
UCLA
UCLA Previously Published Works

Title
Developing remote patient monitoring infrastructure using commercially available cloud
platforms.

Permalink
https://escholarship.org/uc/item/9426j2xd

Authors
Cao, Minh
Ramezani, Ramin
Katakwar, Vivek
et al.

Publication Date
2024

DOI
10.3389/fdgth.2024.1399461

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9426j2xd
https://escholarship.org/uc/item/9426j2xd#author
https://escholarship.org
http://www.cdlib.org/

TYPE Original Research
PUBLISHED 06 November 2024| DOI 10.3389/fdgth.2024.1399461
EDITED BY

Xi Long,

Eindhoven University of Technology,

Netherlands

REVIEWED BY

Isabel Román Martínez,

Sevilla University, Spain

Constantinos S. Pattichis,

University of Cyprus, Cyprus

*CORRESPONDENCE

Ramin Ramezani

raminr@ucla.edu

RECEIVED 12 March 2024

ACCEPTED 14 October 2024

PUBLISHED 06 November 2024

CITATION

Cao M, Ramezani R, Katakwar VK, Zhang W,

Boda D, Wani M and Naeim A (2024)

Developing remote patient monitoring

infrastructure using commercially available

cloud platforms.

Front. Digit. Health 6:1399461.

doi: 10.3389/fdgth.2024.1399461

COPYRIGHT

© 2024 Cao, Ramezani, Katakwar, Zhang,
Boda, Wani and Naeim. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Digital Health
Developing remote patient
monitoring infrastructure using
commercially available cloud
platforms
Minh Cao1, Ramin Ramezani1*, Vivek Kumar Katakwar2,
Wenhao Zhang1, Dheeraj Boda2, Muneeb Wani2 and Arash Naeim3

1Center for Smart Health, University of California Los Angeles, Los Angeles, CA, United States, 2UCLA
Health Information Technology, University of California Los Angeles, Los Angeles, CA, United States,
3David Geffen UCLA School of Medicine, University of California Los Angeles, Los Angeles, CA,
United States
Wearable sensor devices for continuous patient monitoring produce a large
volume of data, necessitating scalable infrastructures for efficient data
processing, management and security, especially concerning Patient Health
Information (PHI). Adherence to the Health Insurance Portability and
Accountability Act (HIPAA), a legislation that mandates developers and
healthcare providers to uphold a set of standards for safeguarding patients’
health information and privacy, further complicates the development of
remote patient monitoring within healthcare ecosystems. This paper presents
an Internet of Things (IoT) architecture designed for the healthcare sector,
utilizing commercial cloud platforms like Microsoft Azure and Amazon Web
Services (AWS) to develop HIPAA-compliant health monitoring systems. By
leveraging cloud functionalities such as scalability, security, and load
balancing, the architecture simplifies the creation of infrastructures adhering
to HIPAA standards. The study includes a cost analysis of Azure and AWS
infrastructures and evaluates data processing speeds and database query
latencies, offering insights into their performance for healthcare applications.

KEYWORDS

big data analytics, cloud computing, healthcare, internet of things (IoT), wireless sensor
networks, remote patient monitoring, AI

1 Introduction

In recent years, the proliferation of affordable smart devices, including smartphones,

smartwatches, and Bluetooth-enabled sensors, has paved the way for the emergence of

mobile health applications. These devices incorporate various sensors such as

accelerometers, gyroscopes, proximity beacons, and ECG sensors, some of which are

integrated into smartwatches or smartphones. They have the capability to capture

patients’ real-time activity and pathophysiological information with high accuracy (1–4).

Furthermore, they often possess predictive capabilities, enabling the anticipation of

patient outcomes in advance (5–7). These devices can function as standalone wireless

sensors or operate alongside other wireless sensors to create a sensor network that

collects and preprocesses the data before uploading it to a cloud service. The interaction

among these components with the cloud service forms the backbone of a remote

patient monitoring system (RPM).
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2024.1399461&domain=pdf&date_stamp=2020-03-12
mailto:raminr@ucla.edu
https://doi.org/10.3389/fdgth.2024.1399461
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1399461/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1399461/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1399461/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1399461/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
As the number of sensors in the RPM system increases,

scalability becomes crucial to handle the growing data volume

while adhering to healthcare security standards. However,

constructing and maintaining scalable infrastructures, along with

developing patient monitoring algorithms, can be overwhelming

and challenging for companies or research institutes primarily

focused on patient care. To address this challenge, leveraging

cloud computing services from available commercial cloud

providers is essential. Major cloud platforms such as Microsoft

Azure and Amazon Web Services (AWS) provide the necessary

infrastructure modules suitable for remote patient monitoring

solutions, including IoT hub, data storage, computing, and web

application hosting. To fully capitalize on the scalability offered

by cloud infrastructure, it is advisable to design the RPM system

using the microservice architecture. This architectural approach

involves breaking down the large application into multiple

smaller modular applications that can be developed

independently. By adopting this approach, the system can

effectively leverage the benefits of the emerging container

technology, allowing software developers to deploy their

applications in any environment, regardless of the underlying

infrastructure. This strategy reduces the technical complexities

associated with deploying, managing, and scaling cloud

applications. Furthermore, it enables healthcare applications to be

deployed across various cloud platforms while complying

with data security standards, such as those outlined in the

HIPAA guidelines.

This paper presents a proposal for a HIPAA-compliant RPM

architecture that encompasses the collection, analysis, and

visualization of patients’ data, with the ability to scale

automatically as needed. The paper focuses on discussing the key

aspects of such systems and outlines different approaches to

leverage available services on major cloud platforms, specifically
FIGURE 1

Overview of the proposed cloud architecture. The data from the sensor will b
data processing layer. Once the processing is done, the data will be stored lo
client will fetch their assigned data from the database layer. This figure pro
paper.

Frontiers in Digital Health 02
Azure and AWS, for the development and deployment of an

IoT-based healthcare infrastructure. It provides recommendations

on design decisions and implementation details related to

security, HIPAA compliance, and the utilization of container

technology within cloud platforms. Additionally, the paper

explores essential criteria for selecting cloud providers, including

considerations such as security, ease of deployment, and

scalability. Figure 1 offers a concise summary of the primary

topics addressed in the sections and subsections of this paper.
2 Background

2.1 Internet of things

The Internet of Things (IoT) refers to a system that enables the

exchange of data between a network of physical sensors and a

central server (8). In healthcare applications, this network of

physical hardware sensors captures various types of data,

including accelerometer readings, heart rate measurements, blood

oxygen levels, Bluetooth proximity beacons, survey responses,

and more. The collected data is typically buffered locally before

being uploaded to a remote server at fixed intervals. The

integration of IoT devices has gained momentum due to the

widespread adoption of low-energy communication technologies

like Bluetooth and Zigbee, fostering the growth of the market for

affordable personal healthcare sensors. In healthcare applications,

it is crucial to collect, store, and transmit sensor data securely in

compliance with guidelines such as HIPAA. Streamlining these

data collection processes can be achieved by leveraging prebuilt

cloud modules and software development kits offered by

commercially available cloud platform providers like Azure

and AWS.
e collected by the sensor hub at the interface layer to be processed at the
ng-term at the database layer. The Role-Based Access Controlled (RBAC)
vides a quick overview of the sections and subsections discussed in this

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
2.2 HIPAA

The Health Insurance Portability and Accountability Act of

1996 (HIPAA) is a US federal law that establishes standards for

data security and privacy of medical records (9). It is imperative

for any application that handles patients’ data to adhere to

HIPAA guidelines. In the context of IoT systems, the following

aspects of HIPAA are particularly significant (10, 11):

a) Access control: Both physical and electronic access to medical

data should be restricted to authorized personnel or applicable

patients only.

b) Secure encryption: Medical data must be encrypted to ensure

its security while at rest and during transit.

c) Audit report: Every interaction with the data should be logged,

including details of the party that requested the data and the

specific data accessed.

d) Backup: The data stored remotely should be regularly backed

up to ensure that it can be fully recovered in the event of

disasters or failures.

Complying with these HIPAA requirements is crucial for

maintaining the confidentiality, integrity, and availability of

patients’ medical data within IoT systems.
2.3 Challenges in remote monitoring system

The proliferation of IoT devices and cloud service providers

has revolutionized remote patient monitoring, reducing the need

for frequent doctor visits. Patients can now upload data collected

from sensors, such as smartwatches and various Bluetooth-

connected devices, directly to the cloud from home for review by

healthcare professionals (1–7). These devices can monitor a

range of health metrics including blood pressure, glucose levels,

heart rate, oxygen saturation, respiratory rate, and sleep cycles,

storing unstructured data in the cloud for detailed health

tracking. This system not only minimizes patient visits and

lowers personnel and administrative costs but also enhances

patients’ quality of life by freeing up time for other activities.

However, the challenge lies in designing a scalable, secure system

for data transmission and storage that can process unstructured

data into a visualizable format on a dashboard. The following

sections will discuss the architecture and technology used to

achieve these objectives.
2.4 Design philosophy: microservices
architecture

Traditionally, server applications have been developed using a

monolithic approach, where a single application encompasses all

the services and functionalities of the entire project (12). For

instance, in an IoT application that aggregates data collected

from multiple client devices, the monolithic architecture would

be a single monolithic web server application responsible for data

retrieval, processing logic, and database updates. This tightly
Frontiers in Digital Health 03
integrated structure allows for performance optimization.

