution from l3. a1 is exactly the same
for both models. While the energy gap between a3 and a2 is
almost the same as in model 1, the rates are somewhat different
(see Table 2) due to the fact that the higher energy a3 state is
now the more mixed state compared to the mostly local lower
energy a2. A second important consequence is the pathway l2
→ l3, which we are interested in for the ratcheted photophysics
and which is now facilitated through the uphill transport
pathway a2 → a3 and, hence, has a lower transport rate
compared to the downhill route. However, for a bath
temperature of 300 K, it is a thermally accessible pathway. A
comparison of the populations at l3 in Figure 3 for models 1
and 2 reinforces the energetic constraints of model 2 and
depicts a lower thermal population at l3 for model 2.
In model 3, we reduce the electronic energy gap between the

local sites D1 and D2 (ΔE = 400 cm−1) and increase the
electronic coupling J in eq 11, such that we have the same
energy gap between the electronic excitons Δϵelectronic = 895
cm−1, as in models 1 and 2. This is used as the frequency of the
vibrational mode in the vibronic Hamiltonian for model 3 in
Figure 2c, and therefore, the vibrational mode is resonant with
the energy gap between the electronic excitons. A direct
consequence of increasing the value of J is larger off-diagonal

Figure 3. Population evolution at the local states l1, l2, and l3 for models 1, 2, 3, and 4. The rate of decay of excitation from l3 to A is Γl3→A = 1.8 ×
1012 s−1, where A acts as an energy sink. The blue curve depicts the growth of population at A.
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couplings in the vibronic Hamiltonian. The coupling between
the local states l1 and l3 is much larger compared to that
between l2 and l3. Consequently, the adiabatic states a1 and a2
have sizable overlap with the local states l1 and l3, with a2
having a small contribution from l2. a3 is predominantly
localized on l2, with a very small contribution from l3 due to a
small, nonzero coupling between l2 and l3 (see Table S3).
Despite the creation of more mixed states arising from a larger
electronic coupling, the mixing here does not boost the
transport between l2 and l3, because (a) the mixing occurs
mostly between l1 and l3, leading to formation of a1 and a2, and
possibly a somewhat boosted transport between a2 and a1 due
to the sizable overlap between the local and adiabatic states
that affect the rates (eqs 9 and 10) (a3 that is localized on l2 is

mostly unaffected by this mixing) and (b) compared to models
1 and 2, the energy gap between a3 and a2 is larger, since we
reduce the energy gap between l1 and l3 in this model at the
cost of an increased value of J and a resonant vibrational mode,
resulting in lower transport rates. This study shows that while a
moderate amount of mixing might promote boosted transport
as in model 1, a large value of an electronic coupling, while
considering a resonant vibrational mode for a given ΔED2,D1

,
could actually result in slower rates between l2 and l3, as in
model 3. Also, as discussed earlier, a large off-diagonal coupling
implies reduced unidirectional transport to l3. A comparison of
the rates for models 1, 2, and 3 in Table 2 shows that rates for
model 3 are significantly lower than those for models 1 and 2.
In models 1 and 3, we have considered vibrational modes

resonant with the energy gap between electronic excitons. In
model 2, the vibrational mode is quasi-resonant; however, l2
and l3 are degenerate, resulting in closely spaced adiabatic
states and, therefore, sizable transport from l2 to l3. In model 4,
we consider a nonresonant vibrational mode with a vibrational
frequency of 700 cm−1 while Δϵelectronic = 895 cm−1. We find
that the adiabatic states a1, a2, and a3 are predominantly
localized on l1, l2, and l3, respectively, and a1 and a2 have very
small contributions from l3 and l1, respectively (see Table S4).
As a result of the negligible mixing, the term in the relaxation
rates for a pair of adiabatic states in the rate equations, which
arises from the overlap between the local states and the given
pair of adiabatic states, is negligible and results in very small
transport rates (see relaxation rates for model 4 in Table 2).
Therefore, resonance/quasi-resonance is desirable since this

Figure 4. Energy level diagrams and population evolution at the local states l1, l2, and l3 and acceptor A, for models 5 and 6. The oscillations in the
local populations in model 6 have a frequency of 200 cm−1, arising from the energy gap between the stationary adiabatic states a3 and a2.

