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Abstract

Postmodern Electronic Structure Theory
by
Joonho Lee
Doctor of Philosophy in Chemistry
University of California, Berkeley
Professor Martin P. Head-Gordon, Chair

This dissertation is concerned with the development and applications of approaches
to the electron correlation problem. We start with an introduction that summarizes
modern approaches to the electron correlation problem. In our view, there are two
remaining challenges that modern density functional theory cannot satisfactorily
solve. The first challenge is due to self-interaction error and the second is due to
strong correlation. We discuss two methods developed by the author that attempt
to make progress to address the second challenge.

The first approach is useful in distinguishing strong and weak correlation in a
computationally economical way. It is based on orbital optimization in the presence
of regularized second-order Mgller-Plesset perturbation theory (k-OOMP2), which
is an approximate method to obtain Briickner orbitals. xk-OOMP2 includes weak
correlation while attenuating strong correlation. As such, it distinguishes artificial
and essential symmetry breaking which occur at the Hartree-Fock (HF) level. Ar-
tificial symmetry breaking appears due to the lack of weak correlation, not due to
the lack of strong correlation. Therefore, the common wisdom in quantum chem-
istry, which equates symmetry breaking at the HF level and strong correlation, can
result in a wrong understanding of the system. Essential symmetry breaking, on the
other hand, signals strong correlation that is beyond the scope of simple perturba-
tion theory. k-OOMP2 has been shown to reliably distinguish these two: symmetry
breaking in the k-OOMP2 orbitals is essential. This has been applied to a recent con-
troversy about whether Cg, is strongly correlated. Starting from a broken-symmetry
HF solution, k-OOMP?2 restores every symmetry. As such, Cg, is not strongly cor-
related. Moreover, k-OOMP2 successfully predicts strong correlation for a known
biradicaloid, Cs4, by showing essential symmetry breaking in its orbitals. We also
exploited essential symmetry breaking in singlet biradicaloids using k-OOMP2 and



showed quantitative accuracy in obtaining singlet-triplet gaps of various molecules.
This new approach should be helpful for redefining the common wisdom in quantum
chemistry.

The second method is an exact, spin-pure, polynomial-scaling way to describe
strong spin-correlation (SSC). SSC is present when there are many spatially separate
open-shell electrons with small spin-flip energy cost. Describing SSC exactly requires
the inclusion of all essential spin-couplings. The number of such spin-couplings scales
exponentially with the number of electrons. Because of this, SSC was thought to
require an exponential number of wavefunction parameters in general. However,
new development suggests that there is an efficient way to obtain all these spin-
couplings with only a quadratic number of wavefunction parameters, which is called
the coupled-cluster valence-bond (CCVB) method. We discuss different challenges
in CCVB: (1) its non-black-box nature and (2) its inability to describe SSC in spin-
frustrated systems. We present two improved CCVB approaches that address these
two challenges. These approaches were applied to describe emergent strong corre-
lation in oligoacenes and SSC in spin-frustrated systems such as single molecular
magnets and metalloenzymes. The remaining challenges in CCVB are the inclu-
sion of ionic excitations which are not relevant for SSC, but crucial for obtaining
quantitative accuracy.
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Chapter 1

Introduction

“My definition of an expert in any field
1s a person who knows enough about

what’s really going on to be scared.”
— PJ Plauger

Quantum chemistry is a discipline that aims to provide chemically useful infor-
mation by solving the Schrodinger equation. In particular, for the purpose of this
dissertation we shall focus on the time-independent version of the Schrodinger equa-
tion (TISE) |1]. The TISE reads

H|U) = E|T) (1.1)

where H is the Hamiltonian which depends on problems of our interest and E' is the
energy of the ground state |¥). In particular, the Hamiltonian that is most widely
used in quantum chemistry is the system-dependent ab-initio electronic Hamiltonian
within the Born-Oppenheimer approximation (i.e., nuclei are fixed and behave like
point charges) [2|. That is,

1 1
RPN v 2Ty e (12

where

YV
nuc - 47D (13)
;B R4 — Ry

This Hamiltonian includes the kinetic energy operator for each electron (the first
term), the Coulomb attraction between electrons and nuclei (the second term), the
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Coulomb repulsion between electrons (the third term), and the Coulomb repulsion
between nuclei (the last term). Representing Hyina practically feasible way requires
the use of a finite basis set at the expense of introducing “discretization errors”. We
note that it is possible to work directly at the infinite basis set limit (or complete
basis set limit) in some stochastic approaches such as quantum Monte Carlo (QMC)
3]

Most quantum chemistry research focuses on deterministic (non-stochastic) al-
gorithms and therefore we shall assume that a finite basis set is used. For a given
basis set, one may solve Eq. exactly for H, of Eq. represented in the
many-electron Hilbert space spanned by the basis, which is known as full configura-
tion interaction (FCI) or exact diagonalization (ED). FCI is a useful approach due
to its exactness for a given basis set whenever it is possible to run it. The major
issue with FCI is that, due to its exponential size-scaling, it is only feasible to run
on a very small number of electrons (roughly about 15-16 electrons). This is usu-
ally considered too small for most chemical applications. As such, modern quantum
chemistry research has focused on approximating FCI with as a little loss of accuracy
as possible while increasing the computational feasibility as much as possible.

1.1 Modern Quantum Chemistry

Pople’s Model Chemistries

The requirements of model chemistries were first proposed by John Pople, one
of the two 1998 Chemistry Nobel laureates, in 1973 [4]. It has set the standard in
the modern era of quantum chemistry and we will briefly review each of the Pople’s
original principles along with those presented in his Nobel lecture [5] in this section.
According to Pople, a successful model chemistry should be:

1. simple enough to be applied to a wide range of chemical systems so that realistic
simulations can be performed. This sets our preference on approaches that scale
polynomially with system size over those that scale exponentially.

2. able to obtain energies with an error less than 1 kcal/mol (chemical accuracy).
3. defined uniquely and continuously throughout potential energy surfaces.

4. systematically compared with experimental data. Such a benchmark is neces-
sary for one to understand the limitation of a given model chemistry.
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5. size-consistent. That is, if one runs a calculation on a system A and a well-
separated system B, the resulting energy must be the sum of the energy of A
and B. This is the only technical requirement that Pople had in his original
article.

6. implemented in a black-box fashion such that anyone can easily perform a calcu-
lation with only an input geometry, charge, spin, and a choice of discretization
(basis set).

At the time of writing this dissertation, no single method satisfies all these criteria
and most research has focused on trade-off between 1 (cost) and 2 (accuracy). For
instance, the exact approach, FCI, is not really a successful model chemistry due to
its highly limited applicability. Therefore, a useful model chemistry must be approx-
imate by nature. Initial developments of approximate quantum chemistry methods
by Pople were mostly based on methods that satisfy 3, 4, 5, and 6 while establishing
a whole hierarchy of models with trade-offs between 1 and 2. Pople and co-workers
carefully assessed individual approaches in order to understand whether both 1 and 2
can be met in some class of chemical applications. These approaches include Mgller-
Plesset (MP) perturbation theory [6-11], quadratic configuration interaction (QCI)
[12], coupled cluster (CC) theory [13-15], and density functional theory (DFT) [16-
21]. This philosophy was shared by others in the field and therefore was deemed as
the standard in modern quantum chemistry.

Remaning Challenges

In this section, we review the remaining challenges in modern quantum chem-
istry. These challenges are currently those problems to which the most widely used
approach, DFT, cannot yet offer solutions [22]. The first challenge is due to the self-
interaction error (SIE) of electrons posed by the use of an approximate exchange-
correlation (XC) functional. In DFT, the difficult 2-electron term in Eq. is
replaced by a classical Coulomb term and a 1-electron term called an XC functional.
Namely, this corresponds to

1 1
Wy D e - 5[ [ A ) (1.4

where |W) is the exact ground state, the first term corresponds to the classical
Coulomb energy, the second term is the XC energy, and p(r) is a one-electron reduced
density defined as

o) = [ e P (15)
r2,r3, - ,rny
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This is an exact expression as the definition of F,.[p(r)] is given by this equation.
In passing, we note that in the most usual form of DFT (i.e., Kohn-Sham (KS-)
DFT) some additional subtleties arise due to the kinetic energy term in Eq. (L.2).
As a result, F,.[p(r)] is typically thought to also include the correlation effect in the
kinetic energy of an exact wavefunction.

Looking at Eq. (L.4), the origin of SIE is now evident. When there is only a single
electron, the energy in Eq. should be exactly zero because an electron should
not interact with itself. However, approximate treatments to E,. do not exactly
cancel the classical Coulomb energy and thus lead to SIE. This SIE has been shown
to play a crucial role in DET errors for many electron systems [23-27]. Although
there are some existing approaches in DFT to help reduce SIE [23], a perfect way
to avoid any potential SIEs is simply to use wavefunction based approaches such as
MP and CC.

The second challenge is due to the inadequacy of DFT in describing strong corre-
lation (SC). Like in the case of SIE, this inadequacy of DFT is due to the limitations
of existing approximate XC functionals. As the exact XC functional is currently
unavailable, SC remains to be a challenge. We define SC based on the applicability
of low-order MP perturbation theory (PT). When low-order MPPT is quantitatively
accurate, it is safe to assume that the system is only “weakly” correlated. Unfor-
tunately, such distinction between strong and weak correlation cannot be uniquely
achieved and therefore their definitions are also vague to some extent. More in-
tuitively, strongly correlated systems carry many open-shell (OS) electrons whereas
weakly correlated systems carry only almost exclusively spin-paired closed-shell (CS)
electrons. Therefore, weakly correlated systems can be well described by a simple
perturbation expansion around a perfectly closed-shell single determinant (i.e., no
electron-correlation) state.

Often, the SC problem requires a non-local form of the XC functional and thus
currently available XC functionals are inadequate to yield accurate energies even
with accurate densities. There are other approaches in KS-DFT that attempt to
incorporate SC [28-33] but all of them encounter formal challenges such as double
counting of correlation or unsatisfying separation of correlation. Furthermore, even
with wavefunction approaches, SC remains unsolved because the exact description
for SC in general scales exponentially with system size.

For the purpose of this dissertation, we will focus on the second challenge (i.e.,
strong correlation) using wavefunction approaches which do not suffer from SIE.
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1.2 Author’s Views on Pople’s Criteria

Ideally, satisfying all of Pople’s requirements is desirable. In lieu of modern
development in the electron correlation approaches, we review this very desirable
goal. In recent development, much focus has be spent on achieving 1 and 2 at the
expense of other requirements. This is not necessarily a negative trend for quantum
chemistry, but rather it is necessary to make changes to solve problems that are
already in the reach of existing tools. We will revisit some of Pople’s criteria and
mention some recent electronic structure methods that do not satisfy these criteria
but yet proved to be valuable.

Lack of Universal Applicability is Tolerable

A model chemistry lacking universal applicability is often well received in the
community if the scope of the model is clearly understood. In such cases, one can
pick a class of problems that are well suited for a chosen model chemistry. This is not
necessarily a bad practice of quantum chemistry. Rather it motivates development
of new approaches only when there is a physical problem that cannot be answered
by currently available tools.

For instance, the density matrix renormalization group (DMRG) approach is the
de facto approach for simulating one-dimensional (1D) quantum lattice problems [34].
It can be used to obtain near-exact energies at a polynomial cost for 1D problems
and therefore this must be a choice of method for 1D. However, its scaling becomes
exponential with system size and it scope becomes more limited as one goes to higher
dimensional systems. We further note that despite its exponential scaling for higher
dimensional systems DMRG has been applied with much caution to solve 2D lattice
models [35, 36] and more general 3D chemistry problems [37H41].

The same can be said for many conventional single-reference approaches such as
CC and MP methods since their performance typically degrades for strongly corre-
lated systems. Of course, their scope is well understood and therefore they remain
widely accepted as useful tools for simulating weakly correlated systems.

Physical Accuracy is More Important Than Chemical
Accuracy

As mentioned earlier, achieving chemical accuracy (1 kcal/mol) while maintain-
ing universal applicability (i.e., polynomial scaling) is too difficult. We shall focus
on achieving “physical accuracy”. Physical accuracy is about qualitative accuracy
rather than quantitative accuracy. However, this does not mean that we do not need
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quantitative accuracy for physical accuracy. Some qualitative answers still require
accurate energies and properties. They just do not have to be within 1 kcal/mol
and are not as strict as chemical accuracy. Questions that require physical accu-
racy include (1) stability of a molecule in a specific geometry, (2) the spin state of
the electronic ground state of a molecule, (3) whether a given molecule is strongly
correlated and etc.

In this dissertation, we answer a question of physical accuracy which is about what
reference wavefunction to use for simulating weakly or strongly correlated systems.
By reference wavefunction, we mean that this wavefunction is used for subsequent
higher level correlation calculations such as CI, CC or PT. It can be a single Slater
determinant such as a HF state or a linear combination of multiple Slater determi-
nants as in the complete active space self-consistent field (CASSCF) method. For
weakly correlated systems, a HF state may be a suitable starting point except that
sometimes it may suffer from artificial symmetry breaking (see below). For strongly
correlated systems, a CASSCF state is the de facto reference state despite its ex-
ponential size-scaling. It is then natural to ask what is the best reference state for
strongly correlated systems that scales polynomially in system size.

Condensed-Phase Applications Are Now Necessary

With the development of modern high-performance computing, it is no longer just
quantum chemists’ dream to simulate systems with thousands of atoms to probe bulk
properties. Size-consistency is absolutely necessary for simulating bulk materials and
therefore it is still a required property in model chemistries. Furthermore, polynomial
scaling is more desirable than before. It is possible to simulate correlated solids in a
very small unit cell with brute-force approaches such as FCI quantum Monte Carlo
(FCIQMC) [42]. Such materials with a very small unit cell are far from what is
required to compare with experiments. CC methods stand out uniquely as they are
size-consistent and polynomial-scaling model chemistries [43-46]. However, these CC
methods are not economical enough to be applied to diverse solids and condensed
phase problems. Therefore, there is a clear need for quantum chemists to develop a
method that is competitive with CC in accuracy and much less costly.

We note that one of the most pressing present-time theoretical challenges is the
removal of finite-size effects. This becomes more evident when it comes to dis-
tinguishing multiple competing ordered phases of matter. Spontaneous symmetry
breaking that forms charge density waves or spin density waves only occurs at the
thermodynamic limit. The relative energetics between different phases depend on
the size of the system. Therefore, one cannot assess the relative stability of phases
using finite-sized cluster models. It is necessary to have a tool to reliably reach the
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thermodynamic limit without finite-size effects [46-50]. Such tools often need large
supercells (much larger than the minimal unit cell) to thoroughly investigate conver-
gence to the thermodynamic limit, posing a great challenge to method development
for simulating correlated solids.

Black-Box Implementation Is Not Required

For both developers and users, having a black-box implementation of a model
chemistry is helpful for applying it to a wide variety of systems with little human
effort. This has been at the heart of philosophy of modern quantum chemistry
owing to Pople. In the author’s viewpoint, among other criteria, the black-box
implementation may be least important. Customized approaches to specific problems
have gained some popularity. They are often necessary for achieving high accuracy
with economical computational cost for specific problems.

Classic examples are the multi-reference self-consistent field (MCSCF) [51-58]
and multi-reference configuration interaction (MRCI) [59, |60] methods for strongly
correlated systems where users have to choose configurations to orbital-optimize or a
reference set of configurations on which to add excitations A slightly more black-box
approach in this category is CASSCF [51H53] where users only have to specify an
active space in which to solve a FCI problem. While MCSCF and MRCI have seen
relatively little application, CASSCF has stood out as a useful electron correlation
model, though it requires much caution when applying to problems where there is
no obvious choice for the active space.

As a more modern example, there are local correlation techniques which take
existing correlation methods that satisfy all criteria by Pople (e.g., CCSD(T)) and
apply approximations based on the locality of weak correlation. Most approaches
involve a tunable parameter (and sometimes multiple parameters) that controls the
trade-off between cost and accuracy. This makes the algorithm essentially non-
black-box. Users have to check the convergence of the energy with respect to the
tunable parameter to ensure the correctness of results that they obtain. Despite
this “undesirable” property, local correlation methods remain popular in quantum
chemistry and have been applied to numerous problems [61H67] that were simply
intractable without them.

Other examples include those methods that yield energies which are not invari-
ant under unitary rotations between occupied-occupied and virtual-virtual orbitals.
Widely used single-reference approaches are more or less black-box because their
energies are invariant under these rotations. Such invariance allows for a black-box
implementation. Namely, once a desired HF or DF'T solution is obtained, there is not
much caution needed for running such subsequent correlation approaches. Methods
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that lack this property can be difficult to use but they often come with other desir-
able properties such as polynomial scaling and exactness for certain limits. Making
these approaches more black-box is an interesting research direction although it is
sometimes challenging to make such progress.

We may tolerate non-black-box nature of some methods as long as they can
provide reliable solutions to problems in our hand. We emphasize that this does
not mean that we should not try to have a black-box approach. Any black-box
implementations are highly desirable whenever possible. Our viewpoint is that some
methods cannot be made black-box and we should not abandon these approaches
simply because of it.

1.3 Challenges Addressed in This Dissertation

As mentioned before, approaches we desire can be somewhat application-specific.
We have enough tools to apply to a wide variety of problems, though they may
become too costly for large systems. Once we have a method that is targeted to
solve a specific class of problems of interest, it is often necessary to have additional
tools which could determine whether a given problem can be tackled by the method.
Development of such tools that help one choose the right approach is therefore highly
desirable.

Distinguishing Weak and Strong Correlation

In Section [I.I, we introduced weak and strong correlation between electrons.
Strong correlation is typically difficult to deal with and the applicability of available
tools are highly limited in system size. On the other hand, we have many available
tools for weak correlation such as PT, which can potentially be applied to systems
of thousands of atoms with additional tricks such as locality of weak correlation.

Most approaches to strong correlation problems consist of two steps. First, one
builds an “active space” problem, which is to form an effective Hamiltonian for all
strongly correlated electrons, and solves this Hamiltonian exactly (or often approx-
imately with high accuracy). Second, one adds weak correlation outside this active
space via a CI expansion [68-72], a CC expansion [73-111], or PT [112H119]. The
first step of solving an active space problem is normally limited in size as most
available tools scale exponentially with the number of electrons. The second step
of adding missing weak correlation formally scales polynomially but is usually very
complicated in terms of implementation. As such, the resulting model chemistry
lacks derivation and implementation of properties beyond energies. If a given system
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is only weakly correlated, the situation is much simpler. One can apply a low-order
perturbation approach based on a mean-field starting point, Hartree-Fock (HF'), and
obtain quantitative answers for energies and other properties. Various properties are
readily available for simple PT such as second-order Mgller-Plesset (MP2) theory.
This is due to the fact that our starting point for PT here is a single determinant.
In the case of the second step for strong correlation we started from a more com-
plicated active space wavefunction, which poses challenges in implementation and
extension of such PT methods. Given this situation, it is preferred to distinguish
weak and strong correlation and apply the two-step-strategy of strong correlation to
only strongly correlated systems. For weakly correlated systems, such an approach
is mostly wasteful and we should attempt to apply a simple approach like MP2.

In the modern era of quantum chemistry, distinguishing these two were normally
done by symmetry breaking at the HF level. The meaning of this is most apparent
in the HF wvariational energy expression for N-electron systems:

. <(I)’[A{ellq)>
B el
N . 1
= it | Sl + S0 + Bt S As(ley| (10
R i=1 ij ij

where |®) is a single Slater determinant made of a set of occupied orbitals {|¢;)},
the one-electron operator h is

- 1 Za
h=_—-V2_ I — 1.7

the antisymmetrized two-electron integral, (ij||ij), reads
(ijllig) = (ijlig) — (ijlji) (1.8)

with the Coulomb term,

[Ty — 15
and the exchange term,

07 (r1)¢;(r1) ¢} (r2) di(r2)

1.10
|I‘1 _ I,2| ( )

(ij]ji) =

ry,ra
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and A represents the Lagrange multipliers to enforce orthonormality between or-
bitals. Eq. demonstrates the variational nature of HF. Namely, the HF method
produces a variationally optimized Slater determinant that gives an infimum of the
energy expression in Eq. . In practice, one might impose “symmetry con-
straints” on the form of |®) to obtain a determinant with the same symmetry as the
exact ground state of H,. The exact ground state has multiple symmetry properties
because H, commutes with other operators. The symmetry of exact ground state
includes S'Z—symmetry, spin- (5'2—) symmetry, complex symmetry, and time-reversal
symmetry. The symmetry constraints can be understood in terms of working quanti-
ties, C (i.e., molecular orbital coefficients). C is used to define each molecular orbital
(MO) as a linear combination of atomic orbitals (LCAO), that is,

¢i(r) = ZW(I')OM (1.11)

where 7, (r) denotes an atomic orbital (AO) evaluated at a grid point r. The matrix
C is a transformation matrix that connects MOs with AOs. A most general form of
the i-th column (i.e., the i-th MO) in C is

{CZ} (1.12)

C;

where a and 3 denote the spin-component such that

6i(r) =D ((!)uu(®) + (€])mu(r)). (1.13)

In

A one-body reduced density matrix (1IRDM) P is then composed of a total of four
spin-blocks,

(1.14)

p_ CoccCiCC _ |:POéoz Paﬂ}

Pha PhB

where C,. is the MO coefficient matrix for the occupied orbitals. Possible symmetry
constraints on |®) can be understood as restrictions on P. The necessary constraints
for representing non-interacting N-electron systems are (1) tr(P) = Ng and (2)
P? = P (assuming AO basis sets are orthogonal). Depending on the type of HF,
one may impose additional constraints on P. In Table [L.I, we present possible HF
types along with their restrictions on P. Only RHF possesses all symmetries that the
exact ground state has for a given Hamiltonian H,. The common wisdom in modern
quantum chemistry is that strong correlation exists when RHF' is unstable to other
HF types. This common wisdom has been challenged by multiple examples [120-
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Type Constraints

RHF | Pe® = PP Pof = pha =0, P eR
cRHF P = P8 P = PP =0
UHF | P =P =0, P3* cR, PV R
cUHF P = PP =0

GHF P, eR

cGHF None

Table 1.1: Types of HF approaches and their constraints on 1IRDM. Note that we
assume that orbitals are maximally collinear along the z-axis. For more general
classifications without assuming the z-axis being a special axis, see Ch. .

127] that often call this “artificial” symmetry breaking. Artificial symmetry breaking
occurs due to the lack of weak correlation, not due to the lack of strong correlation.
On the contrary, essential symmetry breaking is due to the lack of strong correlation
at the HF level and this implies that we need an approach that goes beyond simple PT
methods. This artificial symmetry breaking cannot be distinguished from “essential”
symmetry breaking solely based on the HF theory. We address this issue based on
a correlated orbital theory where orbitals are optimized in the presence of weak
correlation (in this case MP2). The resulting method may be useful for treating
molecular problems without artifacts from artificial symmetry breaking using HF
orbitals, as well as signaling the onset of genuinely strong correlations through the
presence of essential symmetry-breaking in its reference orbitals

Exact, Polynomial Description to Strong Spin Correlation

We developed an approach that can describe strong spin correlation (SSC) ex-
actly without invoking an exponential cost wall. SSC is an important class of strong
correlation. When there are many spatially separated open-shell electrons, there is
only a small energy cost for spin-flips while charge-transfers exhibit a large energy
cost. This is the defining property of SSC [128]. There are multiple familiar exam-
ples that show emergent SSC between electrons. The most widely known example is
multiple bond dissociations in molecules. For instance, dissociating the C-C double
bond in an ethene molecule (H,C=CH,) leads to a total of four open-shell electrons
that participate in SSC of this molecule. More sophisticated examples include metal-
loenzymes [129-131] such as the P-center of nitrogenase which involves the so-called
FeMoCo moiety [132-135]. Unlike bond dissociations, metalloenzymes exhibit many
open-shell electrons even at their equilibrium geometries. This is largely due to the
fact that d- or f-electrons tend to be localized in space. Some metalloenzymes may
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involve hundreds of open-shell electrons that participate in SSC and thus there is a
clear need for an economical method which can handle SSC efficiently.

The common wisdom in modern quantum chemistry is that SSC can be described
exactly if one includes all possible spin-couplings for a given number of electrons, N,
and a spin-quantum number S. This is the essence of the spin-coupled valence bond
(SCVB) or generalized valence bond (GVB) approach. It is undoubtedly the right
approach for SSC but the cost for including all possible spin-couplings in SCVB
scales exponentially with the number of electrons. The number of independent spin-
coupling vectors is given by

(25 + 1)N!

f(N,5) = AN+ S+ DIEAN =5

(1.15)

assuming the S, quantum number M = S [136]. Based on Sterling’s approximation,
this combinatorial scaling of the spin-coupling dimension can be shown to approach
an asymptotic exponential scaling for large N. Similar to other exponential scaling
approaches, due to the steep computational scaling, the applicability of SCVB has
been limited to systems with a small number of electrons |137-139].

Our approach to this seemingly exponentially difficult problem is the coupled-
cluster valence bond (CCVB) approach [140]. We cast the SCVB wavefunction,
which contains an exponentially many spin-couplings, into a compact coupled-cluster
expansion with only a quadratic number of parameters, {txz}. The resulting wave-
function from CCVB is size-consistent, spin-pure (i.e., it is a spin-eigenfunction)
and exact for SSC (i.e., exact for multiple bond breaking). Furthermore, the overall
cost of the CCVB energy evaluation along with the wavefunction optimization scales
only cubically with system size. It turns out that CCVB can describe SSC exactly
as long as the UHF energy (see Table is exact within the valence active space
(where chemical bonds form and break). The UHF energy is exact in this limit
because states with different S are all degenerate and all the interacting electrons
are high-spin (i.e., no correlation). In such cases, CCVB is exact and maintains the
spin-purity.

Some drawbacks and challenges in CCVB were addressed in this dissertation.
Those challenges are as follows:

1. The CCVB energy is not invariant under unitary transformations within the
occupied-occupied and the virtual-virtual blocks. This makes CCVB highly
non-trivial to use even for an expert. If there is a way to improve, it is highly
desirable.

2. The CCVB active space is inherently limited to a pairing active space (Ne, No)
where we have the same number of electrons and the same number of orbitals
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for CCVB to solve. This limits the applicability of CCVB to problems like
bond dissociations where such a pairing active space is naturally well-suited.

3. CCVB does not include any ionic excitations between electron pairs. These
ionic excitations do not participate in SSC, but they play a crucial role in
describing overall electronic structure for systems with mixed SSC and weak
correlation.

4. Some problems with SSC are not treatable with CCVB. These examples are
those that UHF fails and only cGHF (see Table is well-suited among HF
approaches.

The drawbacks 1-3 have been addressed by extending CCVB to CCVB with singles
and doubles (CCVB-SD) [141], |142] and the drawback 4 have been addressed by
extending CCVB further to incorporate missing spin-couplings[143, [144].

1.4 Works Not Mentioned in This Dissertation

There are multiple works that were completed or are in progress as a part of the
author’s Ph.D. They are omitted in this dissertation for the sake of brevity and flow.
We shall briefly mention them for the completeness of this dissertation:

1. An investigation of strong correlation in the context of DFT was carried out
using cRHF (see Table orbitals [145]. This work offers new insights into
the so-called symmetry dilemma in DFT and suggests a new dataset that may
be useful for the future XC functional development.

2. The tensor hypercontraction (THC) approach to HF, MP2, and MP3 is re-
visited with a new viewpoint from low-rank approximations [146-162]. The
resulting THC approach requires a single tunable parameter that controls its
cost and accuracy and is able to approach the exact answer. The scaling of MP2
and MP3 which are quintic and sextic without THC, respectively, but are only
quartic with THC. This is a representative technique of useful non-black-box
approaches.

3. A targeted excited state method for CC approaches was developed which can
describe doubly excited states that are usually beyond the scope of widely used
equation-of-motion CC with singles and doubles (EOM-CCSD). This approach
is highly non-black-box and not universally applicable to any excited states.
We showed that this tailored approach for double excited states can be indeed
useful for some problems.
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4. A rather unusual technique in quantum chemistry, the auxiliary-field quan-
tum Monte Carlo (AFQMC) approach, was used to study the uniform electron
gas model [163]. This QMC approach propagates a wavefunction in imag-
inary time and approximates the ground state using the same approach as
power methods to obtain the lowest eigenmode of a given matrix. Without the
phaseless constraint, AFQMC scales exponentially and therefore the use of the
phaseless constraint defined with a trial wavefunction is necessary for the cost-
effectiveness at the expense of introducing biases to energies. We attempted to
understand the scope of AFQMC with RHF trial wavefunctions in the context
of simulating the UEG model.

5. Finite-temperature quantum chemistry is investigated with finite-temperature
AFQMC (FT-AFQMC). In particular, the UEG model along with small chem-
ical systems are being assessed with FT-AFQMC with the phaseless constraint.
This is an attempt to understand the role of electron correlation at finite tem-
peratures which has been somewhat unexplored in modern quantum chemistry
literature.

6. A wavefunction ansatz designed to be used on quantum computers was pro-
posed in the context of the variational quantum eigensolver (VQE) |164]. The
ansatz that we proposed is called k-UpCCGSD which can be cheaply imple-
mented on quantum computers (hopefully near-term) [165].

7. Nuclear gradients of the CCVB energy, PT on top of CCVB, and CCVB with
valence-optimized doubles (CCVB-VOD) are all under development. These are
necessary steps towards solving problems that are not yet possible to solve with
existing CCVB tools.

1.5 Outline

Chapter

Publication: Joonho Lee and Martin Head-Gordon. “Regularized Orbital-Optimized
Second-Order Mgller-Plesset Perturbation Theory: A Reliable Fifth-Order Scaling
Electron Correlation Model with Orbital Energy Dependent Regularizers”. J. Chem.
Theory Comput. 2018, 14, 5203-5219.

In order to address the challenge of distinguishing strong and weak correlation, we
have developed an approach that optimizes orbitals in the presence of the MP2 cor-
relation energy. The MP2 correlation energy is susceptible to divergence due to the
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energy denominator so it is necessary to regularize this singularity to reliably obtain
orbitals. This chapter defines such a regularized orbital-optimized MP2 (k-OOMP2)
approach and demonstrates its utility on thermochemistry and non-covalent interac-
tion benchmarks.

Chapter

Publication: Joonho Lee and Martin Head-Gordon. “Distinguishing artificial and
essential symmetry breaking in a single determinant: approach and application to
the Cygy, Cy4, and Cy, fullerenes”. Phys. Chem. Chem. Phys. 2019, 21, 4763-4778.

k-OOMP?2 is able to distinguish artificial and essential symmetry breaking and
thereby it distinguishes strong and weak correlation more reliably than HF can. We
utilize this aspect of k-OOMP2 to end the controversy about whether Cg, (Buckmin-
sterfullerene) is strongly correlated. We also analyze a known biradicaloid Csq for
comparison and as well as Cy, (the smallest fullerene). The reliability of k-OOMP2
for distinguishing weak and strong correlation was examined by comparing with other
known probes for strong correlation such as natural orbital occupation numbers (in
comparison with coupled-cluster methods) and singlet-triplet gaps.

Chapter

Publication: Joonho Lee and Martin Head-Gordon. “Two Single-Reference Ap-
proaches to Biradicaloid Problems: Complex, Restricted Orbitals and Approximate
Spin-Projection Combined With Regularized Orbital-Optimized Mgller-Plesset Per-
turbation Theory”. Accepted in J. Chem. Phys.

Utilizing essential symmetry breaking with k-OOMP2, one can describe singlet
biradicaloids. In particular, we examined the use of complex, restricted orbitals
and unrestricted orbitals combined with Yamaguchi’s approximate spin-projection
for describing singlet biradicaloids with a triplet ground state.

Chapter

Publication: Joonho Lee, David W. Small, Evgeny Epifanovsky, and Martin
Head-Gordon. “Coupled-Cluster Valence-Bond Singles and Doubles for Strongly
Correlated Systems: Block-Tensor Based Implementation and Application to Oligoacenes”.
J. Chem. Theory Comput. 2017, 13, 602-615.

An efficient implementation of CCVB-SD was achieved and we applied CCVB-SD
to oligoacenes correlating electrons up to 318 electrons in 318 orbitals. We demon-
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strate the utility of CCVB-SD in describing emergent strong correlation present in
oligoacenes.

Chapter [6]

Publication: Joonho Lee, David W. Small, and Martin Head-Gordon. “Open-
Shell Coupled-Cluster Valence-Bond Theory Augmented with an Independent Ampli-
tude Approximation for Three-Pair Correlations: Application to a Model Oxygen-
Evolving Complex and Single Molecular Magnet”. J. Chem. Phys. 2018, 149,
244121.

We present the development and assessment of open-shell CCVB augmented
with three-pair configurations within the independent amplitude approximation (OS
CCVB+i3). We numerically demonstrate that OS CCVB+i3 can describe SSC ex-
actly even when CCVB fails. We present numerical experiments on numerous chemi-
cal systems such as a model oxygen-evolving complex and a single molecular magnet.
We emphasize the remarkable compactness of OS CCVB+i3 wavefunctions for de-
scribing SSC.

Chapter

We summarize the contents of this dissertation and conclude with some future
directions that set new challenges for the future methodology development.
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Chapter 2

Regularized Orbital-Optimized

Second-Order Mogller-Plesset
Perturbation Theory

2.1 Introduction

The single-reference second-order Mgller-Plesset perturbtation theory (MP2) is
one of the simplest correlated wavefunction methods (and therefore one of the most
popular ones). There have been some significant developments in improving differ-
ent aspects of MP2 in the past decade or so and we shall mention those that are
particularly relevant to this work.

The development of the resolution-of-identity (RI) technique (or the density-
fitting technique) for MP2 was revolutionary.[166, [167] Although RI-MP2 has fun-
damentally the same computational scaling as MP2 (i.e. O(N?®)), it substantially
reduces the prefactor of the algorithm and has allowed for large-scale applications
of MP2. RI-MP2 is now considered the de facto algorithm for any MP2 calculations
except for systems with off-atom electrons such as dipole-bound electrons|168] or
electronic resonances.[169] Given its popularity, we shall focus on building a new
theory on top of RI-MP2 and we will refer RI-MP2 to as just MP2 for simplicity for
the following discussion.

Aside from faster MP2 algorithms, there are two common ways to improve the
energetics of MP2: one is the spin component scaled (SCS)-MP2 approach |170H175]
and another is the orbital-optimized MP2 (OOMP2) method.[176178] SCS-MP2
improved the energetics of MP2 for thermochemistry and non-covalent interactions
although the optimal scaling parameters are different for these two classes of relative
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energies. From an efficiency standpoint, the scaled opposite-spin MP2 (SOS-MP2)
method in this category is noteworthy as it is an overall O(N?) algorithm while
improving the energetics.|171} (173, [175] The idea of SCS-MP2 is also often used in
double-hybrid density functional approximations. [179-182] Additionally, overbind-
ing molecular interactions due to inherent errors in MP2 and basis set superposition
error were reduced by an attenuated MP2 approach.[183-H186]

OOMP2 often produces a qualitatively better set of orbitals for systems where
unrestricted Hartree-Fock (UHF) orbitals exhibit artificial spin symmetry breaking.
Artificial symmetry breaking is a quite common problem in open-shell systems and
polyaromatic hydrocarbons that are weakly correlated systems.[121}, |127] In such
cases, using UHF orbitals for correlated wave function calculations leads to catas-
trophically wrong energies and properties.|[187-190] The use of Briickner orbitals
often improves the results significantly, though obtaining those orbitals is quite ex-
pensive. [191, [192] Therefore, OOMP2 was proposed as an economical way to ap-
proximate Briickner orbitals. [176] Orbital optimizing at the MP2 level often restores
the spin symmetry and results in far better energetics. [176, 177, (193] Furthermore,
OOMP2, in principle, removes the discontinuity in the first-order properties that can
be catastrophic at the onset of symmetry breaking in MP2.[194] These two observa-
tions motivated several research groups to apply [195, [196] and to develop OOMP2
and its variants.[197-204] It was also extended to higher order perturbation theory
methods, such as OOMP3 and OOMP2.5.[205-207] The analytic nuclear gradient of
OOMP2 was also efficiently implemented [196, 208, 209] and the Cholesky decom-
position was also used for an efficient implementation. [210]

However, OOMP2 has shown multiple problems that limit its applicability. First,
the inclusion of the MP2 form of the correlation energy in orbital optimization tends
to produce very small energy denominators. In some cases, this leads to a divergence
of the total energy and it is commonly observed when stretching bonds. Moreover,
this is the cause for the significant underestimation of harmonic frequencies at equi-
librium geometries.[199] Given that it is very unlikely to observe vanishing energy
denominators in finite systems at the HF level, [211] the applicability of MP2 on top
of HF orbitals is greater than that of OOMP2.

Second, OOMP2 often does not continuously break spin-symmetry even when
there exists a broken-symmetry solution that is lower in energy. [212] To have a
continuous transition from a restricted (R) solution to a unrestricted (U) solution,
there should be a point at which the lowest eigenvalue of the R to U stability Hessian
becomes zero. In the case where two solutions are separated by a barrier, we often
observe a discontinuous transition from R to U (or even no transition at all) and
there are only positive non-zero eigenvalues in the R to U stability Hessian. We
have observed multiple systems where ROOMP2 does not undergo a continuous
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transition to UOOMP2 while the corresponding HF calculation does. In this case,
this is an artifact of OOMP2 and it is necessary to resolve this issue to reach a proper
dissociation limit.

Our group has attempted to solve these two separate issues using a simple reg-
ularization scheme that shifts the energy denominator by a constant ¢.[199] Despite
its simple form, it was effective enough to solve those two issues described above.
It is immediately obvious that the energy can no longer diverge. Moreover, as the
MP2 energy is damped away, the qualitative behavior of OOMP2 approaches that of
HF where we observe continuous transitions from R to U. Razban et al[203] tried to
find a regularization parameter ¢ that solves those two issues within OO-SOS-MP2.
Since the desired regularization strength to restore Coulson-Fischer points [213] was
too strong (i.e. the true correlation energy attenuated), one faces difficulties in deal-
ing with rather easier problems for MP2, such as typical thermochemistry problems.
This led us to considering alternative forms of regularizers which may depend on the
orbital energy gap. Ideally, we need a regularizer that leaves the energy contribu-
tion from a large denominator unchanged and damps away the contribution from an
offending small denominator.

We note that the idea of regularizing perturbation theory has been explored by
several others. Other ideas include the level-shifted complete active space second-
order perturbation theory (CASPT2),[214] restrained denominator MP2 (RD-MP2),[215]
and the recently introduced driven similarity renormalization group (DSRG) meth-
0ds.[216] In particular the DSRG methods are particularly interesting as they reg-
ularize each term differently depending on the associated energy denominator. In
fact the regularizers we study here were motivated by DSRG. We also mention that
there are other approaches that are computationally as simple as (or cheaper than)
MP2 and do not diverge even for metallic systems. These include direct random
phase approximation[217] and degeneracy-corrected perturbation theory. [218] We
also mention our group’s previous work on penalty functions which regularize PT
amplitudes.[219] It is worthwhile to mention that there may be formal connections
between regularized OOMP2 and correlation theories with screened interactions such
as random phase approximation [220] and coupled-pair theories [221] as these all ex-
hibit no singular behavior for metallic systems.

This paper is organized as follows: (1) we review OOMP2 |, (2) we describe the
regularizers that we used in this work and derive the pertinent orbital gradient of
them, (3) we investigate the effect of regularizers on the stability Hessian, (4) we
demonstrate preliminary training and test of the new regularizers on the W4-11
set[222], the RSE43 set,[223] [224] and the TA13 set,[225] and (5) we apply these new
methods to two chemically interesting biradical molecules.[226| 227]
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2.2 Theory

We will use 4, 7, k,[,- - - to index occupied orbitals, a, b, c,d, - - - to index virtual
orbitals, and p, q,r, s, - - to index either of those two.

2.2.1 OOMP2 Lagrangian in Spin-Orbital Basis
We review the OOMP2 Lagrangian formulation and its orbital gradient within
the spin-orbital notation. For generality, we do not assume orbitals to be real.
Hylleraas Functional
The Hylleraas functional Jy is given as
Tu[Wh] = (W] F = Eo [Wy) + (W] V [ W) + (3| V [ ¥p)
= (Uy] Fy [01) + (Wo| Vi [W1) + (U4 | Viy [Wy) , (2.1)
where the subscript N denotes “normal-ordered” operators [228] and the OOMP2
ansatz for |U;) by definition includes only doubly excited determinants:
r 1 a a
|U1) =13 W) = 4 Ztif “Ili]b : (2.2)
ijab
In a simpler notation, this functional is
Jult] = tTAt +tTV + VTt (2.3)

where A is a rank-8 tensor defined as

Al = (V5| Fn | ) (2.4)
and V is )
Vi = (abllij) (2.5)

In passing we note that when we include orbital optimization effects |¥;) is no longer
composed of canonical orbitals. Instead it is convenient to use pseudocanonical or-
bitals[229, 230] that diagonalize the occupied-occupied (OO) and the virtual-virtual
(VV) blocks of the Fock operator, F. Strictly speaking, singles contributions do not
vanish. However, we argue that this is a part of our ansitz, consistent with the
idea of variational Briickner orbitals. Orbital optimization incorporates the most
important singles effects. Indeed, the effect of singles was examined in the context

of OOMP2 and found negligible as in ref. 177.
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MP2 Lagrangian

We construct a Lagrangian that consists of Hylleraas functional Jy and the
Hartree-Fock energy Ej as in

L]t,©] = E\[6] + JH[t O]

=Z<i!hli>+ Z (ij)lig) + - Z (ijllab) i} + Zt“” (abl|if)

Uab zyab

+ Z p;j” Fji + Z PRy, (2.6)
i ab
where the OO and VV MP2 one-particle density matrices (OPDMs) are

_ _ - Z tab tzzb (27)

abk

2 1 ac\ * poc
Py =5 Dt (2.8)

ijc
Assuming pseudocanonical orbitals, the variation in t yields

bl|ij)
b = — {a 2.9

where the denominator is defined as a non-negative quantity,
A?}’ =€, + € — € —€j. (2.10)

With the optimal amplitudes, Jy yields the familiar MP2 energy expression,

ij||ab)|?
Enps ———Z' jgab (2.11)

ijab
We apply the RI approximation[166, [167] to the two-electron integrals,
(ijlab) = ) _(ial P)(PIQ) ™ (Qljb). (2.12)
PQ

We further define RI fit coefficients, C | for the |pq) charge distribution as:

pq’

Cpa = > _(PIQ)(QIpg), (2.13)

pqQ
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and the 3-center, 2-particle density matrix (TPDM) as
Ty => toch. (2.14)
jb

The TPDM piece of the Hylleraas functional then becomes

1
3 > VETE +he, (2.15)
iaP
where we used
V.l = (ia|P). (2.16)

Orbital Optimization

The self-consistent field procedure can be described as rotating N, orthonormal
vectors until an objective function reaches its stationary point. Thus it is possible to
relate two different molecular orbital coefficients with a unitary transformation as in

C' =CU, (2.17)

where U is a unitary (or orthogonal for real variables) matrix. As both the Hartree-
Fock energy and the Hylleraas functional in are invariant under OO and VV
rotations, we consider only the non-redundant OV orbital rotations. We then write
the transformation matrix,

U = exp[A,OAT — A, OTAT], (2.18)

where A, and A, are skinny matrices of the dimension Ny, X Ngee and Ny X Nyir,
respectively, and they have 1’s on the diagonal, and © is a matrix of the dimension
Noce X Nyir- 1t will be useful to expand U,

U=1+(A,0A1 - AB'Al) +0(|0%) (2.19)
Up to first order in ©, occupied and virtual orbitals transform in the following way:
Cry = Cui = Y _ Cua®l, (2.20)

C;/wb = C;La + Z Cpi@ia (221)
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We now consider the variation of the energy, £, up to first-order in ©,

oL = Z (—hai®ia — hiaO%,)

iy ( i1 ad) O, + (i |l ia) % + (g || i7) O + (i | 1) @ja)
ija
— > PP (Fa0j+ Fi0;,) = > PP ((je | ik) O + (jk | ic) ©F,)
ijc ijck
+ 3P (FiuOp, + FuOra) — Y P (bl ak) O + (b || ac) O},)
kab abck
[ S ( Z( || ab) O + (ic | ) @jc)
ijab
+Z( ij || kb) Ora + (i7 || ak) @kb)> +h.c}. (2.22)

The first line corresponds to the HF orbital gradient and the rest belongs to the MP2
contribution. We apply the RI technique we described before to the last line of Eq.
(2.22):
1
3 (=VaLhOi — VaTrOje + Vi Ol + Vi Owly) + hic. (2.23)

ca— ar

The orbital optimization treats the real and imaginary parts of ©,, as separate vari-
ables as is done in Wirtinger calculus.|231]

5L 5L oL
= 2.24
SRe(Or)  00m | dOL (224)
5L 5L oL
L _ 2.2
C (6% 5@;) (225)
where
5L @
o = Ck—ZFCZPZk, +Z ak—z Ve || ik) — ZP (be || ak)
=S vhrh o+ Z ver? (2.26)
aP
5L 5L
_ 2.2
505, (5@,) (2:27)

In passing we note that the last two terms in Eq. (2.26) are evaluated by the usual
mixed Lagrangian technique as used in the nuclear gradient implementation of RI-

MP2. [232]
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2.2.2 Regularized OOMP2

Stiick and Head-Gordon found a rather disturbing feature of OOMP2 when break-
ing bonds. |199] The energy denominator A?j’ approaches zero near dissociation lim-
its in the case of restricted orbitals if optimized at the MP2 level. This leads to a
divergent ROOMP?2 solution even when using UOOMP?2, as it is variationally pre-
ferred. In the perturbation theory literature, this existence of a divergent solution is
sometimes referred to as an intruder state problem.