However, it also introduces significant complexity, making it

challenging for a single developer to handle. Modifying the

system becomes burdensome as any changes necessitate extensive

testing of the entire system.

An alternative architecture has emerged, known as

microservices, which involves breaking down the monolithic

application into more manageable services (13). Each service has

its own set of Application Programming Interfaces (APIs) that

enable other services to interact with it without requiring

knowledge of its internal workings. This interface allows each

service to function as an independent entity that can be

developed, tested, and updated separately. Decomposing the

monolith into smaller modules reduces technical challenges and

facilitates faster iteration between updates. Additionally, since

each component acts independently, scaling and reusability

across platforms become highly flexible. This modular approach

has been widely adopted by cloud platform providers. In the

subsequent section, we propose the utilization of various

modularized services provided by Azure and AWS in our system

architecture (14, 15).
2.5 Scalability via container technology

Traditional cloud applications rely on VMs as the foundation.

A VM utilizes a hypervisor, which operates on top of the host

operating system (OS) and provides hardware abstraction (13).

This abstraction enables users to interact with an isolated OS

environment without needing knowledge of the underlying

hardware. This technology forms the basis of cloud platforms,

allowing cloud providers to share computing resources among

multiple users while providing each user with their independent

OS environment.

A more recent virtualization scheme, container-based

virtualization, has emerged as an alternative. It enables the rapid

deployment of cross-platform applications by creating a separate

environment that runs as an application on top of the host OS.

Unlike traditional VMs, container-based virtualization does not

require a separate OS environment for each application. Instead,

users package the application along with its dependencies into an

image file, which can then be executed as an application on

various host OS environments supported by container

technology. Containerized applications offer better performance

compared to VMs since they run on the same OS as the host

and consume resources as needed, avoiding the fixed allocation

of resources and the use of isolated Guest OS (14, 15).

Consequently, we recommend leveraging container technology to

develop efficient cross-platform IoT applications.
2.6 Kubernetes services basic concept

To automate the deployment, management, and scaling of cloud

applications using container technology, we utilize Kubernetes.

Kubernetes is an open-source container-orchestration system
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
that automates software deployment, scaling, and management

(16). It simplifies the configuration of computing resources,

requiring only a few parameters like the number of CPU cores,

RAM, and the maximum allowed number of running container

instances. After developers set these parameters, Kubernetes takes

charge of load balancing, routing, ingress control (restricting

container access to authorized applications), and auto-scaling.

Supported by major cloud platforms such as Azure, AWS, and

Google, Kubernetes serves as an ideal cross-platform resource

management system.

In IoT applications, several relevant Kubernetes concepts as

well as their arrangement are depicted in Figure 2 (17–19):

a) Pod: The fundamental building block of the system is the pod,

which represents the containerized application with its

storage space, CPU cores, and a unique IP address within

the system. Auto-scaling is achieved by adjusting the

number of running pods.

b) Node: Nodes are representations of the underlying VM

structure that provide resources for running pods. They serve

as the execution environment for pods.

c) Service: Services act as an abstract layer to access pods. Pods with

the same label can be accessed through the assigned service. This

allows front-end applications to interact with pods without

needing to keep track of individual pod IP addresses.

d) Ingress: Ingress is a Kubernetes controller responsible for

handling load balancing, address mapping, reverse proxy,

and HTTPS connections that verify the authenticity of both

the client and the server. It enables external access to services

within the cluster.

e) Deployment: Deployments hold the specifications for the

desired running state of a group of pods. This desired state

includes various computing resource utilization thresholds,
FIGURE 2

Kubernetes resource management with 2 types of autoscaler. The cluster aut
the horizontal pod autoscaler manages the scaling of running application in

Frontiers in Digital Health 04
such as min/max CPU, memory usage, running instances,

and autoscale state. Kubernetes uses this information to scale

the system up or down accordingly.

f) Pod Autoscaler: This autoscaler adjusts the number of running

pods based on the resource usage of the underlying hardware.

Key parameters for this autoscaler include the time interval

between adjustments, minimum and maximum number of

running pods, and resource thresholds for scaling up or

down. These thresholds are typically defined in terms of

resource utilization percentages, such as min/max CPU, GPU,

and memory usage.

g) Cluster Autoscaler: When the pod autoscaler determines that

the required number of running pods exceeds the capacity of

the underlying hardware, the cluster autoscaler steps in to

address this demand by increasing the underlying hardware

capacity. This is achieved by adding more computing nodes

to the cluster. Critical parameters for the cluster autoscaler

include resource thresholds for Kubernetes, which determine

when the system should be scaled up or down in terms of

minimum and maximum total nodes, CPU, GPU, and

memory. Additionally, the minimum time interval between

each scale-up or scale-down operation is an important

parameter that prevents the system from erratically adjusting

to unpredictable workloads. It is essential to set these

parameters higher than those of the pod autoscaler to avoid

conflicts between the two types of autoscaling.

2.7 Cloud services

Cloud services enable users to run applications on remotely

hosted computing resources. Leveraging the extensive cloud

resources managed by cloud providers alleviates developers from
oscaler manages the scaling of underlying virtual machines (nodes) while
stances (pods).

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
the technical responsibilities associated with maintaining

underlying hardware and network connectivity (2). There are

three primary categories of cloud service models: Software as a

Service (SaaS), Platform as a Service (PaaS), and Infrastructure as

a Service (IaaS). PaaS, which includes services like database and

web application hosting, is maintained and managed by cloud

providers. Existing services running on local servers can be easily

migrated to PaaS and scaled up to meet growing demands, if

necessary. However, the control over an application on a PaaS is

limited to the features and functionalities provided by the cloud

provider. On the other hand, IaaS grants complete control over

applications and their environments, allowing for full control

over the operating system and the underlying virtual machines

(VMs). However, this control comes with the responsibility of

managing the cloud resources, shifting the burden from the

cloud providers to developers.

In our proposed architecture, we utilize a combination of PaaS

services and IaaS VMs. PaaS services handle tasks such as web

application hosting, load balancing, IoT gateway management,

storage, and database management. On the other hand, IaaS

VMs are responsible for data processing and access control to

the database. Major cloud providers like Azure and AWS also

offer integrated services to add extra capability to the previous

modules such as monitoring and role-based access control. Our

architecture can be deployed within minutes from the

administrative portal, spanning multiple “operating regions”.

Operating regions refer to the infrastructures on which the cloud

platforms themselves are hosted, and they are situated in various

regions within the United States or any host country. We provide

examples of Azure and AWS cloud service modules used in our
FIGURE 3

Overview of proposed system architecture. The data from the sensor netwo
next to the data processing layer for processing, and finally to the database l
app unit. Arrows in the figure indicate the flow of data (red) and communic

Frontiers in Digital Health 05
proposed architecture throughout the paper in Sections 4–6. At

the time of writing, Google Cloud had retired its IoT Core

component. While Azure and AWS account for the majority of

the cloud market share at 80% (20), other providers, such as

IBM and Oracle, are more focused on large enterprises (21).
3 System architecture

In our proposed architecture, we prioritize three key design

considerations: ease of deployment, security, and scalability.

Leveraging cloud services enables us to incorporate features like

load balancing, autoscaling, role-based access control, backup,

and duplication, which greatly simplify and facilitate the

deployment of our IoT infrastructure. Moreover, adherence to

HIPAA guidelines is a fundamental aspect of our healthcare

infrastructure design. Throughout the paper, we will specify if a

framework or software is open source. If not mentioned, the

solution is proprietary.

The proposed IoT architecture comprises three main layers, as

depicted in Figure 3.
3.1 Interface layer

This layer facilitates communication and data transfer between

the cloud services, sensor network, and users. It ensures secure

isolation for the underlying system, safeguarding the integrity

and confidentiality of the data.
rk (sensor device) will flow first to the interface layer for authentication,
ayer for permanent storage. A user can access this data through the web
ation messages (blue).

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
3.2 Data processing layer

The primary purpose of this layer is to process the data

uploaded by the sensor network and store it in the database. The

raw data storage unit buffers the data received from the sensor

management unit. The messaging unit facilitates communication

between the buffer and the data processing unit, while also

recording file processing statuses. The data processing unit

leverages Kubernetes’ auto-scale feature, allowing it to

dynamically adjust its computing capacity to handle fluctuating

data upload volumes from the sensors.
3.3 Database layer

The database layer in our proposed architecture plays a crucial

role in storing the processed data for efficient data retrieval and

analysis. It is designed to support fast access to the data, enabling

seamless data analysis operations. Additionally, the database layer

handles data access authorization through an API that

implements role-based authentication mechanisms. This ensures

that only authorized users and other data processing layers can

access the data stored within the database. Similar to the data

processing unit, the data access control unit utilizes Kubernetes’

auto-scale feature to adapt its capacity based on the fluctuating

data request demands. Furthermore, to enhance the security of

the system, the database layer incorporates NGINX (22) as a

reverse proxy. This reverse proxy setup ensures that there is no

direct communication between users and any of the components

within the database layer, providing an additional layer of

protection against unauthorized access attempts or potential

security vulnerabilities.
TABLE 1 Example of hardware sensors used in the proposed remote
patient monitoring infrastructure.