Table 2. Relaxation Rates between the Stationary Adiabatic
States, Computed Using Eqs 9 and 10a

model 1 model 2 model 3 model 4 model 5 model 6

Γa3→a1 0.02 0.22 0.01 0.25 0.47 0.37

Γa3→a2 23.87 26.40 0.39 0.97 46.91 8.07

Γa2→a1 0.23 0.03 1.04 0 0.58 0.78

Γa2→a3 17.71 19.77 0.11 0.47 33.93 3.09

Γa1→a2 0 0 0.01 0 0.01 0.02

Γa1→a3 0 0 0 0 0.01 0

aFor example, Γa3→a1 measures the downhill relaxation rate from the
adiabatic state a3 to the adiabatic state a1. All the values in the table
are to be multiplied by a factor of 1012 s−1.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://dx.doi.org/10.1021/acs.jpclett.0c02351
J. Phys. Chem. Lett. 2020, 11, 8337−8345

8342

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.0c02351/suppl_file/jz0c02351_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.0c02351/suppl_file/jz0c02351_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02351?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02351?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02351?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02351?fig=fig4&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://dx.doi.org/10.1021/acs.jpclett.0c02351?ref=pdf


enables the formation of mixed adiabatic states that leads to
boosted transport.
Models 5 and 6 differ from each other with respect to the

Huang−Rhys factor (0.01 for model 5 and 0.1 for model 6,
implying a more nonlocal vibrational mode). While a larger
Huang−Rhys factor implies the involvement of multiple
vibrational states in the dynamics, a larger vibrational basis is
a subject for future study. For these models, we explore a
special case where the vibrational mode frequency of 646 cm−1

is resonant with the energy gap between the higher adiabatic
state and the lower local state in the electronic-only
Hamiltonian in eq 11. A significant consequence of this can
be seen in the energy level diagrams for models 5 and 6 in
Figure 4, where the adiabatic states are more strongly mixed
when compared with the previous models. While the lowest
adiabatic state a1, for both the models, is given by a
superposition of l1 and l3, with a stronger contribution from
the lower energy local state l1, the higher energy adiabatic
states a2 and a3 are strongly mixed adiabatic states, featuring
sizable contributions from all the local states l1, l2, and l3 (see
Tables S5 and S6). While the off-diagonal couplings between l1
and l3 for these two models are not too different, the off-
diagonal coupling between l2 and l3 in model 6 is nearly 3
times that of the coupling in model 5, resulting in a larger
splitting (=200 cm−1) between the adiabatic states a3 and a2 in
model 6, compared to an energy splitting of 68 cm−1 between
a3 and a2, in model 5. The larger off-diagonal coupling between
l2 and l3 in model 6 is a consequence of the larger Huang−
Rhys factor for model 6. From the energy level diagram, it is
easy to see that the transport from l2 to l3 will mostly be
mediated via the adiabatic states a3 and a2. Therefore, the
larger energy splitting between a3 and a2 gives smaller
relaxation rates for model 6, as seen from the rates in Table
2 for models 5 and 6. From the population evolution plots in
Figure 4, we can see that the population at l1 grows faster for
models 5 and 6, compared to the previous models. This can be
attributed to the fact that the local state l1 has presence in the
adiabatic states a3 and a2 that feature a strong contribution

from the initial seat of excitation at l2, which contributes to the
l2 → l1 transport. The l2 → l1 transport is faster in model 6
compared to model 5 since the energy gap between a2 and a1,
where a1 features a strong contribution from l1, is lesser in
model 6, compared to model 5. The local state populations for
model 6 exhibit oscillations at short times (up to ≈200 fs) that
gradually decohere due to interaction with the bath. The
oscillations have a frequency of 200 cm−1, arising from the
energy gap between the adiabatic states a3 and a2. The local
state population at l3 is seen to evolve similarly for models 5
and 6 at longer times, unlike the populations at l2 and l1 that
evolve differently for the two models.
Figure 5a compares the temporal evolution of the acceptor

population for all the six models. To reiterate, l2, which labels
|D1vD1,1′

e vD2,0
g ⟩, is the initial seat of excitation localized on D1,

while l3, which labels |D2vD1,0
g vD2,0′

e ⟩, is localized on D2. In our
calculations, we investigate the transport from l2 to l3, followed
by a unidirectional decay to A, which serves as an energy sink.
The rate of decay for the process is given as Γl3→A = 1.8 × 1012

s−1. Transforming to the stationary adiabatic basis, the rate of
decay from a stationary adiabatic state to A can be expressed in
terms of the respective eigenvector components with respect to
l3. Model 1 is seen to result in the fastest transport at
subpicosecond time scales but at longer times, models 5 and 6
take over. Given the vibrational reorganization time of τvib =
3.3 ps, the excitation transport in model 1 outcompetes the
vibrational relaxation the best, compared to the other models.
It is surprising to note that the acceptor populations for models
5 and 6 grow almost together, despite markedly different
relaxation rates for the two models. On the other hand, the
eigenvector components that describe the overlap of the
adiabatic states with the local states for both these models are
almost identical. This is possibly the reason for similar acceptor
populations for these two models, since the decay of
population from an adiabatic state to the acceptor is described
by only the eigenvector components with respect to l3. It is to
be noted that the rate Γl3→A is a key parameter that dictates the