To ameliorate this problem, Stiick and Head-Gordon employed a simple level-shift
scheme to remove the divergent ROOMP2 solution associated with single bond-
breaking and found it somewhat effective. This regularizer will be referred to as a
d-regularizer: A;‘;’ — Af;’ + 9. Some preliminary results on thermochemistry were
encouraging with 6 = 400 mFE,. However, later it was found that the level-shift
parameter to restore Coulson-Fischer points for double and triple bond dissociations
is too large to give reasonable thermochemistry results. [203] This sets the main
objective of this work. Namely, we are interested in designing a regularizer that
can solve the first-order derivative discontinuity and the energy singularity problems
while keeping the thermochemistry performance undamaged.

Design principles of regularizers

Ideally, one needs a regularizer that damps away a strongly divergent term while
keeping physical correlation terms unchanged. As an attempt to achieve this goal,
we propose multiple classes of orbital energy gap dependent regularizers that remove
the singularity problem while (hopefully) damaging thermochemistry results to only
a small extent.

One may understand the MP2 singularity problem based on the following integral

transform: ) - .
Bz = =73 / dr A Gl b)) = 7 > et (2.28)

ijab ¥ 0 ijab
where

ciy = ‘/0 dr e T8 (ij|ab) (2.29)

This energy expression is derived from a Laplace transformation of the energy expres-
sion in Eq. and is a foundation of various linear-scaling MP2 methods.[233}-
235] When A%b = 0, the corresponding energy contribution e?}’ is divergent as the
integrand does not decay to zero when 7 — oo.
One may try to regularize e?}’ by changing Af}’ to A;’;’ + 0 with a positive constant
0 so that when A?}’ = 0 the integrand decays to zero as 7 — oo. This corresponds to
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the d-regularizer. Alternatively, one may replace Aab in the integrand with a function
of A?Jb that does not go to zero as A?}’ — 0. One such example is

1

o AT (2.30)

AP+
where a@ > 0 and p is a positive integer which can be chosen empirically. This
function has a non-zero asymptote for infinitesimal A‘;Jl? and becomes A;’;’ for large
positive values of A?JI»’. This yields an energy expression,

1 (2 |Iab>|2
Enpa(0,p) = =7 ) < : (2.31)
4 ijab A + (CerAab)

and we call this class of regularizers o? regularizers.

Another way to approach this problem is to change the domain of integration for
small A?JI»’ values. The upper limit of the integral should approach oo for large A%’»’
and become a finite value for small A;’f to remove the singularity. A simple way to
achieve this is to have a two-parameter integral upper limit a(A;‘jb)p where ¢ > 0
and p is a positive integer. We call this regularizer, a oP-regularizer. The regularized
energy expression then reads

Gllab)? 1 s
Enip(0, p) Z L Lb (1 emtas) (2.32)
z]ab
Interestingly, p = 2 leads to an energy expression that was derived from the driven
similarity renormalization group theory by Evangelista and co-workers. |216]
Lastly, one may modify the two-electron integrals such that the resulting inte-

grand decays to zero when A?f — 0. Motivated by the above exponential damping

function, we propose to modify \/Zg to

Wil p) = Vil (1= e 487). 23
The regularized energy then reads
b ab\p 2
Eypa(k, p) Z | ”Xi ( — eH(AY) > (2.34)
zgab

We call this class of regularizers x? regularizers.

In this work, we shall investigate the o!- and x'-regularizers. These were chosen
because one can easily write down a Lagrangian that yields the regularized energy
expressions and the orbital gradient is not so complicated.
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x!-Regularizer

We define the following rank-8 tensor 3 that depends on a single parameter (3,
S (B) = ()i (€ ) ju(e P )ac(e ™ o (2.35)

where F°° and FYV are occupied-occupied and virtual-virtual blocks of Fock matrix,
respectively. If orbitals are pseudocanonical, 3 becomes much sparser:

Sebed(3) = P8 81,610 0cOpa (2.36)
We write the regularized OOMP2 Lagrangian modifying the two-electron integrals

in Eq. ,
tIV = t1(1 - 2(k))V = tTW(k) (2.37)

where the damped integral W is defined as
W(k)=(1-%(k))V (2.38)
Using this, the modified Lagrangian reads
L[t,0] = Lo[t, 0] — VIS(k)t — t'2(k)V. (2.39)

This leads to modified amplitudes,

bllii )
1 _ (abl]ij) (1 _ e—mz.}) (2.40)

In the limit of A — 0, % — —k(ab|ij) as opposed to co. The regularized MP2

energy from the modified Lagrangian follows
1 7 ||ab)|? ab) 2
Bupa(r) = —+ 37 WOV () comaif)?, (2.41)

which is the k'-OOMP2 energy. We note that Af}’ — 0 does not contribute to the
energy. Obviously, the large x limit recovers the unregularized energy expression.

The orbital gradient is simply the sum of Eq. (where P? and T are
computed with modified amplitudes) and the contribution from the two additional
terms in Eq. . In the pseudocanonical basis,

1 —K ab . . a
VIS(k)t = 1 > e (ij||ab)tsy (2.42)

ijab
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Differentiating (ij||ab) was already explained before, so we focus on the derivative
of e**% . We have

Qe F*” ! OF°°
— d (1—7)kF©° TrEF°° 2.4
90, /f/o T e —8@]%6 (2.43)
and F
S = ~Fusdi — Gielljb (2.44)
Similarly,
Qe FE" ! oFv
- _ d —(1—7)kFYY —7rFVVY 2.4
90 H/o T e —a@kce (2.45)
and OF
ab
= F10e — (acl||bk 2.46
90, kObe — (acl|bk) (2.46)

Generally, one needs to perform an one-dimensional quadrature to compute this con-
tribution to the orbital gradient. In the pseudocanonical basis, the extra contribution
to the orbital gradient is given as

8(VT2(KJ)t + hC) — kA2 = —rA¢ d
FEW D DL A VD S YA
aP iP

1 -
- H/ dr (Fck(T)e(l_T)“’“ + Fck(7)6_7“°>
0

—k / dr (Z [(XV,AT)—YW<T>><uc||uk>]) (2.47)

where we define

Al = ¢, — ¢, (2.48)

I —rAb
Lo = Z e "Nt O, (2.49)

7b
Fck(T) = Z FcleTml (W;}{; + Wkl), (250)
!

Fa(r) = D (Wea +wi)e TR, (2.51)
Xou(1) =D €7 IC, (W) + wiy) Ol 77 (2.52)

ij

You(r) = e Cop(wha + wiy) Chge” 70, (2.53)
ab
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Wik = Z e VT, (2.54)
aP
and 5
Wae = Y _ e TLVE. (2.55)
iP

Those extra terms can be readily implemented to any existing OOMP2 programs
and there is only a mild increase in the computational cost. The only additional
O(N?) step is the formation of ' in Eq. and this can be done at the same
time as forming T.

o!'-Regularizer

The o'-regularizer can be derived from a Hylleraas functional with a set of aux-
iliary amplitudes s. We write the new Hylleraas functional in the following way:

1 1 1
Jult,s, ©] = §STA1§ + §STW(0) + §tTV +h.c. (2.56)

where W (o) is the damped integral defined in Eq. (2.38). The modified Hylleraas
functional is now a functional of t, s, and ®. Stationary conditions on s’ and t'
yields

s=-A"'V, (2.57)
t=—-A"T'W. (2.58)

Plugging Eq. (2.57) and Eq. (2.58) to Eq. leads to the following energy expres-

sion:
1 i7llab)|? .
Enpa(0) = —— Z M <1 - 6_0A”b> ; (2.59)

which is the ¢'-OOMP2 energy expression. Unlike Eq. (2.41), Eq. (2.59) has
non-zero contributions from small A’ as the limit yields —o|(ij||ab)|*>. The orbital

gradient is more or less the same as that of k!-OOMP2. ¢'~-OOMP2 can also be
implemented with a moderate increase in the computational cost.

2.3 Computational Details

All the calculations presented below are carried out by the development version
of Q-Chem. [236] The self-consistent field calculations are based on Q-Chem’s new



CHAPTER 2. REGULARIZED ORBITAL-OPTIMIZED SECOND-ORDER
MOLLER-PLESSET PERTURBATION THEORY 29

object-oriented SCF library, 1ibgscf and the relevant MP2 components are imple-
mented through Q-Chem’s new MP2 library, 1ibgmbpt. All those implementations
are already at the production level and OpenMP parallelized. All the correlated wave
function calculations presented here were performed with all electrons correlated and
all virtual orbitals included unless specified otherwise.

The quadrature evaluation in Eq. was performed using the standard Gauss-
Legendre quadrature. The accuracy of the quadrature for a given quadrature order
depends on the orbital energies and thus it is system-dependent. For systems pre-
sented below, 20 quadrature points were found to be sufficient. The precise assess-
ment of the accuracy of the quadrature will be an interesting subject for the future
study.

2.4 Results and Discussion

For the sake of simplicity, we will refer x! and o'-regularizers to as - and o-
regularizers, respectively.

2.4.1 ROOMP2 to UOOMP2 Stability Analysis

As noted before, we would like UOOMP?2 to spontaneously spin-polarize to reach
the proper dissociation limits. Without regularization, it is quite common to observe
that UOOMP2 stays on an R solution and never spontaneously polarizes even though
there is a more stable U solution that dissociates correctly. This may not be a
serious problem if stability analysis can detect those more stable polarized solutions.
However, in most cases, there exists a barrier between R and U solutions so that
both solutions are stable up to the quadratic stability analysis.

We revisit and assess the new regularizers on the bond-breaking of H, (single-
bond), C,Hy (single-bond), C,H, (double-bond), and C,H, (triple-bond). We present
the results for unregularized, -, and o- OOMP2. Interested readers are referred to
ref. 203 for the -OOMP2 result. The main objective of this section is to find out
whether there is a reasonably weak single parameter  or o that recovers the Coulson-
Fischer points|213] (i.e. the geometries at which spontaneous, continuous symmetry
breaking start to occur) for all four cases. All the results are obtained with the
cc-pVDZ basis set [237] along with its auxiliary basis set. [238] The diagonalization
of the R to U stability Hessian was performed iteratively with the Davidson solver
[239] based on the finite difference matrix-vector product technique developed in ref.
212. This technique utilizes the analytic orbital gradient and does not require the
implementation of the analytic orbital Hessian.
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Figure 2.1: The potential energy curve of H, within the cc-pVDZ basis set. All the
regularized OOMP2 are performed with spin-unrestriction. (a) k-OOMP2 and (b)
o-OOMP2.

In Figure[2.1] we present the potential energy curve (PEC) of the H, dissociation.
It is clear that there is a lower U solution starting from 1.6 A and this is the solution
that dissociates properly. However, there is a slight first-order discontinuity between
1.58 A and 1.60 A. This was previously noted by one of us in ref. 203. On the other
hand, both k- and o-UOOMP2 exhibit smooth curves and dissociate properly. We
picked the range of k and o based on the absolute energies that yield 1-2 mF), higher
than the unregularized one at the equilibrium geometry. The precise determination
of those values will be discussed in the next section.

(a) 1.0 (b) 1.0
0.8 \ 08
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Figure 2.2: The R to U Hessian lowest eigenvalues of H, within the cc-pVDZ basis
set. (a) k~xOOMP2 and (b) o-OOMP2.

The continuous transition from R to U in regularized OOMP2 can be understood
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based on the R to U Hessian lowest eigenvalues as illustrated in Figure 2.2 The
unregularized ROOMP2 exhibits no R to U instability at every given bond distance.
In other words, there is no solution that smoothly and barrierlessly connects this R
solution to the lower U solution in UOOMP2. This is the source of the first-order
discontinuity of ROOMP2 in Fig. 2.1} In contrast to the unregularized ROOMP2
result, both x- and 0-ROOMP?2 exhibit negative eigenvalues after the critical bond
length around 1.5 A. This results into a continuous and smooth transition from the
R solution to the U solution as we stretch the bond.

We repeat this analysis for ethane, ethene, and ethyne. The corresponding R to
U Hessian lowest eigenvalues are plotted in Figure. 2.3 ROOMP2 shows numerical
instabilities in the case of ethene and ethyne whereas both of the regularized ones
converge properly. In all cases, the K and o regularizers show clear differences.
Namely, the o regularizer shows clearly slower appearance of the negative roots
compared to the x case. Furthermore, the eigenvalue of the o regularizer tends to
turn around after some distance; this is not desirable as there can be a discontinuous
transition between R and U solutions depending on where we start. Furthermore,
the bond length, at which the Coulson-Fischer point is located, is longer in ethene
than in ethyne in the case of c-OOMP2. Given these results, we would prefer the x
regularizer over the o regularizer. However, a more detailed assessment is necessary
to make a general recommendation.

2.4.2 Training the Regularization Parameter and Its
Validation

The W4-11 set

Though the investigation of the stability Hessian eigenvalues was informative, it
is not sufficient to suggest a value for the regularization parameter to be used for
general chemical applications. Training the regularization parameter on a minimal
training set and validating on other test sets will provide a sensible preliminary value.

We chose the W4-11 set developed by Martin and co-workers for the training set.
[222] The W4-11 set has played a crucial role in density functional development. The
W4-11 set consists of the following subsets: 140 total atomization energies (TAE140),
99 bond dissociation energies (BDE99), 707 heavy-atom transfer (HAT707), 20 iso-
merization (ISOMER20), and 13 nucleophilic substitution reaction (SN13). MP2
and OOMP2 do not perform very well on this set (i.e. root-mean-square-deviation
(RMSD) of 15.10 kcal/mol and 11.08 kcal/mol within the aug-cc-pVTZ basis,[237]
respectively). Therefore, it is sensible to choose it as a training set as an attempt to
improve upon both MP2 and OOMP2.
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The training was done within the aug-cc-pVTZ (aVTZ) basis set [237] along with
the corresponding auxiliary basis set.[238] All the calculations are performed with
the geometric direct minimization (GDM) algorithm [240] and a stable UHF solution.
OO methods used a stable UHF solution as a guess. We also performed additional
training at the complete basis set (CBS) limit using the aVTZ and aug-cc-pVQZ
(aVQZ) [237] extrapolation (i.e. the TQ extrapolation). [241]

Initially, we optimized only one non-linear parameter (k or ¢) by scanning over
[0.05, 4.0]. The optimal values were x = 1.45 with the RMSD of 7.09 kcal/mol
and ¢ = 1.00 with the RMSD of 6.72 kcal/mol as shown in Fig. (a). The
optimal values change slightly for the TQ extrapolated results as in Fig. (b). We
have k = 1.40 and o = 0.95 with the RMSD of 7.80 kcal/mol and 7.28 kcal/mol,
respectively. These values are also enough to restore the Coulson-Fischer points in
the systems studied before. We recommend those values for general applications.

We also developed a scaled correlation energy variant by adding a linear pa-
rameter that scales the overall correlation energy to improve the thermochemistry
performance. This is achieved by optimizing a linear parameter ¢ in

Eiot = Egr + cEypo (2.60)

in addition to the non-linear parameter (x or o) for the regularizer. ¢ can be op-
timized by a means of least-squares-fit. Since changing ¢ alters orbitals, one needs
to accomplish self-consistency when optimizing ¢. We found three self-consistency
cycles enough to converge ¢ and present only the final result. For preliminary results,
we simply trained this over the TAE-140 set where unregularized OOMP?2 performs
much worse (an RMSD of 17.48 kcal/mol) than it does in the other subsets of the
Wi4-11 set.

In Figure 2.5 we present the RMSD values of the TAE140 set and the entire
Wi4-11 set as a function of the regularization strength. All the RMSD values are
obtained with the scaling factor optimized for the TAE-140 set. In Figure (a),
we have optimal values of kK = 2.80 and o = 2.05. These values are not enough to
restore the Coulson-Fischer points. Validating those values over the entire W4-11 set
as in Figure (b) shows that those values are not optimal on the entire W4-11 set.
The optimal values are k = 2.25 and o = 1.70 and those are not enough to restore
the Coulson-Fischer points.

For general applications, we recommend the values of k = 1.50 along with ¢ =
0.955 and ¢ = 1.00 along with ¢ = 0.973. Both yield the RMSD of 6.48 kcal/mol
over the entire W4-11 set. We refer each model to as k-S-OOMP2 and o-S-OOMP2,
respectively. Although the scaling factor is not optimal anymore, those values are
still an improvement over their unscaled variants on the W4-11 set. The values are
slightly smaller than 1.00 because orbital optimization can often overcorrelate.
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SOS-MP2 O0omMP2 SCS-00MP2 SOS-O0MP2

11.08 7.58
7.88 5.20

MAX-MIN 97.05 67.63 51.50

k-OOMP2 o-O0MP2 S-O0MP2 K-S-OOMP2 0-S-O0MP2

RMSD 7.09 6.72 6.36 6.48 6.48
MAD 5.03 - 5 4.75 4.77
MAX-MIN 56.47 ] 52.97 52.34

Table 2.1: The W4-11 set RMSD (kcal/mol) of MP2, OOMP2, and their variants.
MAD stands for Mean Absolute Deviation and MAX-MIN stands for the difference
between maximum and minimum. The colors represent the relative performance of
each method; red means the worst and green means the best among the methods
presented. For SOS-MP2 and SOS-OOMP?2, the Laplace transformation trick is
used. All the calculations were performed with the aVTZ basis set.

The TQ extrapolated results are qualitatively similar and we only mention the
final results here. We have k = 1.50 along with ¢ = 0.931 with the RMSD of 6.61
kcal/mol and o = 1.00 along with ¢ = 0.949 with the RMSD of 6.63 kcal/mol. These
are more or less identical results to those of aVTZ with a smaller scaling factor c.
Therefore, for the rest of this paper, we will use parameters optimized for the aVTZ
basis set.

We summarize the resulting regularized OOMP2 methods in Table along
with MP2, OOMP2 and other variants of them. All of them were performed with
the aV'TZ basis set. In particular, we compare the regularized OOMP2 methods with
SCS-[170] and SOS-MP2 and their OOMP2 variants.[176| [177] For SCS-MP2
and SCS-OOMP2, ¢,s = 1/3 and ¢,s = 6/5 are used.[170 [177] c,s = 1.3 is used
for SOS—MPQand Cos = 1.2 is used for SOS—OOMPQ. For comparison, we
developed a single scaling parameter OOMP2 (S-OOMP2) where the parameter was
fitted to the TAE140 set. The optimal scaling parameter is ¢ = 0.90.

In Table MP2 performs the worst among the methods examined in this work
and SCS-MP2 and SOS-MP2 provide only a small improvement over MP2. OOMP2
improves about 4 kcal/mol in the RMSD compared to MP2. SCS-OOMP2 shows
roughly a factor of 2 improvement over SCS-MP2. SOS-OOMP2 performs the best
among the methods presented and shows a 2.5 times smaller RMSD than that of
SOS-MP2. RMSD, MAD, and MAX-MIN show the same trend.

The unscaled regularized OOMP2 methods, k-OOMP2 and e-OOMP2, both pro-
vide improved energetics compared to the unregularized one. They are comparable to
SCS-OOMP2 and SOS-OOMP2. However, it should be noted that the regularization
parameters are optimized for the W4-11 set. It is not so surprising that k-OOMP2
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and 0-OOMP2 perform relatively well.

S-OOMP2 performs better than those unscaled regularized OOMP2. Given that
S-OOMP2 was trained over only the TAE140 set, this is an interesting outcome.
Adding regularizers to S-OOMP2 provides no improvement and it makes the perfor-
mance little worse. However, the regularization is necessary to restore the Coulson-
Fischer points for molecules studied in the previous section. We also note that
k-S-OOMP2 and 0-S-OOMP2 exhibit a more or less identical performance in terms
of RMSD, MAD, and MAX-MIN.

The RSE43 set

We also validate the regularized OOMP2 methods on the RSE43 set [224] where
unregularized OOMP2 performs nearly perfectly.[177] The RSE43 has total 43 radical
stabilization energies and all of them are energies of a reaction where a methyl radical
abstracts a hydrogen from a hydrocarbon. The original RSE43 set reference values
were not considered of very high quality[224] and thus we use the updated reference
data based on the work by Grimme and co-workers. [223]

We compare MP2, OOMP2, their variants, and three combinatorially designed
density functionals (wB97X-V, wB97M-V, and B97M-V) developed in our group.
wBI97X-V is a range-separated generalized gradient approximation (GGA) hybrid
functional with the VV10 dispersion tail and wB97M-V is a range-separated meta
GGA with the VV10 dispersion tail. B97M-V is a meta GGA pure functional with
the VV10 dispersion tail. All DFT calculations are performed with the aVQZ basis
set [237] and all the MP2 and OOMP2 calculations are done with the aVTZ basis
set.[237] MP2 calculations are performed with a stable UHF solution and OOMP2
calculations started from a stable UHF solution.

The RSE43 set RMSD values are presented in Table 2.2l DFT functionals out-
perform MP2, SCS-MP2, and SOS-MP2. The poor quality of those MP2 methods is
likely because of the artificial spin symmetry breaking at the HF level. DFT func-
tionals are in general less prone to the artificial spin symmetry breaking problem.
wB97X-V and wB97M-V exhibit nearly identical results and BO97M-V is roughly twice
worse than those two in terms of RMSD, MAD, and MAX-MIN.

Orbital optimization generally improves the energetics here. SOS-OOMP2 does
not outperform OOMP2 and SCS-OOMP2 in this case. S-OOMP?2 is comparable
to OOMP2 and SCS-OOMP2. k-OOMP2 and 0-OOMP2 along with their scaled
variants are comparable to the unregularized ones. Adding linear parameters on top
of those to scale the MP2 correlation energy does not alter the results significantly.
Since the regularization damps out the absolute MP2 energy quite significantly, this
is a non-trivial and exciting result.
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wBI7X-V | wBIIM-V_| BIIM-V MP2
RMSD 1.10 0.93 244 4.51
MAD 0.44 0.44 0.95 2.41
MAX-MIN 2.53 2.75 5.81 17.32
00MP2__| scs-00MP2 | 505-00MP2 | «-00MP2_| 5-00MP2 | s-00MP2 | «-5-00MP2 | o-5-00MP2
RMSD 058 0.80 1.50 0.88 0.87 0.62 0.97 0.94
MAD 0.45 030 0.52 0.43 0.41 035 0.42 0.40
MAX-MIN 2.56 1.38 3.07 1.87 1.69 1.69 1.96 1.81

Table 2.2: The RSE43 set RMSD (kcal/mol) of wB97X-V, wB97M-V, and BO7TM-V,
MP2, OOMP2, and their variants. MAD stands for Mean Absolute Deviation and
MAX-MIN stands for the difference between maximum and minimum. The colors
represent the relative performance of each method; red means the worst and green
means the best among the methods presented.

The TA13 set

We further test our new methods on the TA13 set. This dataset involves 13
radical-closed-shell non-bonded interaction energies. We used the aVTZ basis set
and counterpoise corrections to mitigate basis set superposition error (BSSE).
Examining spin-contamination, one data point, CO™, was found to be an outlier.
The UHF (S?) for CO" is 0.98, which deviates significantly from its ideal value of
0.75. With OOMP2, the zeroth order (S?) is 0.76, which is quite close to the ideal
value. The same is observed in the case of regularized OOMP2.

In Table [2.3] we present the interaction energy errors for each data point of MP2,
OOMP2, and their variants. Going from MP2 to OOMP2, there are several notice-
able changes. The problematic HF—CO™ interaction is handled much better with
OO. Another problematic case in MP2 is the H,O—F interaction and this is also
improved with OO. Overall, without OO, SCS-MP2 and SOS-MP2 are not any bet-
ter than MP2. Comparing SCS- and SOS-OOMP2 with OOMP2, scaling does not
help improve the energetics of OOMP2 and in fact tends to make it worse. k- and
0-O0OMP2 perform more or less the same, as do their scaled variants. Regulariza-
tion keeps the performance of OOMP2 unchanged. The regularized ones perform
better than simple scaled OOMP2 methods (i.e. SCS-OOMP2, SOS-OOMP2, and
S-OOMP2). It is interesting that the one-parameter model, S-OOMP2, performs
better than the more widely used two-parameter models, SCS-OOMP2 and SOS-
OOMP2.

In Table 2.4] we present the statistical errors of MP2, OOMP2, and their variants
on the TA13 set. OOMP2 performs the best among the methods presented here. We
note that wB97M-V has an RMSD of 2.75 kcal /mol, a little worse than OOMP2.
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MP2 SCS-MP2 SOS-MP2 0OMP2 SCS-OOMP2_| SOS-OOMP2

RMSD 214 2.65 0.96 1.56 2.22
MAD 141 0.67 0.70 0.89
MSE 0.62 1.29 1.62 132

MAX-MIN 9.32 3.77 2.88 3.18

k-OOMP2 g-00MP2 S-00MP2__| k-5-OOMP2_| o-S-OOMP2

RMSD 0.91 1.04 0.98 0.98
MAD 0.60 0.62 0.57 0.64 0.66
MSE 0.44 0.49 0.73 0.60 0.59

MAX-MIN 3.02 2.89 3.00

Table 2.4: The TA13 set RMSD (kcal/mol) of MP2, OOMP2, and their variants.
MAD stands for Mean Absolute Deviation, MSE stands for Mean Signed Error,
MAX-MIN stands for the difference between maximum and minimum. The colors
represent the relative performance of each method; red means the worst and green
means the best among the methods presented.

OOMP2, SCS-OOMP2, and SOS-OOMP2 all improved the numerical performance
compared to their parent methods. Regularized OOMP2 methods perform very well
and unscaled ones perform better than the scaled ones. We also presented mean
signed errors (MSEs) which are often used to infer a potential bias in statistical
data. The MSEs are all positive in Table and would be smaller if we performed
a TQ extrapolation along with counterpoise corrections. In summary, we found
that regularization does not damage the performance of OOMP2 in describing non-
bonded interactions in the TA13 set. Overall, k-OOMP2 performs the best in the
TA13 set among those tested.

2.4.3 Application to Organic Singlet Biradicaloids

Organic biradicaloids are not very common to observe experimentally because
they are quite unstable. Indeed, a molecule with a singlet biradical ground state
is typically a contradiction. A singlet biradicaloid is the ground state due to the
presence of some closed shell character. They may appear in numerous interest-
ing chemical reactions as a transition state. In this section, we will study two
experimentally observed organic singlet biradicaloids.,

One may attempt to use Yamaguchi’s approximate spin-projected UMP2 (AP-
UMP2) approach [246, to spin-project the broken-symmetry (BS) Mg = 0
UMP2 state to obtain the spin-pure energy of the S = 0 state. Assuming we have
only singlet and triplet states that contribute to the Mg = 0 state, one can easily
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work out the spin-pure singlet energy based on (S?):

(2.61)

where ) )

o= szt = (5 e (2.62)

(5%)s=1 — (5%)s=0

The projection is exact only if there is only one spin-contaminant (i.e. the triplet state
since we are interested in the singlet state). There are numerous ways to evaluate
Eg—1 and (S?)s—;. We will choose the simplest way which is to assume Fg—; ~ Ejyro—1
and replace (S?)g—; with (S?),/.—;. This requires Mg = 1 calculations in addition to
Mg = 0 calculations. For this reason UMP2 cannot be reliably applied to the singlet
state (S = 0) as the Mg = 0 UHF state is often massively spin-contaminated. The
core orbitals are assumed to be more or less the same between Mg = 0 and Mg = 1.

In passing, we note that more satisfying AP-UMP2 results may be obtained via
the approach by Malrieu and co-workers which makes these assumptions exact in
the case of biradicaloids.[248-250] This is achieved by allowing unrestriction only
within the two electrons in two orbitals (2e,20) active space with a possibility of
using restricted open-shell formalism. Furthermore, a common set of core orbitals is
used for the BS state and the S = 1 state. Our group explored a similar approach
called unrestricted in active pairs|251] which can be combined with the AP formula
to produce a spin-pure energy.

It is common to observe (S?)gs >> 1 with a stable Mg = 0 UHF solution of
biradicaloids and thus it can be dangerous to apply the spin-projection. Moreover,
the Mg = 1 state tends to be also spin-contaminated in biradicaloids. As a solution
to this problem, one may try to use UOOMP2 to obtain minimally spin-contaminated
Mg = 0, 1 states. This is not always possible due to the inherent numerical instability
of UOOMP2 that commonly arises when applied to strongly correlated systems like
biradicaloids. Indeed, for the biradicaloids studied here, we were not able to obtain
the UOOMP2 energies due to this instability.

It is then natural to use regularized UOOMP?2 to obtain the Mg = 0, 1 states of
those systems. With the regularizers developed in this work, we do no longer run
into the numerical instability. Therefore, the combination of regularized UOOMP2
and Yamaguchi’s spin projection is quite attractive for simulating the electronic
structure of biradicaloids. We note that AP-UOOMP2 is formally extensive as long
as biradicaloism is not exceeded (i.e. spin-contamination is limited to a two-electron
manifold).

In passing, we note that the first order correction to (S?) for regularized OOMP2
can be obtained in the same way as the usual MP2 method.[176] The only difference
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Mg | r-OOMP2 o-OOMP2 k-S-OOMP2 | 0-S-OOMP2
0| 0.00 (1.211) 0.00 (1.145) | 0.00 (1.238) | 0.00 (1.173)
1| 1.95 (2.117) 1.62 (2.091) | 2.07 (2.129) | 1.74 (2.104)
2 | 46.07 (6.115) | 45.23 (6.091) | 45.99 (6.126) | 45.26 (6.104)

Table 2.5: Spin-gaps (kcal/mol) of HZD from regularized UOOMP2 methods devel-
oped in this work. The numbers in parentheses are the corresponding (S?) value.

for k-OOMP2 is that we use regularized amplitudes instead of the unmodified ones.
In the case of 0-OOMP2, we get a half contribution from the regularized ones and
another half from the unregularized ones. This is obvious from the form of the
modified TPDMs in each regularized OOMP2.

Heptazethrene Dimer (HZD)

Oligozetherens have been experimentally synthesized and characterized as sta-
ble singlet biradicaloids. [160] Similar to oligoacenes, they exhibit a polyradicaloid
character in the background along with a strong biradicaloid character. There have
been experimental interests in synthesizing tetraradicaloids using heptazethrenes. In
particular, the experimental and theoretical work by Wu and co-workers has drawn
our attention where they successfully synthesized heptazetherene dimer (HZD) as
an attempt to synthesize a stable singlet tetraradicaloid. [226] Using unrestricted
CAM-B3LYP [252] density functional calculations, they characterized a strong birad-
icaloid character along with a very small tetraradicaloid character. They conclude
that this compound should be better described as a biradicaloid and our work here
also confirms this conclusion as we shall see.

The geometry was taken from ref. 226 and shown in Fig. 2.6 We used the
cc-pVDZ basis set [237] and the corresponding auxiliary basis set.|238] Furthermore,
the frozen core approximation was employed to reduce the computational cost.

In Table , we present the spin gaps and (S?) of HZD using regularized UOOMP2
methods developed in this work. The gap between the Mg = 0 and Mg = 1 states
is very small. Furthermore, the Mg = 0 state is heavily spin contaminated. This
is a signature of biradicaloids. The (S?) values of the Mg = 1,2 states are rela-
tively close to the corresponding spin-pure states. There is also roughly a gap of 45
kcal/mol between the triplet and the quintet state and this supports that HZD is not
a tetraradicaloid and better described as a biradicaloid. Given those observations,
this system is well suited for Yamaguchi’s AP. Applying AP will yield a lower singlet
state than the Mg = 0 state and thus provide a larger singlet-triplet gap.
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k-OOMP2 | 0-OOMP2 | k-S-OOMP2 | 0-S-OOMP2
o 0.428 0.452 0.418 0.442
AFEq_r 4.55 3.59 4.96 3.95

Table 2.6: The spin-projected single-triplet gap AFEgs_7 (kcal/mol) of HZD from
regularized AP-UOOMP2 methods. « is the spin-projection coefficient used to obtain

the projected energy in Eq. (2.61)).

In Table the spin-projection coefficient o and the resulting spin-projected
singlet-triplet gap are presented. Different methods exhibit a different magnitude of
a and AEs_p and the range of AEg_7 is from 3.59 kcal/mol to 4.96 kcal/mol which
is roughly a 1.4 kcal/mol variation. We also note that there is a roughly 1 kcal/mol
difference between x and o regularizers in both unscaled and scaled variants. The
scaled variants have a 0.5 kcal/mol larger AEg 1 compared to their corresponding
unscaled variants. Regardless of which regularized OOMP2 we use, AEgs_r is small
enough that this molecule is undoubtedly a biradicaloid. The extent of biradicaloid
character can be inferred from the value of « in Table 2.6l « = 0.5 is the perfect
biradical limit and HZD shows o = 0.40 — 0.45. This suggests that the stability of
HZD may be attributed to some closed-shell configuration contribution.

Pentaarylbiimidazole (PABI) complex

Recently, Miyasaka, Abe, and co-workers studied a photochromic radical dimer,
pentaarylbiimidazole (PABI) by a means of ultrafast spectroscopy. [227] Without any
external perturbations, PABI stays as its closed conformer shown in Fig. (a). This
stable conformation is closed-shell and does not exhibit any biradicaloid characters.
Once a laser field is applied, the closed conformation undergoes a transition to its
excited state and a subsequent relaxation back to the ground state surface. During
this dynamics, the C-N bond in the middle in Fig. (a) gets dissociated, which
results in two possible conformers, open 1 and open 2, depicted in Fig. (b) and
(c), respectively. These two conformers were computationally shown [227] to exhibit
quite strong biradicaloid characters, which drew our attention.

As understanding the dynamics in the system requires a reliable method for
treating excited states and strongly correlated ground state, Miyasaka, Abe, and
co-workers applied extended multi-state complete active space second-order pertur-
bation theory (XMS-CASPT2). [253] Here we will compare AP-UOOMP2 ground
state results against XMS-CASPT2 (4e, 60).

All the geometries are obtained from ref. 227 and we used def2-SVP [254] and the
corresponding density-fitting basis [255] for the study of this molecule. The frozen
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(S5?) k-OOMP2 | 0-OOMP2 | x-S-OOMP2 | 0-S-OOMP2
open 1 (Ms = 0) 0.918 0.897 0.929 0.911
open 1 (Mg =1) 2.026 2.023 2.030 2.026
open 2 (Mg =0) 0.906 0.880 0.918 0.896
open 2 (Mg =1) 2.027 2.023 2.031 2.027

Table 2.7: The (S?) values of regularized UOOMP2 methods.

core approximation was employed.

The closed conformation exhibits (S?)y = 3.31 at the Mg = 0 UHF level which
is attributed to artificial symmetry breaking. To support this, we ran x-S-OOMP2
and 0-S-OOMP2 with x and o ranging from 0.05 to 4.0. The scaling factors for
each k and o are the optimal values which yielded Fig. The x values greater
than 0.2 and all values of o were enough to restore the restricted spin symmetry.
This strongly suggests that the closed conformation is a closed-shell molecule with
no strong correlation.

The open 1 and open 2 conformations are heavily spin-contaminated at the Mg =
0 UHF level as they have (S?)y = 4.41 and (S?), = 4.47, respectively. These two cases
are particularly interesting because if the regularization strength is too weak then
it fully restores the spin-symmetry and yields a closed-shell solution. x-S-OOMP2
requires k less than 3.8 for open 1 and k less than 3.5 to observe spin-symmetry
breaking. At k = 1.5 (recommended value), each conformer has (S?) = 0.929 and
(S?) = 0.918, respectively. This supports the conclusion that both open 1 and open
2 are biradicaloids as pointed in ref.227. A similar result was found for o-S-OOMP2
as well.

In Table we present the (S?) values of the Mg = 0,1 states of open 1 and
open 2. Different flavors of regularized OOMP2 do not deviate significantly from
each other. The Mg = 1 states are all almost spin-pure whereas the Mg = 0 states
are spin-contaminated. As the (S?) values of the Mg = 0 states are close to 1.0,
those states exhibit significant biradicaloid character. Therefore, these two systems
are perfect candidates for the Yamaguchi’s AP scheme.

Applying the AP scheme to spin-purify the spin-contaminated Mg = 0 energies of
open 1 and open 2 leads to the various OOMP2 relative energies shown in Table [2.§]
The results in Table show almost no quantitative differences between different
regularized OOMP2 methods. It is interesting that the system is quite insensitive to
what flavor of OOMP2 we use. Compared to XMS-CASPT2, the relative energies
of regularized OOMP?2 for open 1 and open 2 are roughly 5 kcal/mol higher. The
relative energies between open 1 and open 2 are reproduced by every regularized
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XMS-CASPT2! | k-OOMP2 | 6-OOMP2 | k-S-OOMP2 | ¢-S-OOMP2
closed 0 0 0 0 0
open 1 32.03 37.13 36.52 36.21 35.97
open 2 33.57 38.79 38.11 37.78 37.50

Table 2.8: The relative energies (kcal/mol) of the three conformers of PABI from

XMS-CASPT2 and regularized AP-UOOMP2 methods. ! The XMS-CASPT2 num-
bers were taken from ref. 227 and the active space used was (4e, 60).

OOMP2 presented: open 2 is about 1.5 kcal/mol higher than open 1. While the
regularized OOMP2 methods agree with XMS-CASPT2 on a very small relative
energy scale between open 1 and open 2, they differ significantly from XMS-CASPT2
for the relative energy between closed and open conformations. It is unclear whether
this small active space XMS-CASPT?2 is a reliable method for this problem just as it
is unclear that regularized OOMP?2 is quantitatively accurate. This is an interesting
system to further study using a recently developed couple-cluster method in our
group that can handle a much larger active space. [142]

In summary, we applied the regularized OOMP2 methods developed in this work
to obtain relative energies of three conformations of PABI. Two of the three confor-
mations were found to be strong biradicaloids which agree well with what was found
with the XMS-CASPT2 study before. We also found that the different regularized
OOMP2 methods do not differ significantly from each other.

2.5 Conclusions

Orbital-optimized second order Mgller-Plesset perturbation theory (OOMP2) is
an inexpensive approach to obtaining approximate Briickner orbitals, and thereby
cutting the umbilical cord between MP2 and mean-field Hartree-Fock (HF) orbitals.
This has demonstrated benefits for radicals and systems where HF exhibits artifi-
cial symmetry-breaking. [176] However the limited MP2 correlation treatment can
introduce artifacts of its own, because the MP2 correlation energy diverges as the
HOMO-LUMO gap approaches zero. One striking example is that restricted and
unrestricted orbital solutions are each local minima for molecules with stretched
bond-lengths — in other words there is no Coulson-Fischer point [212} 213] where
the restricted orbital solution becomes unstable to spin polarization! It has been
previously recognized that some type of regularization is necessary to avoid such di-
vergences. Simple level shifts have been explored,[199] but are inadequate in general
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because the size of the level shift needed to ensure a Coulson-Fischer point in general
is so large that the MP2 correlation effects are grossly attenuated.|203]

In this work we have therefore developed and assessed two new regularization
approaches, called k-OOMP2 and 0-OOMP2, which both have the feature that the
strength of regularization is largest as the HOMO-LUMO gap approaches zero, and
becomes zero as the gap becomes large. This way the total correlation energy is
not greatly attenuated even with quite strong regularization. The regularization
strength in each case is controlled by a single parameter (i.e. k and o) which has
units of inverse energy so that small values correspond to strong regularization.
Despite the greater complexity of these regularizers relative to a simple level shift,
they can be quite efficiently implemented in conjunction with orbital optimization,
at a cost that is not significantly increased relative to unmodified OOMP2. These
models can be used with just the single parameter, or, alternatively, an additional
parameter corresponding to scaling the total correlation energy (i.e. SSOOMP2) can
be included as well.

The main conclusions from the numerical tests and assessment of the regularizers
are as follows:

1. Regularization. We assessed the performance of the new regularizers on single,
double and triple bond-breaking problems, to determine the weakest regular-
izers that can properly restore the Coulson-Fischer (CF) points across these
systems. The conclusion is very encouraging: a regularization parameter of
k<15 E, !is capable of correctly restoring the CF points on all of these sys-
tems. For k = 1.5 F ! regularization applied the ethane, ethene, ethyne series,
the CF distance, rcr is much shorter for the two latter systems as is appropriate
for the physics of the method. The o regularization is clearly less satisfactory
in this regard, as rop(CoHy) > rop(CoHy) for the smallest o = 1.0 E{l value
considered, and the lowest eigenvalue of the stability matrix does not always
show monotonic behavior as a function of bond-stretching displacements.