Measurement Device/
sensor

Frequency Derived
metrics

Indoor localization BLE beacons Hourly upload % time in bedroom,
bathroom, kitchen,
other areas,% time
outside of home

Outdoor movement Absence of
Beacons

Hourly upload % time outside of
home

Motion
(accelerometer,
gyroscope)

Smartwatch constant
monitoring,
hourly upload

Time spent in
different positions
(e.g., laying done,
standing, sitting) and
activities (walking);
average walking speed
(e.g., time to cross 3
meters); total steps,
total active time; total
estimated energy
expenditure,
4 Interface layer

The Interface Layer is designed to facilitate interactions

between sensors, users, and the cloud platform without exposing

the underlying structure of the cloud services. It comprises two

primary components, the Sensor Management Unit and the Web

App Unit, as depicted in Figure 3. The Sensor Management Unit

is responsible for managing all communication between the

sensors and the cloud. This includes tasks such as device

provisioning, data uploading from sensors, monitoring sensor

activity, and performing updates as required. On the other hand,

the Web App Unit serves as the interface for users to interact

with the cloud services. This component handles tasks such as

data visualization and administrative functions, enabling users to

effectively engage with the cloud-based services.

Heartrate Smartwatch Hourly Hourly averaged

heartrate

Blood oxygenation Pulse
oximeter

Hourly SpO2

Temperature IR
thermometer

Hourly Temperature, changes
in temperature
throughout day
4.1 Sensor management unit

The Sensor Management Unit serves as the intermediary for all

interactions between registered sensor devices and the cloud
Frontiers in Digital Health 06
infrastructure. This unit primarily facilitates three key types of

interactions: (1) provisioning new devices, (2) sensors’ data

upload, and (3) monitoring and updates. To provide context,

Table 1 presents a sample of sensor types presently employed in

remote healthcare applications.
4.1.1 Provisioning new devices
The X.509 certificate (23) plays a fundamental role in

facilitating authentication between registered sensors and the

cloud infrastructure. This widely accepted public digital key

certificate standard serves as the basis for establishing data

ownership within cloud platforms. The X.509 standard

encompasses essential features, including the certificate chain and

certificate path validation algorithm. The certificate chain refers

to the hierarchical structure where child certificates are generated

and signed by parent certificates, forming a chain. The topmost

certificate in the chain is the root certificate, which is self-signed.

The X.509 standard incorporates an algorithm that enables the

verification of whether a given certificate, let’s say certificate D,

belongs to a specific certificate chain (A to B to C to D).

In the system architecture depicted in Figure 4, the certificate

chain setup is registered with the IoT Hub. The root key, known

as the master key, is generated by the developer and serves as the

starting point of the certificate chain. The level 2 key, on the

other hand, is utilized for device enrollment, allowing the

flexibility of replacing the enrollment certificate without

modifying the root key. Each registered device in the system

receives a certificate signed by the level 2 key, which establishes

the connection to the registered certificate chain.

For devices to establish direct communication with the cloud,

they need to possess the X.509 certificate that corresponds to the
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

FIGURE 4

X. 509 Certificate chain setup for IoT Hub provisioning. All the registered devices will be provided with a device level key, and the certificate will be
signed by the level 2 key.

Cao et al. 10.3389/fdgth.2024.1399461
registered certificate chain in the IoT hub. This certificate serves as

the authentication credential. During the initialization phase, the

device utilizes this certificate to authenticate itself to either the

Device Provisioning Services (DPS) on Azure or the

RegisterThing (RT) on AWS, employing a secure protocol such

as HTTPS or AMQPS. Upon successful authentication, DPS/RT

generates a unique device identifier, credential, and initial

configuration parameters. Subsequently, DPS/RT requests the

IoT-Hub to register the new identity within the system. Once the

registration process is complete, DPS/RT forwards the new

identity to the device. The device then utilizes this identity to

communicate with the IoT-Hub. The provisioning segment in

Figure 5 illustrates this process.
4.1.2 Sensors’ data upload
Below, we discuss the Azure and AWS data uploading process

separately due to the difference in how their respective IoT-Hub

modules work. The code to handle these processes is provided as

software development kit (SDK) from Azure and AWS to be

incorporated into the sensor device firmware.

4.1.2.1 Azure
When a registered device intends to upload data to the IoT-Hub,

it utilizes its credentials to generate a shared access signature

(SAS) token, which has been pre-registered at the IoT-Hub

with a predefined expiration time. This SAS token serves as the
Frontiers in Digital Health 07
device’s authentication mechanism with the IoT-Hub. Once

authenticated, the device proceeds to upload the data to the

IoT-Hub via the HTTPS protocol. Upon receiving the new data,

the IoT-Hub forwards it to the raw data storage unit and sends

a success notification back to the device. This implementation

ensures that all registered devices upload files to the cloud

through the IoT-Hub without needing to know the actual

endpoint. This separation between the device and the cloud

enables the IoT-Hub to monitor all sensor data traffic entering

the system. For faster data upload, the device has the capability

to upload multiple files concurrently. However, it is important

to note that each connected device has a maximum limit of 10

concurrent file uploads imposed by the IoT-Hub. Additionally,

each IoT-Hub module can handle a maximum of 10,000

concurrent file upload connections at any given time (24). If

there is a requirement for more concurrent file upload

connections, it is possible to divide the registered device into

multiple IoT-Hub instances linked to the same raw storage

unit. Figure 5 illustrates the entire process of data uploading

in Azure.
4.1.2.2 AWS
In the AWS platform, there are limitations on the file size for direct

data upload integration between the IoT and storage services, with

a maximum file size of 128 KB, which may be insufficient for many

applications. To overcome this limitation, we propose the use of an
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

FIGURE 5

Communication between registered sensor devices with sensor management unit in both platforms for provisioning, monitoring, configuration and
uploading data.

Cao et al. 10.3389/fdgth.2024.1399461
additional Lambda Function module that provides devices with a

temporary direct upload link known as a pre-signed URL. This

pre-signed URL allows for direct data uploads without any file

size constraints. Each pre-signed URL is valid for a specific file

and expires after a predefined interval allowed it to serve a

similar purpose as SAS token on Azure side.

To upload data using the pre-signed URL, the registered device

utilizes its credentials to authenticate with the IoT-Hub. The device

retrieves its “IoT Device Management” property from the IoT-Hub,

which contains the URL for communication with the Lambda

Function module. The device then uses the same credentials to

authenticate with the Lambda Function module and sends the

desired file’s name. The Lambda Function generates a pre-signed

URL that is unique to the specified file name. The device can

subsequently use this pre-signed URL to directly upload data to

the raw data storage unit, bypassing any limitations on file sizes.

The entire process of data uploading in AWS, including the

usage of pre-signed URLs and the involvement of the Lambda

Function module, is depicted in Figure 5.

4.1.3 Monitoring and update
In the IoT-Hub, each registered device has two types of

configuration properties: desired and reported. These properties,

presented in JSON format for easy readability and editing, serve
Frontiers in Digital Health 08
different purposes. Desired properties are parameters that can

only be modified by developers and are typically utilized for

remote configuration. Reported properties, on the other hand,

can be overwritten by the registered device, enabling the device

to update its status to the IoT-Hub.

To retrieve and update these configuration properties, the

device must first authenticate itself with the IoT-Hub using its

credentials. Subsequently, the device can utilize the provided

methods within the cloud platform’s SDK to access and modify

the desired and reported properties. The process of updating

device properties is illustrated in the “Monitoring and update”

Section 4.1.3 of Figure 5.

These desired properties can be used to implement a remote

firmware update procedure. The server first includes the desired

version number and a download link pointing to the new

firmware. Then, the registered device retrieves the desired

property from the server and compares the current version

number with the desired version number. If the desired version

number is higher than the device’s current version, the device

proceeds to download the new firmware from the provided link

in the property and performs the necessary update.

We currently use the desired properties for sensor devices’

firmware updates, adjusting survey time, which survey to used

and how often survey should be displayed for example.
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
4.2 Visualization: Web app unit

The web app unit serves as a platform for authorized users to

access patient data and visualize inferences made from raw data. It

incorporates several crucial functionalities, including load

balancing to evenly distribute the server workload, establishment

of secure connections using the HTTPS protocol for data

requests between clients and servers, and scalable computing

resources to handle fluctuations in the number of connections. It

can also serve as a portal for user registration including doctors,

nurses, patients or clinical professionals. The administrative of

the RBAC system will determine each user’s accessibility as

discussed in 6.1.2. Our webapp is made with AngularJS, the

open-source front-end webapp framework for interactive

websites. The webapp is then converted into docker image to be

deployed as described below.
4.2.1 Azure visualization
For hosting the web app on the Azure platform, Azure App

Services is a suitable cloud module. It provides TLS certificates,

public IP addresses, configurable auto-scaling (with minimum

and maximum number of web app server instances), and load

balancing across multiple running web app instances. Deploying

the web app can be achieved by linking the code repository (e.g.,

GitHub, Bitbucket) of the web app to the Azure App Services.

Alternatively, if the developers have containerized their web

application to leverage the auto-scaling features of Kubernetes,

they can link the container registry (e.g., Docker Hub, Azure

Container Registry) to the web app cloud services for an

alternative deployment method. The Kubernetes auto-scaling

feature will be discussed in Section 5.3.1.