Figure 5. (a) Comparison of the acceptor populations for the six models discussed in our paper and designated as M1−M6, given that the rate of
decay of excitation from l3 to A is Γl3→A = 1.8 × 1012 s−1. The growth of population at A is almost identical for models 5 and 6, which differ from
each other with respect to the Huang−Rhys factor (0.01 for model 5 and 0.1 for model 6), despite the markedly different local state populations, as
seen in Figure 4, and relaxation rates, listed in Table 2. Model 1 is seen to result in the fastest transport to A for subpicosecond time scales, followed
by model 2. At longer times, models 5 and 6 take over. (b) Acceptor population at 4 ps, depicted by the z-axis label A, plotted with respect to the
electronic coupling parameters J and ΔΩ, which denotes the shift of the vibrational frequency Ω from the electronic-only stationary adiabatic
energy gap between the S1 states of D1 and D2, for models 1−5. Model 6 is not included explicitly since the acceptor population in model 6 has an
almost identical evolution as in model 5, which differ with respect to the Huang−Rhys factor. The Huang−Rhys parameter σ is not included as a
coordinate since the acceptor populations are seen to be almost identical for models that differ only with respect to σ.
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unidirectional transport. We have compared the acceptor
populations for the above six models at Γl3→A = 9 × 1012 s−1

and Γl3→A = 0.45 × 1012 s−1, in Figures S1 and S2. A larger

value of Γl3→A is seen to result in a faster growth at A for all

models. For Γl3→A = 9 × 1012 s−1, the transfer of population to
A is extremely rapid for models 1, 2, 5, and 6, compared to
Γl3→A = 0.45 × 1012 s−1. Figure 5b depicts the acceptor
population at 4 ps for all the models, plotted with respect to
the electronic coupling J and ΔΩ, which denotes the shift of
the vibrational frequency Ω from the electronic-only stationary
adiabatic energy gap between the S1 states of D1 and D2 in eq
11. The Huang−Rhys parameter σ is not included as a
coordinate since the acceptor populations are seen to grow
almost together for models that differ with respect to σ. It is
noted that resonance/quasi-resonance, along with moderate J
is desirable for enhanced transport to A. However, models 5
and 6, despite having ΔΩ = 249 cm−1, lead to fastest transport
to A at longer times. The reason for this is that they explore a
special resonance regime where the vibrational frequency is
resonant with the energy gap between the higher adiabatic
state and the lower local state in the electronic-only
Hamiltonian in eq 11, which leads to optimally mixed
adiabatic states and a boosted transport.
In the discussion above, we demonstrate that the system

needs to achieve an optimum balance between electronic
coupling, Huang−Rhys mixing, and resonance of the vibra-
tional mode, to optimize l2 → l3 transport. Among all the
models that we discuss, model 1 is best suited for a fast
transport to l3 at subpicosecond time scales. While it enjoys a
resonant vibrational mode, the electronic coupling between D1
and D2 is about half of the electronic coupling considered in
model 3. An optimum electronic coupling is desirable for
formation of mixed adiabatic states that can boost rates, since
the rates feature an overlap between the local and adiabatic
states. However, a very large electronic coupling in the
presence of a resonant mode could have an adverse effect on
transport as it diminishes unidirectional transport since the
adiabatic states are now delocalized across the local states. On
the other hand, if the vibrational mode is resonant/quasi-
resonant with the energy gap between the higher adiabatic
state and the lower local state in the electronic-only
Hamiltonian, as seen in models 5 and 6, it explores a special
regime where we have strongly mixed adiabatic states due to
this specific form of resonance. Such models lead to enhanced
transport. If the vibration is described by a large Huang−Rhys
factor, as in model 6, coherent oscillations could be observed at
shorter time scales that eventually decohere. A faster l2 → l3
transport leads to a quicker growth of the acceptor population.
Therefore, models 1, 2, 5, and 6 are best suited for an efficient
transport to A. It is important to note that though different
values of Huang−Rhys parameters, for given values of J and
ΔΩ, result in markedly different local state evolutions, they
result in similar growth at A, as seen for models 5 and 6. While
the calculations discussed in this work focus on energy
transport, we can expect similar principles to apply to ratcheted
electron transport. This is a subject of future research.
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