2. Scaling. We examined the performance of OOMP2 with and without regular-
izers, as well as with and without scaling (S) of the total correlation energy
on two datasets representing thermochemical energy differences (W4-11) and
radical stabilization energies (RSE43) and one dataset representing radical-
closed-shell non-bonded interaction energies (TA13). The TAE140 subset of
the W4-11 set was used to train scaling factors. The results show that un-
regularized OOMP2 over-emphasizes correlation effects, as the optimal scaling
factor is only 0.9. By contrast, choosing a physically appropriate x value of
1.45 B ' is appropriate for use without scaling, by reducing the tendency of
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orbital optimization to over-correlate through smaller energy gaps. A slight
improvement in numerical results can be obtained with a scaled xk-S-OOMP2
method, using k = 1.5 £} Uand ¢ = 0.955. Broadly similar conclusions hold
for o regularization. The regularized OOMP2 methods perform slightly better
than OOMP?2 for the TA13 set, and slightly worse for the RSE43 set.

3. Chemical application to singlet biradicaloids. We applied these regularized
OOMP2 methods to two experimentally relevant organic biradicaloids, the
heptazethrene dimer (HZD) and the pentaarylbiimidazole complex (PABI). We
emphasize that unmodifed OOMP2 diverges for these systems and the regular-
ization is necessary to obtain energies in a numerically stable way. We combined
the regularized OOMP2 methods with Yamaguchi’s approximate projection
scheme to spin-purify Mg = 0 energies of the biradicaloids. We found that
all four regularized OOMP2 methods developed in this work perform equally
well.

4. Recommendation. Given the documented failures of OOMP2 for bond-breaking
without regularization, and its related tendency to over-correlate, it cannot be
recommended for general chemical applications despite its formal advantages.
Fortunately, the k = 1.45 E| ! regularization introduced here appears to resolve
all of these issues in a way that is as satisfactory as could be hoped for, given
that MP2 itself is inherently incapable of solving strong correlation problems
(i.e. spin-polarization should occur in such cases). We recommend x-OOMP2
as a more robust replacement for OOMP2. We believe that it may also be
valuable as a way of realizing well-behaved orbital optimized double hybrid
density functionals|200, 204] in the future.

Beyond stabilizing the OOMP2 method, the new regularizers introduced in this
work may also have other interesting and potentially useful applications in electronic
structure theory. For example, they can be applied to Mgller-Plesset theory without
orbital optimization. At the MP2 level this will alter the relative energies of RMP2
and UMP2 in a way that raises the RMP2 energy when energy gaps are small,
possibly avoiding artifacts that occur in that regime. It may also be interesting
to explore the effect on higher order correlation energies, such as MP3 or MP4, or
the triples correction to methods such as coupled cluster theory with singles and
doubles, CCSD(T). Orbital optimization can also be performed with coupled cluster
doubles (i.e. OO-CCD),[256] and for cases where electron correlation effects are
strong, regularization may be also be useful to ensure the correct presence of Coulson-
Fischer points. Likewise regularizers may be helpful to avoid non-variational failures
of coupled cluster theory without orbital regularization. Of course, it is an open
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question whether the forms we have presented here are appropriate for these non-

MP2 applications or not.
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Figure 2.3: The R to U Hessian lowest eigenvalues of ethane, ethene and ethyne
within the cc-pVDZ basis set. (a) Ethane with k-ROOMP2. (b) Ethane with o-
ROOMP2. (c) Ethene with k~-ROOMP2. (d) Ethene with c-ROOMP2. (e) Ethyne
with k-ROOMP2. (f) Ethyne with --ROOMP2. Note that discontinuities in the plots
indicate discontinuous transitions in the corresponding ROOMP2 curves. ROOMP?2
does not converge after 2.72 A for ethene and 2.18 A for ethyne.
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Figure 2.4: The W4-11 set RMSD (kcal/mol) as a function of regularization param-
eter k and 0. (a) aVTZ and (b) TQ extrapolated results. The optimal values are
k=145 E, ' and 0 = 1.0 E; ! for aVTZ and k = 1.40 E; ' and o = 0.95 E, ! for the
TQ extrapolated case.
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Figure 2.5: (a) The TAE140 set RMSD and (b) the W4-11 set RMSD as a function
of regularization parameter x and o where the scaling parameter ¢ for each data point
is optimal within the TAE-140 set. Discontinuities are caused by the appearance of
different orbital solutions in the MR16 subset of the TAE140 set. The basis set used
was aVTZ.
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Figure 2.6: The molecular structure of heptazetherene dimer (HZD). White: H and
Grey: C

Figure 2.7: The molecular structures of PABI: (a) closed, (b) open 1 and (c) open
2. White: H, Grey: C, and Blue: N.
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Chapter 3

Distinguishing Artificial and
Essential Symmetry Breaking in a
Single Determinant

3.1 Introduction

(a) -108.60 (b)
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Figure 3.1: (a) Bond dissociation of N, in the cc-pVTZ basis set and (b) a phenalenyl
radical. In (a), RHF stands for spin-restricted Hartree-Fock and UHF stands for
spin-unrestricted Hartree-Fock. The Coulson-Fischer point is located at 1.16 A.

The conventional wisdom in quantum chemistry is that spin symmetry-breaking is
often necessary for describing strongly correlated systems that are beyond the scope
of single-reference wavefunctions with spin-restricted orbitals.[257]258] A familiar ex-
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ample, illustrated in Figure (a) is the spin-polarization that occurs in homolytic
bond-breaking at the Coulson-Fischer point,|213] leading to spin-unrestricted frag-
ments at separation. We can say that this is essential symmetry-breaking, because
without it, the character of a one-determinant wavefunction is fundamentally wrong
(it has ionic character at dissociation). This is analogous to the fact that the exact
wavefunction in this recoupling regime has essential multiconfigurational character,
and is not qualitatively similar to a single determinant of spin-restricted orbitals.
In other words, essential symmetry-breaking yields qualitatively better energies be-
cause it captures some aspects of electron correlation relative to a spin-restricted
determinant.

However, artificial symmetry breaking has appeared in numerous systems includ-
ing open-shell systems and polyaromatic hydrocarbons. [120-127] It is “artificial”
in the sense that these systems are not strongly correlated and a single Slater de-
terminant wavefuction with restricted orbitals should be a faithful representation.
However, employing unrestricted Hartree-Fock (UHF) wavefunctions often yields
significantly spin-contaminated results, which then generally give poor energetics.
An example is the doublet phenalenyl radical, shown in Figure (b), which is
quite stable, with known solution chemistry.[259, 260] Yet UHF/6-31G* calculations
lead to (52) = 2.08 rather than 0.75,[176] even though there is no obvious “essential”
electron correlation effect that is captured by this extensive spin symmetry-breaking.
Rather we might say that this “artificial” symmetry-breaking is lowering the energy
by recovering a bit of the dynamical correlation.

It is another difficult symmetry dilemma as to how to distinguish a genuine sym-
metry breaking from an artificial one. [261] At the mean-field level, spontaneous
symmetry breaking occurs to lower the mean-field electronic energy. Broken sym-
metry solutions are variationally preferred due to the very limited form of a single
deteminant wavefunction. However, subsequent correlated wavefunction calculations
(particularly those that include perturbative corrections) on top of broken symmetry
orbitals often yield qualitatively incorrect energetics and properties. 122} |123} |126],
187H190), 262

To mitigate this problem, it is often preferred to employ approximate Briickner
orbitals.[191], 192, 263, 264] The exact Briickner orbitals may be obtained from an
exact wavefunction by enforcing the zero singles constraint (i.e. the defining prop-
erty of Briickner orbitals).[265] 266] Having an exact wavefunction is not a realistic
assumption so, in practice, one may utilize coupled-cluster doubles (CCD) to obtain
so-called Briickner doubles (BD).[192] Our group proposed a variational formula-
tion of BD, called orbital-optimized doubles (OD), which optimizes orbitals in the
presence of the CCD correlation energy.[256, [267]

One major drawback of OD (or BD) is that its computational complexity scales
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sextically with system size. A more economical way to obtain approximate Briickner
orbitals with fifth-order complexity is to use orbital-optimized second-order Mgller-
Plesset theory (OOMP2).[176] OOMP2 has been successfully applied to shed light
on artificial spin-symmetry breaking problems.[195] [196] It also improves energetics
of radical-involving systems drastically compared to regular MP2.[177| 268]

Although OOMP2 has shown its utility in the aforementioned examples, it also
has two disturbing features.[199, 203| First, its potential energy surface often exhibits
a first-order derivative discontinuity even though the electronic energy is minimized
with respect to orbitals which should give only a second-order derivative disconti-
nuity. This is a consequence of the disappearance of Coulson-Fischer points.[213]
Second, it often finds a divergent energy solution (i.e. F = —o0) by preferring an
unphysical zero-gap restricted solution. We argue that these two drawbacks were sat-
isfactorily solved and thoroughly analyzed in our previous work where we employed
an orbital energy dependent regularizer.[269)

Fullerenes have attracted great attention in physical chemistry and interested
readers are referred to ref. 270, an excellent textbook which summarizes the history
of fullerenes in physical chemistry, and references therein. Starting from the smallest
fullerene, C,,[271] fullerenes are made solely of carbon and exhibit uncommon cage
geometries. These extraordinary features of fullerenes are interesting on their own.
What is surprising from an electronic structure standpoint is that many of these
fullerenes exhibit complex generalized Hartree-Fock (¢cGHF) solutions as discovered
by Jiménez-Hoyos et al.[272] These symmetry-broken ¢cGHF solutions were inter-
preted as an indicator of polyradicaloid character of fullerenes. This is unexpected
because experimentally synthesized fullerenes are quite stable and thus these stable
ones are likely closed-shell in character.

The most striking conclusion of Jiménez-Hoyos and co-workers’” work is that buck-
minsterfullerene, Cg, is polyradicaloid because of the existence of a cGHF solution.
This contradicts our group’s previous attempt at characterizing the electron correla-
tion of Cg,. Our group discovered a restricted (R) to unrestricted (U) instability in
Cgo at the HF level.[195] We carefully assessed the nature of spin-symmetry breaking
in comparison with Cs; which is known to be strongly correlated. For Cy, RMP2
yielded a more reasonable single-triplet gap than UMP2 and scaled opposite spin
OOMP2 restored the spin-symmetry. For these reasons, our conclusion was that Cg,
is not strongly correlated and should be described as a closed-shell molecule.

In this work, we address this controversy on symmetry breaking of Cg, and char-
acterize the electron correlation of related molecules (i.e., Cy, and Cs) using the re-
cently developed regularized OOMP2 (k-OOMP2)[269] and coupled-cluster valence
bond with singles and doubles (CCVB-SD) methods.[141], 142]
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3.2 Theory

We will use 1, 7, k, l,- - - to index occupied orbitals, a,b,c,d, - - - to index virtual
orbitals, and p,q,r,s,- - - to index either of those two. n, denotes the number of

a electrons, ng denotes the number of 3 electrons, n?  is the number of molecular
orbitals of spin o, and ng, is the number of spin orbitals.

3.2.1 Classification of HF Solutions

Fukutome pioneered the group-theoretic classification of non-relativistic HF so-
lutions.[273] There are a total of eight distinct classes based on the symmetry of
the electronic Hamiltonian (complex conjugation (K ), time-reversal (@), and spin-
operators Sy, where n is a collinear axis and $?). We will follow the classification
by Stuber and Paldus,|274] which is identical to Fukutome’s classification with a
different name for each class. The eight different classes are: restricted HF (RHF),
Complex RHF (cRHF), unrestricted HF (UHF), complex UHF (cUHF), generalized

F (GHF), and complex GHF (cGHF) along with paired UHF (pUHF) and paired
GHF (pGHF) For the purpose of this work, we discuss symmetry breaking of K,
S, and 52 and do not discuss ©. Therefore, there is no distinction between complex
solutions and paired solutions since they differ only by time-reversal symmetry. We
will thus discuss a total of six classes of HF solutions of each fullerene presented

below, which are summarized in Table [3.1]

K S2 Sh Stuber-Paldus
Conserved | Conserved | Conserved RHF
Broken Conserved | Conserved cRHF
Conserved Broken Conserved UHF
Broken Broken Conserved cUHF
Conserved Broken Broken GHF
Broken Broken Broken cGHF

Table 3.1: Classification of HF solutions relevant in this work. K is a complex
conjugation operator and 52 and S, are spin operators. Note that we do not distin-
guish between complex conjugation symmetry breaking and time-reversal symmetry
breaking for the purpose of this work.
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3.2.2 Generalized MP2

GHF eliminates the distinction between « and S spin orbitals characteristic of
UHF.[273}278] Instead each electron occupies a spin-orbital that can be an arbitrary
linear combination of o and [ basis functions. We refer to such an orbital as a
generalized spin-orbital (GSO). The usual spin-orbital MP2 energy expression reads,

ij||ab)|?
EMP2 EO - Z | jﬂab ) (31)

mab

where Fj is the energy of the reference HF determinant and the remainder is the
MP2 correlation energy. Afj’ is a non-negative orbital energy gap defined as

Af};’ =€, + 6 —€ —€j, (3.2)
and a two-electron integral (ia|jb) is

¢i(re)* ¢a(r1)¢](r2) ¢b(1'1)

ri,ro Hrl —I'2H2

(ialjb) = (3-3)

and an antisymmetrized integral is

(ijl|ab) = (ialjb) — (ib]ja) (3.4)

The evaluation of a two-electron integral with GSOs can be achieved in the following
way:
(ia|jb) = (i%a®[7b") + (%a®(j°0%) + (ia”|j°0%) + (i7a”|;") (3.5)

where we used the fact that each GSO, |¢,), has an « and a  component

o= (%) 39

We did not include the contributions with mixed spin components on electron 1
or 2 (e.g., (i%P|j*b")) because they are zero upon the spin integration. Having
expanded out the two-electron integral this way, the implementation of GMP2 is (at
least conceptually) trivial on top of an existing MP2 program.

The resolution of the identity approximation can be also applied to Eq. (3.5)
using [166, [167]

(i70a%[j72072) = Y (i7'a” |P)(P|Q) " (Qlj**b"?) (3.7)

PQ
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where (i71a”'|P) represents a 2-electron 3-center Coulomb integral and (P|Q) is the
metric matrix of the above decomposition which is a 2-electron 2-center Coulomb
integral among auxiliary basis functions.

The scaling of RI-cGMP2 is the same as RI-RMP2 or RI-UMP2 (i.e., O(N?)).
However, it carries a large prefactor compared to RI-RMP2 or RI-UMP2. The bot-
tleneck of RI-MP?2 is forming two-electron integrals in Eq. (3.7). In the case of RI-
RMP2 this step scales O(n2(n%, — nqy)*Naux) whereas RI-UMP?2 scales O((n?(n%,, —
na)?+n5(nf, —ng)* +nang(ne, —na) (b, —ng))Nau ). Assuming ng = ng, RF-UMP2
is three times more expensive than RI-RMP2. In the case of RI-GMP2, we have a
scaling of O(n?..(Nso — Nelec) *Naux)- ASSUmMIng nejee = 2n, and ng, = 2n%,, we con-
clude that RI-GMP2 is 16 times more expensive than RI-RMP2. RI-cGMP2 carries
an extra factor of four due to complex arithmetic operations. Overall, RI-cGMP2
is 64 times more expensive than RI-RMP2. Since we will be studying reasonably
large systems, this non-negligible prefactor will limit the applicability of RI-cGMP2
in this study.

We will use the RI approximation throughout this work so we shall drop “RI”
and refer to “RI-MP2” as “MP2”.

3.2.3 Regularized Orbital-Optimized MP2

When orbital-optimizing Eq. (3.1)), it is sometimes observed that the energy tends
to —oo. This divergence is attributed to the development of a small denominator,
A?}’ — 0 for some ¢, j, a, b. While simple level shifts were first explored[199, |203| they
proved inadequate. In essence, such large level shifts were needed|203| (10-30 eV)
that results, while stable, could be inferior to the unregularized theory. To better
mitigate this problem, we proposed a regularized MP2 method whose energy reads

ij||ab)|? ab) 2
Enpa(r Z| jﬂab ( e-m;) (3.8)

zgab

where k£ > 0 is a single empirical parameter that controls the strength of regular-
ization. The exponential damping function ensures that small denominators cannot
contribute to the final energy. Orbital-optimizing Eq. yields k-OOMP2 which
we thoroughly analyzed and benchmarked in our previous work.[269] x = 1.45 E; !
was recommended as it appeared to combine favorable recovery of Coulson-Fischer
points with good numerical performance.
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3.2.4 Classification of OOMP2 Solutions

The classification of OOMP2 solutions can be done in the same way as that of
HF solutions. The classification needs to incorporate the MP2 correction to the one-
particle density matrix (1PDM) and the first-order correction to the spin expectation
values.

The norm of the imaginary part of the 1PDM, &, diagnoses the fundamental
complexity of a wavefunction at the one-body level.|279] This was sufficient for testing
the fundamental complexity of OOMP2 solutions studied in this work. However, in
principle, one may consider a more sophisticated diagnostic tool that involves higher
order density matrices. The expression for the correlated 1IPDM of OOMP2 methods
is given in the Appendix.

The first-order correction to the spin expectation values are needed to compute
the first-order correction to a spin covariance matrix A defined as

Ay = (SiS;) — (5:)(S;) (3.9)

The nullity of this matrix determines the collinearity of a given wavefunction as
noted by Small et al.[277] If there is a zero eigenvalue associated with an eigenvector
n, the wavefunction is collinear along this axis n. The real part of A is a positive
semidefinite matrix and the smallest eigenvalue, 1, can be used to quantify the
non-collinearity of a given wavefunction. This applies to not only non-interacting
wavefunctions such as HF states but also correlated states such as MP1 wavefunc-
tions. We present the formula for computing the first-order correction to A in the
Appendix.

As a side note, during the course of finishing this work, we found that the ex-
pression for the first-order correction to (S2> presented in ref. 176 is off by a factor
of two and the one in ref. 268 is off by a factor of four from the correct expression.
This is clear from looking at a more general expression given in the Appendix.

3.2.5 Coupled-Cluster Methods

Restricted CC with singles and doubles (RCCSD) generally fails to describe
strongly correlated systems and often exhibits non-variationality in such systems.
Recently, we proposed coupled-cluster valence bond with singles and doubles (CCVB-
SD) as a simple alternative that modifies the parametrization of quadruple excita-
tions in RCCSD. [141] CCVB-SD is better than RCCSD at handling strong corre-
lation as it can describe bond dissociations exactly within a valence active space
as long as UHF (or UCCSD) can. This property is inherited from a much simpler
correlation model, CCVB.[128, (140, {143, {144} 280, [281] Furthermore, CCVB-SD was
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successfully applied to oligoacenes which exhibit emergent strong correlations while
RCCSD showed non-variationality.[142] It is clear from our experience that strong
correlation is present when we observe qualitative differences between CCVB-SD
and RCCSD. This can be shown in terms of working equations. CCVB-SD modifies
the quadruples in RCCSD which plays a crucial role in describing strong correla-
tion. This modification becomes negligible if no substantial connected quadruples
are needed and therefore in such cases there is no strong correlation. Comparing
those CC methods will shed light on the electron correlation effects in the fullerenes.

3.3 Probes for Artificial Symmetry Breaking

3.3.1 Probe 1: Symmetry Breaking Landscape from
k~-OO0OMP2

One way to address the problem of distinguishing between essential symmetry
breaking (driven by missing static correlation effects) and artificial symmetry break-
ing (driven by missing dynamical correlation effects) in HF calculations is to apply a
method that optimizes the orbitals including only dynamical correlation but not the
static or essential correlation. With such an approach, artificial symmetry break-
ing will be virtually eliminated because dynamic correlation effects are explicitly
included and are therefore removed as a driving force for symmetry breaking. Essen-
tial symmetry breaking remains because no static correlation is included to handle
strong correlation problems.

artificial &

too little

essential essentia
SB

SB

[ >

e e— regularization _)
strength

Figure 3.2: Mlustration of artificial and essential symmetry breaking (SB) in x-
OOMP2 as a function of k. k € [1.0,2.0] exhibits only essential SB.




CHAPTER 3. DISTINGUISHING ARTIFICIAL AND ESSENTIAL SYMMETRY
BREAKING IN A SINGLE DETERMINANT 57

The k-OOMP2 method is such a theory for reasons that are summarized in Fig-
ure . Varying the regularization parameter over the range [0.5, 4.0] for which this
method has been parameterized yields a survey of how symmetry breaking depends
on regularization strength. Regularization that is weak (k > 2) defines methods that
strongly favor symmetry-restoration, and will often be below the true energy. For
example, in bond-breaking, Coulson-Fischer points are pushed to very long bond-
lengths, and eventually are even lost. This arises because weak regularization in-
cludes part of the exaggerated MP2 description of the (potentially strong) paired
correlations associated with small promotion energies. Thus the limit of very weak
regularization (k — oo0) may not even admit essential symmetry breaking for strongly
correlated systems.

By contrast regularization that is strong (k < 1) will potentially admit both es-
sential and artificial symmetry breaking, because part of the dynamical correlation is
also attenuated. This is most clearly seen by considering k-OOMP2, where the limit
as kK — 0 recovers HF theory, with all its symmetry breaking characteristics and the
limit of Kk — oo recovers unregularized OOMP2 with its (a) overestimation of static
correlation with restricted orbitals and (b) loss of Coulson-Fischer points. Finally,
the intermediate regime, which we view here as roughly x € [1.0,2.0], presents a
transition between strong and weak regularization. The value of k = 1.45 which was
selected to yield useful accuracy and restore Coulson-Fischer points, as discussed
previously, [269] lies in this region.

We can use the k-dependence of symmetry breaking in k-OOMP2 to characterize
its nature. For an even electron system that exhibits symmetry breaking at the HF
level, using k-OOMP2 at a fixed geometry as a function of x will yield a critical
value, k. above which symmetry restoration is complete. If k. is large enough (weak
regularization, for instance k. > 2), so that Coulson-Fischer points are not properly
restored in bond-breaking, then we conclude that the HF symmetry breaking was
essential in character, since so too is that of k-OOMP2. On the other hand, if k.
is small enough (strong regularization, for instance k. < 1) then we are well into
the regime where Coulson-Fischer points exist, and we must therefore conclude that
the HF symmetry breaking was artificial in character, because symmetry breaking is
readily quenched in k-OOMP2, even with strong regularization.

3.3.2 Probe 2: Singlet-Triplet Gap

A singlet-triplet gap measures the energy cost for breaking a pair of electrons that
are singlet coupled. This would be much smaller than a usual single bond energy
if two electrons are spatially well separated and singly occupying each orbital. This
is the case for biradicaloids where singlet-triplet gaps less than 10 kcal/mol are
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commonly observed.[245] On the other hand, if the gap is large then the molecule
is best described as a closed-shell molecule. A precise experimental value for this
gap is available for Cg, and therefore this is a good probe especially for Cg,. In this
work, we define this as AEs_r = Er — Es where Eg and Er are singlet and triplet
energies, respectively.

3.3.3 Probe 3: Correlated 1IPDM

We will investigate two quantities that can be obtained from the correlated unre-
laxed 1PDM of CC wavefunctions (RCCSD and CCVB-SD). The first one is natural
orbital occupation numbers (NOONs) which are eigenvalues of the IPDM. For a
perfect closed-shell molecule, the NOONs would be either 0.0 (empty) or 2.0 (doubly
occupied). For a perfect biradical system, there should be two eigenvalues of 1.0 as
well. In general, the NOONs will be distributed between 0.0 and 2.0. A polyrad-
icaloid must have multiple eigenvalues that significantly deviate from 0.0 and 2.0.

The second quantity that we will report is Head-Gordon’s number of unpaired
electrons (NUE),[282]

NUE =) " min(2 — n;, n;) (3.10)

where 7 is summed over all natural orbitals and n; is the occupation number of the
i-th natural orbital. This takes the entire spectrum of NOONs and reduces it to a
single scalar value that quantifies strong correlation. In the case of a perfect closed-
shell molecule, NUE is zero. Molecules with open-shell character will exhibit larger
NUE values. When these quantities show a qualitative difference between RCCSD
and CCVB-SD for a given system, we conclude that the system is strongly correlated
and vice versa.

3.4 Results

We investigated the Cgy, Cg4, and C,, fullerenes. We studied a total of five
different geometries of C,, whereas only one conformation for other fullerenes was
studied. All HF calculations were performed with wavefunction stability analysis to
ensure the local stability of solutions. The pertinent cGHF electronic Hessian is pro-
vided in the Appendix. All calculations were carried out with a development version
of Q-Chem.|236] All plots were generated with Matplotlib [283] and all molecular
figures were generated with Chemcraft.[284]

Obtaining quantitatively accurate answers with CC methods is very computation-
ally intensive for fullerenes so we look for qualitative answers by comparing them to



CHAPTER 3. DISTINGUISHING ARTIFICIAL AND ESSENTIAL SYMMETRY
BREAKING IN A SINGLE DETERMINANT 59

various OOMP2 methods. We will employ the STO-3G basis set in order to exag-
gerate the effect of strong correlation and discuss the implication within this basis
set as well as the frozen core approximations. We only present the CC data for Cyg,
and Cg4 here; the CC data for C,, showed the same conclusions as the other analyses
based on OOMP2 we present below.

3.4.1 The Nature of Electron Correlation in Cg,

Figure 3.3: The I, molecular structure of Cyy.

Cgo 18 a well-known electron paramagnetic resonance silent molecule[285] and its
geometry is shown in Figure [3.3] Therefore, it is undoubtedly a molecule with a
singlet ground state. Furthermore, its stability has suggested that it is a closed
shell molecule. This is why it was surprising to observe the existence of R to
U symmetry breaking of Cg, at the HF level.[195] This R to U symmetry breaking
was in the end characterized as artificial based on analyses using OOMP2 and the
single-triplet gap. Later, Jiménez-Hoyos et al. found a cGHF solution for Cy, and
concluded that Cg, is strongly correlated (or polyradicaloid) based on this broken-
symmetry HF solution. This was surprising to us because Cg, has been hardly
suggested to be polyradicaloid and is also very stable in experiments. Therefore, we
revisit this problem with k-OOMP2 and CC methods and try to determine whether
Cygp is strongly correlated.
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Symmetry Breaking Landscape

Due to limited computational time, we could obtain the symmetry breaking land-
scape of this molecule only within a minimal basis set, STO-3G.[287] We took the
cGHF optimized geometry of Cgy, from Jiménez-Hoyos and co-workers” work. As it is
well known, the STO-3G basis set exaggerates strong correlation and facilitates sym-
metry breaking. The critical x values obtained from minimal basis set calculations
would therefore be a good estimate on the upper bound of k..
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Figure 3.4: Measures of symmetry breaking ((S?), &, and u) as a function
of the regularization strength s for Cg, (I). The plots characterize symmetry-
breaking/restoration in k-OOMP2.

In Figure 3.4 we present the symmetry breaking landscape of Cg,. For x < 1.05,
(S?), &, and p exhibit a steep increase as k decreases. Eventually, the curve reaches
the cGHF solution at the limit of K — 0. k = 1.05 is enough to restore all symmetries
that were broken at the HF level. This critical value is not large enough to be safely
in the range of essential symmetry breaking illustrated in Section|3.3.1} Therefore we
conclude that the symmetry breaking at the HF level is artificial. We also confirmed
the symmetry restoration at x = 1.45 with k-OOMP2 within the VDZ (i.e., cc-
pVDZ[237] without polarization) basis set. Therefore, we believe that the basis set
incompleteness error will not affect this qualitative conclusion.
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Method AEs_T <52>Ms:0 <SQ>MS:1
RHF 65.63 0.000 2.000
RMP2 57.42 0.000 2.000
SCS-RMP2 59.44 0.000 2.000
SOS-RMP2 60.45 0.000 2.000
UHF 45.23 6.708 8.560
UMP2 77.39 5.566 7.401
UOOMP2 19.48 0.000 2.043
SCS-UOOMP2 28.53 0.000 2.002
SOS-UOOMP2 35.72 0.000 1.995
k-UOOMP2 49.23 0.000 2.002
Experiment|288] | 36.95 £+ 0.02

Table 3.2: The singlet-triplet gap AEgt (kecal/mol) of Cg, from various methods.
The expectation values of (S?) for Mg =0 and Mg = 1 states are presented as well.
Note that these values include correlation corrections to (S?).

Singlet-Triplet Gap

In Table [3.2] we present the singlet-triplet gap of Cq, computed with various MP2
methods. Here, we used the cc-pVDZ basis set|237] along with the corresponding
auxiliary basis set.|238] For OO methods, we performed orbital optimization starting
from stable UHF solutions. The results presented in Table generally agree with
what Stiick and Head-Gordon reported.[195]

The singlet-triplet gap predicted by HF is better with UHF (45.23 kcal/mol) than
with RHF (65.63 kcal/mol) in comparison to the experimental value (36.95 £ 0.02
kcal/mol). UHF exhibits striking spin-contamination and this is improved to a small
extent with UMP2. The singlet-triplet gap of UMP2 is much worse than that of
UHF, going from 45.23 kcal/mol to 77.39 kcal /mol whereas RMP2 improves the gap
by 8 kcal/mol compared to RHF. Tt is clear that a better reference for subsequent cor-
relation calculations is RHF not UHF. We also compare RMP2 with spin-component
scaled MP2 [170](SCS-MP2) and scaled opposite-spin MP2[171] (SOS-MP2). The
singlet-triplet gap is quite insensitive to the choice of scaling factors.

OOMP2 methods successfully remove heavy spin-contamination observed at the
HF level. While in terms of (S?) unregularized OOMP2 and its scaled variants are
desirable, a striking underestimation of the gap is alarming. In particular, compared
to their non-OO variants these gaps are severely underestimated. We suspect that
this is due to overcorrelating the Mg = 1 state via OO. Unlike the non-OO variants,
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unregularized (i.e., Kk — 00) OO methods are sensitive to the scaling parameters.
We observe that the gap from SOS-UOOMP2 is only off by 1 kcal/mol from the
experimental value. This is likely a fortuitous outcome.

It is interesting that this unphysical overcorrelation of the triplet state seems to
be resolved with k-UOOMP2. x-UOOMP2 exhibits an error of 12 kcal/mol which
is likely due to the limited treatment of electron correlation. It will be interesting
to resolve this remaining error using higher order perturbation theory or, perhaps,
coupled-cluster methods.

Correlated 1IPDM

We then obtain NOONs from OOMP2 methods and analyze them. We will
discuss three unregularized OOMP2 methods, OOMP2, SCS-OOMP2,[177] and SOS-
OOMP2[176] along with k-OOMP2.  In Figure different OOMP2 methods
exhibit more or less identical NOONs. We could not find unrestricted solutions for
any of these methods. This reflects the simplicity of the electronic structure of Cg,.
A noticeable reduction in open-shell character is observed in k-OOMP2 compared
to other OOMP2 methods. These NOONSs are far from the usual values for orbitals
with open-shell character in strongly correlated wavefunctions (i.e., values between
1.30 and 0.70).

Likewise, the NOONs from CC methods presented in Figure strongly suggest
that this molecule is not strongly correlated. RCCSD and CCVB-SD exhibit visually
identical distributions. Indeed, the NOONS of the highest occupied NO (HONO) and
the lowest unoccupied NO (LUNO) are (1.87, 0.14) for both methods. These val-
ues are comparable to naphthalene’s NOONs computed with CCVB-SD. Evidently,
naphthalene is not a strongly correlated system, which implies that neither is C,.

Method STO-3G cc-pVDZ
OOMP2 8.04 (0.13) | 14.03 (0.23)
SCS-OOMP2 | 7.67 (0.13) | 12.63 (0.21)
SOS-OOMP2 | 6.92 (0.12) | 11.02 (0.18)
k-OOMP2 | 3.86 (0.06) | 8.08 (0.13)
(0.16)
)

RCCSD 9.48 (0.16
CCVB-SD | 9.19 (0.15

Table 3.3: Number of unpaired electrons (NUE) of Cg, computed from various meth-
ods. The numbers in parentheses are NUE per carbon atom.

In Table , we present NUEs (Eq. (3.10)) of Cy, computed by various methods.
With a larger basis set (cc-pVDZ), NUEs are larger than those of STO-3G.This
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Figure 3.5: Natural orbital occupation numbers of Cg, within a valence active space
from (a) OOMP2, (b) SCS-OOMP2, (¢) SOS-OOMP2, and (d) k~-OOMP2. Note
that there were no unrestricted solutions found for any of these methods.

reflects the increase in open-shell character due to dynamic correlation. We once
again observe almost no differences between RCCSD and CCVB-SD. Overall, there
are about 0.06 to 0.16 unpaired electrons per C atom in Cg, within the STO-3G
basis set. As each C atom has four valence electrons, this amounts only 1.6-4.0% of
the total number of electrons. Therefore, the polyradicaloid character in Cg, is only
marginal from the global electronic structure viewpoint.

Based on these analyses, we conclude that Cg, should be considered a closed-
shell molecule and not strongly correlated. Thus the very interesting cGHF solution
reported previously[272] should be considered as an artificial rather than an essential
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Figure 3.6: Natural orbital occupation numbers of Cg, within the minimal basis set,
STO-3G, from RCCSD and CCVB-SD. Two sets of data points are very close to
each other so the blue circles lie right below the red triangles.

symmetry breaking. This conclusion will be also supported by comparing with our
next molecule, C4; which is a well-known biradicaloid.

3.4.2 The Nature of Electron Correlation in Cgg4

Figure 3.7: The Dg, molecular structure of Csg.

The Dgp structure of Cgq shown in Figure has been known to exhibit strong
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biradicaloid character.[289] This has been of great interest both experimentally[290]
and theoretically.[289, [291-297] The D¢, structure is supported by the 3C NMR
spectrum exhibiting a single peak.|290] Different computational methods suggested
different structures and even different multiplicities. There is no doubt that Cgq4
exhibits complex electronic structure and is a strongly correlated system.

Stiick and Head-Gordon studied this prototypical strongly correlated system us-
ing unregularized SOS-OOMP2 before. Fortunately, unregularized OOMP2 did not
diverge even with this substantial biradicaloid character. What was not explicitly
mentioned in this previous work is that OOMP?2 in fact yields a restricted solution
when starting from an unrestricted solution. Since unregularized OOMP2 unphysi-
cally prefers restricted solutions (closely connected to its singularity problem), this
is not unexpected. This also suggests that whether unregularized OOMP2 restores
broken symmetry is not a definitive probe to characterize strong electron correlation
in a given system (it is the k — oo limit shown in Fig. [3.2). We will see how
k-OOMP2 resolves this artifact and can be used to probe strong correlation in this
system.

We obtained the Dgj, molecular structure of Cs4 via geometry optimization with
restricted density functional calculations using the BLYP exchange-correlation func-
tional[298, [299] and the 6-31G(d) basis set.[300] The geometry optimization was
performed with a Dg, geometric constraint so the optimization was not allowed to
break this spatial symmetry. We do not think that this geometry is quantitatively
accurate but for the purpose of this work, it should be sufficient.

Symmetry Breaking Landscape

We computed a landscape of symmetry breaking as a function of x within the
6-31G basis set[301] along with the cc-pVDZ auxiliary basis set.[238] This may not
be quantitatively accurate, but it should be enough to draw qualitative conclusions.
Figure shows that Cs4 exhibits multiple classes of one-particle wavefunctions
as a function of k. As noted by Jiménez-Hoyos et al,[272] at the HF level there
exists a cGHF solution. This is clearly evident in Figure for k < 1.00, since we
have nonzero (S?), ¢, and u. € and p vanish at their critical value k. = 1.00 and
only unrestricted solutions were obtained for x € [1.00,2.45]. For x > 2.45, only
restricted solutions were found. These solutions are consistent with Stiick and Head-
Gordon’s work which used unregularized SOS-OOMP2.[195] This landscape has more
structure than that of Cy, (see Fig. which reflects the increased complexity of
the electronic structure of Cgg.

The k value within the essential symmetry breaking region exhibits only unre-
stricted solutions. Therefore, complex generalized solutions reflect artificial symme-
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Figure 3.8: Measures of symmetry breaking ((S?), &, and u) as a function of
the regularization strength x for Cs5 (Dgn). The plots characterize symmetry-
breaking /restoration in k-OOMP2.

try breaking while restricted solutions exhibit artificial symmetry restoration. Since
Cs4 1s a well-known singlet biradicaloid, one would expect an unrestricted solution
with an (S?) value between 0.0 and 2.0 (i.e., there is only triplet contaminant). In-
terestingly, this is what was obtained from k-OOMP2 with x = 1.45 (as described in
Figure . Based on the existence of this essential symmetry breaking, we conclude
that Cg4 is strongly correlated.

Singlet-Triplet Gap

We will focus on determining whether unscaled ~-OOMP2 with k = 1.45 (i.e., the
recommended default k~-OOMP2 method|269]) works quantitatively well compared to
other MP2 approaches. We observed the same cG to U partial symmetry restoration
with k = 1.45 within the cc-pVDZ basis set. Therefore, due to limited computational
resources, for the cc-pVTZ basis set[237, [238] we only ran unrestricted calculations.
In Table , we present the singlet-triplet gap (AFEg.r) computed with various MP2
approaches. Since there is no reliable experimental gap available, we shall compare
our results against multi-reference MP2 (MRMP2) results.[289] The MRMP2 results
were obtained with the 6-31G(d) basis set and a small active space, (2e, 40), complete
active space self-consistent field (CASSCF) reference state. These might not be a
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Method AEs_T <S2>MS:O <g2>MS:1
RHF -19.69 0.000 2.000
RMP2 21.81 0.000 2.000
SCS-RMP2 17.10 0.000 2.000
SOS-RMP2 14.75 0.000 2.000
UHF 32.29 7.448 8.793
UMP2 42.73 6.428 7.795
UOOMP2 15.85 0.000 2.070
SCS-UOOMP2 30.76 0.000 1.978
SOS-UOOMP2 2291 0.000 2.002
k~-UOOMP2 4.42 0.959 2.008
AP+x-UOOMP2 8.46
MRMP2[289] 8.17

Table 3.4: The singlet-triplet gap AFEst (kcal/mol) of Cy4 from various methods.
The expectation values of (S2> for Mg = 0 and Mg = 1 states are presented as
well. Note that these values include correlation corrections to (S2). All but MRMP2
results were obtained with the cc-pVTZ basis set.[237] MRMP2 results in ref. 289
were obtained with a Dg, geometry within the 6-31G(d) basis set. MRMP2 was
performed on a CASSCF solution with a (2e, 40) active space.

highly accurate reference result, but it can serve as a qualitative answer.

RHF predicts a triplet ground state, a qualitatively wrong result. RMP2, SCS-
RMP2,[170] and SOS-RMP2[171] correct the sign of the gap. They are quite far
away from the multi-reference MP2 (MRMP2) result and this is because the sin-
glet biradicaloid character of the true ground state cannot be captured by doubly
occupying restricted orbitals. UHF and UMP2 are heavily spin-contaminated and
predict significantly large gaps. We note that the MP2 treatment cannot clean up
heavy spin-contamination present at the UHF level. As a result, these gaps are qual-
itatively incorrect as they are too large to support the singlet biradicaloid character.

Spin symmetry breaking iscompletely removed with unregularized OOMP2 meth-
ods. The UOOMP2 gap is smaller than RMP2. However, SCS- and SOS-MP2 meth-
ods predict much larger gaps with OO than those without OO. This is likely due to
overcorrelating the singlet state. This is the case where OOMP2 (or k-OOMP2 for
K — 00) yields too little symmetry breaking as explained in Section [3.3.1]

k-UOOMP2 yields a broken-symmetry solution for Mg = 0 and (S?) is 0.959.
This is of strong singlet biradicaloid character and serves as a good candidate for
Yamaguchi’s approximate spin-projection (AP)[246] to obtain better energetics. The
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use of AP in conjunction with k-UOOMP2 was first discussed in ref. 269. Without
AP, the gap was predicted to be 4.42 kcal/mol. This is small enough to conclude that
Csq is a singlet biradicaloid, but the gap is underestimated due to spin-contamination.
Applying AP lowers the singlet energy by 4 kcal/mol which yields a gap of 8.46
kcal/mol. This is quite close to the reference MRMP2 energy. However, a more pre-
cise benchmark is highly desirable in the future to draw a more definitive conclusion.
Nevertheless, the result suggests that Cs; is strongly correlated which agrees with
the conclusion drawn based on the symmetry breaking landscape.

Correlated 1IPDM
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Figure 3.9: Natural orbital occupation numbers of Cy4 within the valence space from
(a) OOMP2, (b) SCS-OOMP2, (¢) SOS-OOMP2, and (d) k-OOMP2. Note that
there were no unrestricted solutions found for OOMP2 and SCS-OOMP2. Further-
more, the solution from k-OOMP2 with cc-pVTZ is unrestricted.
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In Figure 3.9 we discuss NOONSs of Cy4 from the various OOMP2 methods that
were used in the previous sections. For STO-3G, OOMP2, SOS-OOMP2, and k-
OOMP2 exhibit clear emergent singlet biradicaloid character. It is clear that NOONs
exhibit more open-shell character than those of Cg, Interestingly, we could isolate
an unrestricted STO-3G solution with SOS-OOMP2 by reading in an unrestricted
k-OOMP2 solution. We could not isolate such a solution with the cc-pVTZ basis set.
The R to U symmetry breaking of SOS-OOMP?2 is interesting in that the unrestricted
solution is 21 mFE) higher in energy than the restricted one. Within the cc-pVTZ
basis set, OOMP2, SCS-OOMP2, and SOS-OOMP?2 all predict very similar NOONs
and they exhibit only slight singlet biradicaloid character. On the other hand, k-
OOMP2 exhibits very strong biradicaloid character characterized by an unrestricted
solution. HONO and LUNO for this unrestricted solution in the cc-pVTZ basis set
have NOONSs of 1.30 and 0.67, respectively. The true ground state would have less
polarized NOONSs than k-OOMP2.
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Figure 3.10: Natural orbital occupation numbers of Cs4 within the minimal basis
set, STO-3G, from RCCSD and CCVB-SD.

In Figure3.10, we show NOONs from two CC methods, RCCSD and CCVB-SD.
As was noted before, RCCSD and CCVB-SD show qualitative differences when the
system is strongly correlated.[141, |142] In particular, RCCSD clearly overcorrelates
and likely exhibits non-variationality.[142] These trends are well reflected in Figure
3.10L. The NOONSs of the HONO and the LUNO are (1.35, 0.65) and (1.68, 0.32) for
RCCSD and CCVB-SD, respectively. These two sets of NOONs show clear differences
in that RCCSD exhibits far more open-shell character than does CCVB-SD. We also
note that the CCVB-SD value (1.68, 0.32) is comparable to NOONs of an acene of
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length 12 we studied in ref. 142. This is quite substantial strong correlation.
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Method STO-3G/R | STO-3G/U | ce-pVTZ
OOMP2 | 6.45 (0.18) N/A | 10.76 (0.30)
SCS-OOMP2 | 6.24 (0.17) N/A 0.75 (0.27)
SOS-OOMP2 | 5.66 (0.16) | 6.17 (0.17)" | 8.52 (0.24)
k-OOMP2 | 2.31 (0.06) | 5.58 (0.15)" | 6.94 (0.19)"
RCCSD | 8.23 (0.23) N/A
CCVB-SD | 6.65 (0.18) N/A

Table 3.5: Number of unpaired electrons (NUE) of C,4 computed from various meth-
ods. For SOS-OOMP2 and k-OOMP2 with STO-3G, we present NUE for both re-
stricted and unrestricted solutions. The first value corresponds to the restricted one
and the second corresponds to the unrestricted one. The numbers in parentheses
are NUE per carbon atom. STO-3G/R indicates restricted calculations with STO-
3G while STO-3G/U indicates unrestricted calculations with STO-3G. The cc-pVTZ
calculations are done with spin-unrestricted calculations and broken symmetry solu-
tions are indicated by a superscript 1. ! Spin-unrestricted solutions.