Additionally, another option for providing a web app interface

is by utilizing the Power BI (Business Intelligence) module. Power

BI is a data visualization module with a built-in graphical user

interface (GUI) that allows users, even those with limited

programming experience, to generate analytical graphs. The GUI

offers a comprehensive set of support functionalities, such as

importing data from various sources (databases, Excel, web

hooks, etc.), performing data calculations using Excel-like

command logic, and creating graphs using provided graph

models as well as third-party graph model extensions. However,

the ability to customize the calculations and graphs is very

limited to what the platform provides, contrary to Azure App

services. In cases where the underlying data source to be updated

and visualized regularly exceeds 10 GB, we propose using Azure

Analysis Services (AAS) in conjunction with Power BI. AAS is a

data aggregation module capable of collecting data from multiple

sources and processing them to produce tables ready for

visualization. This enables AAS to act as a cache for Power BI,

facilitating the loading of data into the visualization model. It is

worth noting that Power BI is costly if the data synchronization

needs to happen many times a day. Normally Power BI is

suitable if you need to visualize data after a day of collecting

information. Using Power BI might be challenging in healthcare
Frontiers in Digital Health 09
applications where real-time or near real-time and continuous

monitoring of data is required.

4.2.2 AWS visualization
On the AWS platform, AWS Elastic Beanstalk is an appropriate

cloud module for hosting the web app. It also provides TLS

certificates, public IP addresses, configurable auto-scaling (with

minimum and maximum number of web app server instances),

and load balancing capabilities across multiple running web app

instances. Similar to Azure, the web app can be deployed by

providing the link to the code repository of the web app to AWS

Elastic Beanstalk. Containerized web applications can also be

linked to the cloud services through a container registry (e.g.,

Docker Hub, AWS Container Registry).

4.2.3 User registration in bulk using the web app
unit via azure and AWS

In scenarios involving the need to register a large number of

patients simultaneously, Microsoft Entra ID and AWS Cognito

can be integrated with the web app modules for authorizing

users and managing user registrations in bulk. Registered users

can be assigned to group role identities, allowing for granular

control over resource access levels and password policies for each

group. Both Microsoft Entra ID and AWS Cognito comply with

HIPAA regulations, utilizing OAuth 2.0 standard-based

authentication and offering built-in support for multi-factor

authentication. These modules can be integrated into Azure App

Services and AWS Elastic Beanstalk, respectively, using Azure

and AWS software development kits (SDKs).
5 Data processing layer

Our proposed data processing layer, illustrated in Figure 1,

comprises three essential components: (1) raw data storage unit,

(2) messaging unit, and (3) data processing unit. The raw data

storage unit serves as a cloud service, playing a crucial role in

buffering the bursts of data sent from the sensor network at any

given time. Besides its primary function as a buffer, the low

storage cost offered by cloud platforms enables the unit to store

raw data long-term directly in the cloud. This capability grants

our system the flexibility to reprocess historical data if needed,

particularly when refining or altering the analytics algorithms.

The messaging unit is responsible for notifying the data

processing unit whenever a new file is uploaded. Additionally, it

records the status of successful and failed file processing

operations. The data processing unit takes the new file, which is

notified by the messaging unit, from the raw data storage.

Subsequently, it converts the raw data into a queryable format

before forwarding it to the database layer.
5.1 Raw data storage unit

The primary role of this unit is to serve as a storage repository

for the raw data uploaded from the sensor network. Although there
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
are many open-source data warehouse solutions such as Apache

Hadoop or Databricks, the complexity of setting up a storage

system that is scalable, secured and affordable is quite daunting.

Therefore, we opt to use Azure Blob Storage and Amazon S3

cloud modules used for this purpose instead. These storage

modules consist of smaller storage units known as containers for

Azure Blob Storage and buckets for Amazon S3. When files are

uploaded to the linked IoT Hub, they are automatically

forwarded to the designated container/bucket within the raw data

storage unit. Upon successful upload, the uploading devices

receive a confirmation message. In addition to storing sensor

data, we propose utilizing a section of the raw data storage unit

to store configuration files or software update patches for sensor

edge devices. This can be achieved by creating another container/

bucket or storage account to maintain separation between cloud

services. The link to download the software or configuration files

will be stored in the properties of the corresponding devices on

the IoT-Hub. This approach facilitates efficient management and

deployment of software updates and configurations for the sensor

edge devices.

5.1.1 Security
We suggest the following measures to enhance the security of

the Raw Data Storage Unit:

a) Use Shared Access Keys: Instead of using the root access keys,

which have extensive privileges, provide applications with

shared access keys. These keys can be customized with

specific configurations, including allowed actions, access

protocols, allowed IP addresses, and expiration time. By using

shared access keys, you can limit the permissions granted to

each application, reducing potential risks.

b) Implement Network Access Controls: Set up a firewall to

allow access to the storage account only from whitelisted IP

addresses and virtual networks. This network access control

ensures that only authorized entities can interact with the

storage unit, enhancing overall security and controlling traffic

flow on the server-side.

c) Utilize Customer-Managed Encryption Keys: By default, the

data in the storage account is encrypted using Microsoft-

managed keys or AWS-manage keys. However, to further

enhance data security, developers can opt to use their own

uploaded encryption keys. This provides an additional layer

of control and protection over sensitive data.

d) Implement Logging and Monitoring: Create a dedicated

logging container/bucket to record and store every operation

in the storage modules. This comprehensive logging is

essential for monitoring the system’s activity, ensuring

security, and meeting compliance requirements, such

as HIPAA.

By implementing these security measures, the Raw Data

Storage Unit can provide a higher level of protection for sensitive

data, minimize potential vulnerabilities, and ensure the

confidentiality and integrity of the stored information. We enable

all these measures in the configuration options for Azure Blob

Storage and AWS S3.
Frontiers in Digital Health 10
5.1.2 Data availability
We recommend the following strategies to improve data

availability in case of cloud raw data storage service outage:

a) Data Replication: Store multiple copies of the data to protect

against outages. The common practice is to maintain three

copies of the data in the main region of deployment (local

redundancy) and an additional copy in a separate region as a

backup (geo redundancy). In AWS S3, local redundancy is

enabled by default, and geo redundancy can be achieved by

enabling the Cross-Region Replication feature in the storage

configuration. In Azure Blob Storage, data replication features

are not enabled by default, but both local and geo

redundancy can be achieved by enabling the Geo-redundant

storage feature in the storage configuration.

b) Regular Backups: Implement a regular backup strategy to

periodically create snapshots or backups of the data. These

backups should be stored in a different location or region

from the primary data storage.

c) Load Balancing: Multiple storage modules can be used

concurrently to handle large number of user base. Utilize

load balancing techniques to distribute incoming data

requests across multiple storage instances or regions. This

can help prevent overloading of a single storage unit and

improve overall data availability. In case of an outage, the

latest backup can be used to restore the data.

By implementing these suggestions, organizations can enhance

the data availability and resilience of their cloud raw data storage

service. This ensures that critical data remains accessible even in

the face of unexpected outages or disruptions. We enable local

redundancy, daily backup for both Azure Blob Storage and AWS

S3 modules. We did not use the load balancing solution as the

base ingress bandwidth is already very high for us (60 and 100

gigabit per second for Azure and AWS respectively).
5.2 Messaging unit

The role of this unit is to facilitate communication between the

raw data storage unit and the data processing unit by notifying the

latter of newly uploaded files. When a file is uploaded to the Azure

Blob Storage/Amazon S3, an auto-generated message containing

relevant information about the uploaded file is created. This

message is then forwarded to a messaging service, which in turn

notifies the data processing module to fetch the new file(s) for

processing. Both Azure and AWS offer two main types of

messaging modules: pull and push.

In the pull module, the receiver takes the initiative to pull new

messages, thereby placing message flow control on the receiver

side. Cloud messaging modules serve as message buffers, holding

messages until a receiver requests them. Once a receiver

completes processing a message, it requests the cloud message

buffer to delete the message from the queue and request the next

one. To avoid multiple receivers processing the same message,

the requested message is made visible to only one receiver at a

time. Azure and AWS offer pull-type messaging services named
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
Azure Queue Storage and AWS Simple Queue Storage, respectively.

These services facilitate efficient and reliable message handling,

making them suitable for various applications that require

reliable message delivery and processing.

Conversely, the push module operates on a publisher and

subscriber model. New messages are stored at the publisher’s side

within a specified topic, and multiple subscribers maintain

connections to the topic to receive new messages. The publisher

pushes the message from the topic to active subscribers, enabling

the publisher to control the message delivery rate. This type of

messaging is suitable for scenarios where the same message

needs to be distributed to multiple receivers, such as news outlets

distributing articles to subscribers. Azure and AWS offer push-

type messaging services called Azure Service Bus and AWS

Simple Notification Service.

In our proposed system, we opt for the pull module since each

generated message from the messaging unit should be received

only once by the data processing unit. Whenever a new file is

uploaded to the raw data storage unit, a message containing the

file’s address is generated and stored in the pending queue. We

recommend using two additional message queues to keep track

of successful and failed processing attempts. The failed queue can

be revisited once any possible errors are rectified, enabling the

reprocessing of files.
5.3 Data processing unit

This unit listens for new messages that indicate the arrival of

raw data. Upon detection, it proceeds to download and process

the raw data into query format, subsequently making API

requests to the database layer to upload the processed data.

To build cloud applications like data processing or data access

control, we recommend utilizing the Spring Boot framework. This

open-source Java-based framework simplifies development by

providing “starters”, which are pre-configured templates for

common server services such as database querying, web services

for API mapping and role-based authentication, messaging

services, cloud integration, and thread-scheduling management.

Developers can customize these starters to meet their specific

requirements, streamlining the development process. The final

application is containerized into an image file, facilitating

deployment on any platform that supports containers. Docker is

the suggested containerization platform, given its popularity,

strong support from the development community, and wide

adoption on various cloud platforms (25).

Regarding running applications on cloud platforms, we

propose using container services, referred to as Container

Services in Azure and Elastic Container Service in AWS. These

services host containerized applications, enabling portability. By

defining configuration parameters like CPU size and VM storage

through the administrative portal, the cloud container can be

deployed within minutes. The application can then be scaled in

two ways: scaling up by upgrading the underlying hardware’s

capacity (increasing CPU and RAM) or scaling out by adding

more units of the same underlying VM. For applications
Frontiers in Digital Health 11
requiring dynamic runtime scaling (a key purpose of our

architecture), scaling out by adding more VMs is the more

suitable method since adding more VM instances does not

disrupt the VMs currently running. This can be done manually

by adding more VMs to the cloud Container Service.

However, the Container Services and Elastic Container Service

do not offer automatic scaling based on workload demand.

Therefore, Kubernetes Service and Elastic Kubernetes Service (in

Azure and AWS, respectively) are usually being used in

conjunction to act as container management units that allow for

such automatic scaling of applications. By integrating these

services, the cloud architecture can efficiently manage the scaling

of applications based on demand.

5.3.1 Kubernetes system implementation
Figure 6 illustrates how we integrated the Kubernetes system

into our data processing layer. The data processing application is

deployed as an image file to either the Container Services in

Azure or the Elastic Container Service in AWS. These cloud

services are then connected to the Kubernetes Service in Azure

or the Elastic Kubernetes Service in AWS, respectively. In either

cloud platform, the Kubernetes service generates and manages

multiple pods, with each pod running an instance of the data

processing application.

The data processing application continuously listens for

messages from the “pending queue” of the messaging unit. These

messages contain the file path necessary to download the newly

uploaded file from the raw data storage unit. Upon receiving the

message, the application fetches the uploaded file from the raw

data storage unit using the information provided and processes it

accordingly. If the file is successfully processed, the application

sends the original message to the “complete queue” and uploads

the processed file to the data access control unit of the database

layer. On the other hand, if processing fails, the message is sent

to the “fail queue” for further handling. The “complete queue”

allows for reprocessing previously completed data in the event of

algorithm changes, while the “fail queue” enables the system to

reprocess failed files.

To ensure security, it is essential to implement access control

mechanisms across various modules of the cloud infrastructure.

For instance, the data processing application should be equipped

with the necessary credentials to access the raw data storage unit,

the messaging unit, and the data access control unit.

Implementing authentication between all components of the

system is considered a good security practice, safeguarding

against unauthorized access and potential security breaches.

Overall, the integration of the Kubernetes system in our data

processing layer enhances efficiency, scalability, and reliability,

while the implementation of access control measures bolsters the

security of the entire cloud infrastructure.
6 Database layer

The Database Layer’s primary objective is to store data in a query

format accessible through API requests from multiple clients,
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

FIGURE 6

The highlighted block inside the dashed line illustrates the data processing layer. The sensor management unit uploads data to the raw data storage
unit where a message is sent to the “pending” queue in the messaging unit with the path of the new file. The Kubernetes service listens to the new
message, downloads the file from the storage service using the content of the message, processes it, and sends the results to the data access control
unit. The received message will be redirected to either the “complete” or “fail” queue, depending on the results.

Cao et al. 10.3389/fdgth.2024.1399461
including users and other system layers, with proper role-based

authentication. Establishing secure connections and load balancing

the concurrent data access requests from clients are essential

functionalities for this layer. It comprises two major components:

a) the data access unit, responsible for handling secure connections

with load balancing capabilities, and b) the database storage unit,

tasked with storing the data. Figure 7 provides a visual

representation of the data flow in the database layer.
6.1 Data access control unit

6.1.1 Load balancing
The load balancing component in the Database Layer serves

two primary functions: maintaining a secure connection between

the client and the server through the ingress control web

interface and evenly distributing client requests among multiple

data access control applications through load balancing abstraction.

The public-facing ingress control interface employs the Nginx.

Nginx is an open-source web server software that specialized in

reverse proxy and load balancing. We use Nginx software to act

as a reverse proxy only. Nginx establishes Transport Layer

Security (TLS) connections and facilitates secure communication
Frontiers in Digital Health 12
between the public internet and the database layer components.

TLS adds an extra layer of security on top of the traditional

Hypertext Transfer Protocol (HTTP) by verifying the server’s

authenticity through a digital certificate and encrypting all data

transferred between the client and the server (26). The

combination of HTTP and TLS forms the Hypertext Transfer

Protocol Secure (HTTPS), a foundational protocol for modern

internet communication. The digital certificate, obtained from

third-party certificate authorities or cloud providers, is supplied

to Nginx to enable the TLS layer. The reverse proxy aspect of

Nginx ensures that the underlying server remains hidden from

clients, acting as an intermediary between clients and servers. All

client requests are directed to Nginx ingress control before being

forwarded to the load balancing abstraction, guaranteeing that

clients do not directly interact with the server, thus enhancing

the overall system’s security.

The load balancing abstraction, facilitated by Kubernetes,

ensures even distribution of client requests among multiple

instances of data access control applications. Identical pods

running the data access control application are grouped into a

single service dispatcher. When a request is received, the service

dispatcher assigns the request to an available pod in a round-robin

fashion. An advantage of this load balancing approach is that it
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

FIGURE 7

Database layer structure. The Kubernetes services will run multiple instances of data access control applications that communicate directly to the
PostgreSQL database and share the same API call to handle the incoming requests. These requests that come from the data processing unit or
web app unit are funneled through Nginx Ingress Controller to distribute the load evenly and isolate the data access control application through
the reverse proxy.

Cao et al. 10.3389/fdgth.2024.1399461
automatically reconfigures routing distribution when pods scale up/

down or crash, eliminating the need for manual intervention.
6.1.2 Database access control using application
programming interface (API)

For rapid development, we again employed the Spring Boot

framework. Within the Spring Boot framework, the Tomcat

module handles web server hosting by assigning network ports to

respond to client requests. Additionally, the Spring Hateoas

module manages API request routing, matching user requests to

the appropriate server responder. Furthermore, the Hibernate

API formats the database table into a Java class template. For

instance, when a client requests patient data, the API fetches the

corresponding information from the patient table and formats it

according to the Java class template to construct a response for

the client. To manage Role-Based Access Control (RBAC), the

Spring Security module is used in the system. Three types of

roles are assigned to each user, determining the scope of

authorized data viewable by users. The patient role permits

access only to data that belongs to the patients themselves, while

the doctor role grants access to data of all patients assigned to

the doctor. The admin role, on the other hand, has access to all

data in the system, and it can also register new patients and

assign them to doctors. The API validates user requests by

checking the users’ credentials against the hashed versions stored

in the database. Overall, the Spring Boot framework considerably

reduces the technical burden of server development by providing

pre-built modules that handle various common server tasks.

Once the Spring Boot database access control application is

completed, we use Docker to convert the application into an

image file to make deployment in any cloud platform easier. The

load balancing unit from the previous section will also be

converted into an image file for deployment in similar fashion.

For Azure and AWS, the entry for the deployment image file is

the Azure Container Registry and Amazon Elastic Container

Registry respectively. Kubernetes then utilizes this image file to

generate and manage multiple instances of the data access
Frontiers in Digital Health 13
control application, automatically scaling them up or down

according to the server’s requested auto-scale configuration.
6.2 Database storage unit

We used PostgreSQL database to store the processed data for

visualization and analytics purposes. PostgreSQL is an open-

source database system that organizes data in relational and key-

value format. For our application, we need to migrate our

existing PostgreSQL database to the cloud. There are four

essential features that we are looking for in the cloud database

module: availability, security, latency, and scaling.

Availability is ensured by cloud providers through automatic

backup, replication, and hardware problem detection. Data

duplication occurs in two additional instances, one within the

same region and another in a different selected region.

For security, all data in the database is encrypted at rest and

during transit via HTTPS. Role-based access control can be

implemented to prevent credential leakage. The database’s

security can be further enhanced by configuring the network

security firewall to permit access only from the registered virtual

private network and IP address.

Latency and scaling are crucial factors affecting database query

performance. Latency is influenced by computing resources,

network speed, and query efficiency. The computing resource can

be scaled by changing the number of CPU cores to handle

extensive query demands. Network speed can be improved by

utilizing a separate database to store high-demand content using

SSD instead of HDD balances low latency with cost savings.

Geo-replication and distributed regional storage can further

reduce latency by minimizing the distance between requesters

and the database. Additionally, query efficiency can be achieved

by minimizing the number of query requests and creating a

second database with a different structure for faster retrieval to

cater to specific high-demand requests.

Azure and AWS offer various PostgreSQL database

hosting options on their platforms. The specific one that we
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
used are Azure Database for PostgreSQL and AWS Aurora

PostgreSQL respectively.
7 Infrastructure setup cost

In this section, we delve into the estimated costs associated with

setting up a comprehensive cloud infrastructure on both Azure and

AWS platforms for the US WEST 2 region and US WEST North

California region, respectively. Our chosen setup encompasses key

components such as IoT services, raw data storage solutions,

virtual machines, databases, and web application hosting. The goal

is to provide cloud developers with valuable insights into the

pricing structures of these platforms, facilitating an informed

decision-making process based on their unique operational demands.