We present the NUEs computed from the various methods examined here in
Table [3.5] Compared to Table all the NUEs are smaller with C,4 than with
Cgo. However, this is simply due to the fact that there are more electrons in Cg,.
With a proper normalization (i.e., NUE per C atom), it is clear that Cg, exhibits
less open-shell character than Csg.

For OOMP2 methods, the open-shell character increases going from STO-3G to
cc-pVTZ. Although HONO and LUNO exhibit less polarization, the other orbitals
exhibit more open-shell character with a larger basis set. This can be understood
as having more dynamic correlation effects and smaller correlation within a valence
space in the cc-pVTZ basis set.

Comparing NUEs of RCCSD and CCVB-SD clearly suggests that RCCSD over-
correlates the system. Therefore, this also suggests that Csq is strongly correlated.

3.4.3 The Nature of Electron Correlation in C,,

Lastly, we obtain the landscape of symmetry breaking of a smaller fullerene, C,.
We have established that all three probes we used yield a consistent conclusion for
Cgo and Cs4. Therefore, we believe that it is sufficient to use this single probe to
obtain an answer to a qualitative question: is C,, strongly correlated?
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Jahn-Teller distorted structures

(@)

Figure 3.11: Four Jahn-Teller distorted isomers of Cyy: (a) Cyy,, (b) Dy, (¢) C;, and
(d) Dy,

Cyy has attracted a lot of attention since it is the smallest possible fullerene
suggested by graph-theoretic analyses. The existence of its cage geometry was
controversial for some time,[303-310] but eventually it was experimentally observed
in 2000.[271] Since then, there have been a lot of quantum chemistry studies of Cy,
which focus on relative energetics of different conformers such as bowl, cage, and
ring.[297] Here we focus on multiple Jahn-Teller distorted conformations of
the cage geometry (Cap, Doy, C;, and Dgy,).

Manna and Martin carried out a careful study of relative energies among the Jahn-
Teller distorted conformers of C,,. They used state-of-the-art wavefunction
methods in conjunction with high-quality density functional theory calculations. We
took molecular geometries of Cy, from ref. 316 which were optimized with PBEO and
the cc-pVTZ basis set. These geometries are shown in Figure Our focus in this
section is on the artificial symmetry breaking in these molecules. We studied these
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within the cc-pVDZ basis set[237] along with the appropriate auxiliary basis set.[23§]
In Table we present the classification of HF solutions of these molecules. Since
they are commonly thought of as closed-shell molecules, it is striking that RHF is
always unstable under spin-symmetry breaking for these molecules.

Geometry K 52 S, Stuber-Paldus | (S%)o | & Lo
Cyy, Broken | Broken | Broken cGHF 5.395 | 1.117 | 0.816
Dy, Broken | Broken | Broken cGHF 5.397 | 1.626 | 0.818

G, Broken | Broken | Conserved cUHF 5.101 | 1.074 | 0.000
Dy Broken | Broken | Conserved cUHF 5.100 | 1.247 | 0.000

Table 3.6: Classification of HF solutions of C,, isomers along with the corresponding
(S?)o, &, and pg. The subscript 0 denotes that these properties are computed at the
HF level.

We will first discuss the cGHF solutions found in Cs, and Dg,. Although the
two geometries differ by 29 mEy, in terms of the nuclear repulsion energy, the cGHF
energies differ only by 10 pEy. This means that the nuclear configurations are very
different but the total energy, which includes nuclear repulsion energy and electronic
energy, is nearly degenerate. While this accidental near-degeneracy is surprising, the
appearance of non-collinear solutions is also striking since this molecule should be
considered closed-shell.[297, 1303|308, 317] We will now see how regularized OOMP2
restores this artificial symmetry breaking starting from these broken symmetry so-
lutions as a function of the regularization strength.

In Figure , (S?), &, and p are plotted as a function of x for Cy, and Doy,
geometries. Although two ¢GHF solutions exhibit quantitative similarity in (S?),
¢, and p as shown in Table k. values for each quantity shows a qualitative
difference.

In the case of the Cy, geometry (Figure [3.12] (a)), k. values are 1.00, 0.80 and
0.80 for (S?), &, and pu, respectively. This suggests that for x € [0.80,1.00] there
are unrestricted solutions for this system. Moreover, the symmetry restoration of
complex and non-collinearity occurs at the same time. The (S?) restoration requires
stronger MP2 correlation energies than ¢ and p. The Doy, geometry exhibits a differ-
ent behavior. The k. values for (S?), &, and p are 1.00, 1.00, and 0.80, respectively.
In this case, for k € [0.80,1.00] there are complex, unrestricted solutions. The U to
G symmetry breaking is easier to restore than complex and unrestriction based on
the relative magnitude of k. values. These k. values are in the artificial symmetry
breaking range discussed in Section[3.3.1] Therefore, we conclude that this symmetry
breaking is artificial.
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Figure 3.12: Measures of symmetry breaking ((S?), ¢, and p) as a function of the
regularization strength « for (a) Cyy (Can) and (b) Cyy (Day). The plots characterize
symmetry-breaking/restoration in k-OOMP2.
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Figure 3.13: Measures of symmetry breaking ({S?), &, and i) as a function of the
regularization strength  for (a) C,q (C;) and (b) Cyy (Dsn). The plots characterize
symmetry-breaking/restoration in k-OOMP2.

There are a total of two cUHF solutions in the C; and Dg, geometries. The
nuclear repulsion energies of these molecules differ by 29 m F), and the cUHF solutions
differ only by 10 pEy. This appearance of electronic degeneracy is similar to the
two cGHF solutions of the same molecule. In Figure the three measures of
symmetry breaking is shown as a function of s for these two geometries. Clearly, u
is zero at every regularization strength so there is no generalized solution for these
geometries. Although there were qualitative differences in k. between Co, and Dy,
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C; and D3}, show identical k. values for (S?) and €. The &, values are 1.05 for both of
the symmetries, which is in the artificial symmetry breaking range. Therefore, this
symmetry breaking should also be considered artificial.

We emphasize these findings about four different geometries of Cyy agree with
previous studies by others|297, 303, 308, 317]: Cy is a singlet closed-shell molecule
and there is no strong correlation in this molecule as long as the geometry is Jahn-
Teller distorted.

Dodecahedral (I},) Structure

Figure 3.14: The dodecahedral molecular structure of C,,.

It is possible to force strong correlation by enforcing a higher symmetry. It is very
likely that small fluctuations would be sufficient to break any degeneracies present
in a higher symmetry and results into a more stable and lower symmetry geometry.
This is the origin of commonly observed Jahn-Teller distortions. It is very surprising
that a dodecahedral geometry (I,) was found to be the global minimum with cGHF
in the work by Jiménez-Hoyos et al.[272] We took the geometry from their work
(shown in Figure and ran the same analysis to see how symmetry breaking
plays a role in describing the electron correlation of this molecule.

In Figure [3.15, we present a symmetry breaking landscape of the dodecahedral
geometry. It has more structure than other previous cases. There is a discontinuous
jump in p going from k = 1.05 to x = 1.10. This is due to the existence of two distinct
low-lying solutions: complex, generalized and complex, unrestricted solutions. The
gap between these two competing solutions is controlled by x and around x = 1.10
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Figure 3.15: Measures of symmetry breaking ({S?), &, and p) as a function of the reg-
ularization strength x for C,, with a dodecahedral geometry. The plots characterize
symmetry-breaking /restoration in k-OOMP2.

the relative energetics becomes reversed. For x > 1.10, cU solutions are found to be
the lowest energy solution.

(S) suggests that a triplet state (with complexity) is the ground state of this
system for reasonable x values. At k = 1.45, we examined the energy lowering from
complexity by comparing the energy between U and cU solutions. We found that
these solutions are degenerate as well.

This intricate landscape of symmetry breaking indicates that the system is likely
strongly correlated under this geometry. Furthermore, a definitive answer to this
question was obtained from equation-of-motion spin-flip coupled-cluster with singles
and doubles (EOM-SF-CCSD) within the cc-pVDZ basis set starting from an Mg = 1
k-OOMP2 orbitals. The Mg = 1 unrestricted CCSD calculation has (52) = 2.02
which should serve as a good reference state for a subsequent spin-flip calculation.
The EOM-SF-CCSD|318] calculation yielded a near-exact degeneracy between singlet
and triplet states (i.e., near-zero singlet-triplet gap) and this strongly suggests that
the system is strongly correlated. This is also consistent with the prediction by
molecular orbital theory.[319]

Therefore, we confirm that the claim by Jiménez-Hoyos et al. is correct that C,,
at the I, geometry is strongly correlated. The next question is then whether this
geometry is the actual ground state conformation of C,,. Given the near-zero singlet-
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triplet gap of the I;, geometry, C,, would be quite reactive and unstable. However,
experimental findings suggest that C,, is not as reactive as a pure biradical.[320] It
is likely that the global minimum structure would be one of the Jahn-Teller distorted
structures or other structures such as bowl suggested in literature. We present the
k-OOMP2 energies of the five geometries of C,, examined here in Table [3.7 It is
clear that the Jahn-Teller distorted geometries are nearly degenerate and the icosa-
hedral geometry is higher in energy. However, these geometries were optimized with
different levels of theory, so more conclusive results should be obtained with opti-
mized geometries at k-OOMP2. This would be an interesting research direction to
pursue in the future.

Geometry | k-OOMP2 | Relative Energy
Cy,! -759.15036 0.01
Dy, ! -759.15037 0.00
C! -759.15032 0.03
D,,! -759.15030 0.04
Ih2 -759.12120 18.31

Table 3.7: k-OOMP2 (k = 1.45) energies (E},) of C,, in the geometries examined in
this work with the cc-pVDZ basis set and their relative energies (kcal/mol). ' The
geometry was taken from ref. 316 which was optimized with PBEO and the cc-pVTZ
basis set. 2 The geometry was taken from ref. 272 which was optimized with cGHF

and the 6-31G(d) basis set.

3.5 Summary

We have presented an unbiased analysis to determine whether fullerenes, C,,
Cag, and Gy, are strongly correlated. At the Hartree-Fock level, this was already
done based on the existence of complex, generalized Hartree-Fock (cGHF') solutions
in the work by Jiménez-Hoyos et al. As it is common to observe artificial symmetry
at the HF level in innocent (i.e., not strongly correlated) systems, we analyzed these
solutions beyond the HF level. This was achieved with three different probes.

First, we used the recently developed regularized orbital-optimized second-order
Moller-Plesset perturbation theory (k- OOMPQ) to obtain landscapes of symmetry
breaking parameters for spin operators 52 and S, and complex operator K as a
function of the regularization strength x. The critical strength . was then used to
determine whether a given fullerene is strongly correlated. If k. is around 1.0, which



CHAPTER 3. DISTINGUISHING ARTIFICIAL AND ESSENTIAL SYMMETRY
BREAKING IN A SINGLE DETERMINANT 7

is far stronger than the optimal x we determined in our previous work, we concluded
that the symmetry breaking at the HF level is artificial.

Second, we obtained the singlet-triplet gaps of these fullerenes and quantified
strong correlation in them. A singlet-triplet gap measures an energy cost of unpair-
ing an electron pair and this energy cost should be small if the system has strong
biradicaloid character.

Lastly, we studied strong correlation within a minimal basis using two coupled-
cluster (CC) methods along with various unregularized OOMP2 methods and -
OOMP2. The two methods used in this work are restricted CC with singles and
doubles (RCCSD) and CC valence-bond with singles and doubles (CCVB-SD). Based
on our previous work,[142] it is well understood that there is a qualitative difference
between RCCSD and CCVB-SD when strong correlation is present. This qualitative
difference was probed with natural orbital occupation numbers (NOONs). NOONs
from CCVB-SD were in general qualitatively consistent with NOONs from xk-OOMP2
for the systems we considered in this work. Based on these three independent probes,
we reached the following conclusions.

Cgy 18 not strongly correlated and the symmetry breaking present in its cGHF
solution is artificial based on all three probes. The critical x values for each symme-
try breaking is in the range of artificial symmetry breaking. Its singlet-triplet gap is
large in both experiments and computations. Furthermore, RCCSD and CCVB-SD
show nearly identical behavior. Therefore, the molecule should be described as a
closed shell molecule. This is not surprising due to the fact that it is electron param-
agnetic resonance silent and found stable in experiments. This then contradicts the
conclusion drawn by Jiménez-Hoyos and co-workers.

On the other hand, C,; within the Dg), point group is strongly correlated. In par-
ticular, it is a singlet biradicaloid where unrestricted treatment in conjunction with
Yamaguchi’s approximate projection can be used to obtain a qualitatively (and even
quantitatively) correct answer. The cGHF solution found by Jiménez-Hoyos et al is
likely an artifact due to the limited treatment of electron correlation: the complex
and (S,) symmetry breakings are artificial. However, since breaking (S?) symmetry
was found to be essential, we conclude that this system is strongly correlated. The
singlet-triplet gap of this molecule was found to be small and a qualitative difference
between the NOONs of RCCSD and CCVB-SD was observed. All three probes in-
dicate that the symmetry breaking in Csq is essential and Csq is strongly correlated.

Lastly, we applied the first probe to the smallest fullerene C,,. A total of five
geometries of C,, considered in this work all exhibit symmetry breaking. All of
the Jahn-Teller distorted geometries (Cay, Do, C;, and Dgy) were found not to be
strongly correlated and the underlying Hartree-Fock symmetry breaking is therefore
artificial. On the other hand, the fully symmetric dodecahedral geometry (I,) was
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found to be strongly correlated. In particular, it exhibits a near-zero singlet-triplet
gap.

It is the central message of this paper that not every symmetry breaking in a HF
solution indicates strong correlation. Many symmetry breakings in Hartree-Fock are
simply due to its lack of dynamic correlation, which can be properly recovered by
perturbation theory such as MP2. xk-OOMP2 emerges as a method that captures
dynamic correlation, and attenuates all strong correlation. This is visually evident
in plots of NOONs for Cg, for example (Figure 3.5(d)). As a result, x~-OOMP2
removes artificial symmetry breaking in its reference determinant. However, essential
symmetry breaking due to lack of static (or strong) correlation remains. This is
visually evident in plots of NOONS for Cy4 for example (Figure[3.9(d)). The analyses
we presented here can be used to probe strong correlation in numerous chemical
systems especially when one is unsure about using single-reference methods.

3.6 Appendix

The Appendix includes the equations for the correlated one-particle density ma-
trix of MP2, the derivation for the non-collinearity test of MP1 wavefunctions and
the orbital Hessian of cGHF wavefunctions.

3.6.1 Omne-Particle Density Matrix of MP2
For OOMP2 methods, we compute the correlated 1PDM using
1

2 ab\*4a
P == > () (3.11)
abk
2 1 ac\*1bc
Pcfb) =5 Z(tij) t?j' (3.12)

ijc

where the first is the MP2 correction to the occupied-occupied (OO) block of the
1PDM and the second is the correction to the virtual-virtual (VV) block. For k-
OOMP2, the amplitudes used in Eq. and Eq. are regularized. Moreover,
k-OOMP2 has an extra term to the OO and VV blocks,

1
X = —/i/ dre™ (W]} + wji)eTTIRe (3.13)
0

1
Yoo = /f/ dre ™ (wap + wi, )e~(1T)Ree (3.14)
0
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where w;; and wy, are defined as follows:

wm::E: e eV ETr, (3.15)
aP
and .
= S E 3.16)

where V7 is the 3-center 2-electron integrals and T'2 reads

Eﬁmﬁ (3.17)

The resulting k-OOMP2 1PDM is then obtained by summing the usual MP2 contri-
bution and the regularization correction terms (Eq. (3.13) and Eq. (3.14])). In other
words, we have

PY =P® + X, (3.18)
P =P + Y (3.19)

These ]51-22) and ]—T’(g) are the relazed 1PDMs of k-OOMP2. More details are available
in ref. 269.

3.6.2 Non-Collinearity Test of MP1 Wavefunctions

In order to perform the non-collinearity test on an MP1 wavefunction, one needs
first-order corrections to (S;) and (5;5;) where i,j € {z,y,z}. The first-order cor-
rection to (O) for an operator O is defined as follows:

(0)1 = (W,|0] W) + (T|O[T,). (3.20)

This can be derived from the derivative with respect to A of the first-order MP energy
expression £ with a modified Hamiltonian, H+)XO0. We enumerate the expectation
value of each spin operator using this formula. For (52), one may use the following
identity:

S2=8,+824+5.8,, (3.21)

1
5 Z < paapa - a'pﬁapﬂ) (322)
p

where
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S =8, +iS,=>_a} ay, (3.23)

p
S_=8,—iS, = al a,, (3.24)

p

One can evaluate (S;S;) for i,j € {x,y} using (S;S;) for i,j € {+,—}. We choose
to work with these ladder operators for simplicity.
With a ¢cGHF reference, the zeroth order expectation values are as follows:[277,

278

(82do =5 3 (Gialia) — (islis) (325)

i

(S)o =(S_)p = (ialia) (3.26)

i

(820 =7 32 Galie) + isis)
+ Z Z ((iolio) (Uolio) — (iclio) {Iolic))

ij oefa,8}
v 5 bl Gl il +he) @27

(55100 =Y lislig) + Y ({ialis) (jslia) — (islja) (Jalis))  (3.28)

(55 )0 —i@a\za +Zi ((talig) (Gslda) = (iglia) (Galis)) — (3.29)

(5-5_)0 = (S451); :ZJ (<iﬁ\ia><Jﬁ\jJa> — {Jslia)(iglia)) (3.30)
(5+5:00 = (5505 = — 5 Z lalig) + Ej: ({ialis) (Jalja) = (alis) (ialja))

e Zj: ({ialis) (Gslis) — (islis) (Jalis)) (3.31)

(580 = (85,05 = > lislo) + 453 figlia) Galia) — {ialiad slia)

v

__Z (iglia)(islis) — (islis)(islia)) (3.32)



CHAPTER 3. DISTINGUISHING ARTIFICIAL AND ESSENTIAL SYMMETRY
BREAKING IN A SINGLE DETERMINANT 81

where we used the fact that each orbital is of the spinor form in Eq. (3.6) and we
define

(o |02} = / (67 (1)) 62 (x). (3.33)

We note that there is no spin integration in Eq. . These are used to compute
the covariance matrix Ay = (5:9;) — (S;)(S;). As noted before, the eigenspectrum
of A determines whether the GHF wavefunction is genuinely non-collinear. The
wavefunction is collinear if and only if there is a zero eigenmode.

Similarly, the first-order corrections to these expectation values can be obtained

from
1

= (1) (T01w,) + ~ Z (Wo|O|WsbyEe? (3.34)

O -1

ijab zgab

This can be easily computed as follows:

(Sh1 = ($h1 = ()1 = 0 (3.35)

=57 S @anlio)bolis) — 2anlio) bolia)

4 1<J
a<jb JG{OCWB}
+ Z ()" (—2(aqlia) (bslis) + 2{asljs) (balia)
z<]
a<b
— 2(aglig){balja) + 2(aalja) (bslis)) + h.c. (3.36)

(5-Sp)1 = (8450 = Z(t%b)*(wﬂliaﬂbaljm — (aljs)(bslia)

+ (aalig)(bslia) — (aslja)(balis)) + h.c. (3.37)

(8-5001 = (848001 = Y (4)" (Kaslia) (bslja) — 2{as]ja) (bslia)
+ ) () (2(iglaa) (jslba) — 2(jslaa) (islba)) (3.38)

1<j
a<b
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A A N | abx . . , -
(848501 = (9.5-)1 = 2 Z(tz‘]b) ((aalig) (balja) — (aalja)(balis)
1<j
a<b

+ {aalic){balis) — {aalis) balia) — {aalis) (551js)
+ (aslip)(balis) — (aplig)(baljs) + (aalis)(bslis))
45 3 682Gk albs) — (ialas)albe)

1<j
a<b

+ (lalag) (Jalba) = (Jalta) (ialbs) — (islas) (jalbs)
+ (alag) (islbs) — (ialag) (jslbs) + (islaa)(ialbs)) — (3.39)

(88001 = (8.507 = 5 S8 (aslia) Galie) — {aaliad 5l

+ {aalic){Bolia) — (sl (i) — {aslia) (b5l
+ (aglig)(bslia) — (aslis)(bslia) + (aslia)(bslis))
3 St (ialacd Gslbs) — (sl (b

1<j
a<b

+ (islaa) (Jalba) = (Jal@a) (islba) — (iglas) (is|ba)
+ (Jslaa) (iglbs) — (islaa)(slbs) + (Jslas)(islba)) — (3.40)

3.6.3 Complex Generalized HF

The variation in the energy expression reads

* ]. . . . * .. . *
OF = Z (—hai0Oia — higdOF,) — ) Z ((zy | aj) 005, + (ij || ia) 6O7,
ia ija
+ {(aj || ij) 6O, + (ia ]| ij) 5@ja> (3.41)

where 00;, is an infinitesimal orbital rotation. This energy variation can be used to
compute orbital gradient and similarly orbital hessian.
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Orbital Gradient
We compute the gradient of E' with respect to the real and imaginary part of ©,

oF
O (ha + i — Kl the = —ha— > {ak||ik) —hia— > (ik]|ak) (3.42
aRe(@m) [ aZ+Jaz az]+ C av %:(a ||Z > a zk:<z ||CI, > (3 )
O bt Jus — Kuil—hec. = —h — > _(ak||ik)+hi,+ Y _(ik||ak) (3.43)
allm((—)la) o ar ai ai .C. = ai k ar||t ia k R||a .

Orbital Hessian

Similarly, the variation of orbital gradient reads

ToRe(@,) ~ 2 (Tt hadOh) + D (— Z 0%, ) + 32067k rbk>>

J
+ ) 00y (ak||ib) + )~ 6Oy {abl|ik) + h.c. (3.44)
kb kb

and

S mOD) ; (—hji8O, + hadOy;) + g <— ; 007, (jkl|ik) + ; 00} (ak] |bk)>
+ Y 605, (akl[ib) + > _ 6Oy (abl|ik) — h.c. (3.45)

kb kb
These are then used to obtain orbital hessian:

8Re(@,~f)2§Re i [ b (hﬁ + Ek:gknik)) 6, <hab 4 Xk}aknbk))

+ {ag]ib) + <ab\|¢j>] Y he (3.46)

— (@j; aEﬂm ol [5ab (hﬂ + ;gknm) 5, (hab 4 ;(%ku))

— (aj||ib) + (ab||z’j>} + h.c

OB
= oTm(0,,)0Im(6,,) (3:47)
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3Im(@j)§f{e(@jb) =i [—(aj||ib) + (ab||ij) — h.c.] (3.48)
02FE = — i [—{aj||ib) + (ab||ij) — h.c] (3.49)

ORe(0,4)0m (6 )
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Chapter 4

Two Single-Reference Approaches
to Singlet Biradicaloid Problems

4.1 Introduction

Strong correlation is usually associated with multiple open-shell electrons that are
antiferromagnetically coupled into a low-spin state.[321-323] For instance, molecu-
lar magnets with multiple metal centers,[144} [324-327] non-innocent ligands, 328,
329] metalloenzymes,[129-131] and oligoacenes|142, 330-332] exhibit strong corre-
lation. Of such cases, singlet biradicaloids exhibit the simplest form of strong cor-
relation.|244] 245| 333-337] As this is usually outside the scope of single-reference
electronic structure methods, it is common to employ multiconfigurational meth-
ods.[58), 1338, 1339] A brute-force approach to treat this strong correlation is complete
active space self-consistent field (CASSCF) with an active space of two electrons in
two orbitals (2e, 20). However, CASSCF does not incorporate electron correlation
outside the active space so subsequent dynamic correlation treatments[112, 118} 340]
are necessary for quantitatively correct answers. A related single reference approach
is to start from the triplet single determinant (i.e., Mg = 1) and flip a spin to access
the Mg = 0 manifold, either using configuration interaction (CI)[325] 341-344] or
coupled-cluster (CC) via the equation of motion approach.[318, 334, |345]

Alternatively, one could try to treat such systems using single-reference methods
with the help of essential symmetry breaking. It is essential in the sense that the qual-
itative character of a single-determinant wavefunction is fundamentally wrong with-
out essential breaking. A majority of essential symmetry breaking is spin-restricted
(R) to spin-unrestricted (U) symmetry breaking, namely spin-polarization. In the
case of singet biradicaloids, such essential symmetry breaking can be combined with
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Yamaguchi’s approximate spin-projection (AP) to produce spin-pure energies.|[246],
346-352] The applicability of AP is dependent on whether the underlying wavefunc-
tion contains only one contaminant. It is an exact projection only if there is one
single contaminant. This sets a limit to (S2?) of broken-symmetry Mg = 0 solutions
to be effective for AP: 0.0 < (§2> < 2.0.

UHF is heavily spin-contaminated for most biradicaloids. For instance, this was
observed by us in the heptazethrene dimer (HZD) where broken-symmetry UHF
yields (S?) = 6.3 in the cc-pVDZ basis set.[269] The subsequent correlation treat-
ment based on these UHF solutions via second-order Mgller-Plesset perturbation
theory (MP2) is not effective in removing such heavy spin contamination. It is possi-
ble to employ orbital optimized MP2 (OOMP2) as an attempt to produce a reference
determinant with only essential symmetry breaking (i.e., (S2) ~ 1.0). However, it
is likely that OOMP2 produces a divergent solution or a restricted solution that is
unphysically low in energy if not divergent.[199, [203] As a solution to this problem,
we employed regularized OOMP2 (k-OOMP2) to treat HZD. [269] In contrast to our
previous J-OOMP2 (regularized with a constant level-shift), k~-OOMP2 determines
the strength of regularization of individual correlation energy contributions depend-
ing on the orbital energy gap associated with them. k~-OOMP2, in turn, achieves both
the recovery of Coulson-Fischer points[213] and favorable thermochemistry perfor-
mance, which was found to be challenging for -OOMP2 to achieve.|203] Returning
to the HZD example, k-OOMP2 with unrestricted orbitals (k-UOOMP2) produces
(§2> = 1.2 which is well-suited for subsequent AP treatment. Generally speaking,
k-UOOMP2 with AP (AP+x-UOOMP2) is a simple and robust way to treat bi-
radicaloids which captures both static and dynamic correlation. We will further
highlight this particular combination of AP and xk-UOOMP?2 later in this work.

A rather rarer class of essential symmetry breaking, which is another focus of
this work, is real, R to complex, R (cR) symmetry breaking. This is referred to
as “complex-polarization” in this work. Complex polarization was known for many
years in the context of some strongly correlated molecules such as O, (*A,).[353-
361] Our group established its connection to generalized valence bond perfect pair-
ing (GVB-PP)[362] using the complex pairing theorem.[279] When such solutions
exist, complex restricted Hartree-Fock (cRHF) can indeed capture some aspects of
GVB-PP and behaves qualitatively better than RHF. It was shown that the sub-
sequent correlation treatment, cRMP2, yields quantitatively more accurate results
than RMP2 for systems examined in ref. 279. Moreover, cRMP2 outperformed
UMP?2 especially when there is a strong mixing between singlet and triplet states.

Our recent work illustrated a way to obtain such essential symmetry breaking
with k-OOMP2.[363] Therein we discussed how to remove artificial spin-polarization
using k-OOMP2 with complex, generalized (cG) orbitals. It is artificial because
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orbital optimization in the presence of dynamic correlation such as MP2 (or other
approaches for approximate Briickner orbitals) may remove such symmetry breaking.
Artificial symmetry breaking occurs at the HF level not due to the lack of ability to
describe strong correlation but because of the lack of dynamic correlation treatment.
In ref. 363, we show that it is possible to distinguish artificial and essential symmetry
breaking based on k-OOMP2. Interested readers are referred to ref. 363 and we
will further review some aspects of this relevant to this work in Section [{.2.2] In
addition to essential spin-symmetry breaking, it is also possible to explore essential
complex-polarization within the k-OOMP2 method, which will combine the strengths
of cRMP2 and k-OOMP2. Namely, k-cROOMP2 is able to describe multireference
systems whenever complex-polarization is relevant.

For general biradicaloid systems, it is natural to consider AP and cR methods as
simple single-reference alternatives to multi-reference and spin-flip methods. In par-
ticular, these are far simpler to implement than typical multi-reference second-order
perturbation theory.|112} |118] Compared to AP, cR methods offer more straightfor-
ward formalisms for response theory. For example, cRMP2 has the identical response
theory formalism to that of usual MP2 and there is no need to derive additional terms.
The analytic nuclear derivatives of AP methods have been derived and implemented
at the mean-field level,[346, 347, 350, 351 but there has been no study on response
theory of correlated wavefunction methods with AP. While the formal and practi-
cal simplicity of cR methods is very desirable, its limited applicability due to the
rareness of cR solutions makes it less appealing.

In this work we will explore several biradicaloid systems that exhibit cRHF solu-
tions and discuss the applicability of k-cROOMP2 and AP+x-UOOMP2. In particu-
lar, we will compare k-cROOMP2 and AP+x-UOOMP2 in these systems and discuss
the similarities and differences between them. For simplicity, we will limit our discus-
sion to HF, MP2 and k-OOMP2 although other variants of MP2 and OOMP2, such
as spin-component scaled methods,[170, 171] can also be combined with cR orbitals

or AP.

4.2 Theory

We will use i, j,k,[,- - - to index occupied orbitals, a,b, c,d,- - - to index virtual
orbitals, and p, q,r, s, - - - to index either of those two.
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4.2.1 Review of cRHF and Complex Polarization

The complex restricted Hartree-Fock (cRHF) energy is given by
Eyr = 2tr (PHy) + 2tr (PJ) — tr (PK) + Fpuc (4.1)

where P is the one-particle reduced density matrix (1IPDM), Hy is the one-electron
Hamiltonian, J and K are the Coulomb and exchange matrices, and FE,,. is the
nuclear repulsion energy. In cRHF, we allow the molecular orbital (MO) coefficient
matrix C to be complex and as a result P may become complex. As mentioned in
ref. 279, a cRHF solution is “fundamentally complex” if and only if the norm of the
imaginary part of P is non-zero.

The use of complex restricted (cR) orbitals for multi-reference problems has been
known for many years in electronic structure theory[353-H361] but they have been
rarely employed in practice. The major reason for this underappreciation is due
to the rareness of genuine cR solutions. Small et al. established the connection
between cRHF and GVB-PP and as a result, we have a better understanding of why
cR solutions are rare and when to expect them.[279]

Within a single pair of electrons, the R to cR instability is driven by the en-
ergy lowering due to a PP-like (or CAS(2,2)-like) configuration. However, a cRHF
wavefunction also necessarily contains an open-shell singlet (OSS)-like configuration
which is usually energetically high. The competition between the PP-like contribu-
tion (energy-lowering versus R) and the OSS-like contribution (energy-raising versus
R) determines the R to cR instability. When the PP stabilization is greater than the
OSS energetic cost, we observe the R to cR instability. This is, however, not very
common to observe and this explains the rareness of cRHF solutions. As we will
see, some singlet biradicaloids exhibit complex-polarization and therefore cRHF can
serve as a faithful starting point for subsequent correlation treatments. The relative
energetics between PP-like terms and OSS-like terms change in the presence of corre-
lation treatment. Therefore, it is reasonable to expect that some cRHF solutions are
artificial and they would lead to cRMP2 energies that are much higher than RMP2.
We will encounter an example that demonstrates this later in the paper.

It is useful to run internal stability analysis to ensure the local stability of cRHF
solutions. We provide the electronic Hessian of the energy expression in Eq. in
Appendix.
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4.2.2 Regularized OOMP2 with cR orbitals: k-cROOMP2
The MP2 energy expression with cRHF' orbitals reads

ECRMPQ EHF + Z T m|]b (42)

ijab

where 7 and j are occupied spatial orbitals, a and b are unoccupied spatial orbitals,
(2a]jb) represents the two-electron four-center integrals and the spin-adapted ampli-
tudes 7 are

aw _  2(ialjb)” — (ib]ja)”

j A

A?f’ is a positive energy denominator defined as
A?f =€, + €, — € — €5, (4.4)

where €, denotes canonical orbital energies. Orbital optimization of Eq. yields
orbital-optimized MP2 (OOMP2). As mentioned in Section 4.1, OOMP2 has two
major issues that limits its applicability. First, as we optimize orbitals in the presence
of correlation energy, A;‘Jb can become very small and the resulting energy can become
non-variational and even approach divergence.[199] Second, as a result OOMP2 may
unphysically prefer restricted solutions and remove the Coulson-Fischer point.[203]
Our group has developed a regularization scheme which fixes these two major issues
in OOMP2.[269]

The orbital-energy-dependent regularization introduced in ref. 269 modifies the
two-electron integrals in the correlation energy contribution in Eq. (4.2). The re-
sulting k-cRMP2 energy expression reads

B crmp2 = EHF"‘Z 7% (jal5b) ( ”Agﬂb) (4.5)

ijab
where the regularized amplitudes are

i = (1 — e7"AY) (4.6)
Orbital optimizing Eq. defines the k-OOMP2 method (in this case kK-cROOMP2).
It is immediately obvious that the correlation energy can no longer diverge even
when A‘g’ = 0. Based on carbon-carbon single, double, and triple bond break-
ing, we showed that the Coulson-Fischer point is recovered. Combining recovery of
Coulson-Fischer points with reasonable performance for a thermochemistry bench-
mark, £ = 1.45 was recommended for chemical applications.[269] We also showed
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that x € [1.0,2.0] (which comfortably includes x = 1.45 in the middle) yields only
essential symmetry breaking and can remove artificial HF symmetry breaking in
fullerenes.[363] This is because k-OOMP2 describes dynamic correlation, but reg-
ularization has removed the inaccurate description of static correlation present in
conventional MP2.

Distinguishing artificial and essential symmetry breaking based on xk-OOMP2
may seem arbitrary. However, in ref. 363 we compared this diagnosis of strong
correlation with other approaches such as natural orbital occupation numbers and
more sophisticated coupled-cluster methods. All these three independent probes
suggested that Cy, is not strongly correlated and C,g is strongly correlated. As such,
k-OOMP2 can reliably probe the underlying symmetry breaking and answer whether
it is artificial (not strongly correlated) or essential (strongly correlated). k-OOMP2
will be used to probe essential symmetry breaking and strong correlation in another
fullerene Cs, below.

The implementation of k~-cROOMP2 was accomplished closely following the spin-
orbital implementation described in ref. 269. We apply the resolution-of-the-identity
approximation to (ia|jb),

(ialjb) = > (ia|P) (P|Q)™" (Qljb) = > (ia| P)C}, (4.7)
PQ P

where P and () are auxiliary basis indices and we define the expansion coefficients
of an occupied-virtual product |jb) as:

Ch=>_(PIQ)""(Qljb) (4.8)
Q

The spin-adapted two-particle density matrix (2PDM) consists of two parts: one is
the usual MP2 2PDM contribution,

Ty =2Y ChH’, (4.9)
jb
and another is the modification due to the regularizer,
[h =2 Chite o) (4.10)
jb

Similarly, the spin-adapted 1PDM also consists of two parts: the first is the usual
MP2 1PDM contributions,

PP =23 (78 (kaljb)" (4.11)
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zc]jb
=2 (7 A (4.12)

ijb

and the second is the modification from the regularizer,

1 K€ __ LKEj
PZ(]2) _ —li/ dreT e (W;} _|_wji)e(1—7—)nej — _<w2’fj _|_wj2.) (L) (413)
0

Ei—Ej

e*KEa —e

_ 1 —Kep
P = [ dre g e = ) (Tome ) ()
0 b~ ta

where the definition of w;; and w,, follows:

wij =Y e " (ia|P)LL, (4.15)
aP
and 3
wap = Y _ ™ Th(ib| P) (4.16)
iP

These spin-adapted quantities can be used to produce appropriate orbital gradients
for orbital optimization. Interested readers are referred to ref. 269 for more technical
details. In passing we mention that Eq. and Eq. were computed via
a one-dimensional Legendre quadrature previously,[269] but in the pseudocanonical
basis, it can be done analytically as shown above.

We apply the frozen-core approximation to the systems considered in this paper.
This adds orbital rotation parameters between frozen core and occupied orbitals to
the orbital optimization problem. We present the pertinent orbital gradient equa-
tions and explain some numerical difficulties we encountered with this optimization
problem in the Appendix.

4.2.3 Yamaguchi’s Approximate Spin-Projection

The approximate spin-projection method proposed by Yamaguchi [246] has been
widely used in a wide variety of strong correlation problems.[246, 346-352] Its work-
ing equation is very simple and it usually takes at most two separate single point
calculations for two different Mg values to perform the projection. When projecting
a triplet state out of an Mg = 0 broken symmetry solution, one can use the following
equation which is derived using (S5?):

EBS — (1 — Oé)ES:1
(6]

Eg_g = (4.17)
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where the spin-coupling coefficient « is

(s — (D8
o <52>551 - <52>SS0 (4.18)

There are multiple ways to obtain Fs—; and (S?)s—;. The simplest way is to use
a high spin Mg = 1 calculation to obtain Es_; at the same level of theory as FEgs.
Therefore, we need a total of two unrestricted calculations, Mg = 0 and Mg =
1. Evidently, if the singlet is heavily spin-contaminated the above spin-coupling
equation is no longer valid. Furthermore, we need a nearly spin-pure value of (S?)
for the Mg = 1 state. As we shall see later, k-UOOMP2 can accomplish these
objectives.

4.3 Applications

We will study multiple biradicaloid systems that have one pair of electrons that
exhibit essential complex-polarization or spin-polarization. In other words, the sin-
glet ground state of these systems involve a pair of open-shell electrons. Throughout
the examples presented below, we will see how k-cROOMP2 and/or AP+x-UOOMP2
can be used for these singlet biradicaloids and also compare their strengths and weak-
nesses.

All calculations were performed with a development version of Q-Chem.[236]
For k-OOMP2 methods, we took a stable HF solution as an initial set of orbitals
unless mentioned otherwise. All plots were generated with Matplotlib [283] and all
molecular figures were generated with Chemcraft.[284]

4.3.1 TS12 Set: Triplet-Singlet Gaps

We will consider triplet-singlet gaps (AEr.g = Es — Et) of atoms and diatomics
whose ground state is triplet. Systems with a triplet ground state are likely to have
a (near) degeneracy between highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) so these are also likely to have near-degenerate
OSS-like and PP-like configurations. Therefore, for these molecules, there is a good
chance for essential complex polarization to occur.

We will compare HF, MP2, and x-OOMP2 methods with different types of or-
bitals for treating the singlet ground state of the following molecules: C, NF, NH,
NO ", O,, O, PF, PH, S,, S, Si, and SO. The reference triplet-singlet gaps as well as
the equilibrium bond length of diatomics for each electronic state were taken from
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the NIST Chemistry WebBook.[364] Individual references for these experimental val-
ues and geometries are given in the Appendix. We validated the experimental gaps
against near-exact full configuration interaction calculations using the heat-bath al-
gorithm developed by Holmes and co-workers.[365] The theoretical estimation lies
within 1.0 kcal/mol of the experimental values and we provide these data in the
Appendix. This data set will be referred to as the “T'S12” set for the rest of this
manuscript.

In benchmarking HF, MP2, and k-OOMP2 methods, we employed the aug-cc-
pVQZ basis set|237, |366] along with its auxiliary basis set.[238] The frozen core
approximation was used for all correlated wavefunction calculations. Unrestricted
orbitals are used for the triplet state (Mg = 1).

Mg =0 | Mg =1 | Triplet | Singlet
C 1.018 2.010 Sp 'D
NF 1.015 2.023 | X3%~ alA
NH 1.012 2.017 | X3%- alA
NO~ 1.031 2.052 | X3%- alA
0, 1.023 2.049 X?’ZE alAg
) 1.009 2.009 5p 'D
PF 1.047 2.035 | X3%~ alA
PH 1.039 2.029 | X3%- alA
S, 1.062 2.060 X3Eg_ al A,
S 1.033 2.013 Sp 'D
Si 1.047 2.015 5p 'D
SO 1.051 2.058 | X3%- alA

Table 4.1: The UHF (S?) values of the molecules in the test set considered in this
work and the term symbol for each electronic state considered in the T'S12 set.

For the molecules in the TS12 set, using real, restricted orbitals for the singlet
ground state is fundamentally incorrect as it cannot capture the biradicaloid char-
acter of the singlet ground state. UHF orbitals are heavily spin-contaminated as the
singlet ground state is a strong biradicaloid. This is well illustrated in Table [4.1]
The Mg = 0 states exhibit (S?) = 1.0 which indicates nearly perfect singlet biradi-
cals. The Mg = 1 states are more or less spin-pure which validates the use of UHF
orbitals for Mg = 1 states. Therefore, UHF and UMP2 are expected to perform very
poorly on this test set. However, all these (S?) values are very well-suited for the
AP approach. Therefore, one may expect that AP+UMP2 and AP+x-UOOMP2
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perform similarly well. We will see whether these predictions are indeed true in the
TS12 set.

Expt. | RHF | UHF | RMP2 | UMP2
C 29.14 | 26.59 | -15.37 | 13.85 | -13.58
NF 34.32 | 31.54 | -14.80 | 10.99 | -17.23
NH 35.93 | 30.59 | -16.72 | 15.90 | -17.29
NO~ 17.30 | 29.60 | -2.11 59.53 | -7.74
O, 22.64 | 32.54 | -5.45 6.15 2.72
O 45.37 | 34.72 | -22.79 | 19.71 | -22.10
PF 20.27 | 25.37 | -11.89 | 10.80 | -9.06
PH 21.90 | 24.35 | -11.93 | 11.66 | -10.17
S, 13.44 | 21.03 | -5.70 4.48 | -5.01

S 26.41 | 26.52 | -15.75 | 14.21 | -12.19

Si 18.01 | 20.13 | -11.77 | 10.12 | -7.76
SO 18.16 | 24.77 | -6.94 3.94 | -9.84
RMSD | N/A | 27.66 | 13.04 | 11.60 | 12.42
MSD N/A | 27.31 | -11.77 | 10.61 | -10.77

Table 4.2: The experimental triplet-singlet gap AEt1.g(= Eg — Er) (kcal/mol) of
various atoms and diatomics and the deviation (kcal/mol) in AFEr.g obtained with
HF and MP2 using restricted and unrestricted orbitals. RMSD stands for root-mean-
square-deviation and MSD stands for mean-signed-deviation.

First, we discuss HF and MP2 with real, restricted (R) and real, unrestricted
orbitals (U). The results of these methods are presented in Table [£.2] Based on the
mean-signed-deviation (MSD) of each method, it is evident that restricted orbitals
overestimate the gap whereas unrestricted orbitals underestimate the gap. This
suggests that the singlet ground state of these molecules is too high in energy when
described by R orbitals and too low in energy when described by U orbitals. This
is expected for RHF because closed-shell electronic structure produced by R orbitals
should be less stable than an open-shell one. It is also expected for UHF, as the
triplet ground state is lower in energy than the singlet ground state, triplet-singlet
spin contamination lowers the energy of Mg = 0 unrestricted state. With the MP2
level of correlation, these failures of R and U orbitals do not disappear. RMP2 has
an RMSD of 11.60 kcal/mol and UMP2 has an RMSD of 12.42 kcal/mol.