The estimated monthly cost Azure setup is for the US WEST

California region encompasses a variety of essential cloud

components mentioned in the previous sections. Azure IoT Hub

handles communication from 10,000 devices, each transmitting

one message per hour. Azure Blob Storage provides 1 TB of

storage capacity, supporting up to 100,000 read/write operations

monthly. Two Azure VM D2v3 instances, each with 2 cores, 8

GB RAM, CentOS OS, and 64 GB SSD storage, collectively

perform 1,000 input/output operations per second (iops)

monthly. The Azure PostgreSQL database, hosted on a D2Sv3

VM instance with 500 GB storage, 2 cores, and 8 GB RAM,

handles up to 1,000 iops each month. The Azure App Service

utilizes an S2 instance with 2 cores, 3.5 GB RAM, and 50 GB

storage for application hosting.

On the AWS front, we do the setup for the US WEST North

California region mirrors the functionality of its Azure

counterpart. AWS IoT Core manages communication from

10,000 devices, each sending one message per hour. AWS S3

Storage provides 1 TB of storage capacity, supporting up to

100,000 read/write operations monthly. Two AWS t3.large

instances, featuring 2 cores, 8 GB RAM, CentOS OS, and 64 GB

SSD storage, collectively perform 1,000 iops monthly. The AWS

RDS PostgreSQL database, hosted on a tdb.3.large VM instance

with 500 GB storage of provisioned IOPS SSD, 2 cores, and 8

GB RAM, handles up to 1,000 iops each month. AWS Lightsail,

equipped with 2 cores, 4 GB RAM, and 80 GB storage, offers a

simplified and cost-effective solution for application hosting.

Azure VM D2 v3 2 cores, 8 GB ram CentOS 64 GB temporary

storage US WEST 2 1,000 iops.
TABLE 2 Estimated monthly cost in US dollars to set up the entire cloud arc

Cloud component On-demand

Azure AWS
IoT Hub 25.00 42.06

Blob Storage 22.41 29.64

2 VM 90.21 × 2 78.99 × 2

Database 271.35 317.7

Webapp 146.00 19.62

Total 645.18 567.00

Frontiers in Digital Health 14
Table 2 provides a detailed breakdown of the estimated costs

for each component in the relevant cloud architecture,

incorporating reduced pricing for advanced reservations

applicable to VM and database components. The cloud setup in

Table 2, based on pricing as of July 2024, is sufficient to process

data for 200 concurrent patients, ranging from $463.05–$645.18

per month for Azure and $409.31–$567.00 per month for AWS.

The lower prices reflect the discount for reserving the server for

three years, compared to the more expensive on-demand system.

The primary cost contributors are the VM, database, and webapp

components. In summary, the AWS platform proves

approximately 10% more cost-effective than the Azure platform

for the entire system setup. This cost disparity is mainly

attributed to the significantly lower expenses associated with

hosting web applications on AWS compared to Azure.

Furthermore, Azure offers more affordable database services,

while AWS presents less expensive VM services. Considering the

potential for a one-third reduction in costs by reserving the

system for up to 3 years, developers are advised to reserve the

minimum required resources, optimizing cost savings while

retaining the flexibility of on-demand scalability to accommodate

surges in server requests. This cost breakdown only includes the

operational cost of cloud services. Other costs, such as human

resources for system development and maintenance, or labor

costs for distributing data collection devices (e.g., smartwatches,

tablets, or other sensor devices) to patients, will vary depending

on the scope and technical demands of the project.
8 System testing

As we developed our system on both Azure and AWS for our

remote monitoring system, we documented some performance

benchmarks. The goal is to give an example of performance

change when moving between AWS and Azure for workload

pipeline similar to our work. More variety of workflow and

configuration are needed to properly draw a comprehensive

comparison between the AWS and Azure platform. The

workflow used for the test benchmark in this section is based on

our previous work from the Sensing At-Risk Population study

(4), where we collected data from a cohort of 110 geriatric

patients at a rehabilitation center over the course of 21 days.

This allows our test benchmark to more realistically represent the

performance of other remote monitoring studies.
hitecture between azure and AWS platform recorded as of march 2024.

1-year reserved 3-year reserved

Azure AWS Azure AWS
25.00 42.06 25.00 42.06

22.41 29.64 22.41 29.64

62.72 × 2 52.06 × 2 41.85 × 2 36.87 × 2

214.34 278.06 185.94 244.25

146.00 19.62 146.00 19.62

533.19 473.50 463.05 409.31

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
8.1 Data processing layer performance test

The performance test conducted in the data processing layer

aimed to evaluate the impact of scaling on the speed of the cloud

system’s data processing unit. Additionally, the test sought to

compare the performance of the system on different cloud

platforms while ensuring a fair comparison by selecting VM

configurations with similar hardware capacities. Table 3 presents

the VM configurations and Kubernetes settings used in the

performance test. The VMs from Azure and AWS were chosen,

and they were connected to their respective storage and

messaging services within the same region to eliminate network-

related factors.

The testing procedure involved simulating a data processing

workflow in a healthcare application. A set of 1,000

accelerometer raw data files, with an average size of 1.5 MB and

a sampling frequency of 16 Hz, was uploaded to the storage

units. Subsequently, 1,000 messages were generated and sent to

the message queuing unit. The data processing unit within the

Kubernetes cluster listened to these messages and ran the file

processing application in parallel using multiple pod instances

being scaled by the Kubernetes system.

The test case scenarios were designed to examine the effect of

scaling on file processing speed. In the first three test cases, the

number of running pod instances was manually scaled at 2, 4,

and 8, while all five nodes were available. This allowed for

observing the impact of pod scaling on the file processing speed.

In the fourth test case, the horizontal pod autoscaler took charge

of the scaling, starting with one running pod and five nodes.

This scenario provided insights into the performance when

scaling was handled by the autoscaler. In the fifth test case, both

the horizontal pod autoscaler and the cluster autoscaler were

utilized for scaling, starting with one running pod and one node.

This configuration allowed for assessing the combined effect of

both autoscalers on the system’s performance.

The test results, as depicted in Figure 8, demonstrate a linear

increase in processing speed as the number of running instances

doubles, indicating the effectiveness of parallel execution in the

data processing unit pods. The horizontal pod autoscaler test

case exhibited a delay of approximately 4–5 min compared to the

manual eight-pod test case. This delay can be attributed to the

scaling procedure of the horizontal pod autoscaler, which

involves detecting resource constraints, allocating additional
TABLE 3 Configuration of the VMs and kubernetes cluster in the azure
and AWS platform.

Cloud
platform

Azure AWS

Instance name Standard DS2 v2 m5.large

Processor Intel Xeon E5-2673 v3 @
2.4 GHz

Intel Xeon® Platinum 8175 @
turbo 3.1 GHz

Cores 2 2

RAM 7 8

Local storage type SSD Amazon Elastic Block Store

Number of nodes in
cluster

5 5

Frontiers in Digital Health 15
computing resources, and initializing the extra pods. In the

horizontal pod and cluster autoscaler test case, a further delay of

3–4 min was observed compared to the horizontal pod autoscaler

only test case. This delay arises from the scale-up procedure

being performed across multiple VM nodes. Overall, these test

cases highlight three important observations:

a) The management tasks of Kubernetes incur insignificant

overhead time, as evidenced by the manual test case

exhibiting results close to perfect scaling. This indicates that

the Kubernetes system efficiently handles the scaling process.

b) The time required for both types of autoscalers to add more

pods and nodes to the system is approximately 10–15 min.

Although this delay may be negligible when the system is

running for an extended duration, it can pose challenges

during sudden bursts in processing demand. To address

this, the queue messaging system acts as a buffer layer,

cushioning the impact of client requests’ sudden spikes and

preventing system overload. This buffer allows the autoscalers

sufficient time to scale up the system to accommodate the

increasing workload.

c) The VM computing performance between the Azure and AWS

platform is similar to each other. The difference in performance

is within the 5% margin of error.

The results of the data processing performance test highlight

those applications managed by the Kubernetes system, with

proper parallelization and adequate computing resources, exhibit

a linear relationship between processing speed and the number

of running pods. The small delay in scaling up computing

resources is negligible under normal workload conditions. The

automated scaling process enables the system to efficiently

handle varying computing demands without wasting resources,

ensuring optimal performance and scalability.
8.2 Database layer throughput performance
test

The database layer throughput performance test aims to assess

the scalability of the database in handling an increasing workload

from concurrent clients. The test focuses on two key parameters:

average latency of requests and the number of transactions per

second, which are crucial metrics for measuring database

throughput. To evaluate the throughput performance, we utilize

the Pgbench tool provided by PostgreSQL 10 software (27),

following the standard proposed by the Transaction Processing

Performance Council (28). To isolate the impact of scaling up

different factors, a specific test case is designed. Scaling up the

database involves increasing both the number of CPU cores and

the size of RAM. In this test, the Pgbench tool generates four

tables to simulate the workload, as shown in Table 4.

The data storage table is appropriately scaled to accommodate

the variance in RAM size. Each scale factor is associated with a 13.5

MiB increase in table size. Consequently, the scale factor is

determined such that the Pgbench test accesses data that matches

the RAM usage of the respective test scenarios. For instance, to
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

TABLE 4 Pgbench parameters for the database throughput performance
test.

Table name Number of rows
pgbench_branches 1 × scale factor

pgbench_tellers 10 × scale factor

pgbench_accounts 100,000 × scale factor

pgbench_history 0

TABLE 5 Configuration of the database instance on the azure and AWS
platform used for the database throughput performance test.