How does k-OOMP2 change this conclusion? As long as R or U orbitals are
employed, very similar behavior is observed. As it is typical for RMP2 to overestimate
correlation energies for singlet biradicaloids, we expect k-ROOMP2 to produce larger
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k-ROOMP2 | xk-UOOMP2
C 15.71 -13.97
NF 12.07 -17.31
NH 17.46 -17.04
NO~ 10.59 -6.71
0O, 11.18 -10.18
O 20.67 -22.02
PF 14.06 -9.85
PH 14.68 -10.53
S, 10.34 -5.25
S 16.19 -12.86
Si 12.91 -9.43
SO 10.09 -8.54
RMSD 14.18 12.85
MSD 13.83 -11.97

Table 4.3: The deviation (kcal/mol) in AETg(= Eg — Er) obtained with different
MP2 and OOMP2 methods with complex, restricted (cR) orbitals. RMSD stands

for root-mean-square-deviation and MSD stands for mean-signed-deviation.

triplet-singlet gaps than those of RMP2. This is mainly due to the regularization
which is more effective on the singlet states here. Since none of the systems exhibit
artificial spin-symmetry breaking (as presented in Table , it is expected that
k-UOOMP2 methods do not significantly change the energetics of these systems.

In Table[4.3] we see that the k-ROOMP2 gaps are all greater than the RMP2 gaps
in Table [4.2] which confirms our prediction. For k-UOOMP2, the gaps are all within
2 keal/mol from those of UMP2 except O,. In O,, the difference between these two
methods is 12.90 kcal/mol. This is due to the underlying artificial reflection spatial
symmetry breaking in addition to the essential spin symmetry breaking in the UHF
Mg = 0 solution. The artificial symmetry breaking is removed with k-UOOMP2
while the essential one still persists.

We discuss whether these unrestricted states serve as reasonable bases to apply
AP as well as whether cR orbitals can improve these catastrophic failures of HF,
MP2, and k-OOMP2 with R and U orbitals. The results of cR and AP methods are
presented in Table 1.4l Neither cRHF nor AP+UHF produces satisfying results due
to the lack of dynamic correlation. Moreover, cRHF and AP+UHF show significant
differences in all molecules (the smallest difference is 4.21 kcal/mol and the largest
one is 15.75 kcal/mol!). With MP2, ¢cRMP2 is quite satisfying in that it has an
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cRHF | AP+UHF | cRMP2 | AP+UMP2 | x-cROOMP2 | k-UOOMP2

C 0.83 1.24 1.36 3.61 2.04 2.38
NF | 12.71 486 | -1.70 1.41 1.28 0.93
NH | 11.04 263 059 3.14 1.44 3.38
NO | 17.42 1321 -0.72 2.50 2.74 441
O, | 17.85 11.69 | -2.26 20.34 1.50 3.02
O | 10.44 0.01 0.65 3.51 1.04 3.38
PF | 12.62 ~3.01 0.94 3.49 3.42 1.38
PH | 11.41 145 001 2.98 3.26 1.73
S, | 12.59 253 -1.70 122 3.22 3.33
S 11.22 453 1.43 3.79 2.73 1.81
Si 9.10 5.03 1.45 3.86 3.27 0.18
SO | 13.89 476 | -3.49 ~0.79 1.50 1.63
RMSD | 12.78 5.08 1.64 9.00 2.45 2.58
MSD | 1251 2.03| 021 5.00 2.07 2.27

Table 4.4: The deviation (kcal/mol) in AEr.s(= Eg — Er) obtained with HF, MP2,
and k-OOMP2 with approximate spin-projection (AP) and complex, restricted (cR)
orbitals. Note that the AP procedure was carried out using the first-order corrected
spin expectation values in the case of UMP2 and x-UOOMP2. RMSD stands for
root-mean-square-deviation and MSD stands for mean-signed-deviation.

RMSD of 1.64 kcal/mol with an MSD of -0.21 kcal/mol. The TS12 set can indeed
be described properly with cR orbitals. On the other hand, the performance of
AP+UMP2 is somewhat disappointing as it is poorer than cRMP2. In particular,
an error of 29.34 kcal/mol in the case of O, is a striking outlier. This is due to
spatial symmetry breaking in UHF Mg = 0 which cannot be fixed by UMP2 but
can be fixed by k-UOOMP2. Other than O,, we observe a non-negligible difference
(5.92 kcal/mol) in S, which is also caused by spatial symmetry breaking in the UHF
solution. All the other molecules exhibit 2-3 kcal/mol differences between these two
methods.

Orbital optimization in the presence of MP2 yields significantly better AP results
but k-cROOMP2 produces slightly worse results than cRMP2. The slight degrada-
tion in performance of cRMP2 in k-cROOMP2 shows an interesting trend. All data
points show larger triplet-singlet gaps with k-cROOMP2 than with cRMP2. This
indicates that there may be some overcorrelation problems with cRMP2 which is
being regularized by k-cROOMP2. Given the substantially better performance of



CHAPTER 4. TWO SINGLE-REFERENCE APPROACHES TO SINGLET
BIRADICALOID PROBLEMS 97

k-cROOMP2 compared to its R and U versions, this result is still very encouraging.
Moreover, we emphasize that it is only k-OOMP2 orbitals that yield quantitatively
similar results between cR and AP approaches by harnessing only essential symmetry
breaking.

For the rest of this work, we will further numerically show the quantitative simi-
larity between AP+x-UOOMP2 and k-cROOMP2 beyond model systems.

4.3.2 Reactivity of Deprotonated Cysteine Ion with O,
(*Ay)

There are not so many chemical systems for which cR methods can be a useful
alternative to standard multi-reference methods. Any systems involving singlet oxy-
gen (O, (*A,)) are good candidates. In particular, singlet oxygen appears frequently
in reactions in biological systems. [367] An example that we will study here is the
reaction between an amino acid, cysteine (Cys) and singlet oxygen. Cys is one of
the five amino acids that are susceptible to singlet oxygen attack.[368] Because of
the multi-reference nature of singlet oxygen, studying reactivity of Cys is challenging
for single-reference methods. As shown in Section [£.3.1) O, (*A,) exhibits essential
complex polarization. Therefore, this is an interesting example for comparing AP
and cR approaches.

Lu et al. studied the reactivity of Cys ions with O, (*A,) using Yamaguchi’s
AP.[159] As mentioned earlier, In the case of singlet oxygen, the only spin contami-
nant is the triplet ground state. Therefore, AP is well-suited for this case. What Lu
and co-workers found is that the reactivity of Cys ions with singlet oxygen is much
smaller than that of neutral Cys. This was shown by a high activation barrier along
a reactive pathway.

We will study a reaction between deprotonated Cys ([Cys-H|™) and singlet oxy-
gen. Although there are multiple local minima geometries available, we investigated
the lowest energy geometries from among those which Lu and co-workers reported.
The molecular geometries of the precursor and transition state are shown in Figure
4.1} Lu and co-workers optimized the geometries at the level of B3LYP with the
6-314+G(d) basis set with restricted orbitals.

The precursor in Figure has substantial open-shell character due to the pres-
ence of singlet oxygen, but the transition state (TS) is a closed-shell molecule because
of the formation of a persulfoxide. It is possible that the geometry optimization of
the precursor (Figure (a)) may produce a qualitatively wrong geometry when
performed with restricted orbitals. We independently investigated this using unre-
stricted orbitals and could not find a local minimum similar to Figure (a). A
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precise determination of the precursor geometry would be interesting to study in the
future using cR orbitals or AP methods.

Nonetheless, for present purposes we studied this system using the RB3LYP ge-
ometries from those of Lu and co-workers for single point cR and AP calculations.
We employed the cc-pVTZ basis set and the associated auxiliary basis set.
For the computational efficiency, the frozen core approximation was used for corre-
lated wavefunction calculations. The goal of our study is to demonstrate the power
of cR orbitals in comparison to AP methods (and conventional R and U orbitals) for
the open-shell singlet precursor geometry.

(@) [Cys-HI Precursor @—@ (b) [Cys-H]' TS 7/'

’ 1
' ?

J

Figure 4.1: Molecular geometries for (a) the precursor and (b) the transition state
(TS) for [Cys-H]~™ 4+ O,. The Cartesian coordinates for each geometry were taken
from ref. 159.

=

Method AE | (8% ne=0
RHF 9.79 0.000
cRHF 16.93 0.000
UHF 45.17 1.023

AP+UHF | 33.71

Table 4.5: The activation energy AE (kcal/mol) of [Cys-H|~+0O, from various types
of HF. The expectation values of (S?) for the Mg = 0 state of the precursor are
presented as well.

We first discuss how different types of HF methods perform in predicting the
reaction energy barrier (i.e., E(TS) - E(precursor)). We compare the use of R,
U, and cR orbitals for the precursor. The precursor RHF energy should be much
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higher than cRHF whereas the UHF energy should be too low since the triplet
contaminant is much more stable. Therefore, a back-of-the-envelope estimation for
the relative energy barrier ordering is RHF < cRHF < UHF. This is indeed supported
by numerical results presented in Table

The relative activation energy ordering will change based on the subsequent cor-
relation treatment. For instance, UHF orbitals are heavily spin-contaminated so the
subsequent UMP2 correlation energy will be underestimated, which then leads to a
substantially smaller energy barrier than for UHF. Similarly, RHF orbitals should
also lead to somewhat high energy when combined with MP2, which then yields a
smaller energy barrier than that of cRMP2. Therefore, it is expected that the relative
energy barrier ordering of MP2 methods is cR > R > U.

Method AE | (S?)rg—o
RMP2 19.89 0.000
cRMP2 19.47 0.000
UMP?2 4.04 1.024
AP+UMP2 | -18.32

Table 4.6: The activation energy AE (kcal/mol) of [Cys-H]|~+0O, from various types
of HF. The expectation values of (S?) for the Mg = 0 state of the precursor are
presented as well.

In Table [£.6, we observe the following trend instead: cR ~ R > U. It is perhaps
surprising that cR and R produce more or less the same energy barriers. There is
quite strong complex polarization within a pair of electrons which led to a substantial
energy lowering at the HF level. Evidently, despite the poor RHF reference, RMP2
recovers more correlation energy than cRMP2, perhaps because of overcorrelating
small gap contributions.

Lastly, we note that there is a significant energy difference between AP+UMP?2
and cRMP2 similar to the O, triplet-singlet gap result observed in Section [4.3.1]
However, this is mainly due to the qualitative difference between cR and U so-
lutions. Spin-contamination often drives artifacts in the spin-density distribution
which cannot be easily fixed by a posteriori spin projection methods. However, this
can potentially be fixed by orbital optimizing in the presence of correlation as we
shall see.

In Table [.7, we present the activation barrier obtained using various types of
k~-OOMP2 methods and two popular, combinatorially optimized density functional
theory (DFT) methods (wB97X-V[369] and wB97M-V[370]). First, we note that -
cROOMP2 and AP+x-UOOMP2 predict a barrier within 1 kcal/mol from each other.
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Method AE | (8% pe=0
k-ROOMP2 8.21 0.000

k-cROOMP2 10.17 0.000
k-UOOMP2 19.70 0.968
AP+xk-UOOMP2 | 9.30 0.000
UwB97X-V 24.72 0.970
AP+UwB97X-V | 15.80
UwB97TM-V 20.42 0.943
AP+UwB97M-V | 11.03

Table 4.7: The activation energy AFE (kcal/mol) of [Cys-H]"+0O, from various
OOMP2 and DFT methods. The expectation values of (S2) for the Mg = 0 state
of the precursor are presented as well. Note that these values include correlation
corrections to <§2) wherever appropriate.

This is because the k-UOOMP2 Mg = 0 state no longer has any artificial symmetry
breaking and produces a solution with only essential spin-symmetry breaking. -
ROOMP?2 is similar to k-OOMP2 with cR or AP despite the lack of open-shell
character in the wavefunction. The R to cR instability at the k-OOMP2 level causes
an energy lowering of only about 2 kcal/mol. k-UOOMP2 overestimates the gap by
a factor of 2 compared to the corresponding AP results.

To see how well k-cROOMP2 and AP+x-UOOMP2 perform, we also compare this
with two DFT methods. Without AP, both DFT methods with U orbitals predict
the barrier too high. With AP, wB97X-V predicts a barrier of 15.80 kcal/mol while
wBITM-V predicts a barrier of 11.03 kcal/mol. There is a quite significant functional
dependence on the barrier height with the AP prescription (this may be related to
the fact that <§2> cannot be rigorously evaluated: the expectation value of the KS
determinant is used). A barrier height of about 10 kcal/mol was obtained with -
cROOMP2, AP+k-cROOMP2, and AP+wB97M-V and an even higher height with
AP+wBI7X-V. All of these suggest that the reactivity of [Cys-H|~ with O, (*A,) is
moderate at room temperature. In passing, we note that a higher level benchmark
data would be desirable, using more sophisticated and computationally demanding
methods such as equation of motion spin-flip coupled-cluster with singles and doubles
(EOM-SF-CCSD).[318] This will be interesting to study in the future.
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Figure 4.2: Molecular geometries of Cy, (Dsy). The Cartesian coordinates for this
geometry used in this work are provided in the Appendix.

4.3.3 Triplet-Singlet Gap of C,,

Fullerenes are an interesting class of molecular clusters that are made solely of
carbon atoms. They all form intriguing cage structures and often are stable enough
to be experimentally synthesized. Cs, is one of the smaller fullerenes and it has been
quite challenging to isolate Cs, experimentally due to its instability. It was pointed
out in several experimental[310] and theoretical[319) studies that the highest
symmetry structure, Dsyy, is highly reactive. This particular molecular geometry is
presented in Figure [.2]

The molecular geometries used in this work are optimized with unrestricted
B97M-V[372] for each Mg state, with D5, geometry within the cc-pVDZ basis set.
As this system is biradicaloid, the geometry of the Mg = 0 state may require special
care, but for simplicity we employed unrestricted calculations. The (S?) values of
each state with this particular functional is 1.020 and 2.013, respectively. We pro-
vide the geometries of Cs, used in this work in the Appendix. Details about the
geometries will not alter the qualitative conclusion we are drawing in this section as
long as the underlying point group symmetry is Dsy,.

Jiménez-Hoyos and co-workers reported the existence of complex generalized HF



CHAPTER 4. TWO SINGLE-REFERENCE APPROACHES TO SINGLET
BIRADICALOID PROBLEMS 102

(cGHF) solutions for Cy, (Dsp,) and concluded that Cs, is a polyradicaloid based on
the cGHF solution.[272] Due to its pronounced strong correlation, it is not surprising
to observe symmetry breaking at the HF level. However, one may wonder if breaking
every symmetry from RHF to ¢GHF is essential since UHF is sufficient for most
singlet biradicaloid systems.

We have developed a computational strategy which can identify artificial symme-
try breaking at the HF level using k-OOMP2 with ¢G orbitals.[363] We scan over a
range of x values (i.e., the regularization strength) and compute the critical regular-
ization strength, k., to break/restore a given symmetry. Symmetry breaking with s,
€ [0.0, 1.0] is categorized as artificial symmetry breaking, x. € [1.0, 2.0] is essential
symmetry breaking, and symmetry restoration for x. > 2.0 may be considered to be
artificial restoration (i.e., too little symmetry breaking). The symmetry landscape of
Cs, will help to identify the character of essential symmetry breaking in this system.

We obtained the symmetry breaking landscape of C,, within the 6-31G basis
set[301] along with the cc-pVDZ auxiliary basis set.[238] The frozen core approxima-
tion was used for computational efficiency. We focused on three symmetry breaking
parameters: the spin expectation value <§2), the non-collinearity order parameter
1,[277) and the fundamental complexification measure £.[279, [363]
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Figure 4.3: Measures of symmetry breaking ((S), &, and u) as a function of the
regularization strength x for Cy, (Dsp). € is the complex broken-symmetry parameter
of k-cCROOMP2. These quantities characterize symmetry-breaking /restoration in k-

OOMP2.
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In Figure , we see that k. = 1.40 for u, k. = 2.70 for (S?), and there is no
obvious symmetry restoration for £&. Compared to our previous work on character-
izing other fullerenes such as Cg, and Cs4, this landscape is more complex than the
well-known biradicaloid Cs4. Between k = 1.40 and k = 2.70, cU solutions are found.
It is interesting that for k > 2.70 cR solutions are most stable and there are no U or
cU solutions. R solutions are commonly observed in the weak regularization regime,
k > 2.0, but cR solutions are quite unusual to observe. It turns out that this complex
symmetry breaking in k-cROOMP2 exists for all xk values as shown with the purple
dashed line in Figure With k-cGOOMP2 with k < 2.70, k-cROOMP2 solutions
are higher in energy than other spin symmetry broken solutions. This is why these
solutions are only observed with very weak regularization in the landscape. Based on
these results, we conclude that the symmetry breaking of (S?), &, and u is essential
and this molecule is strongly correlated.

Method AET-S MS =0 MS =1
RHF 10.94 0.00 2.00
UHF -13.07 7.18 8.15
cRHF 10.86 0.00 2.00
RMP2 -25.62 0.00 2.00
UMP2 -8.39 6.34 7.33

cRMP2 -27.50 0.00 2.00

k-ROOMP2 2.36 0.00 2.00
k-UOOMP2 1.84 1.02 2.00
k-cCROOMP2 3.93 0.00 2.00
AP+x-UOOMP2 3.75 2.00

Table 4.8: The triplet-singlet gap AET.s(= Es — Er) (keal/mol) of Cy from various
methods. The expectation values of (S?) for Mg = 0 and Mg = 1 states are presented
as well. Note that these values include correlation corrections to (S?).

We also computed the triplet-singlet gap of Cs, using HF, MP2, and xk-OOMP2
methods with multiple types of orbitals. At x = 1.45 with the cc-pVDZ basis set, we
found a k-cUOOMP2 solution (with (S?) = 2.0) when started from a ¢cGHF solution.
This triplet k-cUOOMP2 solution was found to be almost exactly degenerate with
a triplet k-UOOMP2 solution. Therefore, for the remaining discussion we employed
k-UOOMP?2 for the triplet state.

The computed triplet-singlet gaps are presented in Table 4.8, which are obtained
with the cc-pVTZ basis set. Without correlation, RHF and cRHF predict very large
gaps with a triplet ground state whereas UHF predicts a large gap with a singlet
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ground state. The MP2 correction on top of these reference states all prefers the
singlet state with a significant spin gap. This is a qualitative failure of the MP2-level
correlation treatment.

k-OOMP?2 provides a significant improvement over the MP2 results. k-ROOMP2
predicts the sign of the gap correctly with a gap of 5.36 kcal/mol. k-cROOMP2
yields a slightly smaller gap than k-ROOMP2 and the energy lowering from com-
plex polarization is only about 1.43 kcal/mol. xk-UOOMP2 yields almost a perfect
open-shell solution (i.e., (S?) ~ 1.0), so AP+x-UOOMP?2 is effective for this system.
AP+k-UOOMP2 predicts more or less the same gap as k-cROOMP2 and the differ-
ence between two is only 0.18 kcal/mol. In terms of the triplet-singlet gap, all of the
k-OOMP2 approaches predict the biradicaloid character of Cs.

Although the triplet-singlet gap from the R methods is similar to the cR methods,
the use of R orbitals breaks the spatial symmetry (Dy, ) of C,,. This is evident when
looking at the Mulliken population of individual carbon atoms. To illustrate this,
we present the Mulliken population of the five carbon atoms in the top pentagon of
Cy, in Figure f.2] Obviously, they are all equivalent due to the Dy, symmetry, but
using restricted or unrestricted orbitals breaks this symmetry as shown in Table [4.9]
Thus geometry optimization with other methods than cR methods will likely break
this spatial symmetry. This is not because of the Jahn-Teller distortion but because
of the artificial spatial symmetry breaking present at the electronic level. In passing
we mention than orbital-optimizing the spin-projected energy in Eq. could
potentially yield qualitatively better density than k-UOOMP2.[349]

RHF UHF | cRHF | k-ROOMP2 | k-UOOMP2 | k-cROOMP2
0.0083 | 0.0001 | 0.0179 -0.0027 0.0111 0.0099
0.0105 | 0.0001 | 0.0179 0.0067 0.0109 0.0099
0.0290 | -0.0034 | 0.0179 0.0187 0.0093 0.0099
0.0290 | 0.0056 | 0.0179 0.0187 0.0120 0.0099
0.0105 | -0.0034 | 0.0179 0.0067 0.0092 0.0099

Table 4.9: Mulliken population of the five carbon atoms in the top pentagon in Cs,
shown in Figure

In summary, in this example we showed that k-cROOMP2 is better suited than
AP+x-UOOMP?2 in the presence of high point group symmetry such as Dg,. Al-
though they both yield similar energies, the underlying wavefunction breaks spatial
symmetry if not treated with cR orbitals. This highlights the unique utility of elec-
tronic structure methods with cR orbitals whenever complex polarization is essential.
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4.3.4 Stable Organic Triplet Biradical

Figure 4.4: Molecular geometries of the organic biradical studied here. The Cartesian
coordinates for this geometry used in this work are taken from ref. 373.

Although organic triplet biradicals are very rare to isolate due to their normally
high reactivity, there have been some reports of synthesizing stable ones.,
Indeed, many stable singlet biradicaloids are stable because of some closed shell
character. Since triplet biradicals lack in any closed shell character, it is difficult
to observe stable ones. Gallagher and co-workers synthesized an organic biradical
with a triplet ground state. This biradical has quite robust stability compared
to usual biradicals and survives at 140 °C without significant decomposition. Ex-
perimentally the triplet-singlet gap of this molecule was measured to be about 0.5
kcal/mol. However, such a small gap allows for a thermal mixture of singlet and
triplet states as temperature is raised to ambient conditions and above.

Gallagher and co-workers suggested a modification to this synthesized complex
and hypothesized a triplet ground state, aiming for a larger triplet-singlet gap than
0.5 kcal/mol.[373] The structure of this proposed molecule is presented in Figure .
They supported their claim using UB3LYP/6-31G(d,p) calculations which yielded a
gap of 3.5 kcal /mol for this newly suggested complex. Our goal is to confirm whether
this hypothesis is correct using k-cROOMP2 and/or AP+x-UOOMP2. We studied
this system within the cc-pVDZ basis set and its auxiliary basis set with
the frozen-core approximation and the geometries were taken from ref. 373 which
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were optimized at the UB3LYP/6-31G(d,p) level. This proposed system was recently
synthesized and characterized with AFrg > 1.7 keal/mol.[375)]

Unlike other examples presented above, there are no obvious symmetry con-
straints that give rise to a R to cR instability in this system. This is why it is
interesting that there is a R to cR instability at the HF level (see Table [4.10).
However, this complex polarization turns out to be artificial and k-OOMP2 with
r = 1.45 yields only a restricted solution. Therefore, in this case k-cROOMP?2 is not
applicable whereas AP+x-UOOMP?2 is well-suited.

Method AET—S MS =0 MS =1
RHF 63.56 0.00 2.00

UHF 12.44 6.25 7.69
cRHF 63.49 0.00 2.00
RMP2 29.88 0.00 2.00
UMP2 -8.64 2.56 3.86
cRMP2 48.97 0.00 2.00
k-UOOMP2 1.48 1.02 2.03
AP+r-UOOMP2 297 2.00
k-cR/ROOMP2 36.23 0.00 2.00

Table 4.10: The triplet-singlet gap AFEr.s(= Es — E7) (kcal/mol) of the biradical
system in Figure from various methods. The expectation values of <§2) for
Mg = 0 and Mg = 1 states are presented as well. Note that these values include
correlation corrections to (52).

In Table the triplet-singlet gap of this system is presented. At the HF level,
none of the orbital types predict small enough gaps to be considered to be a biradical.
RHF and cRHF states are nearly degenerate and thus the complex polarization is not
as strong as other examples presented before. UHF exhibits striking spin-symmetry
breaking and predicts a much smaller spin gap than RHF and cRHF.

The MP2 treatment on top of these reference HF determinants does not improve
these poor energetics. There is about a 20 kcal/mol energy difference between RMP2
and cRMP2 and RMP2 is lower in energy than cRMP2. This may indicate artificial
complex polarization which indeed turns out to be the case in this system (vide
infra). UMP2 removes a large portion of the spin contamination present at the HF
level, but it still is heavily spin-contaminated. As a result, it predicts the sign of the
gap incorrectly.

k~-UOOMP2 predicts a reasonably small gap with satisfying spin contamination
for the singlet state ({(S?) & 1.0) and almost no spin contamination for the triplet
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state. With the AP scheme, the gap is predicted to be 2.97 kcal/mol. This supports
the original hypothesis[373] made by experimentalists that this system has a gap
larger than 0.5 kcal/mol, with a triplet ground state. This is also in agreement
with the recent experiment which studied this system.[375] Lastly, we note that -
cROOMP?2 collapses to a real, restricted solution and yields a substantially larger
gap (36.23 kcal /mol), because this method does not adequately describe the strongly
correlated singlet.

In summary, in this example, AP+x-UOOMP2 successfully describes the birad-
icaloid character of the singlet state in the molecule whereas k-cROOMP2 cannot
describe such character because there is no cR solution at the k-OOMP2 level.

4.4 Conclusions

In this work, we examined two single-reference approaches based on regular-
ized orbital-optimized Mgller-Plesset perturbation theory (k-OOMP2) that exploit
essential symmetry breaking to describe singlet biradicaloids. Combined with Yam-
aguchi’s approximate projection (AP), unrestricted k-OOMP2 (k-UOOMP2) offers
a way to access almost spin-pure singlet energies. Alternatively, complex, restricted
k-OOMP2 (k-cROOMP2) can describe biradicaloid character if there is complex po-
larization. We compared these two methods over a variety of systems: a total of
12 triplet-singlet gaps in the TS12 set, the barrier height of a reaction between a
cysteine ion and a singlet oxygen molecule, the Cy, (Djy) fullerene, and lastly an
organic biradical with a triplet ground state. We summarize the major conclusions
from these numerical experiments as follows:

1. Without orbital optimization at the MP2 level, Hartree-Fock (HF) orbitals tend
to exhibit artificial symmetry breaking in singlet biradicaloids. In the case of
cRHF, this is sometimes reflected in spurious charge distribution of molecules
whereas it often manifests as heavy spin contamination (and commonly also
spurious charge distribution) in UHF. In such cases, we recommend xk-OOMP2
which is an electronic structure tool that removes most artificial symmetry
breaking and yields orbitals with only essential symmetry breaking.

2. k-cROOMP?2 is recommended whenever there is essential complex polarization.
This is due to the fact that k-UOOMP2 manifests not only spin-symmetry
breaking but also spatial symmetry breaking which cannot be purified with
the AP scheme.
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3. When there is no essential complex polarization but only essential spin po-
larization, AP4+x-UOOMP?2 is recommended. cR solutions are rare in nature
and it is difficult to observe them with systems without point group symme-
try. Therefore, the applicability of AP4+x-UOOMP?2 is broader than that of
rk-cROOMP2.

Strong correlation is a difficult problem to solve and there is no universal approach
to it other than brute-force approaches such as complete active space methods.[5§]
However, at least for two-electron strong correlation problems studied here, either k-
cROOMP2 or AP+x-UOOMP2 can be a single-reference electronic structure method
that correctly describes strong correlation character. It will be interesting to apply
these tools to a broader range of chemical systems along with more developments
on their response theory such as excited states and analytic nuclear gradients in the
future. The presented approaches, which use cR orbitals or AP, can be extended to

higher order single-reference correlation methods such as coupled-cluster with singles
and doubles (CCSD) and third-order Mgller-Plesset perturbation theory (MP3).

4.5 Appendix

The Appendix discusses the frozen core and frozen virtual approximation in x-
OOMP2 and includes the theoretical reference data of TS12 set and the Cartesian
coordinate of Cs,,.

4.5.1 Frozen Core and Frozen Virtual Approximation

Here, we use IJK... to denote frozen core orbitals and ABC... to denote frozen
virtual orbitals. As in the main manuscript, we use ijk.. for active occupied orbitals
and abc... for active virtual orbitals.

The frozen core approximation limits the correlation energy calculation to all
electrons but core electrons. Similarly, the frozen virtual approximation limits the
virtual space of correlation energy to be all virtuals but frozen virtuals. The orbital
optimization with these frozen degrees of freedom (DOFs) becomes somewhat com-
plicated because it adds more subspaces to consider compared to the one without
frozen DOF's. Namely, the orbital rotation matrix has the following block structure:

0 On O Oqa
_@?k 0 ®ia ®iA
- Q;a - @;ka 0 ®aB
-0, =0, -6 0

O = (4.19)
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where we assumed that the orbital space is ordered as frozen core (C), active occupied
(0), active virtual (V), and frozen virtual (fV). This define non-redundant parameters
in the exponential parametrization of orbital rotation in our problem. In other words,
we have

C' = Cexp (0) (4.20)

where C denotes the orbital coefficient at a given point and C’ defines the rotation
of these orbitals by ®. We did not include C-C, O-O, V-V, and fV-fV rotations
since both Hartree-Fock (HF) and Mgller-Plesset energies are invariant under these
rotations. This is exactly why one could canonicalize orbitals within these blocks
without changing the underlying energy and that is the basis we used in this work
as well.

Here, we list expressions for non-trivial orbital gradient of each block that involves
frozen orbitals. We first define the orbital gradient L,, as

oL

L pr—
pq a@qp

(4.21)

where £ is the MP2 Lagrangian defined in ref. 269. The C-fV block is the same
as the HF orbital gradient so we will not write this down. The other blocks involve
correlation energy contribution in general and therefore we present here the explicit
forms: the C-O block reads

Lii =3 (Py+ By) Fic+ 3 (aK1Q) (T8 - T2) (4.22)
a@

J

where Py, Py, T, and T are defined in the main text (i.e., Eqns (&.9), (&10), (&.11),
and (4.13))), the C-V block reads

Licu= =Y GK|Q) (T = T3) =3 (Py + Py) (all iK)= 3" (P + Pu) (ba| ).
“ ’ - (4.23)
the O-fV block reads

Lia = > (Aal@) (T8 = T2) =3 (P + i) (kAN ji) =D (P + Pn) (b | i),
a® ik be
(4.24)

and lastly the V-fV block reads

Loy =3 (Pu+ Pu) Fie— > (BilQ) (T2~ T2) (4.25)

c iQ
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For an approximate second-order optimization method such as geometric direct
minimization (GDM), Broyden-Fletcher-Goldfarb-Shanno (BFGS), and etc., it is
important to have a reasonable approximation to the inverse of the exact Hessian H.
This is usually achieved by approximating the diagonal elements of H™! by a simple
orbital energy gap expression,

Pia,ia - (Ea - 6@')—1 (426)

where P is the preconditioner (up to some constant) that can be used in GDM or
BFGS. This is usually a good approximation due to the following reasons: (1) HF
orbital hessian is diagonally dominant and the orbital gap term contributes most
to the diagonal elements and (2) the correlation contribution to the orbital Hessian
is generally smaller than that of HF. In the presence of frozen DOFs, this form of
preconditioner should be applied with great caution. This is because HF energy is
invariant under C-O and V-fV rotations. In other words, for C-O and V-ftV DOFs
one needs to derive a different form of preconditioner that involves only correlation
contributions. Surprisingly, we found the corresponding Hessian to be generally near-
singluar, which makes the optimization of those variables quite challenging. Indeed,
this approach can take about 50-60 iterations to converge even when started from a
nearly converged solution (the norm of orbital gradient is about 1le™*). This approach
will be referred to as Algorithm 1.

Due to this optimization challenge, we tried an alternative optimization strategy
where we consider only C-V, O-V, and O-fV rotations. The Hessian of these rota-
tions is well-conditioned so this optimization should be relatively more stable. Here,
we choose a rather unusual representation for evaluating orbital gradient. Namely,
we pseudocanonicalize CUO and VUV though C-O and V-fV rotations change the
energy. Frozen core orbitals and frozen virtual orbitals are then determined based
on the orbital energies in the pseudocanonical basis. Lg, and L;4 are identical to
Eq. and Eq. , respectively, except that now we incorporate the effect of
C-O and V-fV rotations into the density matrix:

1 -
Pri= —— §an (aK|Q) (T8 - T2) (4.27)
and {
_ . Q rQ
Fur = gy 3 BIQ) (re -12) (4.28)

These density matrix expressions are also used in the derivation of frozen orbital
MP2 analytic nuclear gradient.|232] This approach will be referred to as Algorithm
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2. Although Algorithm 2 performed very well (i.e., it takes about 10-15 iterations
when starting from a superposition of atomic density guess), all the numerical results
we presented in the main text are based on Algorithm 1 described above. We
also note that response equations of frozen orbital OOMP2 when optimized with
Algorithm 2 can be more involved than in the case of Algorithm 1.

We close this section with numerical results that support that Algorithm 2 is
in fact a close approximation to Algorithm 1. As an example, we present the k-
ROOMP2 results for the TS12 set. All calculations were run with a converged RHF
guess and we report the number of iterations to converge to a threshold of le™8
for root-mean-squared orbital gradient. According to Table [4.11] it is evident that
Algorithm 2 takes far less iterations than Algorithm 1 with an energy difference of
1-0.1 mFE),. Since Algorithm 2 is a variational upper bound of Algorithm 1, it is
expected that relative energies such as triplet-singlet gaps would have even smaller
differences. Indeed, for TS12 set, the differences in the triplet-singlet gaps between
two algorithms are found to be less than 0.1 kcal/mol as illustrated in Table [£.12]

System Al%)rlthm 1 — Al%)rlthm 2 — Fe
C -37.690362513 16 | -37.690067032 81 0.295
NF -154.201650852 72 | -154.201482123 13 | 0.169
NH -55.047151603 24 | -55.047033847 10 | 0.118
NO~ -129.686138434 75 | -129.686059952 15| 0.078
0O, -150.106253507 42 | -150.106160845 13 | 0.093
O -74.870856816 18 | -74.870757388 91 0.099
PF -440.563185799 86 | -440.562525083 13 | 0.661
PH -341.348436231 53 | -341.347730464 10 | 0.706
S, -795.383381169 68 | -795.382002596 11 | 1.379
S -397.565198508 37 | -397.564061508 91 1.137
Si -288.858231640 30 | -288.857705318 91 0.526
SO -472.772158481 84 | -472.771421737 13 | 0.737

Table 4.11: The comparison of two orbital optimization algorithms for frozen core
ROOMP2 calculations on the TS12 set. Energy, F, is in £} and the energy difference
between two algorithms, Egg, is in mFE),.

In the future, we will explore these two algorithms to determine what is the best
practice of running frozen orbital OOMP2 calculations.
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System | Algorithm 1 | Algorithm 2 Eys
C 44.883 44.849 | -0.034
NF 46.375 46.393 | 0.018
NH 53.362 53.388 | 0.026
NO~ 27.867 27.89 | 0.023
O, 33.782 33.82 | 0.038
O 65.985 66.036 | 0.051
PF 34.378 34.335 | -0.043
PH 36.626 36.577 | -0.049
Sy 23.804 23.778 | -0.026
S 42.656 42.601 | -0.055
Si 30.954 30.918 | -0.036
SO 28.262 28.244 | -0.018
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Table 4.12: The comparison of two orbital optimization algorithms for frozen core
ROOMP2 calculations on the TS12 set: the triplet-singlet energies (kcal/mol),

AFEs.r, and the differences (kcal/mol) between two algorithms are presented.

4.5.2 TS12 Set

In the TS12 set, there are a total of 8 diatomics and we provide the bond lengths
of each molecule in Table along with pertinent publications. The references are
for atoms as follows: C,[376] Si,[377] O,[378] and S.[379]

S=1

NF | 1.316983
NH | 1.034
NO | 1.258

0, | 1.20752
PF | 1.5897
PH | 1422,
S, | 1.889,

SO | 1.48108;

S=0 Refs.
1.3079 380
1.0362 381

1.262 | 382383
1.2156 384
1.5849 385
1.430, | 386387
1.898; 388
1.4919; | 389390

Table 4.13: The interatomic distance (A) of diatomic molecules in the TS12 set.
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4.5.3 Heat-Bath Configuration Interaction Benchmarks

We also crosschecked the experimental AFgr values of these molecules against
heat-bath configuration interaction (HCI) calculations.[391] Our goal was not to
produce high-quality theoretical benchmark results with HCI. Instead, we wanted
to check the experimental values within 1 kcal/mol. Obviously, a more thorough
theoretical benchmark study is desirable but we believe that it will not affect the
conclusion of this work. HCI energies are not invariant under unitary transformations
between orbitals. Often, choosing orbitals is crucial in obtaining high-quality ener-
gies. We therefore ran small active space (20-30 orbitals) HCI with self-consistent
field (HCISCF) to obtain orbitals and performed HCI without the active space (i.e.,
only with the frozen core approximation).

A summary of the HCI calculations (with the aug-cc-pVQZ basis set) performed
in this work is given in Table The two parameters €; and €, control the number
of determinants included in the variational and second-order perturbational (PT2)
energies, respectively. We tuned the €; parameter such that with a tight e; < 1076
the PT2 contribution (AFEprs) does not exceed 10 kcal/mol. Ideally, it would be
the best to match AFEpry contributions for Mg = 0 and Mg = 1 for good error
cancelation when computing the energy differences. This was found to be somewhat
difficult to achieve in general. Nevertheless, we observe a good agreement between
HCT and experimental values in general.

4.5.4 Cartesian Coordinates of Cg,

We optimized the geometry of Mg = 0 and Mg = 1 with the B97M-V func-
tional[372] and cc-pVDZ basis set]237] using unrestricted orbitals. We present the
Cartesian coordinates for each geometry below.
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System | Mg Dets gé gg AFEpro AFs T Eq
T e SR | amo
R T e R0 o | oo
NH TS | 75010 | L0010 | 0azo)| O | 004
NO™ st | SSIOT | TO0I | iy (S0 | 1000
—05 —08
O: | TS0 3006107 | To0sd0 ity ] 250 | 010
D TR
PE | ogaan [ 3rsean Lo || 2000 | 070
P | —S3206 | 50010 | TO0X10™ | —0s1(0)] 2110 | 0200
—05 —08
ST IS0 2300 L0 amioy| 29504 |-040010
T e SR | o
o e o | oo
SO | T | gitigsar | 25010 | Lo s8] 70D | 0680

Table 4.14: A summary of HCI calculations: (1) the number of determinants (Dets)
and two threshold parameters (e; and ey) are also presented for each Mg state,
(2) the magnitude of the PT2 correction (kcal/mol), AFEpro, is given, and (3) the
triplet-singlet energies (kcal/mol), AFs.t, computed with HCI and the differences
(kcal/mol) between HCI and experimental gaps (Eqi) are presented.



CHAPTER 4.

TWO SINGLE-REFERENCE APPROACHES TO SINGLET

BIRADICALOID PROBLEMS

Atom

X

Y

Z

1.2291469539

0.0000000000

2.5955841295

2.0010162987

0.0000000000

1.4148129741

1.7164173296

-1.2470501857

-0.6979480205

1.7164173296

-1.2470501857

0.6979480205

0.3798272973

-1.1689882200

2.5955841295

0.6183480423

-1.9030795901

1.4148129741

-0.9944007743

-0.7224744524

2.5955841295

-0.6556130810

-2.0177695862

-0.6979480205

-0.6556130810

-2.0177695862

0.6979480205

-1.6188561916

-1.1761678700

1.4148129741

0.6183480423

-1.9030795901

-1.4148129741

-0.9944007743

0.7224744524

2.5955841295

-2.1216084971

0.0000000000

-0.6979480205

-2.1216084971

0.0000000000

0.6979480205

-1.6188561916

1.1761678700

1.4148129741

-1.6188561916

-1.1761678700

-1.4148129741

0.3798272973

1.1689882200

2.5955841295

-0.6556130810

2.0177695862

-0.6979480205

-0.6556130810

2.0177695862

0.6979480205

0.6183480423

1.9030795901

1.4148129741

-1.6188561916

1.1761678700

-1.4148129741

1.7164173296

1.2470501857

-0.6979480205

1.7164173296

1.2470501857

0.6979480205

2.0010162987

0.0000000000

-1.4148129741

0.6183480423

1.9030795901

-1.4148129741

1.2291469539

0.0000000000

-2.5955841295

0.3798272973

1.1689882200

-2.5955841295

oliollollollollelleollollollollollollollolioliollollollollollollollollollollollolIokOoll®!

-0.9944007743 | 0.7224744524 | -2.5955841295
-0.9944007743 | -0.7224744524 | -2.5955841295
0.3798272973 | -1.1689882200 | -2.5955841295
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Table 4.15: The Cartesian coordinates (A) of the geometry of Cy, (Mg = 0) used in
this work. The corresponding total energy of B97TM-V /cc-pVDZ at this geometry is
-1142.80050744412 E},.
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Atom

X

Y

Z

1.2289392980

0.0000000000

2.5951347450

2.0011617189

0.0000000000

1.4145443520

1.7168626316

-1.2473737166

-0.6976786167

1.7168626316

-1.2473737166

0.6976786167

0.3797631281

-1.1687907275

2.5951347450

0.6183929796

-1.9032178929

1.4145443520

-0.9942327771

-0.7223523953

2.5951347450

-0.6557831713

-2.0182930702

-0.6976786167

-0.6557831713

-2.0182930702

0.6976786167

-1.6189738390

-1.1762533458

1.4145443520

0.6183929796

-1.9032178929

-1.4145443520

-0.9942327771

0.7223523953

2.5951347450

-2.1221589207

0.0000000000

-0.6976786167

-2.1221589207

0.0000000000

0.6976786167

-1.6189738390

1.1762533458

1.4145443520

-1.6189738390

-1.1762533458

-1.4145443520

0.3797631281

1.1687907275

2.5951347450

-0.6557831713

2.0182930702

-0.6976786167

-0.6557831713

2.0182930702

0.6976786167

0.6183929796

1.9032178929

1.4145443520

-1.6189738390

1.1762533458

-1.4145443520

1.7168626316

1.2473737166

-0.6976786167

1.7168626316

1.2473737166

0.6976786167

2.0011617189

0.0000000000

-1.4145443520

0.6183929796

1.9032178929

-1.4145443520

1.2289392980

0.0000000000

-2.5951347450

0.3797631281

1.1687907275

-2.5951347450

oliollollollollelleollollollollollollollolioliollollollollollollollollollollollolIokOoll®!

-0.9942327771 | 0.7223523953 | -2.5951347450
-0.9942327771 | -0.7223523953 | -2.5951347450
0.3797631281 | -1.1687907275 | -2.5951347450
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Table 4.16: The Cartesian coordinates (A) of the geometry of Cy, (Mg = 1) used in
this work. The corresponding total energy of B97TM-V /cc-pVDZ at this geometry is

-1142.803154404 E},.