Cloud platform Azure AWS
Database VM Instance name General-Purpose Gen 5 db.m5.large

Cores 2 2

RAM 10.2 GiB 8 GiB

Scale factor (small dataset) 75 60

Scale factor (large dataset) 3,000 2,400

VM-test instance name Standard DS4v2 m5d.2xlarge

VM-test cores 8 8

VM-test RAM 28 GiB 32 GiB

FIGURE 8

Performance of kubernetes cluster on AWS and azure platform using manual scaling, pod autoscaler, and pod + cluster autoscaler. The test processes
1,000 accelerometer raw data with a sampling frequency of 16 Hz and an average size of 1.5 MiB. The first three test cases are scaled by manually
setting the number of running file processing instances with five nodes available. In the fourth test case, the horizontal pod autoscaler case starts
with one pod instance and five nodes available. The last test case starts with one pod and one node that will be scaled up by both the horizontal
pod and cluster autoscaler.

Cao et al. 10.3389/fdgth.2024.1399461
establish the scale factor for testing a scenario where the data

accessed amounts to 10% of the Azure database’s RAM, the scale

factor is calculated as 10% of 10.2 GiB (the available RAM in the

Azure setup) divided by 13.5 MiB, resulting in a scale factor of

75. The performance of the database service will be evaluated in

two scenarios using the computed scale factor, as presented in

Table 4. This evaluation will illustrate how system throughput is

affected by RAM usage:

a) Small: The dataset size is set to 10% of the RAM capacity.

Throughout the test, all accessed data is continuously stored

in memory.

b) Large: The dataset size is set to 400% of the RAM capacity.

Whenever the amount of data accessed during the test

exceeds the RAM capacity, the operating system swaps the

data from memory to disk.
Frontiers in Digital Health 16
The Pgbench query test is conducted on separate VMs located

in the same region and deployed on the same cloud provider as the

corresponding database. This setup ensures that any network

distance-related variables are eliminated. Please refer to Table 5

for a detailed description.

In Figure 9, the outcomes of the throughput performance test

conducted at the database layer are illustrated. The results reveal a

marginal reduction in transaction rates with an increase in the

number of concurrent clients, while a substantial decline occurs

when dealing with larger dataset sizes. This can be attributed to

the faster access of data stored in memory, where smaller dataset
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

FIGURE 9

The database query performance test compares the performance of azure and AWS. The size of the test table in the database varies based on the test
scenario and the available RAM capacity of the respective database. Two test scenarios are considered: small and large dataset. Small dataset
scenario = 10% RAM capacity. Large dataset scenario = 400% RAM capacity. The query test is done using the Pgbench default test. Each query
contains five commands: (1) update a random item from the pgbench_branches table, (2) select the item that was just updated from the
pgbench_branches (3) update a random item from the pgbench_tellers table, (4) update 1 random item from the pgbench_accounts table,
(5) insert a random item into the pgbench_history table. Each test case runs for an hour, and the results are averaged over three runs to mitigate
variations. The objective of this test is to observe the impact of the number of concurrent clients and the data size in each transaction on the
following metrics in the database: throughput, latency, and the number of transactions per second.

Cao et al. 10.3389/fdgth.2024.1399461
minimizing the time that the database spent swapping data

between disk storage and RAM. At the same time, the query

latency increases with both the number of concurrent clients and

the dataset size expands.

The performance test also shows the AWS platform

outperforms the Azure platform in terms of throughput

performance, given similar database configurations. This

performance gap is primarily attributed to the AWS database

showcasing significantly lower query latency compared to its

Azure counterpart, even when both databases and the test VM
Frontiers in Digital Health 17
simulating query requests are located within the same region

(California - US West region).
9 General tips on healthcare cloud
system design process

9.1 Emphasis on system modularity

Healthcare cloud systems face varying demands and must

comply with specific regulations, so developers should prioritize
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
modularity in system design. A modular approach enhances

flexibility, making it easier to adapt to diverse requirements, such as:

• Healthcare Integration Compliance: Healthcare providers

often use software from established vendors, making

interoperability a challenge even with existing open-source

standards like HL7 (29). By designing a system with modular

interfaces, modifications can be limited to the interface layer,

to ensure compatibility with different healthcare providers, as

discussed in Section 4.

• System Demand Changes: Requirements and workloads can vary

significantly over a project’s lifecycle. For instance, a project may

contain different phases, where phase one might focus on data

collection, while phase two emphasizes on data analysis. The

framework proposed in this paper allows for scaling the data

storage and database units (Sections 5.1, 6) during data

collection phase and then adjusting the data processing unit

(Section 5) for analytics. If the data source transitions to a new

healthcare provider, only the interface layer requires

modification, while the rest of the system remains unaffected.

• Software Updates: Modular design enables individual

components to be updated independently, allowing for rapid

patching of critical vulnerabilities and reducing downtime.

9.2 Extensive use of fine-grained access
authorization

Since social engineering is among the top causes of security

breach (30), system designer should anticipate and mitigate the

damage that is caused by bad actors having access to the system

credential. Therefore, it is very important to limit each module

to only being able to access what is needed to contain the scope

of an unfortunate security breach. Some examples of fine-grained

access control discussed in our framework are:

• Sensor Management Unit: Devices connected to the IoT hub

are restricted to reading their configuration properties and

uploading data to each device’s own designated folder. They

cannot read other devices’ data or modify their own.

• Visualization Unit: Users can only view their own data, while

healthcare providers can access data for their assigned users.

Administrative accounts have broader access but are advised

to be used only in emergencies.

• Data Processing Unit: As this unit has access to all users’ raw

data, it is recommended to configure it to operate within a

firewall-isolated environment, with a defined IP address range.

This setup restricts data access to registered IP addresses,

ensuring that even in the event of credential compromise,

unauthorized access is prevented. Additionally, database access

is limited to requests originating from recognized IP addresses.

9.3 Regular backup and recovery

Given the rise of ransomware in recent years (31), having a

robust backup and recovery plan is crucial. Cloud platforms

provide configurations for regular backups in data storage
Frontiers in Digital Health 18
(Sections 5.1.2, 6.2). To safeguard against worst-case scenarios,

such as administrative account compromise, consider offline

backups not connected to the internet. Providers like Azure and

AWS offer hard drive shipping services, where data can be

physically backed up onto hard drives and delivered to secure

locations with ID verification. This approach serves as the final

line of defense against system-wide ransomware attacks.
10 Conclusion

This paper addresses the challenges associated with collecting,

processing, analyzing, and visualizing the vast amount of raw data

generated by wearable sensor devices used for continuous patient

monitoring. We recognize the critical importance of scalability in

handling such large volumes of data and the need for robust

security measures to protect patients’ health information (PHI)

in accordance with the Health Insurance Portability and

Accountability Act (HIPAA) guidelines.

To overcome these challenges, we propose a tailored Internet of

Things (IoT) architecture specifically designed for the remote

healthcare domain. Our approach leverages the power and capabilities

of widely available commercial cloud platforms, namely Microsoft

Azure and Amazon Web Services (AWS), while ensuring compliance

with HIPAA regulations. By capitalizing on the scalability, load

balancing, monitoring, and security functionalities offered by Azure

and AWS, we aim to streamline the development process of creating

HIPAA-compliant infrastructures for remote patient monitoring.

Furthermore, we conducted a comprehensive investigation into

the data processing speed and database query latency of both Azure

and AWS platforms. Through comparative analysis, we evaluated

their performance at similar throughputs and computing powers

when scaling up. This evaluation provides valuable insights into

the capabilities and efficiency of these cloud platforms in

handling the demands of healthcare data processing.

Overall, our proposed IoT architecture offers a practical and

scalable solution for managing remote patient monitoring data

while ensuring HIPAA compliance. By leveraging the capabilities

of Azure and AWS, healthcare providers and developers can

benefit from the extensive features and services offered by these

cloud platforms, allowing for efficient, secure, and compliant

remote healthcare systems. Future research can focus on

exploring additional cloud platforms and evaluating their

suitability for remote patient monitoring applications.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material, further inquiries can be

directed to the corresponding author.
Author contributions

MC: Writing – original draft, Writing – review & editing,

Formal Analysis, Investigation, Methodology, Resources,
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Cao et al. 10.3389/fdgth.2024.1399461
Software, Validation, Visualization. RR: Writing – original draft,

Writing – review & editing, Conceptualization, Formal Analysis,

Investigation, Methodology, Resources, Supervision, Validation,

Visualization. VK: Investigation, Software, Validation, Writing –

review & editing. WZ: Investigation, Writing – review & editing.

DB: Investigation, Software, Writing – review & editing. MW:

Investigation, Software, Writing – review & editing. AN: Funding

acquisition, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. Center for

Smart Health, University of California, Los Angeles.
Frontiers in Digital Health 19
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Kalantarian H, Sarrafzadeh M. Audio-based detection and evaluation of eating
behavior using the smartwatch platform. Comput Biol Med. (2015) 65:1–9. doi: 10.
1016/j.compbiomed.2015.07.013

2. Weiss GM, Timko JL, Gallagher CM, Yoneda K, Schreiber AJ. Smartwatch-based
activity recognition: a machine learning approach. 2016 IEEE-EMBS International
Conference on Biomedical and Health Informatics (BHI) (2016). doi: 10.1109/bhi.
2016.7455925

3. Twomey N, Diethe T, Fafoutis X, Elsts A, Mcconville R, Flach P, et al. A
comprehensive study of activity recognition using accelerometers. Informatics.
(2018) 5(2):27. doi: 10.3390/informatics5020027

4. Ramezani R, Zhang W, Roberts P, Shen J, Elashoff D, Xie Z, et al. Physical activity
behavior of patients at a skilled nursing facility: longitudinal cohort study. JMIR
Mhealth Uhealth. (2022) 10(5):e23887. doi: 10.2196/23887

5. Ramezani R, Moatamed B, Naeim A, Sarrafzadeh M. (2021). Subject assessment
using localization, activity recognition and a smart questionnaire. U.S. Patent 10,937,547.