117

Chapter 5

Coupled-Cluster Valence-Bond
Singles and Doubles for Strongly
Correlated Systems

5.1 Introduction

Strong correlations are an important subject of active research in the field of elec-
tronic structure theory. Systems with d or f orbitals such as metalloenzymes[392]
like photosystem II [393] |394] are well known strongly correlated systems. Polyrad-
icaloid systems such as molecules near bond-breaking[395] and polyaromatic hydro-
carbons,[226], 1396-399] also belong to this category. Phenomena driven by corre-
lations between electrons that lie outside perturbative regimes such as high-T¢ su-
perconductivity[400] and Kondo problems[401] are also inherently strong correlation
problems. Describing these systems and phenomena requires proper treatment of
strong correlations to obtain at least a qualitatively correct description.

One of the most popular approaches in quantum chemistry to address these prob-
lems is the use of brute-force algorithms such as complete active space self-consistent
field (CASSCF).[58] The applicability of CASSCF is limited by the need to solve the
full configuration interaction (FCI) problem within an active space, which has a com-
putational cost that scales exponentially with the number of electrons in the active
space. To extend the applicability of CASSCF, enormous efforts have been made on
developing more efficient approximate FCI solvers such as Alavi and co-worker’s FCI
quantum monte carlo (FCIQMC) [402, 403] and White’s density matrix renormalisa-
tion group (DMRG).[34-36), 404, |405] FCIQMC uses importance sampling techniques
of QMC to solve the FCI problem and shows a weaker exponential scaling compared
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to the traditional determinant based exact FCI solver. [406, |407] DMRG was origi-
nally designed for solving one-dimensional (1D) lattice systems and encodes the most
important degrees of freedom between neighbouring sites using singular value decom-
positions of density matrices. DMRG is a polynomial-scaling method for 1D systems
with short-range interactions, but is still an exponential-scaling method for general
systems of higher dimensions or with long-range interactions. These two independent
approaches have been applied to non-trivial chemical systems small enough to afford
these brute force approaches.[38-42, 408-410| It is, however, highly desirable to de-
velop polynomial-scaling methods that can qualitatively capture strong correlations
in systems where FCIQMC and DMRG become intractable.

Another common approach to strong correlations is multi-reference coupled-cluster
(MRCC) theory. [411-413] The basic idea is to include physically relevant higher clus-
ter excitations by employing multiple determinants in the reference state that are
difficult to access in the usual single reference approaches. MRCC approaches can be
categorised into (1) state-universal [73H78] and (2) valence-universal [79-87] that are
often referred to as genuine MRCC approaches and (3) state-specific approaches. [88-
111] The first two suffer from the appearance of intruder states [414-417] and require
solving for several eigenstates simultaneously, many of which can be irrelevant to the
problem. The third approach can avoid these problems but usually at the expense
of the explicit inclusion of higher excitations. These are still active areas of research
in the pursuit of strong correlations, and interested readers are referred to ref. 412
and references therein.

Another interesting, formally simpler, and often computationally more tractable
approach than those mentioned above, is single-reference coupled-cluster (SRCC)
theory. SRCC singles and doubles with non-iterative triples (CCSD(T)) is a de
facto standard approach for non-strongly correlated systems.[418] Its non-variational
failure for strongly correlated systems when used with restricted Hartree-Fock (RHF)
references has inspired development of new methods.

The simplest possible (and thus the most widely used) fix to this problem is to
use an unrestricted HF (UHF) reference at the expense of spin symmetry. However,
many studies have indicated that UCCSD or UCCSD(T) misses a fair amount of
correlations in the so-called spin-recoupling regime, an intermediate regime between
equilibrium and bond-dissociation. [419] More crucially, these methods fail to pro-
vide a quantitatively accurate singlet-triplet gaps due to severe spin contaminations.
Using UHF references is thus not satisfying for general applications.

An alternative approach without increasing the substitution level (i.e. with only
singles and doubles substitutions), is to correct for higher excitations in a non-
iterative fashion. This is done in the methods of moments coupled cluster approxima-
tions including renormalised and completely renormalised variants.[420-428| Instead
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of evaluating the energy using projection equations, more stable approaches include
evaluating it variationally [429-431] or through approximations to the variational
evaluation, such as unitary CC (UCC),[432-435| extended CC (ECC),[436-441] and
quadratic CC (QCC).[442-444] Instead of evaluating the energy using projection
equations, more stable approaches include evaluating it variationally with either an
expectation value ansatz[429-431] or a unitary ansatz[432-435] and approximations
to the variational evaluation such as extended CC (ECC)[436/-441] and quadratic
CC (QCC).[442-444] These have shown improved energetics in strongly correlated
systems, but none of them are an ultimate solution to the problem. Increasing the
substitution levels systematically, such as up to triples (RCCSDT) [445] and up to
quadruples (RCCSDTQ), [446] is another approach at the expense of steep scaling
costs (n3..n2 and nl nS  respectively).

Recently, our group has developed a local correlation model for strong correla-
tions, the hierarchical perfect n-tuples model (e.g. perfect quadruples (PQ), perfect
hextuples (PH), etc.). [447-450] It explicitly incorporates higher cluster operators
up to n-tuples in a very restricted form to better preserve computational feasibility.
The use of localised orbitals is essential in this approach as thethe limited number
of higher excitations will be most effective among orbitals that are spatially close.
The price we pay for this is the lack of orbital-invariance within occupied-occupied
and virtual-virtual rotations.The price we pay for this is that the energy is no longer
invariant with respect to occupied-occupied and virtual-virtual rotations. Moreover,
simultaneous multiple bond-breaking will require a higher n-tuples model, which
becomes intractable quickly.

Another simple and yet very effective approach are the spin-flip methods pio-
neered by Krylov and co-workers. [318] 334, 345, |451] Equation-of-motion spin-flip
coupled cluster (EOM-SF-CC) theory is based on the observation that restricted
open-shell HF (ROHF) can qualitatively describe strongly correlated systems in a
high-spin state such as triplet stretched H,. At the level of singles and doubles,
EOM-SF-CCSD describes the singlet ground state as an excitation or a deexcitation
from a high-spin CCSD wavefunction. It has been widely used for diradical systems.
[334] The major drawback of this approach is that systems with many strongly corre-
lated electrons would require the use of extremely high-spin reference whose orbitals
are far from being suitable to describe singlet ground states.

There have been proposals that remove certain quadratic terms in doubles (D)
amplitudes equations in RCCSD to mimic the effects of triples and quadruples (TQ)
and greatly improve the accuracy for strongly correlated systems. Many of them were
originally motivated by the cost reduction when ignoring some non-linear terms, but
later it was realised that discarding such terms can vastly improve the accuracy
in molecules near quasi-degeneracy. The main goal in this research direction is to
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account approximately for higher excitations (T, Q, ...) whilst retaining formal
properties of RCCSD such as size-extensivity, orbital invariance within occupied-
occupied and virtual-virtualenergy-invariance with respect to occupied-occupied and
virtual-virtual rotations, and exactness for non-interacting two electron systems.

This approach was pioneered by Paldus and co-workers who developed approx-
imate coupled-pairs with quadruples (ACPQ) [452, 453] which has inspired many
subsequent developments. ACPQ was motivated by the structure of Q extracted
from a cluster analysis of a broken-symmetry wavefunction such as UHF and pro-
jected HF (PHF), which cancels certain quadratic terms when studying strongly
correlated limits of the Pariser-Parr-Pople model.[453] This provided justification
for related approaches such as ACP-D45 [454, 455 and approximate CCD (ACCD)
[456], |457] . Linearised CC, [458] 2CC, [459] and coupled electron pair approximation
(CEPA) and its variants [460, 461] also belong to this category.

A more recent approach in this category is the distinguishable cluster approxima-
tion (DCA) [462] where a diagram corresponding to direct exchange of two doubles
amplitudes is discarded. It was suggested as an ad hoc modification to RCCD (called
DCD) and later derived from a screened Coulomb formalism. [463] DCD and its vari-
ants (Brueckner DCD, orbital-optimised DCD and DCSD) [462/-465] all do not “turn
over” when breaking N, in a double-zeta basis. Despite its promising earlier results
its non-interative triples version (DCSD(T)) shows a similar non-variational failure
to that of CCSD(T) for bond-breaking [463] when applied to N, in a triple-zeta ba-
sis. This suggests that an alternative way to include T perhaps in a non-iterativean
iterative fashion should be explored.

Another recent approach in this category is singlet-paired CCSD (CCSDO) pro-
posed by Bulik et al. [466] The singlet doubles operator in RCCSD can be divided
into symmetric singlet doubles (or singlet-pairing doubles) and antisymmetric sin-
glet doubles (or triplet-pairing doubles). This splitting of the doubles operator was
extensively exploited in orthogonally spin adapted formula,[467-H470] and it will be
reviewed later in this paper as well. In CCSDO0, the antisymmetric singlet dou-
bles operator is completely removed by ansatz. Removing those terms improves the
performance of the theory for bond dissociations, although when applied to N, in a
minimal basis it does not reach the correct asymptote.|466][471] Moreover, the contri-
bution from the removed antisymmetric singlet doubles is not negligible in general.
For instance, N, at equilibrium in a double-zeta basis has non-negligible dynamic
correlations coming from the antisymmetric doubles. Neglecting these correlations
results in the CCSDO energy being too high not only at the dissociation limit but also
at the equilibrium geometry.[466] Furthermore, Their recent efforts of incorporating
antisymmetric singlet doubles with the frozen symmetric singlet doubles amplitudes
suggest that an alternative route should be investigated.|472]
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We would also like to mention externally corrected CCSD [473] which employs
TQ obtained from external wavefunctions such as CASSCF, [474, 475| valence-bond
(VB), [476-478|] broken-symmetry HF. |452, 479, 480] In particular CCSDQ’, pio-
neered by Paldus, Piecuch and co-workers, [452) 480] has similarities to the method
to be discussed in this paper. In CCSDQ’, one augments CCSD amplitudes equa-
tions with Q obtained from a cluster analysis of projection-after-variation PHF wave-
functions. [481] The resulting wavefunction is rigorously spin-pure, and it showed
promising results on simple MR systems such as H, and Hg. In passing, we note
that CCSDQ’ (or CCDQ’) is closely related to aforementioned ACPQ, the major
difference being that CCSDQ’ is not a self-contained method.

Two of us (D.W.S and M.H.G.) introduced coupled-cluster valence-bond theory
singles and doubles (CCVB-SD) as a simple modification to RCCSD to describe
strongly correlated closed-shell systems. [141] As opposed to completely removing
certain quadratic terms from RCCSD or using external sources for higher excita-
tions, CCVB-SD directly models Q with its D. The way it models Q originated from
a simpler model, CCVB, which yields a spin-pure wavefunction and can describe
simultaneous multiple bond breaking at a cost dominated by integral transforma-
tions.[128, 140, 280] CCVB was formulated based on the recognition of a modified
cluster expansion hidden in PHF. In this regard CCVB-SD is similar in spirit to
ACPQ and CCSDQ’. The similarity between CCVB-SD and ACP(Q was noticed in
ref. 141. The key distinction is CCVB-SD is self-contained, unlike CCSDQ’, and re-
moves certain quadratic terms in RCCSD by solving modified amplitudes equations
as opposed to discarding such terms a priori, as in ACPQ.

In CCVB-SD, a singlet doubly-excited configuration is constructed by pairing
an occupied orbital with a virtual orbital and coupling two triplets out of such two
pairs to form an overall singlet state. This is how CCVB encodes interpair correla-
tions, and the remaining higher-order correlations enter through the aforementioned
modified cluster expansion. CCVB-SD successfully combines advantages of RCCSD
and CCVB: it preserves all the formal properties of RCCSD mentioned above and
describes valence correlations correctly even near multiple bond dissociations. An-
other viewpoint is obtained by noting that CCVB generalizes PHF, removing the
latter’s size inconsistency, and CCVB-SD generalizes CCVB. Therefore, CCVB-SD
is an effective combination of PHF and coupled cluster. The value of finding such
a combination was emphasized in a recent paper.[482] We also note that CCVB-SD
naturally contains the antisymmetric doubles that are discarded in CCSD0. When
properly implemented, CCVB-SD should scale the same as does RCCSD, which is

n2.nd . Tts result for the triple-bond dissociation of N, in a minimal basis shows its

occ'"vir*

ability to capture strong correlations in the valence space as it reaches the correct
asymptote. [141]
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The main objective of this paper is to provide detailed information about a new
production-level implementation of CCVB-SD and discuss its applicability to systems
of hundreds of strongly correlated electrons with an application to emergent many-
electron correlations in oligoacenes,[38, 139, 330}, 483-491] which have been the focus of
much recent attention. This paper is organised as follows: (1) we review and discuss
the CCVB-SD wavefunction ansatz from a different angle than what is discussed in
ref.141, (2) we discuss the derivation of CCVB-SD A-equation, (3) we illustrate how
we implement the CCVB-SD T-amplitudes equation and A-equation solvers into a
block-tensor based coupled-cluster code, and (4) we apply CCVB-SD to oligoacenes
and discuss strong correlations in their ground state.

5.2 The Model

In CCVB-SD, the wavefunction ansatz is given through quadruples level as [141]

by = (N”E Plasy i lemasn Iy le s 1TSQQ) |®o)
2 6 2 24 2 2
(5.1)
where |®() denotes a singlet reference, T represents the singles operator, the doubles
operator S creates singlet doubly-excited configurations, the doubles operator Q
creates quintet doubly-excited configurations, and Ig is a general singlet-subspace

projection operator which can be written as a sum of outer products of orthonormal
singlet states {|®,)},

Is = |®o) <1>0|+Z|<1>a (D] + > |2 (D] + - - . (5.2)

ijab

This ansatz includes full singles and doubles operators, and thus it is exact for non-
interactingisolated two-electron systems. The 02130? term represents an approxi-
mate connected quadruples contribution that plays a key role in capturing strong
correlations in CCVB-SD.

Based on this wavefunction ansatz, the CCVB-SD energy and amplitudes equa-
tions follow

. . 4 ~a 1 oA
E = (9| e 9He |Dg) = (Do ( 999 — H 155Q2> Do), (5.3)

s A N
0= (A, (e—gHeg —H IS§Q2> D), (5.4)
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where the primary cluster operator G is defined as
G=Ti+S, (5.5)

and |A,) represents an excited determinant in the spin-orbital basis including singly-

excited ones ‘A?:ll and doubly-excited ones ‘A%l%>. We note that in the second
GD

o1 Jog

equality in Eq. we used

~a 1o
(@0l (7 1307 00) =0 (5:6)

which is a consequence of the Slater rules. CCVB-SD formally includes other higher
disconnected excitations beyond quadruples, but we only need up to quadruples for
the purpose of solving the amplitude equations.

It is important to note that the amplitudes of S parametrise the amplitudes of 0.
This connection is most succinct if we use the following configurations for the singlet
doubles subspace, indexed by spatial orbitals and grouped into 2 categories: |° @%b)
and |A(I>§;’) where the superscripts S and A denote symmetry and antisymmetry
under the permutation of spatial orbital indices (i.e. i+, a<>b), respectively. This
construction is based on the orthogonal spin-adapted 4-electron singlet configurations
discussed extensively elsewhere.[467-470] As illustrated in Fig. the symmetric
state is constructed by taking two singlets from (ij) (a 2-particle geminal made from
occupied levels i and j) and (ab) (a 2-particle geminal made from virtual levels a and
b) to form a 4-electron singlet. The antisymmetric state, on the other hand, is built
coupling two triplets from (ij) and (ab) to form an overall singlet.

In terms of excitations from a singlet reference |®o), the construction of [*®¢?)
and [1®¢?) can be carried out using spin-adapted geminal (or pair) operators. The
singlet annihilation operator 6,, and the three triplet annihilation operators (~'7,,,
0704y Tpq) for each Mg are defined as follows:

1

61)(1 = ﬁ (dQdea + dpadqa) ) (5-7)
_17217(1 = dtmdpga (58)
. ... N
Oqu = E (a‘I,Bapa - amaqa) ) (5.9)
and
1A

Tpg = Qg Op,, - (5.10)
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S 54

Singlet .
A Symmetric a Ssinglet b
Singlet — —
Triplet Triplet ‘ I Singlet |
a b
Antlsymmetrlc a Triplet b
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Figure 5.1: An illustration of the decomposition of singlet doubles space into anti-
symmetric and symmetric singlet parts.

Applying these operators to [®), [°®¢?) and \Aq)%f’) follow
[SP7) = 557 | o)
1 Ao al apba [e7%
= 5 (175 + A7) + A7) + A7) (5.11)

9 igja iajp i8ja iajp
and

|A¢Z‘lj> ttEab |¢ >

:L(;A?ﬁ?a>+\Aba“B>_|A“ﬂba> A7) = 2|AT) - 2|t )

\/ﬁ 18la talp 28J talp 181B taja
(5.12)
where
=3 = 616, (5.13)
and
ttigjb - % (_ ﬂbOﬁJ - A;b_lTlJ Alblﬁy> (5.14)

In the case of [®{’), 6;; removes a singlet from |®g) and in its place creates another
singlet with 62,). Unsurprisingly, the result is a doubly-substituted singlet configura-
tion. Constructing |A<I>f;’> is similar except that we must ensure that the resulting
configuration is singlet. For example, °7;; removes a triplet from the reference and
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replaces it with another triplet via O%Jb, but if we had stopped there, the configura-
tion would still have a quintet component. In any case, the underlying concept in
this viewpoint of the singlet doubles space is that we are removing two electrons of
a given spin from the reference and replacing them with two electrons of the same
spin. In passing, we note that this construction verifies the earlier assertion about
the permutation symmetry of the two states as

F05) = [P0) = [°®5;) = ["®5) (5.15)
and
100y = — 1Y) = — |[10W) = [1Dby) . (5.16)

We also note that Eq. ( - is not normalised for cases with repeated indices, but it
is consistent with our definition of 58 shown below. With these, the singlet doubles
operator S thus separates into two orbital-invariant pieces

S=55+18, (5.17)
where the symmetric part of S is
~ 1 ~
SG S qab ssxab
ijab

and the antisymmetric part of S is

~ 1 ~
=3 D Agmitye (5.19)

ijab

S Sab and AS“” have the same index symmetry as the correspondlng substltutlon
operators (i.e. they follow the same symmetry as Eq. ( and Eq. ( , respec-
tlvely) These two sets of amplitudes constitute two tensors %S and AS each of size
n2..n2. . Because the amplitude indices are for spatial orbitals, the tensors will be
referred to as being “spinless”. In contrast to this, tensors indexed with spin orbitals
will be referred to as “spinful” tensors. For completeness, we write S in terms of

spin blocks of its spinful counterpart § as in

aabs ot ot aaba (4 toaf
E Sinjs (a, abﬁajﬁaza + - g Spoe a ab a;, @i, +aaﬁabﬂamalﬁ (5.20)
ijab zjab

S aaba (AT AT glbsgt At N
S = 2 E spoe (aa ay, Gj,, i, —|—aaﬁab amazﬁ> + g Singy Qg Oy Qjslio, — (5.21)

ijab ijab
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where the summations run over spatial orbitals, the first term denotes the same spin
block of § and the second term is the opposite spin block of s.

When acting on |®g), Q creates a linear combination of quintet configurations.
Because the maximum spin for four electrons is quintet, it is clear that each quintet
double should be obtained by removing a triplet from the reference and replacing it
with another triplet. We have

o 1 ab tt ra
0= S QU (5.22)
ijab
where .
W= 7 (=207, + 18l A + 1y ) (5.23)

and Q is another spinless antisymmetric tensor of size nZ.nZ,. The action of "¢
creates a quintet configuration as in

9Dg7) = "R | D) (5.24)
o i Abﬁaa Ab&aﬁ . Aagb& o AaabB AaBbB Aaaba 5 25

We can now describe the correspondence between S and Q, which is given by

ab __ A qab
@ — _9AGY.

(5.26)

This indicates that Q is independent of *S and parametrised by 4S. This is intuitive
given that AS and Q have the same permutational symmetry in the spatial orbitals,
or alternatively they are both obtained by substituting triplets within the reference.
The detailed proof of Eq. is available in Appendix of this article.

The physical meaning of S and AS may be better understood in the language of
valence bond theory.[492] S contains perfect-pairing (PP) [493] terms which are im-
portant pieces of strong correlations that describe intrapair correlations. In addition
to PP terms, it also has important interpair correlations such as ionic excitations
between two pairs. On the other hand, AS corresponds to interpair correlations
which are not captured by ¥ S but are important to describe polyradical character of
systems. 4S parametrises quadruples in a different way than they are parametrised
in RCCSD. If 4S is small, then Q is small and so is the difference between the
CCVB-SD and RCCSD results. In this sense, CCVB-SD theory asserts that 48 is
the operative element (at least for the doubles) in RCCSD’s failure to correctly de-
scribe strong correlations. This also stands in contrast to the CCSDO method [466]
which removes 48 or 48 entirely.
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5.3 CCVB-SD Lagrangian and A—equation

Following Eq. (5.3) and (5.4]), we establish the CCVB-SD Lagrangian defined as
A A oA ~ ~ 5 A 4 ~a ]l o4
L(T1,S,A) = (| (1 + A) (e—gHeg —H 15592) | Do), (5.27)

where A, a deexcitation operator multiplied by Lagrange’s multipliers, is defined as

[\ - Al + [\2
a 1 ab i 1j
=) AYEL+ 52% E Bl (5.28)
ia ijab
with the unitary-group generator
Ef = af i, +al a,. (5.29)

If we did not have the quintet contribution, we would have exactly the same La-
grangian as RCCSD. Finding a stationary point of £ with respect to the variations
of t¢, 9 Sfjb, and AS%” yields the CCVB-SD A-equation. For the singles equations, it
can be easily shown that the resulting equation is essentially identical to the one for
RCCSD with the cluster operator G. [494] Below we shall discuss how the doubles

equations differ from the usual RCCSD A-equation.

From Eq. (5.26)),
e

_ _ottpab
pasd ~ 2R 30
and the quintet contribution for the A-equation follows
2 (] (i + f\) (7—[ Is t%g;@) o) = 2 (o] Ay H 15 &2 Q| Do) . (5.31)
Using
(@l (1+As) e O, "ael1eC [ @o) = (@] A 15" R14Q|DBo),  (5.32)

the quintet contribution can be reshaped similarly to the RCCD A-equation expres-
sion with the doubles operator being Q.
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Using this, the CCVB-SD A-equation in a spatial-orbital form for each variation
with respect to Sf;b and AS%b is written as

S =0 (] (1 4) ¢ [ 5] € ) o (5.33)
ij

% =0 — (D (i + ]\) 9 [ﬁ,”iﬁﬂ 9 o) (5.34)
ij

42 (| (i + [\2) QT 216 [dy) = 0,

[

This can be further simplified to more familiar forms [494],

(o (71? + [[\, %’Lﬂ + 3 HI|D5) (] [\1) 1"®57) =0, (5.35)
ke
(@] (729 + [ HO] + 30 HO o) (@) ]\1) K
kc
4 2(d] (HO + [AQ,fFL@D RIS (5.36)
where we define A o
HO = e OHeC. (5.37)

Eq. (5.35) can be used to update the symmetric part of A¢? (i.e. SA%) whilst Eq.
(5.36]) can be used to update the antisymmetric part of A% (i.e. AA%’) .

v

5.3.1 Unrelaxed PDMs

It can be verified that the expression of the CCVB-SD one-particle density matrix
(IPDM) is identical to that of RCCSD.[494] On the other hand, the expression for
the two-particle density matrix (2PDM) has an extra term associated with Q. To
see this, we define a spin-orbital tensor of size 2(nocc + nyir)* (having both same-spin
and opposite-spin blocks) that represents the CCVB-SD unrelaxed 2PDM:

o140 T A G/ A ~ ~ 5 1 A~ ~ A~ A~ T A
571‘7011;1022 = <(p0| (I + A) (e g<a;)01 a;o_g 0/30_2 arol)eg - _<a;ol ago-QaSO'Q arc'l )ISQ2> ’®0>

2
(5.38)
— G€£”1g”2 + Qérfmsqu (5_39)
where ) o )
Tertens = (@l (L4 N)e 9(af, al as,,ar, )e? |Po) (5.40)
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and
) o o 1 T A ~ ~ ~ A T A
Qghrides — —5 (@ I+ A)(af, al as,,ar, )1sQ% [®o). (5.41)

gf is the RCCSD contribution with the cluster operator C; and Q£ is an extra term
coming from Q. Tt is clear that the second term contributes to only OOVV blocks
(i.e. 5%1](’2) because Q2 produces quadruply excited configurations. We then use a
similar trlck used in Eq. to write the extra term in the following form:

Qehrdr — — (@] (1+ Ag)e(al al, ap,, da,, )se? | o). (5.42)

toq .70'2

Having these unrelaxed PDMs allows for computing unrelaxed one-electron and two-
electron properties.

As the formation of relaxed PDMs (i.e. response equations) for CCVB-SD re-
mains unchanged from RCCSD, [494] all the relaxed properties of CCVB-SD are
computed by usual ways as is done for RCCSD. The analytical gradients can be
readily implemented in general coupled-cluster codes.

5.4 Block-Tensor Implementation of CCVB-SD

In this section, we use uppercase letters such as S, °S, 45, @, A, A, and “A to
indicate spinless tensors or operators as before, and lowercase letters such as s, ¢, u,
v, A p,(,and £ are used for spinful tensors, i.e. ones with spin-orbital indices.

5.4.1 Tensorial Properties of Doubles Operators

In a spin-orbital based implementation, S is represented by a set of amplitudes
517172 a5 shown in Eq. (5.21). With this, we can extract 4S:

lo1Jog

a 1 bgaq baa agba aqb agb aoba

A5 = T (51‘53'& F Siniy = Sivie = Singy — 28,07 — 231.&]@&) : (5.43)

This form, however, poses a little challenge when embedded into block-tensor based

codes as accessing individual elements of tensors will be highly inefficient. Manipu-

lating such equations in terms of block tensors instead of individual elements is thus
valuable.

Q-Chem’s[236] coupled-cluster code, ccman2, extensively employs the block tensors

implemented in a general tensor library called libtensor. [495] In 1libtensor, any

doubles amplitudes of the form o, ”1;;2 are stored only with non-zero, symmetry-

unique blocks, called canonical blocks. For instance, when unrestricted orbitals are
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(87870707

faaf Bafa

BBAG

Figure 5.2: The data structure of block tensors of order 4. Colored blocks are
only canonical blocks for tensors with restricted orbitals, and (aaa«) block can be
obtained from (afBaf) block in the case of singlet operators.

used there are three canonical blocks (i.e. (aaaw), (B653), (afaf)) out of the total
six blocks illustrated in Figure In the case of restricted orbitals and closed-shell
molecules (or more generally singlet operators), one needs only opposite-spin blocks
(i.e. (afaf)) to form the entire tensor. This is because restricted orbitals imply
the a <> f symmetry and for singlet operators same-spin blocks can be obtained by
antisymmetrising opposite-spin blocks.

This can be seen from the form of a singlet configuration |®) = S|®,). The
projection of this state onto the same-spin space is simply obtained as

aaba __ aaba A qab
spebe = (Agere|S|g) = \/g Si. (5.44)
Similarly, the opposite-spin projection is
dabs _ s A\ %abs _Lscam LA qab
Siajﬁ _< 7 jg |S|®O> 2 S'LJ \/ﬁ S@]) (545)
baa baa 1
Sings = (A371S81®0) = SS%"+—AS%”. (5.46)

V12

This shows that for any combination of (i, 7) and (a,b) including i = j or a = b

aaba aabg o baag
Siaja — Siajs — Siajs - (5.47)

Similarly, one can show

1 Qa, a a Qa,
gtaba _ - (S,a% Ghaas | Jaas _ S,a?’ﬁ) _ (5.48)

taja talp Za]ﬁ ]oﬂﬁ Jalp
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As long as restricted orbitals are employed, both Eq. and Eq. are
identical. The latter is preferred for the purpose of demonstration because it is
easier to see the full antisymmetrisation with respect to permuting either occupied
orbitals or virtual orbitals. Symbolically, we write thisEq. as

SS(s) = % asymmg [asymmy [0S(s)]], (5.49)

where S8S(+) denotes the same-spin block of a given tensor as in

SS(s)¥ = siole (5.50)

laja?
0S(-) denotes the opposite-spin block of a given tensor as in

0S(s){) = S?;;f, (5.51)

and asymmg[-] and asymmy[-] perform antisymmetrisation of a given tensor over oc-
cupied and virtual spatial indices, respectively. Similarly, we define symmetrisation
of a given tensor as symmg[-| and symmy[-] over occupied and virtual spatial indices,
respectively. In passing, we note that Eq. implies that the spinless antisym-
metric part of a singlet tensor is obtained simply scaling the same-spin component
of the corresponding singlet spinful tensor. This is again in the symbolic form:

45 = —/3 55(s). (5.52)

We then illustrate the tensorial properties of Q which will be useful to derive
block-tensor equations. It can be read from Eq. ((5.25)) that (similarly to Eq. ((5.44))

1
SS(=—=Q. 5.53
(q) \/EQ (5.53)

and (caaa) and (BBSH) blocks of q are identical. Combining this with Eq. (/5.26))
and Eq. (5.52)), we arrive at

-2
SS(g)=— *3 = /2 SS(s). 5.54
) 7 V2 8S(s) (5.54)

This shows how the same-spin block of the spinful tensor q is related to the same-spin
block of a singlet tensor s. Also, the opposite spin-block of q is

0S(g)=—SS(q), (5.55)

and this contrasts with Eq. (5.49), which manifests a different tensorial property of
singlet and quintet tensors.
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5.4.2 T-Amplitude Solver

The singles equation is identical to RCCSD with the doubles operator G, so we
will focus on solving the doubles equation. Based on the properties of the doubles
operators appearing in CCVB-SD discussed above, CCVB-SD can be efficiently im-
plemented in a block-tensor based coupled cluster codes. The CCVB-SD amplitude
equation reads

A (@) = i (6) — (v (Q) — (aosbos ioon)) =0, (5.56)

oy Jog 101]02 7/01.70'2

where we define

<I>o> , (5.57)

agl b(72 N agq b(72
101]02 (O> <A7/<71.702 > <558)

,u(@) can be obtained easily with any existing coupled-cluster codes whereas comput-
ing ¥(0O) is not as straightforward. Below we illustrate how to solve this amplitudes
equation with details on computing v(Q) from u(Q):

Qg 0o A Qo bcr ) /
MZCHIJG; (O) <Ai"11j022 H

and
1sHO|®

1. Perform the block-tensor operation demonstrated in Eq. (5.54]) based on s
either from the previous iteration or an initial guess. This gives SS(q) and
then performing the operation in Eq. (5.55) yields the full q tensor.

2. Form p(Q) defined in Eq. (5.57). This can be achieved with any standard

coupled-cluster codes.

3. V(Q) is obtained through a spin-projection of u( Q) onto a 4-electron singlet
subspace. Since v(Q) is strictly a singlet, we can utilize the tensorial properties
of general singlet tensors discussed above. The upshot is that we only need to

obtain 08(v(Q)) and $S(v(Q)) will be obtained using Eq. (5.49). For the
sake of simplicity, we write p and v to indicate u(Q) and v(Q), respectively.

The element wiseelement-wise definition of v is well described in the appendix
of ref.141, which can be further simplified to

aabs L [ bgaa | baag apba anbs | agbs
Viaj,e o 6 <Mi6ja + Ky aJp + 2“%] + 2'U’Zajﬂ + 'ulﬁjﬁ + 'U’Za]a>

]' a a
=3 (u @as | o %abs | /ﬁaba) (5.59)

lajp talp taja
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where we used ,u?abﬁ = 11{*"* . We then write this in a block-tensor form:

08(v) = 5 (0(s) + symm[0S(s0)] +5S(4)). (5.60)

The same-spin blocks are obtained using Eq. . In passing, we note that
Eq. gives a correct singlet tensor even when there are repeated indices.
One can verify that this single operation yields all the spin-projected opposite-
spin blocks of the tensor described in the appendix of ref.141.

~

After evaluating p(G), a standard Jacobi iteration along with Pulay’s direct inversion
of the iterative subspace (DIIS) [496] can be used to solve for the amplitudes. This
completes the implementation of the CCVB-SD T-amplitude solver. The computa-
tional cost of CCVB-SD has a larger prefactor (roughly twice larger) than RCCSD
due to the need for constructing U(Q) As its asymptotic scaling is the same as
RCCSD (n?..n?. ), this is considered a minor drawback. More detailed information
on the performance of this implementation is available in the applications discussed
later.

5.4.3 A-Equation Solver

We define a general spin-orbital tensor + that can be readily computed in usual
coupled cluster programs as follows,

Vi (0) = (@ (HO + A A + Do HO o) (o Al> a6

ke

Using this tensor and Eq. (5.11), Eq. (5.35]) can be achieved by

A

1
5 symmy [symmg [0S (7(G)) 1], (5.62)

whereas with Eq. (5.12)) and Eq. (5.25)), Eq. (5.36) can be written as

1 1 5 3
7 (_5 asymmy [asymmg [0S (7(G))] — 2SS W(g)))

+ % (—% asymmy [asymmg [0S (7(Q))] + SS (7(@))) : (5.63)

Combining these with Eq. (5.45)), a full update of 0S(\) is obtained. As A is a singlet
spin-orbital tensor, we can simply obtain the same-spin block using Eq. (5.49)).
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(-

Figure 5.3: The chemical structure of n-acene (C,H,C, H, ).

-1

5.4.4 Unrelaxed PDMs
The form presented in Eq. (5.42)) is not convenient to use because of the singlet

projection operator appearing in the middle of two non-singlet operators. Thus, it is
natural to form separate expressions for the symmetric part and the antisymmetric
part of the 2PDM tensor similarly to what is proposed in the A-equation solver. We
define a spin-orbital tensor
loy Jo 7 1 —O/at A ~ ~ )

Cagllbaz = —(Dg| (I+ Ag)e Q(afg1 ;Q Qb,, aadl)eg Do), (5.64)
and this can be easily computed in the same way as RCCD. Using Eq. (5.45]), 0S (Q§ )
is obtained as

3 1
0S <9§)=Z symmy [symmg [0S (()1]

1 1
+ 3 (Z asymmy [asymmg [0S ({) ]+ SS(C)) . (5.65)

As 9¢ is a singlet tensor, we can use Eq. (5.49) to form SS(2¢) based on 0S(2€)
obtained above.

5.5 Applications to oligoacenes

The acenes, illustrated in Fig. 5.3 are known to exhibit emergent strong corre-
lations as their length grows and thus they provide a well-defined platform for test-

ing novel approaches for strong correlations. There have been numerous studies on
oligoacenes using various methods such as CASSCF, [330, |483] DMRG-CASCIL, |38, |39
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variational 2-RDM methods, [484-486] adaptive CI (ACI),[487] multi-reference aver-
aged quadratic coupled cluster (MR-AQCC),[497, 498| and density functional theory
(DFT) based methods such as DET/MRCI,[488] thermally-assisted-occupation DET
(TAO-DFT),[489] fractional-spin DFT (FS-DFT),|490] and particle-particle random-
phase approximation (pp-RPA).J491] Although RCCSD has been applied to short
acenes (n<7)[483, 499, |500], there is no study on longer acenes using RCCSD mainly
because of their known failures for strongly correlated systems.

We compare absolute energies and natural orbital occupation numbers of different
SRCC methods against the exact answers taken from ref.38 up to 12-acene with
all m-electrons correlated. The natural orbital occupation numbers for SRCC are
computed with symmetrised 1IPDMs. Symmetrised 1PDMs yield very similar results
to unsymmetrised ones. We further study and discuss higher acenes (n>12) using
CCVB-SD with a well-defined model geometry (Re_¢c = 1.3964A, Ro_yy = 1.0755A)
not only correlating m-electrons but correlating all the valence electrons. All the
calculations presented below employ a minimal basis (STO-3G) and are performed
with the development version of Q-Chem.[236] All the plots were generated with
matplotlib.[283]

5.5.1 Comparison against DMRG with all m-electrons
correlated

We first examine whether using RHF orbitals is valid for these systems because
the quality of RHF orbitals often degrades for strongly correlated systems. Optimised
doubles (OD) [178] 267] or orbital-optimised CCD yields nearly identical energies
to those of RCCSD, implying that RHF orbitals are qualitatively correct. Due to
convergence issues, OD was performed only up to 6-acene, so, to further examine the
efficacy of using RHF orbitals, we also carried out test CCVB-SD calculations with
RBLYP orbitals. The use of RBLYP orbitals does not yield qualitatively different
results. Therefore, the numbers reported in Table are all obtained using stable
RHF orbitals that are spatially symmetric.

For weakly correlated systems, RCCSD and CCVB-SD yield almost identical
results and the deviation between the two becomes more significant for the systems
with strong correlations. For the acenes shown in Table[5.1] the RCCSD energies are
significantly lower than those of CCVB-SD, which hints at a non-variational failure
of RCCSD. More specifically, as illustrated in Table 5.1, RCCSD and OD may be
starting to “turn over” at 6-acene because the error in correlation energies is smaller
in 6-acene than in 5-acene. Moreover, the RCCSD(T) energies are lower than those
of DMRG. Fig. demonstrates that the correlation energy error per acene unit
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n  DMRG  CCVB-SD RCCSD RCCSD(T) OD QCCD QCCD(2)
2 -378.862173 0472 2.509 20499 2.550  5.102 2.015
3 -529.721682 14.671 4472 0.784 4.538  8.766 5.071
4 -680.578678 20481  6.103 _1.888  6.203  13.000 7.653
5 -831.434630 26.941  7.142 4185 7.254 17.846  10.706
6 -982.290070 34.822  6.432 0.609 6.114 23.989  14.750
8 -1284.000964 54.051  DNC DNC DNC  DNC DNC
10 -1585.713311 71973  DNC DNC DNC  DNC DNC
12 -1887.425575 80.154  DNC DNC DNC  DNC DNC

Table 5.1: Reference absolute energies (in Hartrees) from the m-space DMRG cal-
culations of ref.38 and deviations (in mH) of several methods from the DMRG val-
ues. Geometries are also taken from ref.38 which were optimised at the level of
UB3LYP/6-31G* with S = 0. The number of renormalised states, M, of DMRG
calculations is 1000. The DMRG calculation for n=12 was not fully converged with
respect to M. Calculations with convergence problems are indicated by DNC. RHF
orbitals are used for CCVB-SD, RCCSD, and RCCSD(T) whereas OD, QCCD, and
QCCD(2) are computed with optimised orbitals.

8
6 //
T
€ 4
= —— CCVB-SD
=~ —— RCCSD
5 2 ——— RCCSD(T)
w —— OD
0 QCCD
QCCD(2)
-2
2 4 6 8 10 12
n-acene

Figure 5.4: The correlation energy error with respect to DMRG per acene unit of
different coupled-cluster methods. We note that the OD curve is right on top of the
RCCSD one.

in CCVB-SD reaches a plateau value as the system size increases. It confirms that
the correlation energy error in CCVB-SD is size-extensive. Furthermore, RCCSD,
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RCCSD(T), and OD turn over at 5-acene. In the end, they must plateau since they
are all size-extensive.

We confirm whether RCCSD behaves non-variationally by performing orbital-
optimised QCCD [442] where the left eigenfunction is improved by including a de-
excitation operator up to quadratic terms and the right eigenfunction remains the
same as that of RCCD. This more balanced treatment of the left eigenfunction allows
for an energy evaluation closer to that of variational CC.

Table shows that the QCCD energies are above the RCCSD energies for
every acene considered here. As QCCD energies are closer to the true variational
CCSD energies, [430, 442] we conclude that RCCSD behavesmay be behaving non-
variationally even for short acenes. It is interesting that even a seemingly innocent
molecule like naphthalene apparently shows non-variationality of RCCSD given that
this behaviour has been mostly observed for molecules near bond dissociations. In
passing, we note that CCVB-SD does not show any convergence issues unlike the
others presented here and this is likely due to the approximate inclusion of connected
quadruples that stablisesstabilises singles and doubles amplitudes.

Neither QCCD nor CCVB-SD is variational, so either could in principle exhibit
non-variationality. In other words, both CCVB-SD and QCCD [430] can legitimately
be below variational CCSD. QCCD cannot reach the correct limit for bond-breaking
while CCVB-SD can.[442] Yet CCVB-SD yields higher energies for the acenes. This
suggests that QCCD may be also exhibiting non-variationality. It will be interesting
to see other approaches such as unitary CCSD[432-435] and extended CCSD|[436-
441] to further investigate this. In passing we note that, unlike RCCSD(T), the
QCCD(2) energiesthe energies of QCCD(2),|444] which is a perturbative correction
of a similar level of theory to RCCSD(T), are above the DMRG energies for acenes
up to n = 6. It will be interesting to see whether QCCD(2) will become lower than
DMRG for longer acenes. Given that the NOONs of QCCD and CCVB-SD are very
similar and their energies are yet very different, it will be interesting to compare a
perturbative correction to CCVB-SD and QCCD(2) in the future.

We then discuss the natural orbital occupation numbers (NOONS) of each method.
The NOONSs of RCCSD show larger polyradical character than that of DMRG, which
indicates RCCSD’s tendency to overcorrelate these systems. The NOONs of QCCD
are less polarised than those of CCSDRCCSD and they are very similar to those
of CCVB-SD. The NOONs of CCVB-SD show similar trends to DMRG’s, but with
smaller radical character. This may, in part, be due to missing connected higher-
than-double excitations in CCVB-SD that may be necessary to better describe corre-
lations of acenes. We discuss more in depth the nature of correlations in oligoacenes
in a separate study.



CHAPTER 5. CCVB-SD FOR STRONGLY CORRELATED SYSTEMS 138

b
CYP ®); 00
2 —— 2
1.75 3 1.75 -
8 150 4 £ 150 4
£ 5 £ —— 5
E 125 6 5125 6
=z 8 z
§ 1.00 pr § 1.00
8075 12 3075
=2 =2
S 0.50 S 0.50
o o
0.25 0.25
0.00 0.00
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
© Orbital Index @ Orbital Index
C
2.00 2.00
—— 2 2
1.75 - 1.75 4
(2] (2]
5 1.50 4 5150 4
Q —— 5 QO 5
E 125 e E125 g
z z 8
é 1.00 § 1.00 P
S 0.75 2075 12
3 3
S 0.50 S 0.50
o o
0.25 0.25
0.00 0.00
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Orbital Index Orbital Index

Figure 5.5: Natural orbital occupation numbers from (a) DMRG, (b) RCCSD, (c)
QCCD, and (d) CCVB-SD.

5.5.2 Application of CCVB-SD to longer acene oligomers

We apply CCVB-SD to a model geometry up to 23-acene with all m-electrons
correlated and up to 17-acene with all valence electrons correlated. As mentioned
carlier, the lengths of all C-C and C-H bonds are fixed at 1.3964 A and 1.0755 A,
respectively. The angle between three neighboring carbons and the angle between
H—C—C are fixed at 120° to ensure Dy, symmetry.

The NOONSs for these series are shown in Fig. Compared to the results from
the UB3LYP geometries used above, there is virtually no difference in the NOONS.
It has been pointed out that small changes in geometries of oligoacenes do not alter
their NOONS. Regardless of whether all m-electrons are correlated or all valence
electrons are correlated, both cases exhibit a plateau region as the acene chain length
increases.

Mizukami et al. applied DMRG with M = 256 to a model geometry (R¢—_c(shorter) =
1.402A, Re_c(longer) = 1.435A, Ro_ i = 1.010A) up to 25-acene with all 7-electrons
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Figure 5.6: Natural orbital occupation numbers of model geometries (Ro_¢c =
1.3964 A, Ro_y = 1.0755 A) from CCVB-SD with (a) all m-electrons correlated and
(b) all valence electrons correlated. The largest calculation in (b) correlates 318
electrons in 318 orbitals.

correlated, which is slightly different than the one used in this study. Fitting the
NOONSs of HONO (highest occupied natural orbital with occupation greater than
1) and LUNO (lowest unoccupied natural orbital with occupation less than 1) to
analytical functions in Fig[5.6| (a), the asymptotes for (HONO, LUNO) were found
to be (1.36, 0.64) for CCVB-SD, whilst the ref. 39 authors obtained (1.30, 0.70)
for DMRG. Those M = 256 DMRG calculations were far from being converged
with respect to the number of renormalised states and thus we expect the exact
asymptotes to be closer to 1.0 for both HONO and LUNO. The m-space CCVB-
SD asymptote is less radicaloid, but it qualitatively captures the emergent strong
correlations present in oligoacenes.

The progression of emergent strong correlations as a function of the length of
acenes when correlating all valence electrons has not yet been well-characterised
mainly because of the absence of suitable quantum chemistry models. The signifi-
cant progress that has been made in developing FCIQMC , and DMRG
, , allows treatment of systems with approximately 100 electrons in 100
orbitals at near benchmark accuracy. However, correlating all valence electrons of
the oligoacenes requires an active space much larger than this limit (e.g. even 5-
acene (pentacene) has 102 electrons in 102 orbitals for the full-valence space). On
the other hand, more economical wavefunction based methods such as RCCSD can-
not properly describe systems with emergent strong correlations of many electrons
as shown in the previous section.

Here, we apply CCVB-SD to oligoacenes up to 17-acene correlating all valence
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electrons, which yields a maximum active space of 318 electrons and 318 orbitals.
The largest CCVB-SD calculation took little less than two hours per iteration using
32 cores in AMD Opteron Processor 6376. Under the same condition, RCCSD took
roughly an hour per iteration, which confirms that the computational cost of CCVB-
SD is twice larger than RCCSD.

Comparing NOONSs of both casesm-space and full-valence space calculations as
illustrated in Fig. [5.6, it is interesting to note that the radical character in terms
of NOONSs is considerably less prominent for the full-valence calculations. This may
be understood similarly to the way we understand two-configuration SCF (TCSCF)
wavefunctions that tend to yield larger amplitudes on the excited determinants com-
pared to the exact answers. Therefore, one would expect more radicaloid (closer to
1) NOONS for truncated active space calculations, which in our case are m-space cal-
culations. The NOONSs from the full-valence calculations also reach a plateau region
as the system grows and the asymptote is (1.63, 0.37) for (HONO, LUNO).

(€Y (b)

15.0 0.18
—e— Valence space
12,5 —*— m-Space

016 Valence ()
< —— Valence (o)

[0}

E 014 —— r-space

w 0.12

L

T 0.10 W

o©
S)

Radical Index
~
[$)]

x
- 0.08
Q
(72}
5.0 5 0.06
§0.04
2.5 z
0.02
0.0 0.00
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Number of Carbon Atoms Number of Carbon Atoms

Figure 5.7: (a) Radical index as a function of the number of carbon atoms, and (b)
normalised radical index as a function of the number of carbon atoms.

We further compute the radical index (RI) of oligoacenes. The RI, proposed by
Head-Gordon [282], is a measure of the number of radical electrons in a system.
Although in terms of NOONs of HONO and LUNO the valence calculations seem to
exhibit smaller radical characters than the m-space calculations, the net RI is larger
in the valence calculations as illustrated in Fig. |5.7| (a). This is because there are
4-5 times more correlated electrons in the valence calculations than in the m-space
calculations. Therefore, we separate 0-NOs and 7-NOs in the valence calculations
and divide the RI by the number of o or m-electrons, respectively. This normalised
RI (NRI) directly indicates the average radical character per electron in a system
and the NRI closer to 1.0 indicates more of radical character. For example, an ideal
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diradical would yield NRI of 1.0 within (2,2) active space. We classify HONO - n, /2
+1 to HONO and LUNO to LUNO + n,/2 - 1 as m-NOs and the rest of NOs as
0-NOs. This is justified because the NOs in this range are each of 7 character.The
m-NOs and 0-NOs are classfied by their irreducible representations as the NOs from
CCVB-SD are all spatially symmetric in the systems considered in this work.

With this classification, the resulting NRI is depicted in Fig. (b). Unsurpris-
ingly, the 0-NOs in the valence calculations do not show any noticeable changes in
the NRI and their NRIs are much smaller than those of 7-NOs. The NRI of valence-7
is smaller than that of m-space calculations, which is consistent with what is observed
in the NOONs. The NRIs of 7-NOs increase as system grows and they reach bulk
values in both valence and m-space calculations. This clearly shows the progressive
emergent radical character in the m-space of oligoacenes. In passing, we note that
increasing the basis beyond STO-3G is expected to show a further reduction in the
largest NOONSs for virtuals and this is an interesting subject of future study.

5.6 Conclusions and Outlook

In this paper, we summarized the CCVB-SD electron correlation method in terms
of orthogonally spin-adapted doubles operators and derived its A-equation and un-
relaxed density matrices. We also described a block-tensor based implementation of
CCVB-SD and showed a large-scale application to acene oligomers correlating up to
318 electrons in 318 orbitals.

Studying oligoacenes with CCVB-SD and other single reference CC methods, sev-
eral interesting results were found: (1) Even for naphthalene, a significant difference
in energy between RCCSD and QCCD was found, which suggests non-variational
behaviour of RCCSD. This non-variational behaviour becomes more pronounced for
larger acenes. (2) CCVB-SD qualitatively captures strong correlations of acenes
based on the comparison between NOONs from CCVB-SD and DMRGJ38, 39] and
(3) correlating all valence electrons shows a significantly smaller radical character in
the m-space than when correlating only the m-electrons, but it still shows progressive
emergent strong correlations as system grows.

Lack of connected excitation beyond double in CCVB-SD is possibly the largest
missing contribution, with triples (T) being the leading correction. In the future,
modifications of CCVB-SD to include T (and beyond) are desirable. There are
many ways to pursue this direction including non-iterative approaches as is done
in similarity-transformed perturbation theory, [502] CCSD(T), [418] and optimised-
inner-projection method that has been applied to incorporate T into ACPQ.[503-
505 Approximating T in a non-iterativea self-contained iterative fashion using singles



CHAPTER 5. CCVB-SD FOR STRONGLY CORRELATED SYSTEMS 142

and doubles similarly to the way CCVB-SD approximates connected quadruples (Q)
would be formally and computationally more satisfying but is still an open question.

There are other future extensions of CCVB-SD to consider such as linear-response
CC (LR-CC) [506| or equation-of-motion CC (EOM-CC) [507] for excited states and
open-shell CCVB-SD similar to open-shell CCVB. [281] As CCVB-SD handles va-
lence correlations well, for basis sets larger than minimal basis, it would be ben-
eficial to develop valence optimised CCVB-D similarly to valence optimised dou-
bles (VOD).|256] It will be interesting to study mechanisms of reactions involving
strongly correlated transition states such as pericyclic reactions using algorithms
such as nudged elastic band [508, 509] and growing string methods. [510-513] The
production-level implementation of CCVB-SD energy and gradients described in this
paper will facilitate these exciting developments and applications.

5.7 Appendix

5.7.1 Proof of Eq. (5.26)
We begin with Eq. (63) and Eq. (64) of ref. 141 in our present notation,

- Z Seb b, (5.66)

z]ab
A 1
Q: §Zsab ttAab (567)
_ Z Sab Sab ttA;L]b7 (568)
where t‘jjb, Sf;b, and Q“b in ref. 141 correspond to Sf;b, E?Jb, and "k ‘jjb, respectively.
Therefore, we Wr1te
ab — S@.” — S?f- (5.69)

In terms of SSZ“b and 390 Eab is written as

177
- 3 e L e
N = ——\g R i (5.70)
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For any ¢ # j and a # b, using Eq. (5.70]) one can show that the terms in Eq. (5.17))
and Eq. (5.66) pertinent to these indices are

V3

. . . 1 .
ab Zab ab Zab ab ab sszab ab ab ttzab
S qab SSEA ab | A cab ttZA ab
which gives
S cab V3 ab ab
1
A qab ab ab
Siy = 9 (555 = S5) - (5.74)

Comparing Eq. (5.74) and Eq. (5.69) proves Eq. (5.26]).
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Chapter 6

Open-Shell Coupled-Cluster
Valence-Bond Theory Augmented
with an Independent Amplitude
Approximation for Three-Pair
Correlations

6.1 Introduction

Low-order Mgller-Plesset perturbation theory, based on the best possible inde-
pendent particle model, qualitatively fails for systems with strong correlation (SC).
Such failure is commonly observed in the bond dissociation of molecules. Upon disso-
ciating bonds, all the electrons involved become perfectly localized and the different
spin states become all degenerate. We define this particular type of strong correla-
tion as strong spin-correlation (SSC).[128] SSC is often characterized by high energy
costs for charge transfer excitations, versus very small energy costs for spin-flipping
excitations that leave local charges unchanged. As a result SSC problems typically
have wavefunctions in which the amplitudes for spin-flipping excitations are large
and essential, while the amplitudes for charge transfer substitutions are small and of
secondary importance.

There are a number of numerical techniques that can properly describe SSC
and we mention some of the significant developments. We first mention density
matrix renormalization group (DMRG) theory by White |34} 36, 404, |405] which
was originally developed to simulate one-dimensional (1D) quantum lattice models.
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DMRG correctly encodes the entanglement area law [36] for 1D gapped systems
with local Hamiltonian, and this is the key to its success in solving 1D problems.
This technique from the condensed matter physics community has been successfully
applied to quantum chemical problems [40, 41, [514] although the scaling is still
exponential in higher dimensions than 1D.

There are two promising quantum Monte Carlo (QMC) algorithms that work
with Slater determinants. First, we mention Alavi and co-worker’s full configuration
interaction QMC (FCIQMC),[402] which is formally exponential scaling. It, how-
ever, has significantly pushed back the onset of the exponential wall to roughly 50
electrons. Sampling determinants stochastically, FCIQMC avoids the usual fixed-
node approximations commonly used in diffusion MC. It has been applied to various
molecular systems along with solid-state applications.[42, 410]

Another alternative is auxiliary field QMC (AFQMC).[515] AFQMC utilizes the
Hubbard-Stratonovich transformation to elegantly cast an interacting many-body
problem to non-interacting problems with a set of random auxiliary fields. Sampling
an infinite number of auxiliary fields in principle converges to the exact answer.
However, employing either a constrained-path or phaseless approximation is almost
necessary in practice to control the sign problem in large systems at the expense of
introducing bias.|516, [517] Its application to chemical systems has been somewhat
limited although preliminary results are promising.[518-523]

From the quantum chemistry community, there are numerous brute-force ap-
proaches based on configuration interaction (CI) methods.[58] Most of them are in
general exponential scaling using configuration selection with second-order pertur-
bation theory to reduce the prefactor relative to full CI. [216} 365, |391} 524-535] A
recently introduced, exponential-scaling heat-bath CI (HCI) also belongs to this cat-
egory, [365], 391} |534} [535] and this method is used for the benchmark purpose in this
paper. To best of our knowledge, none of the methods in this category can exactly
dissociate multiple bonds with only a polynomial amount of work with respect to
the number of bonds.

Other quantum chemistry methods are mainly based on coupled-cluster (CC) ap-
proaches. It is a particularly promising direction as those methods generally involve
only a polynomial number of wavefunction parameters to describe an exponential
of number of configurations through the non-linear wavefunction ansatz. There are
numerous approaches in this category,|76} |92, 111} 128, 140, |141} |280, 281}, 411, 412,
422, 1425, 1442, 1447, 448, 451|462, |505| [536-545] and our method discussed below also
falls into this. Interested readers are referred to Introduction of ref. 142 and the
references therein.

Our group has been developing a powerful polynomial-scaling approach to bond-

breaking based on CC valence bond (CCVB).[128, 140-142, 280, 281] It encodes
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strong spin-correlations by excitations from a generalized valence bond perfect pair-
ing (GVB-PP) reference [362, 546] and involves only a quadratic number of wave-
function parameters associated with two-pair (2P) substitutions. Furthermore, it
yields a spin-pure, size-extensive wavefunction and its cost is dominated by integral
transformation as long as the amplitude equation is solved by a computationally inex-
pensive way. The CCVB ansatz generalizes spin-projected unrestricted Hartree-Fock
(SPUHF) [481}, [547-550] to a size-extensive wavefunction at the expense of orbital-
invariance and variationality. It can reach the correct asymptote when breaking
bonds as long as UHF can properly dissociate. Moreover, in some cases CCVB can
break bonds when UHF cannot reach the correct asymptote such as a triplet O,
dissociation to two triplet oxygens.

CCVB can be understood from various different perspectives. One of them is
to look at CCVB from a VB perspective. The spin-coupled VB (SCVB) approach
[492, 551H553| can describe bond-breaking exactly within a given active space at an
exponential-scaling cost. Applying a modified CC expansion with double excitations
along with strong orthogonality between pairs, we obtain CCVB that is polynomial-
scaling and practically identical to SCVB at dissociation limits.

Another viewpoint is to start from CCVB with singles and doubles (CCVB-SD)
[141], [142] which is a full singles and doubles model like restricted CC singles and
doubles (RCCSD) and parametrizes connected quadruples in a different way than
RCCSD. Replacing singles with orbital optimization and applying the pairing active
space constraint and the local approximation (i.e., sparsifying T-amplitudes), we ob-
tain CCVB with an RHF reference. One could then write the same wavefunction
with a GVB-PP reference by converting the GVB-PP amplitudes to GVB-PP polar-
ization angles. This allows for writing the CCVB ansatz in the originally proposed
form.

The goal of this paper is to demonstrate the failure of the original CCVB model
for open-shell spin-frustrated systems and the necessity to incorporate 3-pair (3P)
substitutions in such systems. We also introduce an improved wavefunction where
the number of independent wavefunction parameters scales still quadratically with
system size, but it includes the influence of 3P substitutions within the independent
amplitude approximation (IAA). We denote this new model as CCVB+i3 and we
will present full details later in the paper.

This paper is organized as follows: we first review CCVB and then discuss the
full 3P extension of this model, CCVB-3. We formally analyze CCVB-3 and discuss
a subtle issue regarding the size-consistency of the model. We then introduce a new
model, CCVB+i3 which is an attempt to include the 3P substitutions in a simpler,
size-consistent manner. Lastly, we discuss interesting spin-frustrated model systems
along with models of two chemically relevant, realistic systems. Therein, we show
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promising results of CCVB+i3 compared to HCI.

6.2 Theory

6.2.1 Notation

In this paper we use K, L, M, P, Q, R, --- to denote closed-shell (CS) pairs, u, v, A, -
- to denote singly occupied orbitals, and a, b, c,- - - to denote either of them. More
precisely, this means

1<K,L,M,P,Q,R,---<mng (6.1)
ng < [V, A, s <y
1<a,bec,--- <ng

where n, and ng denote the number of a and 3 electrons, respectively.
We also establish a notation for several quantities which will be used throughout
this paper. The GVB-PP (or PP for short) reference is defined as

o) = [ Jal. T4« 10) (6.4)

where we used |0) to denote the vacuum state, &La is the fermionic creation operator,

and the singlet pair (or geminal) K creation operator gi x 1s defined as

1

St ot g ot g ot
Jix = (20080Ka al —sinfgal a sinfga. a ) 6.5
K /2 (1 + cos? k) KaKp R o (6:5)

Kg K, Kg

where 0 is the polarization angle for a pair K and K,, K3z, K,, and Kg denote the
four spin-orbitals associated with the pair. 6x = 7/2 corresponds to a fully polarized
pair (i.e., a perfect diradical). Those pairs are strongly orthogonal which simplifies
the calculation of matrix elements discussed later.

In CCVB, other configurations in addition to the PP reference are defined with
excitations from the reference. The 2P substitutions include a CS-CS substitution
(552)a R

’w(KL)> = dZ2,KL§8,K§S,L W’O> ) (6-6)

and a CS-OS substitution (d42),

W(Ku)> = @2,1@&#&@3,}( |10) (6.7)
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where )
gt :_(AT gt —gt b —gh g ) 6.8
$2,KL 3 t1,K9t1,L t2,K9t3,L t3,K9t2,L (6.8)
and .
o A N
dd2,Ku = ﬁ (gtl’KaLa + \/ﬁgt%KaLB) (6.9)

with the triplet pair creation operators,

. 1 A A

gL,K = E <_a}(a&}<ﬂ + a}{aa;{5> g (6.10)
§Z2,K - d}ad}a, (6.11)
QZ:;,K = &E(ﬁ&}(ﬁ' (6.12)

In a simpler term, d,, represents a substitution of a product of two singlet pairs with

two triplet pairs coupled into a four-electron singlet configuration. Similarly, d4 is a

substitution of a product of a singlet geminal with an alpha electron with a triplet

pair and a unpaired electron coupled into a three-electron doublet configuration.
The 3P substitutions include a CS-CS-CS substitution (eg5),

[Veran) = €ls wrarls,i s,0.s,0r [Yo) (6.13)

and a CS-CS-OS substitution (eg5),

L)) = €l sy 95,585, L [t00) (6.14)
where
. I+ 5 . oAt s At A
Cs5, KLM — %( ZI,KQIQ,LQZS,M - 921,K923,L932,M - gth,thTLLgZ&M
N N N
T 9, k93,090, t Gi3, k901,902, — gtS,thZ,Lgtl,M)7 (6.15)
and
1
ot _ T N ERAY N N ERY
€a5, KLy = % (_\/§ <9t1,K9t2,L - th,thl,L> GLB + <9t2,K9t3,L - gtS,thQ,L> aLa> .
(6.16)

Similarly to the 2P substitutions, €,5 denotes a substitution of a product of three
singlet pairs with a product of three triplet pairs coupled to an overall singlet and €45
represents a substitution of a product of two singlet pairs and an alpha electron with
a product of two triplet pairs and a unpaired electron coupled to an overall doublet.
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The higher-order substitutions are trivially defined with the definitions above by
the virtue of a CC expansion. For instance, we have

|¢(Ku)(LMN)> = dLQ,Kpduags,K |¢(LMN)> = CZIIZ,K,uduags,Kél&LMNgvagS,MgS,N |@/}0> .
(6.17)
Those substitutions are not necessarily orthogonal and generally linearly depen-
dent for a given excitation level. We introduce a dual frame to {|¢;)}, which we shall
write {|#;)}. In particular, we define {|¢;)} to be the canonical dual frame of {|¢;)},

[66) =D (S7),, 15) (6.18)

j
where S;; = (;]1;) and S is the pseudoinverse of S. Forming S* can be done
quite cheaply exploiting the block structure of S. Moreover, in some special cases
we have |¢;) = |1;) as the relevant block in S forms an identity block. These include

|b0) = |vo), |Okr)) = |Ykr)), and |dxrany) = [Ykray). Other than those three
special cases, |¢;) is expected to be different from [;).

6.2.2 Review of CCVB

We review the CCVB wavefunction ansatz that includes only 2P substitutions
(i.e., (KL), (Kp)) and disconnected higher-order substitutions arising from those.
The pertinent CC expansion in terms of {|¢;)} reads

[Pap) = |¢0) + Z tir |drr)) + Ztm |Dxcuy)
KL K

K<L

+ Z (tKLtMN ‘¢(KL)(MN)> +ixkmlon ‘¢(KM)(LN)> +txntom |¢(KN)(LM)>)

KLMN
K<L<M<N

+ Z (txrtiy ’¢(KL)(MM)> +ixmtry ‘¢(KM)(LM)> +ixutom ‘¢(K,u)(LM)>)

KLMpu
K<L<M

+ Z (trutin | Gacmy@n ) + trrtin [daenymm)) + - - - (6.19)

KLpA

K<L

p<A
where we listed only those terms that are necessary to solve the CCVB 2P amplitude
equation. The CCVB energy and the 2P amplitudes are computed via projection

equations similar to those of regular CC methods:
E = (0| H |12p) (6.20)
Etga = <¢(Ka)‘ 7:[ |¢2P> . (621)
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The 2P amplitude residual of CCVB reads
Ria = (V(rcay| H [¢20) — Btia. (6.22)

When solving Ry, = 0, a complication arises as (¢ k) | Yin)) # Oux and (V) | V) (Ly)) 7
0. In other words, we need to compute the pseudoinverse of a block in S that is not
as small as that of the CS case. In particular, the size of the block of S that we need
to pseudo-invert is now system-dependent.

To circumvent this complication, Small and Head-Gordon employed a supersys-
tem approach which adds fictitious 8 electrons to a high-spin original system to
make it overall a CS system.[281] In this approach, each OS « electron is coupled
with a fictitious 5 electron and they behave as a CS pair together in |¥y). We refer
to this pair composed of an original system electron and a fictitious electron as an
“OS” pair. Note that we are using |Vy) to denote the closed-shell supersystem in
contrast to |¢)g) which we used to denote the original system. We work with a CCVB
wavefunction of this fictitious supersystem whose complete set of spin configurations
(which include all 3P substitutions as well) contain those of the original CCVB con-
figurations. Solving the modified 2P amplitude equation of the supersystem with
some constraints is equivalent to solving the original CCVB amplitude equation.

We seek tg, that satisfies Q, = 0 where

Qkr = Rkr, (6.23)
QK,u = RK,u + Z ’%K#;)\tK/M’ (624)

AFp

where )
Kaie = (Viaty| H [V ave)) - (6.25)

The constraints on the supersystem amplitudes are

ty = (6.26)

Sl

and

Ly = E (tky —tiy) (6.27)

We emphasize that those amplitudes, tx, and tx ., are equivalent to the amplitudes
for the original system. Interested readers are referred to ref. 281 for the detailed
derivation of this supersystem approach.

As shown in ref. 140, CCVB is capable of reaching the correct dissociation
limit as long as UHF can. Its energy becomes exact in that limit as its energy
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is merely the sum of the restricted open-shell HF (ROHF) energy of each high-
spin fragment. The strengths of CCVB are its size-consistency, spin-purity, and
polynomial-scaling cost (which is dominated by integral transformation). One would
expect CCVB to fail for systems where UHF fails to reach a proper dissociation limit
and only generalized HF (GHF) can reach the correct asymptote among available
single-determinant wavefunctions. We shall see such examples later in the paper and
we will also show that the scope of CCVB for OS systems turns out to be much
broader than that of UHF.

6.2.3 Primer: The OS PP+i2 Ansatz

As mentioned in ref. 143, a simple way to go beyond CCVB for closed-shell
systems is to remove all the terms that contain amplitudes other than tx; when
solving Riy, = 0 in Eq. (6.22). We refer to this as the independent amplitude
approximation (IAA) approach. This modified amplitude equation leads to a model
called PP+i2. Unlike CCVB, PP+i2 is quite often variationally unstable (i.e., the
resulting PP+i2 energy is too low). However, it can often reach correct asymptotes
when CCVB cannot. Due to its simplicity, we tried to extend the PP+i2 ansatz
to the open-shell systems and shall explain subtle difficulties involved in pursuing
it below. However, we do not report any results associated with this model in this
work.

The CS PP+i2 amplitude equation follows

@Rk = (Weny | HI€uen)) — trer (ol H|E k) (6.28)

where
&xry) = Vo) +trr|dir)) (6.29)

Solving @ Ry, = 0 leads to a simple quadratic equation in tx;, and different ampli-
tudes are decoupled from each other. The solution to this quadratic equation might
not exist and we observed this quite frequently near its variational breakdown. When
the solution exists, we chose the one out of two solutions that gives a lower CCVB to-
tal energy. This approach was inspired by independent electron-pair approximations
in coupled-cluster theory.[554-565]

The natural inclination towards OS PP+i2 would be to solve (employing the
supersystem approach) @ Qg, = 0 where we define

@0, = DRy (6.30)

(Q)QKM = (Vi | HIE k) — tru(VolHIE@wu) + Z KK ALK (6.31)
AFp
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where
Zkw) = 1%0) + trul Piacy)) (6.32)

One may impose the constraints in Eq. and Eq. so that the supersystem
amplitudes represent the original system amplitudes. This is what we initially tried
and it worked reasonably well.

Alternatively to this approach, one may attempt to apply the IAA approach to the
original system amplitude equation and then apply the supersystem transformation.
This is not as simple as what is described above as |w(K”)> and |7,ZJ(K,\)> (or the
corresponding vectors in the dual frame) are not necessarily orthogonal even when
w1 # A. With this in mind, we tried to allow ¢k, to depend on tx in the supersystem
amplitude equation. This then leads to a modified CS-OS residual:

O = (Vi [ HIEK) — ticu (o HIEK) + D Krcunticn (6.33)
AFp

where

Zk) = Vo) + ZtKA’(D(K)\)> (6.34)
\

Solving @) ku = 0 under the constraints in Eq. and Eq. for t g, involves
still a quadratic equation in ¢, and one may employ an iterative approach to solve
the residual equation until we have a self-consistent set of {tx,}. This version of OS
PP+i2 was found a little more variationally stable than the one described above, but
it is still generally not recommended due to its instability. We use this OS PP+i2 to
obtain a set of initial amplitudes for the subsequent CCVB calculations.

In the case of CS fragments, size-consistency means that the energy of non-
interacting closed-shell molecules is merely the sum of individual CCVB energy of
each molecule. This is satisfied if every intermolecular amplitude is zero at the
well-separated limit. Evidently, Eq. is size-consistent. In the case of OS
fragments, we define the size-consistency as follows: the energy of non-interacting
molecules (either closed-shell or open-shell) is the sum of their individual CCVB
energies assuming that fragments are not spin-coupled into a lower spin manifold.
Based on this definition, we conclude that both Eq. and Eq. ensure
the size-consistency of PP+i2.

6.2.4 The OS CCVB-3 Ansatz

Extending the CCVB wavefunction might seem relatively straightforward; we
augment the cluster expansion of CCVB with missing 3P substitutions. The first
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inclination might be to try the following CC expansion,

[Ysp) = |Yap) + Z kLM |¢(KLM)> + Z kL ’¢(KLM)>

KLM KLp
K<L<M K<L

+ g (tKLthR |¢(KL)(pQR)> + {nine other permutations})
KLPQR
K<L<P<Q<R

+ trrtyvn | Oy Ny ) + {five other permutations}
p | PEL)(MNp)

KLMNp
K<L<M<N

+ Z (tKMtLMN |¢(Kﬂ)(LMN)> + {three other permutations})

KLMNp
K<L<M<N
+ E (trutomn |¢(Ku)(LM)\)> + trutr ’¢(Lu)(KMA)> + tamutroa ‘¢(Mu)(KL>\)>
KLMp\
K<L<M
pn<A

+ {3 terms from (pu <> \)}) +-- - (6.35)

We note that CCVB-3 includes all possible spin configurations through the cluster
expansion. In other words, it is complete in the sense that the cluster expansion
includes the same number of spin configurations as that of SCVB for a given active
space. The remaining difference between SCVB and CCVB-3 is then largely from
strong orthogonality between pairs assuming the CC approximation to the spin-
coupling vector is reasonable.
Following the previous supersystem strategies, we first define the CCVB-3 energy
as
E = (Wo| H [Usp) (6.36)

We then write the supersystem CS-CS 2P residual in the following manner:
POk = Rgr + Z UKLaRK Lia (6.37)
ag{K,L}
The CS-OS 2P residual can also be similarly defined:
3pQKu = RKM + Z tK,ua'%K,u;a (638)
a¢{K,u}

Up to the 2P amplitude equation, the model is evidently size-consistent.
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We further proceed to the 3P amplitude residual equation:

POrera = <‘I’(KLa)| H |W3p) — Elgra
= tir (Wircra| 7| @ny) + tra (Yicra)| H | ®icay) + tra (Vi) H [ Pra)

+ Z (tKLb <‘I’(KLa)| H |‘I>(KLb)> + tkab <‘1’(KLa)| H ‘(I)(Kab)>
b¢{K,La}

+ Trab <\IJ(KLG)‘ H ’@(L“b)> )

+ Z (tKatLb V(K La) |7‘[|CI’ Ka)(Lb)) + thtLa<‘I/(KLa)|7:l|q)(Kb)(La)>
b¢{K,La}

+ trrtan(V (K La) |7:l\CI>(KL)(ab)>>

+ Z (tbctKLa(\P(KLa)|7:[|<I>(bc)(KLa)) + {9 other permutations}>
b,c¢{K,L,a}

+tKLa <<‘1/(KLQ)’ H | (k1a)) — E) (6.39)

We now show that this residual equation may not yield a size-consistent model due
to the contributions from the 5P substitutions.

We first assume that every amplitude that contains pairs associated with more
than one fragment is all zero. We additionally assume that K is well separated
from L and a in Eq. . Our goal is to check whether the residual equation
in Eq. is trivially zero under these assumptions. It is easy to see that the
contributions from the 2P and 3P substitutions are zero either because the pertinent
amplitude is zero or the hamiltonian matrix element is zero. Moreover, the last term
in Eq. is zero as txrqe = 0.

The 4P contribution is not as trivial to see that it is zero, so we discuss more
details. Among three terms listed in the summation of the 4P terms, only the second
term may survive as tg, = txr, = 0. We now claim that

trotra(V (K La) |7:l|q)(Kb)(La)> =0 (6.40)

for any b. If b is not on the same fragment as K, tx, = 0 and thus the entire 4P terms
are zero. If b is on the same fragment as K, the matrix element, (V14 ]72|<I>( Kb)(La)) s
is zero. We provide more details on how to show that this matrix element is zero in
the Appendix.

We turn our focus to the 5P contribution. We again assume that K is well
separated form L and a. There are only three terms in the summation that are not



CHAPTER 6. OS CCVB AUGMENTED WITH AN INDEPENDENT
AMPLITUDE APPROXIMATION FOR THREE-PAIR CORRELATIONS 155

trivially zero:

Z (thtLac<\Ij(KLa)|7:”(I)(Kb)(Lac)> +tretLav(¥Y (K La) ’ﬂ‘qD(Kc)(Lab))
b,c¢{K,L,a}

+ trat koe(¥Y (K La) |7:[|(I)(La)(Kbc)>) (6.41)

The overlap matrix and its pseudoinverse that defines the transformation between ®-
set and W-set are given in Appendix. First, we consider the case where b and ¢ both
are on a different fragment from that of K. In this case, all the associated amplitudes
vanish so the corresponding contribution to Eq. is zero. Next, we consider
the case where b and ¢ both are on the same fragment as K. This automatically
zeroes out the first two terms in Eq. as trge = tray = 0. As the associated
amplitudes are not zero for the third term, we must examine whether the integral
vanishes. After some algebra, one can show that the third term does not vanish in
general. Similarly, in the case where only one of b and ¢ is on the same fragment as
K and the other one is on the same fragment as I and a, the pertinent integral does
not vanish in general. Therefore, we conclude that CCVB-3 is not size-consistent in
general.

6.2.5 The OS CCVB+i3 Ansatz

In the previous section, we proved that CCVB-3 is in general not size-consistent
due to the 5P contributions in the amplitude equation. It is quite tempting to
ignore those 5P contributions and build a model based on other terms up to the 4P
contributions. Though this is an interesting model to try, an even simpler model can
be formulated by applying the same strategy as that of OS PP+i2. Namely, <\II( K La)|
couples only with configurations containing exactly (K La) or its subset. We call this
model along with the full treatment of 2P configurations (i.e., Eq. and Eq.

(6.38)), CCVB+i3.
The supersystem OS CCVB+i3 amplitude residual then reads

D10 = (Vo) HIE (kc2a)) — trcna{ Vo HIE (K La)) (6.42)

where

E(kra)) = Vo) + txr|Pkr) + tralPka) + tralP(ra) + tkLal PicLay).  (6.43)
Solving ¥k, = 0 for tx 1, is quite straightforward as it is a simple linear equation
in txr. The solution follows

tKLEKL:a — TKaKKa:L + tLaKLa:K
(txopxr + traltica + tLaliia) — WKLa

tkLa = (6.44)
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where ) R
wira = (Vkra)| 7 |Prray) — (Pol H |Wo) (6.45)
and R
prca = (Yol H | D)) - (6.46)
KKap, hKa, and Wi, are expressed in terms of readily computable quantities given
in AppendiX. We note that tKLa = _tKaL = tLa,K = _tLKa = taKL = _taLK n

constrast to tx, = tuk-

Similarly to OS PP+i2, there may be more than one way to choose |Zkp,) due
to the fact that configurations involving an OS electron are not orthogonal configu-
rations involving different OS electrons or even of different substitution levels. For
instance, we have <1/)(KLM) ’¢(KLA)> # 0 when p # A. One may apply the TAA
approach to the original system amplitude equation and then transform to the su-
persystem configurations. In this case, the amplitudes associated with W;( KLu)> shall
involve contributions from W( KL ,\)> as they overlap. This leads to a different choice

Of |EKL,u>;

L) = 1Wo) + sl ®xry) +Z (trAl®irn) + toalPon) + troa|Pxrn)) (6.47)
X

While this is certainly an interesting alternative, in this paper we focus on the
CCVB+i3 model with Eq. (6.42)).

In CCVB+i3, we work with only tx, as independent variables and tg, is di-
rectly parametrized by tx,. txr. can be viewed as an attempt to incorporate the 3P
influence using only 2P amplitudes. One may argue that ¢, should still be consid-
ered independent wavefunction parameters. Our viewpoint, however, is that tx, in
CCVB+i3 is not considered independent as it does not increase the computational
scaling of CCVB. Hence, we claim that we have not effectively increased the num-
ber of independent wavefunction parameters going from CCVB to CCVB+i3. This
contrasts with other wavefunction methods such as the second-order Mgller-Plesset
perturbation theory (MP2) and CC singles and doubles with a perturbative triples
(CCSD(T)). In MP2, the doubles amplitudes are directly parametrized by HF or-
bitals. It, however, has a steeper computational scaling compared to HF. Similarly,
in CCSD(T), the perturbative triples amplitudes are directly parametrized by singles
and doubles amplitudes with an increase in the computational scaling.

The scope of CCVB+i3 is not yet clear to us even though we have not yet found
a system where CCVB+i3 fails to dissociate properly. Mathematical proofs related
to this and a more complicated and improved CCVB model will be investigated in
the future.
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6.2.6 CCVB+i3 Lagrangian and Orbital Optimization

We establish the Lagrangian of CCVB+i3 for the orbital optimization. The
Lagrangian follows

L=FE+ Z Mo | Bia + Z tkabEKap | + Z Mz QL (6.48)

K<a b¢{K,a} K<L<a

where \g, and Ak, represent the L-amplitudes. As we know txr, as a function
of tgr,tka, and tr,, one may avoid using Agr, and directly substitute the result
to tg. above. However, we chose to work with Axr, as a matter of convenience.
In Eq. , we left out A, and Ak, as their T-amplitudes are constrained; we
incorporate t,, and tg,, through explicit substitutions to the Lagrangian using Eq.

(6.26) and Eq. (6.27). Evidently, we have

oL
=0= 0k, 6.49
P K (6.49)
and Y
=0="Qk, 6.50
a)\KLa KL ( )
From or
=0 6.51
Fraiall (6.51)
we obtain JUSR
A N gy — b 6.52
315Ka Z Mb Dt re. >+ bg{;a} Kab Dt ( )

where in the last sum we have A, = 0 as discussed before. Those derivatives in Eq.
(6.52) are provided in terms of computable quantities in the Appendix. We obtain
>\KLa from

oL
OKLa

=0, (6.53)

which yields

A K a A aKKa;L + A alLa;
A = KLKEKL; KaKKa:L LaKLa:K (6.54)
ki + tkallika + thaltla — WKLa

We note that A\gy, is antisymmetric under permuting two indices as in txr,. We
substitute Mg, in Eq. (6.52)) using Eq. (6.54]). The resulting equation is only linear
in Ak, and therefore Ag, can be uniquely determined as long as Eq. (6.52) is not
ill-defined.
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Having solved the L-amplitude and T-amplitude equations, the subsequent or-
bital optimization is relatively straightforward. We parametrize orbital rotations
with a unitary exponential matrix,

C = Coexp (A — AT) (6.55)

and the pertinent orbital gradient and Hessian are obtained taking derivatives of the
Lagrangian in Eq. (6.48). The orbital gradient reads

oL
A
qu = oA, (6.56)
and the Hessian reads
AA oL
H = (6.57)

Pars T N0,

We also need the gradient and the hessian of £ with respect to the polarization angle
Ok (ie., LY and H?) and those can be obtained in the exactly same fashion. We
treat A,, and 0 as independent variables and optimize the Lagrangian over those
parameters. These are enough to establish any first-order convergence techniques
and the optimizer we employed in this work is the geometry direct minimization
(GDM) [240, 251}, 566] which needs an orbital gradient and the diagonal elements of
Hessian. Most of the relevant terms in L®, HA?, LY, and HY are available in ref.
280. We discuss the CCVB+i3 specific terms in Appendix.

6.2.7 Amplitude Solvers

We found solving the CCVB+i3 amplitude equations quite challenging for some
systems presented below. This may be understood by observing that there are many
low-lying states nearly degenerate for strongly correlated systems and this implies
that there is more than one set of cluster amplitudes that can represent the state
of our interest. Unlike linear wavefunctions, this poses a great challenge to CC
wavefunctions as amplitude solvers may get easily lost during iterations and ampli-
tude equations may become nearly ill-conditioned. Therefore, we had to try several
different solvers discussed below.

For CCVB calculations, the recommended T-amplitude and L-amplitude solver
is Gauss-Seidel combined with Pulay’s direct inversion of the iterative space (GS-
DIIS).[496, [567] The GS step solves a quadratic equation in Eq. and Eq.
for tx, while keeping all other amplitudes fixed. It solves a linear equation in
the case of Ag,. The GS step scales cubically with the number of pairs. One may
consider using GS-DIIS for CCVB+i3 when solving Eq. and Eq. (6.38). It
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becomes a cubic equation in tx, once one multiplies both sides by the denominator
of Eq. . It is still a linear equation in the case of Ag,. The computational cost
scales still cubically with the system size.

When GS-DIIS fails to find a solution, we employ the Gauss-Newton method
with line-search (GN-LS). This was done by defining a cost function f as a squared
sum of amplitude equations. In other words, the cost function reads

f= % > 9%kl (6.58)

K<a

The line-search guarantees a descent direction that decreases the value of f. The
GN-LS method requires the evaluation of Jacobian J and the inverse of it. The
Jacobian of CCVB and CCVB+i3 are given in Appendix. As the length of J scales
quadratically with the number of pairs, n,, it requires (’)(n;l,) amount of work to
evaluate it and O(ng) to invert it. While this is not an ideal solver for CCVB
due to the steep scaling, for the systems studied in this paper, the time for solving
amplitudes with GN-LS is negligible compared to that of integral transformation.

Some systems exhibited serious numerical issues with GN-LS because J was
nearly singular (i.e., the smallest singular value is roughly 1e=5~1e~"). In such cases,
we found it more effective to use preconditioned limited-memory Broydon-Fletcher-
Goldfarb-Shanno (L-BFGS) with line-search (L-BFGS-LS) where we used the inverse
of the diagonal elements of JJ7 as the preconditioner. The evaluation of J is the bot-
tleneck in this case which scales O(n,). With this solver, the overall cost of CCVB
methods is still dominated by integral transformation.

In this work, we used L-BFGS-LS for the numbers reported and GN-LS for testing
purposes. L-BFGS-LS has been adequate for most systems described here, but when
J is nearly singular its convergence becomes extremely slow. In fact, there is no
bulletproof method when J is nearly singular; this is an interesting open question in
applied mathematics. [568]

6.2.8 Computational Cost

The computational cost of CCVB is dominated by integral transformation and
the rest of the computations scale cubically with the system size if the amplitude
equation is solved via GS-DIIS. [140] The cost of evaluating txr, in Eq. is
dominated by the computation of wgr,. A naive way to evaluate wgr, would scale
quartically due to the summation involved in Eq. (S18). However, if we precompute
Y u (OKaititriss — Okasssiss) (quantities defined in Appendix) and store this for every
CS pair K, we can evaluate wgr, with a cubic amount of work. Thus, CCVB+i3, in
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principle, scales the same as CCVB as long as the underlying amplitude solver takes
an equal or less amount of work.

6.3 Computational Details

All CCVB, CCVB+i3, GVB-PP, spin-flip complete active space (SF-CAS),[343,
569] HF, and self-consistent field molecular interaction (SCF-MI) [570, 571 cal-
culations were performed with the development version of Q-Chem.[236] CASSCF
calculations were performed using Orca [572] and PySCF. [573] Heat-bath CI (HCI)
[365] and HCISCF [391] calculations were carried out with Dice[574] interfaced with
PySCF. We also used GAMESS,[575] and Psi4 [576] to crosscheck some of the CASSCF
numbers presented below.

For all CCVB calculations but those for the [Cry] molecular magnet, we used
a tolerance of 107'2 for the amplitudes solver, which tests the root-mean-square
(RMS) of JQ2, and a tolerance of 1e™® for the orbital optimizer, which tests the RMS
of orbital gradients and the step size. These were enough to get energy converged up
to 0.1-1 pH. Due to numerical challenges we faced in studying [Cr,], we used looser
convergence criteria for [Cryl; 1078-1071° for T-amplitudes. These were enough to
converge energies up to 0.1-0.01 kcal/mol. The CASSCF calculations were converged
up to at least 0.1 pH. All plots were generated with Matplotlib. [283] All molecular
figures were generated with Chemcraft.[284]

We mention how we obtain an initial set of orbitals to perform CCVB calculations.
Like most other pairing methods, the CCVB energy is not orbital-invariant and
CCVB exhibits multiple local minima in orbital optimization. Therefore, obtaining
physically correct initial orbitals and pairing them properly in the beginning are
often crucial to properly run CCVB calculations. The procedure of obtaining an
initial guess used in this work and running “spin-ladder” calculations is as follows:

1. We perform an SCF-MI calculation of the lowest spin state that UHF can
describe for a given active space. For the examples discussed below, this state
is always Mg = 3/2.

2. We then perform a GVB-PP calculation of S = 3/2 using the orbitals from the
SCF-MI calculation. Orbitals from this GVB-PP calculation are well localized.

3. We use chemical intuition, usually based on sensible Lewis dot structures, to
pair localized orbitals properly for S = 1/2. This is the most non-trivial step
when running CCVB.
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4. We run GVB-PP to optimize the new pairing for the lowest spin-state, in our
case S = 1/2.

5. We run CCVB for S = 1/2 using GVB-PP orbitals from Step 4.

6. From the solution of S = 1/2, we unpair most polarized pairs based on their
polarization angles to obtain initial orbitals for higher spin states. We found

this “spin-ladder” calculation quite robust. This approach was also used in ref.
281.

For those systems discussed below, this procedure always produced a sensible solu-
tion. Due to the ambiguity involved in Step 3, one may try multiple possible Lewis
dot structures in general.