6. Ramezani R, Zhang W, Xie Z, Shen J, Elashoff D, Roberts P, et al. A combination
of indoor localization and wearable sensor–based physical activity recognition to
assess older patients undergoing subacute rehabilitation: baseline study results. JMIR
Mhealth Uhealth. (2019) 7(7):e14090. doi: 10.2196/14090

7. Moatamed B, Shahmohammadi F, Ramezani R, Naeim A, Sarrafzadeh M.
low-cost indoor health monitoring system. 2016 IEEE 13th International Conference
on Wearable and Implantable Body Sensor Networks (BSN) (2016). IEEE p. 159–64

8. Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C. A
new architecture of internet of things and big data ecosystem for secured smart
healthcare monitoring and alerting system. Future Gener Comput Syst. (2018)
82:375–87. doi: 10.1016/j.future.2017.10.045

9. Li Y, Li W, Jiang C. A survey of virtual machine system: current technology and
future trends. 2010 Third International Symposium on Electronic Commerce and
Security (2010). IEEE p. 332–6.

10. Alasmari S, Anwar M. Security & privacy challenges in IoT-based health cloud.
2016 International Conference on Computational Science and Computational
Intelligence (CSCI) (2016). doi: 10.1109/csci.2016.0044

11. Pasquier T, Singh J, Powles J, Eyers D, Seltzer M, Bacon J. Data provenance to
audit compliance with privacy policy in the internet of things. Pers Ubiquitous
Comput. (2017) 22(2):333–44. doi: 10.1007/s00779-017-1067-4

12. Dordevic BS, Jovanovic SP, Timcenko VV. Cloud computing in Amazon and
microsoft azure platforms: performance and service comparison. 2014 22nd
Telecommunications Forum Telfor (TELFOR). Adv Sci Technol Lett. (2014)
66:105–11. doi: 10.1109/telfor.2014.7034558

13. Ratan V. Docker: a favourite in the DevOps world. In Open Source Forum.
(2017). Available online at: https://www.opensourceforu.com/2017/02/docker-
favourite-devops-world/ (accessed June 07, 2022).

14. Celesti A, Mulfari D, Fazio M, Villari M, Puliafito A. Exploring container
virtualization in IoT Clouds. 2016 IEEE International Conference on Smart
Computing (SMARTCOMP) (2016). doi: 10.1109/smartcomp.2016.7501691

15. Seo K, Hwang H, Moon I, Kwon O, Kim B. Performance comparison analysis of
linux container and virtual machine for building Cloud. (2014). doi: 10.14257/astl.
2014.66.25
16. Kubernetes. Available online at: https://kubernetes.io/ (accessed October 12, 2021)

17. Kubernetes T. Kubernetes. Kubernetes. Retrieved May, 24, 2019. (2019).

18. Iainfoulds. Use the cluster autoscaler in Azure Kubernetes Service (AKS). (n.d.).
Available online at: https://docs.microsoft.com/en-us/azure/aks/cluster-autoscaler
(accessed April 01, 2022).

19. Pary R. Run your Kubernetes Workloads on Amazon EC2 Spot Instances with
Amazon EKS | Amazon Web Services. (2018). Available online at: https://aws.amazon.
com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-
with-amazon-eks/ (accessed April 01, 2022).

20. Richter F. Infographic: Amazon maintains cloud lead as Microsoft edges closer.
Statista Daily Data. (2024). Available online at: https://www.statista.com/chart/18819/
worldwide-market-share-of-leading-cloud-infrastructure-service-providers/ (accessed
April 01, 2022).

21. Narwat H. A comprehensive analysis of key players in the Cloud Services Market.
LinkedIn. (2024). Available online at: https://www.linkedin.com/pulse/comprehensive-
analysis-key-players-cloud-services-market-harsh-narwat-c5wgc/ (accessed April 01,
2022).

22. Nginx. NGINX. (2022). Retrieved April 1, 2022. Available online at: https://
www.nginx.com/ (accessed April 01, 2022).

23. Myers M, Adams C, Solo D, Kemp D. Internet x. 509 certificate request message
format. No. rfc2511. (1999).

24. Kgremban. Understand azure IOT hub quotas and throttling. Understand Azure
IoT Hub quotas and throttling | Microsoft Docs. (n.d.). Retrieved April 1, 2022.
Available online at: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-
quotas-throttling (accessed April 01, 2022).

25. Ramezani R, Cao M, Earthperson A, Naeim A. Developing a smartwatch-based
healthcare application: notes to consider. Sensors. (2023) 23(15):6652. doi: 10.3390/
s23156652

26. Dierks T, Rescorla E. The transport layer security (TLS) protocol version 1.2.
(2008).

27. Do AV, Chen J, Wang C, Lee YC, Zomaya AY, Zhou BB. Profiling applications
for virtual machine placement in clouds. 2011 IEEE 4th Iinternational Cconference on
Ccloud Ccomputing (2011). IEEE. p. 660–7

28. Nambiar R, Wakou N, Carman F, Majdalany M. Transaction processing
performance council (TPC): state of the council 2010. Technology Conference on
Performance Evaluation and Benchmarking (2010). Springer, Berlin, Heidelberg
p. 1–9.

29. Bender D, Sartipi K. HL7 FHIR: an Agile and RESTful approach to healthcare
information exchange. Proceedings of the 26th IEEE International Symposium on
Computer-Based Medical Systems; Porto, Portugal (2013). p. 326–31. doi: 10.1109/
CBMS.2013.6627810.

30. Salahdine F, Kaabouch N. Social engineering attacks: a survey. Future Internet.
(2019) 11(4):89. doi: 10.3390/fi11040089

31. Yaqoob I, Ahmed E, ur Rehman MH, Ahmed AIA, Al-Garadi MA, Imran
M, et al. The rise of ransomware and emerging security challenges in the
internet of things. Comput Netw. (2017) 129:444–58. doi: 10.1016/j.comnet.
2017.09.003
frontiersin.org

https://doi.org/10.1016/j.compbiomed.2015.07.013
https://doi.org/10.1016/j.compbiomed.2015.07.013
https://doi.org/10.1109/bhi.2016.7455925
https://doi.org/10.1109/bhi.2016.7455925
https://doi.org/10.3390/informatics5020027
https://doi.org/10.2196/23887
https://doi.org/10.2196/14090
https://doi.org/10.1016/j.future.2017.10.045
https://doi.org/10.1109/csci.2016.0044
https://doi.org/10.1007/s00779-017-1067-4
https://doi.org/10.1109/telfor.2014.7034558
https://www.opensourceforu.com/2017/02/docker-favourite-devops-world/
https://www.opensourceforu.com/2017/02/docker-favourite-devops-world/
https://doi.org/10.1109/smartcomp.2016.7501691
https://doi.org/10.14257/astl.2014.66.25
https://doi.org/10.14257/astl.2014.66.25
https://kubernetes.io/
https://docs.microsoft.com/en-us/azure/aks/cluster-autoscaler
https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks/
https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks/
https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.linkedin.com/pulse/comprehensive-analysis-key-players-cloud-services-market-harsh-narwat-c5wgc/
https://www.linkedin.com/pulse/comprehensive-analysis-key-players-cloud-services-market-harsh-narwat-c5wgc/
https://www.nginx.com/
https://www.nginx.com/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://doi.org/10.3390/s23156652
https://doi.org/10.3390/s23156652
https://doi.org/10.1109/CBMS.2013.6627810
https://doi.org/10.1109/CBMS.2013.6627810
https://doi.org/10.3390/fi11040089
https://doi.org/10.1016/j.comnet.2017.09.003
https://doi.org/10.1016/j.comnet.2017.09.003
https://doi.org/10.3389/fdgth.2024.1399461
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	Developing remote patient monitoring infrastructure using commercially available cloud platforms
	Introduction
	Background
	Internet of things
	HIPAA
	Challenges in remote monitoring system
	Design philosophy: microservices architecture
	Scalability via container technology
	Kubernetes services basic concept
	Cloud services

	System architecture
	Interface layer
	Data processing layer
	Database layer

	Interface layer
	Sensor management unit
	Provisioning new devices
	Sensors’ data upload

	Azure
	AWS
	Outline placeholder
	Monitoring and update

	Visualization: Web app unit
	Azure visualization
	AWS visualization
	User registration in bulk using the web app unit via azure and AWS

	Data processing layer
	Raw data storage unit
	Security
	Data availability

	Messaging unit
	Data processing unit
	Kubernetes system implementation

	Database layer
	Data access control unit
	Load balancing
	Database access control using application programming interface (API)

	Database storage unit

	Infrastructure setup cost
	System testing
	Data processing layer performance test
	Database layer throughput performance test

	General tips on healthcare cloud system design process
	Emphasis on system modularity
	Extensive use of fine-grained access authorization
	Regular backup and recovery

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