6.4 Results and Discussions

Spin-frustrated systems often exhibit a UHF to GHF instability, so one may ex-
pect CCVB to fail qualitatively for those. In the following, we consider a total of
five spin-frustrated systems. Those systems are spin-frustrated based on the Kahn’s
definition[577]; they are open-shell, involve an odd number of sites, and are geomet-
rically symmetric. We consider systems with three unpaired electrons per site which
correspond to the S—% Heisenberg model. This choice was made based on observations
from S—% frustrated systems such as a hydrogen lattice where UHF can dissociate the
lowest spin-state correctly. Consistent with the success of UHF, we did not observe
any significant differences between CCVB and CCVB+i3 in this case.

Studying S—% systems, we uncover that 3P configurations are necessary for a
qualitatively correct description of the lowest spin state (i.e., doublet) and even
higher spin states in some cases. We emphasize the role of ;5 and €45, which are
missing in CCVB. In terms of the original system configurations, €45 is generated by
annihilating two singlet pairs and an « electron and creating two triplet pairs coupled
to a triplet which is then recoupled with the remaining unpaired electron to form
an overall doublet. This configuration is captured by the corresponding supersystem
configuration. The detailed discussion on the role of the ez configurations in CS
systems is given by two of us.[143]

6.4.1 N; (Dgsy) — Spin-frustration involving p orbitals

Triangular N, is perhaps the simplest system that satisfies our criteria described
above. It has three unpaired electrons per site and is strictly spin-frustrated due to
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symmetry. We consider its dissociation to three nitrogens (*S) within the cc-pVTZ
basis set.[237] The active space we consider is (9e, 90) and it is small enough to
perform exact CASSCF calculations. For the S = 9/2 state, ROHF is exact within
the active space and thus CCVB is also exact. There are no |®(k,)) configurations
in the S = 7/2 state. Hence, CCVB and CCVB+i3 are exactly identical in the case
of S =7/2. UHF can properly dissociate Mg = 3/2 and Mg = 9/2.
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Figure 6.1: Potential energy curves of Ny from (a) CASSCF (9e, 90), (b) CCVB, (c)
CCVB+i3, and (d) SF-CAS. The black dotted line indicates the asymptotic energy of
three N(*S), £ = —163.1920735 Ej,. Different line styles for each spin state represent
different local minima.

We first discuss potential energy curves (PECs) of CASSCF(9e,90) calculations
for each spin state as illustrated in Figure Only S =1/2 and S = 3/2 are bound
states with a small hump towards the dissociation limit. The S = 3/2, S = 5/2, and
S = 7/2 states exhibit multiple solutions, which may indicate an inadequate choice
of active space. Moreover, those CASSCF solutions break the spatial symmetry.
One could employ a larger active space to see whether it resolves these issues, but
we focus on only pairing active spaces of the form of (ne, no) for the purpose of
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this work. We note that we observed multiple solutions even from CASSCF(15e,
120) calculations, which are full valence active space calculations. This indicates
that those solutions may actually be physical and there may exist state crossings.
However, this larger active space CASSCF still breaks spatial symmetry except for
S =9/2 (ROHF limit).

Two CASSCF solutions in S = 3/2 show small differences in converged orbitals.
We employed Knizia’s intrinsic bond orbital (IBO) localization scheme |578] to char-
acterize two solutions at R = 1.4 A. As we localized only the active space orbitals,
this procedure does not change the CASSCF energy. The solid line solution has one
bond-like orbital whereas the dotted line solution shows only localized orbitals. This
is quite sensible given that the dotted line solution is connected to the dissociation
limit where localized orbitals are most sensible. There is a third solution that ap-
pears between 2.42 A and 3.00 A. This solution is almost identical to the dotted line
and the energy difference between those two is less than 1 mE;,. We did not include
this solution for simplicity.

For S = 5/2, there are a total of five CASSCF solutions found. Interestingly,
one of them does not dissociate properly. This solution involves a delocalized orbital
even after the IBO localization. Its natural orbital occupation number indicates that
there is a doubly occupied orbital and an empty orbital in the active space at R = 3.0
A. One may suggest that this solution is dissociating to one N (*D) and two N (*S)’s,
but its energy is about 16 kcal/mol higher than this limit at R = 3.0 A. We suspect
that it is an unphysical solution that comes from the delocalized orbital.

Lastly, there are two solutions observed in the S = 7/2 state. We compared
orbitals of two solutions at R = 1.2 A and the IBO localization analysis reveals
more localized character in the higher energy solution (dotted) than in the lower
energy solution (solid). Also, there is an almost doubly occupied orbital in the solid
line based on natural orbital occupation numbers whereas the dotted line exhibits
no such strong double occupation. It is sensible that the dashed line solutions are
indeed lower in energy when approaching the dissociation limit.

Both CCVB and CCVB+i3 in Figure|6.1|successfully capture qualitative features
of CASSCF solutions. Perhaps, the most interesting finding of two panels, (b) and
(c), is that CCVB+i3 reaches the exact dissociation limit for every spin state while
CCVB cannot reach the correct asymptote for S = 1/2 and has some solutions for
S = 3/2 that cannot dissociate properly. This observation will be elaborated in
greater detail later.

Lastly, we present SF-CAS results in Figure (d). Since it is based on spa-
tially symmetric high-spin S = 9/2 orbitals, these CAS wavefunctions are spatially
symmetric. The low-spin solutions are lacking in orbital relaxation so these results
are upper-bounds for symmetry-adapted CASSCF solutions. Other than S = 1/2,
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there are numerous solutions crossing and these are very similar to broken symmetry
CASSCF, CCVB, and CCVB+i3 solutions.

Both CCVB methods involve two solutions in the S = 1/2 state. We inspected
the orbitals from two solutions at R = 2.0 A. There are a pair of orbitals and a singly
occupied orbital that are of very different character in each solution. The solid line,
which is higher in energy at this geometry, has more delocalized orbitals while the
dotted line exhibit more localized orbitals. There are more solutions than CASSCF in
the case of S = 3/2 and two of those solutions resemble those of CASSCF. The rest of
solutions exhibit a purely repulsive curve which are likely unphysical. Reading those
repulsive solutions into CASSCF, we confirmed that they are not close to any stable
stationary points and they all collapse to the other solutions we have. The solutions
for S = 5/2 and S = 7/2 can be easily compared to their CASSCF counterparts.
In passing, we note that those that appear in CCVB but not in CASSCF can be
tentatively attributed to the pairwise nonorthogonality limitation of CCVB rather
than the spin-coupling limitation. Therefore they are likely to disappear if we use
its orbital-invariant generalization, CCVB-SD.[141] [142]

00 1.25 150 1.75 2.00 225 2.50 2.75 3.00
Ry-n (A) Ry-n (4)

Figure 6.2: Errors in absolute energy relative to CASSCF of N; for (a) CCVB and
(b) CCVB+i3. The line style of each line is consistent with that of Figure [6.1] and
we omitted solutions that we could not find the counterpart in CASSCEF.

We present a more precise error analysis of two CCVB models against CASSCF
results in Figure . Near the equilibrium distance of S = 1/2, all the states
exhibit quite substantial CCVB errors and this is a manifestation of the lack of ionic
configurations relevant to dynamic correlations. However, as mentioned earlier, it
should be emphasized that CCVB+i3 can dissociate all the spin states exactly in
this example. CCVB shows two distinct solutions for S = 1/2 and S = 3/2 that
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do not dissociate properly. This is indeed the hallmark of 3P substitutions that are
necessary to describe the spin frustration.

We also note that there are S = 5/2 solutions in both CCVB and CCVB+i3,
which exhibit a slight non-variationality (about 0.05 kcal/mol) at R = 3.0 A. This is
the first time for us to observe non-variationality of CCVB, and we further confirmed
this by reading CCVB orbitals into a CASSCF calculation and observing higher
energy in the final CASSCF energy. As the extent to which CCVB manifests this
non-variationality is almost negligible, we did not find it very concerning.

5 4
f;l s=12 N s=32 N
2 3 3
N N N—N N—N
6 5
(a) (b) (c)
4 [
S=312 N ] S=5/2 N . S=172 N_ S=912 _N_
1
13 [
N N——N, N N, N N
6 5
(d) (e (f) (8

Figure 6.3: Panel (a) shows how we label the three nitrogens. The remaining
panels illustrate possible Lewis structures of Ny for each spin state: (b) S =1/2, (c)
S =3/2,(d) S =3/2(e) S=5/2, (f) S=7/2, and (g) S = 9/2. The number
next to each bond or unpaired electron is used to label a CS (blue) or OS (red) pair.
(c) and (d) represent two possible Lewis structures of N; when S = 3/2. Every N-N
bond consists of p-orbitals and each N atom has three p-orbitals which yields an
active space of (9e, 90).

It is interesting to discuss what the significant 3P substitutions are when dis-
sociating this molecule. As CCVB+i3 does not make significant differences near
equilibrium bond lengths, CCVB and CCVB+i3 energies are very similar. However,
tk 1o becomes quite significant as one stretches bonds.

In Table we present the 2P and 3P amplitudes of the S = 1/2 CCVB+i3
solution at R = 3.0 A. Orbitals are strongly localized, so each CS or OS pair cor-
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K a tKa K L a tKLa,
2 3] 0.56500 1 3 4| 0.74396
4 5] -0.55826 1 2 4| 0.71019
1 5| -0.55825 3 4 51-0.38253
3 4] -0.55449 1 3 5]-0.38213
1 3| 0.55448 2 4 51-0.36031
2 4| -0.53524 1 2 5-0.35995
1 2| 0.53523 2 3 4] 0.00260
1 41| 0.53192 1 2 3| 0.00260
3 5| -0.00028 2 3 5] 0.00015
2 5| -0.00026 1 4 5| 0.00000

Table 6.1: The CCVB+i3 2-pair and 3-pair amplitudes of Ny (S = 1/2) at R = 3.0
A. 1-4 are CS pairs and 5 is an OS pair. Pair labels are consistent with those in

Figure (b).

responds to bonds and an unpaired electron in the Lewis structures in Figure [6.3
Most of the ¢k, amplitudes have values close to 1/ v/3, but there are two amplitudes
that are nearly zero. Those two correspond to the tx, type amplitudes, where the
CS pair K = 2,3 is not connected to the radical center, N(1) (See Figure (a)
and (b)). tx, involving a CS pair connecting N(1) and others all exhibit quite large
values. All the tx; amplitudes are large.

The two largest 3P amplitudes are of the txry type. Those CS pairs form a
perfect triangle and this is typical of large tx 5. Those involving three CS pairs
that do not form a triangle are almost negligible as shown in Table [6.1l There are
a total of four significant i, amplitudes. The basic observation is that they all
involve one CS pair that connects N(1) with N(2) or N(3) and the second CS pair
should connect N(2) and N(3). All the other ¢k, amplitudes that do not satisfy
this condition are all negligible.

The S = 3/2 state involves two reasonable Lewis dot structures, Figure
(c) and (d). Using the PP references that represent those Lewis dot structures
yields different CCVB solutions. The (c) orbitals give a reasonable description near
equilibrium, but CCVB cannot dissociate this solution to the right limit (neither
can UHF). (c) involves a triangle and three pair substitutions become crucial to
correctly dissociate. There is no triangle involved in the bonding network of (d), so
the 3P amplitudes are expected to be negligible and CCVB (and UHF) can properly
dissociate. Therefore, CCVB can dissociate S = 3/2 exactly with orbitals from (d),
but it gives a purely repulsive potential energy. Table presents tx, and tgr, for
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K a tKa

1 6| 0.55779 K L a| tkra

1 41-0.55779 1 2 3] 0.70949
3 4| 0.55779 1 2 4] 0.36038
2 6 |-0.55779 1 3 6 0.36038
2 5| 0.55779 1 2 5|-0.36038
3 5 -0.55779 1 3 51-0.36038
1 31-0.53284 2 3 6] 0.36037
1 21-0.53284 2 3 4-0.36037
2 3| -0.53284 1 3 4-0.00000
2 41 -0.00001 2 3 5| 0.00000
3 6| 0.00001 1 2 6] 0.00000
1 5| 0.00000

Table 6.2: The CCVB+i3 2-pair and 3-pair amplitudes of Ny (S = 3/2) at R = 3.0
A. The solution here is well represented by the Lewis structure in Figure (c). 1-3
are CS pairs and 4-6 are OS pairs. Pair labels are consistent with those in Figure

(o).

CCVB+i3 calculation using the (c) orbitals. The observation here is consistent with
what is discussed above in the case of S =1/2.

The S = 5/2 state does not exhibit any notable 3P contributions as shown in
Table This is particularly interesting because it contains t195 and t154 that are
significant in describing the dissociation of S = 3/2. The initial guess orbitals are
from S = 1/2 orbitals and we unpair two most polarized electron pairs to obtain
the Lewis structure in Figure (e). The effect of orbital optimization is very
small at this distance. However, once those localized initial orbitals are optimized,
they become delocalized. The converged orbitals show almost no 3P contributions.
Surprisingly, even the localized initial orbitals do not exhibit significant 3P contri-
butions. Since the energy difference between those two orbitals is only 1 mEy, the
amplitudes in Table 6.3 are evaluated with those localized guess orbitals as a matter
of convenience.

Furthermore, the amplitudes presented in Table show differences relative to
our previous observations from S = 1/2 and S = 3/2. All the ¢, amplitudes are
close to £1/+/3, which include amplitudes involving an OS pair centered on N(1) and
a CS pair connecting the other two nitrogens. Moreover, this change in ¢, essentially
nullifies every tx,. For instance, we have non-negligible t195 in S = 3/2, but it is
very small in S = 5/2. We compared every parameter involved in evaluating t195
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K a tKa

2 5 |-0.56231

2 31 -0.56201

1 71]-0.56021 K L a lKLa
1 4 )-0.55980 1 2 5| 0.01945
2 6] 0.55930 1 2 3| 0.01861
1 6| 0.55754 1 2 41-0.01249
1 2| 0.55043 1 2 7/-0.01122
2 7 -0.54007 1 2 6|-0.00010
2 41-0.53817

1 3| -0.52954

1 5 -0.52867

Table 6.3: The CCVB+i3 2-pair and 3-pair amplitudes of N; (S = 5/2) at R = 3.0
A. The orbitals used here are well represented by the Lewis structure in Figure
(e). 1 and 2 are CS pairs and 3-7 are OS pairs. Pair labels are consistent with those

in Figure|6.3] (e).

through Eq. (6.44)), and the only significant difference is that ¢5 is zero in S = 3/2,
but is large in S = 5/2. The same applies to t124. We believe that those large
tx, amplitudes may be relevant to the broader applicability of CCVB than that of
UHF for OS systems, but we do not have a clear way to understand the limit of

its applicability yet. By contrast, it should be clear that UHF cannot dissociate
S =5/2.

6.4.2 V305 (Dj3,) — Spin-frustration involving s and d
orbitals

Vanadium oxides have drawn a lot of attention from the solid state physics com-
munity and they are often strongly correlated. In particular, VO, has been used to
study metal-to-insulator transitions.[579, [580] In this section, we study a symmetric
bond dissociation of a molecular vanadium oxide, V405, which is spin-frustrated un-
der D,y symmetry. It is probably not relevant to the strong correlations of VO, in
bulk, but we found this molecule interesting enough to study. Each V(II) in a VO
unit has an electron configuration of d?s! as opposed to the more commonly seen d?
and the VO molecule has a X 43~ ground state.[581] This is not an artifact from ap-
proximate quantum chemistry models and was confirmed experimentally before.[582]
We used a fixed VO bond length of 1.547431 A throughout and obtained the PECs
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within the def2-SVP basis set [254] by varying the distance between V and the center
of the triangle. The asymptote corresponds to three VO(X 4X7).
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Figure 6.4: Potential energy curves of a symmetric dissociation of V;04 from (a)
CASSCF (9e, 90), (b) CCVB, (¢) CCVB+i3, and (d) SF-CAS. The black dotted
line indicates the asymptotic energy of three VO(X *Y), E = —3052.5267114 E,.
Different line styles for each spin state represent different local minima.

Based on the CASSCF(9e, 90) results, the ground state is ferromagnetic with
S = 7/2 within the active space. However, the CASSCF solutions other than that
of S =9/2 all break spatial symmetry (Dgy,) to some extent and this artificial sym-
metry breaking indicates that the size of active space may not be fully appropriate
with CASSCF orbital optimization. This spatial symmetry breaking may also be
the reason that the energy of S = 9/2 is apparently too high compared to the rest.
Moreover, the appearance of multiple solutions also indicates the same. This partic-
ular choice of the active space is made for the purpose of benchmarking like before,
and it would be interesting to relax this pairing active space constraint in CASSCF
and compare against CCVB-SD in the future.
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As for lower spin states of other ferromagnetic systems, commonly used determi-
nant based CI methods suffer from spin-contamination, so we employed the configu-
ration state function (CSF) based CASSCF method in Orca. Some of the CASSCF
results presented below started from CCVB or CCVB+i3 orbitals which are in gen-
eral a very good guess. With determinant based CI methods, CASSCF can be very
prone to high spin-contamination and often just collapses to an unwanted spin-state.
This is commonly obeserved when trying to obtain a low-spin state when the ground
state is a high-spin state. We observed this quite frequently when starting from
CCVB orbitals and therefore for those which used CCVB orbitals as a guess we
added a penalty function to the electronic Hamiltonian to penalize the contaminants
as implemented in PySCF, which is to add A((S2) —S.(S,+1))? where X is a level-shift
parameter.

The CASSCF solutions in Figure (a) show quite interesting results. Near the
minimum (~ 3.36 A), the S = 1/2 — 7/2 states are very close in energy. Those
states are all within a 7 kcal/mol energy window of each other, and this is indeed the
hallmark of SSC. Electrons are well localized and flipping one of the spins costs only a
small energy penalty. We note that the system exhibits a strikingly slow convergence
to the asymptote as the bond length increases. This slow algebraic decay is due to
the fact that each X ¥~ VO is polar (roughly VT O™ [581]), and therefore the system
exhibits multipolar interactions at long range. This has been verified by a log-log
plot of energy-distance.

As is evident from Figure (b), CCVB solutions capture all the qualitative
features of their CASSCF counterparts except for the S = 1/2 state at the disso-
ciation limit. Similar to Ny, to describe the dissociation of the S = 1/2 state one
needs 3P substitutions. We observed multiple solutions in the case of the S = 3/2
state similar to those obtained for N5. Each of them corresponds to one of the Lewis
structures of S = 3/2 described in Figure (b) and (c), replacing N’s with VO’s.
However, we only present the solution that dissociates properly. This solution is
quite delocalized at R = 4.0 A unlike the localized solution we found in N,. The
CCVB+i3 in Figure (c) shows only one solution in S = 1/2 and it dissociates
properly. The other states are more or less the same as those in CCVB. Both CCVB
and CCVB+i3 correctly predict the relative energy ordering of different spin states
near equilibrium.

SF-CAS results are presented in Figure (d). These results are based on
spatially symmetric wavefunctions. All the curves in Figure (d) are smooth
unlike those obtained from CASSCF and CCVB methods. CASSCF, CCVB, and
CCVB-+i3 do not capture a small hump in S = 1/2 present in SF-CAS. Instead, they
exhibit a first-order derivative discontinuity due to the coexistence of two low-lying
solutions. We believe that the discontinuity is closely related to the existence of
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the hump in the S = 1/2 state of SF-CAS. The SF-CAS relative energy ordering of
different spin states near equilibrium agrees with other methods. It will be interesting
to study these spin gaps in conjunction with dynamic correlation treatments to draw
quantitative conclusions.

(a) 12 (b) 12
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Figure 6.5: Errors in absolute energy relative to CASSCF of a symmetric dissociation
of V504 for (a) CCVB and (b) CCVB+i3. The line style of each line is consistent
with that of Figure [6.4]

The errors in absolute energy relative to CASSCF are shown in Figure for
both CCVB and CCVB+i3. All the errors are much smaller than those for Nj,
which suggests that the bonding in V405 involves much smaller dynamic correlations
compared to N; within the active space. Clearly, CCVB+i3 shows improved results
compared to CCVB, and the key improvement is the exact bond dissociation of
S = 1/2. It improves the S = 3/2 and S = 5/2 states by 1-2 kcal/mol. We also note
that both CCVB and CCVB+i3 exhibit a slight non-variationality (<0.50 kcal/mol)
in S = 5/2. The CASSCF calculations starting from those orbitals converged to
higher values. As it is not significant in magnitude, we do not find it very concerning.

The CCVB+i3 amplitudes of the S = 1/2 state at R = 4.0 A are shown in Table
[6.4f There are several qualitatively different features compared to the Ny results. The
2P amplitudes involving an OS pair localized on VO(1) and a CS pair connecting two
other VO’s are much larger. This is opposite to what was observed in N5. Usually,
when 2P amplitudes are much larger than 1/ /3 in magnitude, it is often possible to
identify a different PP reference. In this case, it is not obvious to us if there exists a
better reference. The 3P amplitudes show two tx, amplitudes that are larger than
the largest ¢ty amplitudes. In the case of Ny, the largest txr, amplitudes were
smaller than the largest tx ), amplitudes. However, we confirm that the condition
we found for having significant ¢k, still holds.
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K a tKa K L a tKLa,
2 5| -1.32106 2 4 5] 1.34229
3 5| -1.31987 3 4 5| 1.34158
4 5] 0.57741 1 3 4|-0.80939
2 3| 057734 1 2 41]-0.80723
3 4] 0.57708 1 2 5| 0.52392
2 4| 0.57661 1 3 5| 0.52209
1 51-0.57650 1 4 5| 0.00045
1 3| 0.57425 1 2 3|-0.00045
1 2| 0.57323 2 3 51-0.00026
1 4)-0.57174 2 3 41]-0.00015

Table 6.4: The CCVB+i3 2-pair and 3-pair amplitudes of V0,4 (S = 1/2) at R = 4.0
A. 1-4 are CS pairs and 5 is an OS pair. The CS pair 1 consists of two s-like orbitals,
the CS pair 2 consists of a d-like orbital and a s-like orbital, and the rest contains
only d-like orbitals. Pair labels are consistent with those in Figure (a) where
each N is replaced by a VO.

When the S = 5/2 state at R = 4.0 A is evaluated with localized orbitals (from
the S = 1/2 state and unpairing polarized pairs), the 3P amplitudes are significant.
The same analysis for N, revealed that the 3P amplitudes are negligible, so this result
in V40, is quite different although the geometry setup is the same. We suspect that
this is because in V;04 there may be more than one way to spin-couple high-spin
fragments to correctly reach the asymptote and some of them do not need the 3P
substitutions and some do. If the former is the case, it is not too surprising that
the energy difference between CCVB and CCVB+i3 is about 0.01 kcal/mol. Tt
is, however, possible that some higher-body correlations functions beyond two-body
correlators (or 4-point correlators) will show larger differences between different spin-
couplings (i.e., those that involve 3P substitutions and those that do not). Those
higher-body correlation functions such as three-body Green’s functions are often
studied in nuclear physics.[583] 584] After orbital optimization, the S = 5/2 CCVB
orbitals become delocalized and the 3P amplitudes become negligible.

6.4.3 The [CaMn;0,] Subunit of Oxygen-Evolving
Complex

The cubane subunit, [CaMn;0,], in the oxygen-evolving complex (OEC) has at-
tracted a lot of interest in both experimental and theoretical chemistry.[40, 393|394,
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Figure 6.6: The molecular structure of a simplified synthetic model of the cubane
subunit of OEC. The color code we used is as follows: grey: C, white: H, red: O,
blue: N, purple: Mn, and yellow: Ca. The numbers indicate the labels for Mn
atoms. The distances between Mn atoms are as follow: Mn(1)-Mn(2) = 2.83 A,
Mn(2)-Mn(3) = 2.90 A, and Mn(3)-Mn(1) = 2.95 A.

From a theoretical chemistry point of view, this is a very challenging system
because it requires a balanced treatment of both static and dynamic correlations and
there is no readily usable quantum chemistry model which can achieve this. More-
over, understanding electron correlations in this molecule may assist in the rational
design of synthetic OECs, which is also of much interest., ,

Most recent studies have focused on studying the complete complex including the
fourth “dangling” Mn atom. The presence of the fourth Mn reduces the effect of 3P
amplitudes significantly in the ground state, and hence CCVB appears to be well-
suited for the full complex. For a more demanding test of CCVB+i3, we therefore
considered the cubane subunit without the dangling Mn, which shows significant 3P
contributions as we shall see.

The geometry shown in Figure was taken from ref. 592, which is a simplified
cubane subunit of the synthetic model reported by Agapie and co-workers.[588] The
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structure is very similar to what Agapie and co-workers used in their theoretical
study [591] and the corresponding molecule in ref. 591 was neutral with [CaMnL'O,].
However, the oxidation state studied in ref. 592 is [CaMni'Mn'VO,] with overall
—2 charge. Since we are interested in maximizing spin-frustration, we chose to
study [CaMniVO,] with charge neutrality. The natural active space is (9e, 90) which
includes all the d-electrons in 3 Mn'V (d?). This active space is small enough that
exact CASSCF can easily be performed. This active space may be too small to
describe the system properly, but it includes every d-orbital with strong open-shell
character which are the primary source of strong correlation.

An interesting feature of this molecule is that the three Mn atoms form a nearly
perfect triangle and thus 3P configurations ought to play a crucial role as we learned
from the isoelectronic model systems above. We used the def2-SVP basis set [254] for
hydrogen and carbon atoms and the def2-TZVP basis set [254] for everything else.
We also employed the density-fitting approximation to the two-electron integrals
with the corresponding density-fitting bases.[255]

We employed several computational approaches to compute spin gaps and com-
pared against exact CASSCF as shown in Table [6.5] The CASSCF results show a
monotonic increase in the spin gap as we go from the high-spin state to the low-spin
state, indicating that the complex is ferromagnetic within the active space employed
here. Remarkably, all the spin states lie within 1 kcal/mol and this is again a signa-
ture of SSC.

SF-CAS energies are also computed with the S = 9/2 reference, and it should
be the upper bound to the CASSCF energies for each spin state as both methods
are variational. The SF-CAS energies show the same trend as CASSCF and it
is qualitatively accurate for this system. As orbitals are very well localized, the
effect of orbital optimization is expected to be small, and this is consistent with the
observation here. The perturbative correction to the SF-CAS states (SF-CAS(h,p);)
[343], which attempts to incorporate orbital relaxation, fails quite significantly, and
it yields negative spin gaps. This suggests that orbital relaxation is not negligible
and one may try to regularize the energy denominators.[269)

CCVB and CCVB+i3 predict the relative spin gaps of S = 3/2 and S = 5/2
wrong, but essentially the errors are all within 1 kcal/mol for those states. These
incorrect orderings may well be fixed by a full CC model which generalizes these
CCVB models. Such a full CC model incorporates ionic excitations and thus will
provide more accurate energies within this active space. CCVB fails catastrophically
to describe the S = 1/2 state yielding a spin gap of roughly 29 kcal /mol! In contrast,
CCVB+i3 yields a quantitatively accurate result. This highlights the role of 3P
substitutions in spin-frustrated systems.

Turning to the 2P and 3P amplitudes of CCVB+i3 of S = 1/2 in Table [6.6] we
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S [ CASSCF | SF-CAS | SF-CAS(h,p); | CCVB | CCVBFi3
1/2 0.853 | 1.074 N/A | 29.816 1.412
3/2 0.662 |  0.884 0.012 | 0.791 0.796
5/2 0.535 | 0.672 0.011 | 0.889 0.889
7/2 0.327 | 0.377 0.006 | 0.588 0.588
9/2 0.000 | 0.000 0.000 | 0.000 0.000

Table 6.5: Relative energies (kcal/mol) of different spin states from different methods.
N/A means “not available” due to the limited computational resource.

K a tKa K L a tKLa
1 5] 0.57570 1 3 4| 0.80176
4 5] 0.597564 1 2 4| 0.80114
3 2| 0.57497 1 2 5| 0.50033
1 4] 0.57201 1 3 5| 0.49939
3 1] 0.57116 3 4 51-0.30389
2 1| 0.57102 2 4 51-0.30333
2 4 -0.57029 2 3 41-0.00029
3 4 -0.56979 2 3 51-0.00023
2 5 |-0.13906 1 2 31]-0.00019
3 5 ]-0.13819 1 4 51-0.00011

Table 6.6: The CCVB++i3 2-pair and 3-pair amplitudes of the cubane subunit for
S =1/2. 1-4 are CS pairs and 5 is an OS pair. Pair labels are consistent with those
in Figure (a) where each N is replaced by a Mn atom.

observe qualitatively similar results to those for N;. Most of the 2P amplitudes are
close to 1/4/3 in magnitude and only those types of ¢ & that were small in Table
are negligible here.

The natural orbital occupation numbers (NOONs) from CASSCF show strong
open-shell characters in all 9 orbitals regardless of the spin state (i.e., they are all
near 1.0). Both CCVB and CCVB+i3 successfully capture this (i.e., NOONs are
all near 1.0). It is interesting that the NOONs of the S = 1/2 state in CCVB
are almost the same as those of CASSCF even though its energy is 29 kcal/mol
higher. In this particular case, orbital relaxation upon going from CCVB orbitals to
CCVB+i3 orbitals is negligible, which indicates that including the proper 3P spin-
coupling vectors is crucial to obtain an accurate energy. Reading CCVB orbitals into
CCVB+i3 yields an energy that is higher only by 1 mH than the optimized energy.
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HCI- | HCI- | HCI- | HCI-

SCF | SCF | SCF | SCF

1073) | 1074) | 107%) | 1079)

12| 7.14 (7.14) -3.22 [ 17350 | -4.78 | -5.35 | -5.37
3/2 | 5.92 (5.92) 298 | 8554 | -4.52 | -5.04 | -5.05
5/2 | 4.59 (4.59) -2.68 | 131.31 | -4.01 | -4.60 | -4.60
7/2 | 10.92 (-3.85) -3.85 | -0.89 | -3.39 | -3.95 | -3.96
9/2 | -2.18 (-2.18) 220 | -1.24| -270 | -3.18 | -3.18
11/2 | -1.00 (-1.79) 179 | -1.35 | -2.20 | -2.26 | -2.26
13/2 | -0.48 (-0.48) 048 | -0.99 | -1.19 | -1.20 | -1.20
15/2 | 0.00 (0.00) 0.00 | 0.00| 0.00| 0.00| 0.00

Table 6.7: The relative energies (kcal/mol) of different spin states of P;. The CCVB
energies in parentheses are from the CCVB solutions where converged CCVB+i3
orbitals were used as an initial guess. For S = 15/2, every method presented here
is exact since ROHF is exact for that state. The corresponding S = 15/2 ROHF
energy is -1702.98131 Ej. These spin-gaps are directly comparable across different
methods as they are measured with respect to this same energy.

6.4.4 P, (Ds,) — Spin-frustration in a pentagon

Clusters of phosphorus have been studied theoretically and experimentally by
many researchers.[594-602] Here, we studied P, and fixed its geometry to Ds), so
that the molecule is forced to be spin-frustrated. It is an interesting spin-frustrated
model system that is beyond the triangular geometric frustrations that have been
discussed in this work so far. UHF can dissociate properly to quartet P atoms only
when Mg =3/2,9/2,15/2.

The natural choice of an active space is (15e, 150) for which exact CASSCF
is demanding so we used the recently developed selected CI method, heat-bath CI
(HCI) with orbital optimization (HCISCF) [391] for the reference benchmark data.
We compare variational HCISCF energies and CCVB energies. In HCISCF, we test
different values of €¢; which controls the number of determinants included in the
variational space. The smaller €; value yields the larger variational space and thus
the result becomes more accurate. As our focus is the strong correlation in this
system, we chose a relatively stretched geometry, Rp.p = 4.1145 A. This stretched
geometry makes CCVB methodologies particularly well-suited since ionic excitations
are negligible. The only important excitations are of the spin-flip type. We employed
the def2-SVP basis set throughout.|254]
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[ HCISCF | HCISCF | HCISCF | HCISCF
S | COVBHI | (¢, =1073) | (e, = 1074 | (e, = 107%) | (& = 1076)
1/2 35 942 5331 145087 488263
3/2 39 885 6324 143864 465000
5/2 40 9952 4946 96852 237935
7/2 38 2650 32849 158377 330978
9/2 33 772 4383 19184 35882
11/2 25 68 1181 2743 3538
13/2 14 31 87 122 122
15/2 0 0 0 0 0

Table 6.8: The number of independent wavefunction parameters used in each method
in P,. For CCVB+i3, this number is the same as for CCVB: 2-pair amplitudes ¢,
plus the number of polarization angles 0. For HCISCF, this is the number of
determinants minus one due to the wavefunction normalization.

There can be more than one solution for each spin state as we saw in the previous
examples. Here, we focus on CCVB solutions from the “spin-ladder guess” procedure
described before. In other words, all the CCVB and CCVB+i3 calculations are
performed using the orbitals from S = 1/2 as a guess. For HCISCF calculations, the
CCVB+i3 converged orbitals were used as an initial guess.

In Table [6.7, we present the spin gaps of CCVB and CCVB+i3 along with the
HCISCF spin gaps as a reference. Comparing the CCVB and CCVB+i3 energies,
significant energy differences are observed for S = 1/2,3/2,5/2,7/2. As UHF can
dissociate Mg = 3/2 properly, there must be a CCVB solution for S = 3/2 that is
lower in energy than what we found here. However, we discuss only those obtained
from an S = 1/2 initial guess for the purpose of demonstration. For S = 7/2,
CCVB yields a localized solution with a quite high energy while CCVB+i3 yields
a delocalized solution with a lower energy and no significant 3P amplitudes. By
reading the CCVB+i3 orbitals into CCVB, we were able to obtain a CCVB solution
that reaches the correct asymptote. HCISCF energies are converged at around the €;
value of 107® and HCISCF of ¢; = 1073 shows very unconverged energies. In terms
of energies, CCVB+i3 lies between HCISCF of ¢; = 1073 and ¢ = 1074, although
the nature of the errors is quite different.

In Table [6.8] we present the number of independent wavefunction parameters
used in each method. An advantage of CC methods is the ability to describe chemi-
cal systems with a much more compact representation through a cluster expansion,
which linear CI wavefunctions do not offer. Table [6.8] shows that the number of
parameters in the CCVB wavefunction is much smaller than in HCISCF. Comparing
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CCVB and HCISCF of ¢; = 1072 or ¢; = 10~* which are similar in accuracy, we see
that CCVB has 20-150 times fewer parameters than HCISCF for S = 1/2. Remark-
ably, for S = 7/2 CCVB is more accurate than HCISCF of ¢; = 10~ while involving
roughly 860 times fewer parameters.

P S= 1/2 S=312

P, sP

. \\ /}’ 6//5

(2) (b) (C)

1

s=52_ P S=1712

0.0 .6 /\

A

P—P. P—FP

7 3 10 7 3 "10
(d) (e)

Figure 6.7: Panel (a) shows how we label five phosphorus atoms. The rest of panels
illustrate represent possible Lewis structures of P, for each spin state: (b) S = 1/2,
(¢c) S =3/2,(d) S =5/2, and (e) S = 7/2. The number next to each bond or
unpaired electron is used to label a CS (blue) or OS (red) pair. Both of CCVB
methods yield localized solutions for (b) to (d), and only CCVB yields a localized
solution for (e). Every P-P bond consists of p-orbitals and each P atom has three
p-orbitals which yields an active space of (15e, 150).

Lastly, we discuss 3-pair (3P) amplitudes along with corresponding Lewis struc-
tures shown in Figure . In the previous examples (Dgy), we made empirical
observations on significant 3P amplitudes. We will see how those transfer to this
15-electron Dgy, case. Because there are quite a few 3P amplitudes, we will visualize
a subset of those amplitudes as opposed to presenting every one of them. One way
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to visualize 3P amplitudes is to fix one of the three indices and look at the matrix
indexed by the other two indices. We will discuss such matrices below.
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Figure 6.8: The 3P amplitudes of the S = 1/2 state of P;. (a) txa when K = 1,
(b) txrx when X\ = 8. The labeling here is consistent with the localized orbitals and
labels in Figure (b). Pairs 1-7 are CS and pair 8 is OS. The circle of largest area
represents an amplitude of magnitude 0.18533 in (a) and an amplitude of magnitude

0.27933 in (b).

Figure shows the 3P amplitudes of S = 1/2. Panel (a) and (b) fix a CS
pair and an OS pair, respectively. As is clearly shown, involving an OS index yields
sparser 3P amplitudes. There are many significant tx,,’s that involve pair 1 and
2. Basically, ti9p for any CS pair M is non-negligible. As seen in Figure (b),
those pairs form incomplete triangles. All of them involve more than three P atoms.
Obviously, this could not be observed in the D3, examples since there are only three
sites. Panel (b) shows negligible tx s when both K and L belong to {4,5,6,7}. Non-
negligible amplitudes involve either pair 1, 2 or 3. Involving pair 1 or 2 is consistent
with what we found in the Ds, examples. Having more spin-frustrated sites gives
a more rich spectrum of non-negligible 3P amplitudes and this is a manifestation
of complex overall spin-coupling vectors whose total underlying dimension scales
formally exponentially with the number of electrons.

Figure illustrates the 3P amplitudes of the S = 3/2 state. Panel (b) may
be easy to understand because it is basically the same as a subblock of panel (b)
in Figure . Unpairing a pair in S = 1/2 basically results in removing a CS pair
column and row in txp, for a given A\. At this stretched geometry, orbitals barely
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Figure 6.9: The 3P amplitudes of the S = 3/2 state of P;. (a) txa when K = 1,
(b) txryx when A = 8. The labeling here is consistent with the localized orbitals
and labels in Figure (c). Pairs 1-6 are CS and pairs 7-9 are OS. The circle of
largest area represents an amplitude of magnitude 0.27484 in (a) and an amplitude
of magnitude 0.21984 in (b).

change, and hence it is not surprising to see this similarity in ¢y, across different
spin states. Panel (a) exhibits a similar result in that its subblock (2 to 6) is very
similar to that of S = 1/2. The additional OS pairs 7 and 9 have non-negligible t;,,.
The other spin states, S = 5/2,7/2, which correspond to (d) and (e) in Figure [6.7]
show more or less the same result.

In summary, we have seen that P exhibits a much more complex spin-coupling
pattern compared to those of the Dg, examples. Namely, P, shows many non-
negligible tx 1, amplitudes that are relevant in reaching the correct asymptote. Com-
pared to HCISCF, it involves far fewer parameters, and yet their energies are com-
parable.

6.4.5 The [Crgy] Single Molecular Magnet

Single molecular magnets (SMMs) have received a lot of interest lately since they
can play a role of magnetic memory and potentially be used to build a quantum
computer.[603, 604] A lot of theoretical studies on multinuclear complexes have been
focused on broken-symmetry density functional theory (BS-DFT) often combined
with the Heisenberg model to obtain a spin-spin coupling, J, between neighboring
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sites. [262] 608]

Along this line, Mayhall and Head-Gordon devised a simple and useful scheme
that utilizes a single spin-flip wavefunction, maps the wavefunction to the Heisenberg
model, and computes spin-spin couplings between sites., As long as the
Heisenberg model is valid, their scheme is also valid. However, in practice it is hard
to know whether the Heisenberg model is valid for a given system. Besides this
method does not yield ab-initio wavefunctions for each spin state. This is a good
motivation to try other alternatives. When the Heisenberg model is valid, CCVB
methodologies become very powerful because there is no need for ionic excitations.
It also targets each spin state in a state-specific way with orbital optimizations and
yields spin-pure wavefunctions.

Figure 6.10: The molecular structure of the [Cry] SMM. The color code we used is
as follows: grey: C, white: H, red: O, blue: N, light blue: F, and grey blue: Cr.
The numbers next to Cr’s indicate the label for each Cr. The molecule at the center
is necessary to keep the system overall neutral and also found in the experimental
crystal structure.

In what follows, we discuss the electron correlation in the [Cry] SMM. The ge-
ometry shown in Figure [6.10]is taken from the crystal structure reported in ref. 608
(denoted as structure 4 therein), and all acetates are replaced with formates for the
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sake of computational simplicity. The C—H bond length in the formates was ad-
justed to be 1.09 A. The neighboring Cr—Cr distances range from 3.50 A to 3.90 A.
The diisopropyl-ammonium ion in the center keeps the system overall neutral. This
[Cry] SMM exhibits spin-frustation at equilibrium. All the chromiums are Cr(III)
and have a d? electron configuration. Therefore, the natural choice of an active space
in this system is (27e, 270). This is currently beyond the scope of exact CASSCF.

Hence, we benchmarked CCVB against HCI. HCI is not orbital-invariant, so
choosing the right set of orbitals is quite crucial. We took converged CCVB orbitals
and ran HCI with those orbitals. Ideally, optimizing orbitals with HCI should pro-
duce the best benchmark numbers. Using CCVB orbitals as an initial orbital, we
attempted orbital optimization with various values of ¢; in HCI. The orbital opti-
mization exhibited an energy fluctuation of 10 xH, and we were not able to converge
tightly. Therefore, we do not report those numbers and focus on the HCI results
performed with CCVB orbitals (denoted as HCI//CCVB) for the following discus-
sion. We used the def2-TZVP basis set [254] on Cr and the def2-SVP basis set [254]
on all the other atoms along with the corresponding density-fitting bases.[255] In
passing, we note that the value of using CCVB or PP orbitals for a subsequent HCI
calculation has recently been pointed out by Zimmerman in the context of iFCL.[610]

The amplitude equation of CCVB+i3 becomes somewhat ill-defined in this case.
In other words, the Jacobian in Eq. becomes nearly singular and thus finding
solutions becomes extremely challenging. As mentioned earlier in Computational
Details, we loosened the convergence threshold of the t-amplitudes to 1078—1071° and
did not perform orbital optimization for CCVB+i3. Instead, we performed CCVB+i3
calculations on converged CCVB orbitals. We denote this as CCVB+i3//CCVB in
the following discussion.

It is interesting that the Cr atoms in the molecule are nearly in Dg, symmetry.
For S = 1/2, this particular geometry leaves 9 different choices of the location of a
unpaired electron. We tried a couple of different Lewis structures (or PP references)
that have a unpaired electron on different Cr’s, and CCVB methodologies all yielded
very similar energies. Therefore, we picked Cr(1) (see Figure for the label) to
be the radical site for simplicity. We tried two different pairing schemes in CCVB.
One of them is simply alternating single and double bonds for S = 1/2 as shown in
Figure[6.11] (a). The other one forms a triangle among Cr(1), Cr(2), and Cr(9) while
having triple-bonded Cr, for the rest as in Figure [6.11] (b).

The UHF (or BS-DFT) approach can correctly separate on Mg = 3/2,9/2, 15/2,
21/2, 27/2, while states with other than those Mg values will yield erroneously high
energies. To obtain reasonable energies from UHF, we need to keep three electrons
on each Cr to be the same spin. As we have seen from the previous examples, CCVB
can be applied to a much broader range of problems than UHF, and CCVB+i3 can
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Figure 6.11: Possible Lewis structures for the S = 1/2 state of the [Crq] SMM.
Every Cr-Cr bond consists of d-orbitals and each Cr atom has three d-orbitals which
yields an active space of (27e, 270).

be applied to even broader of strong correlation problems with SSC.

In Table , we see that HCI provides almost converged energies with ¢, = 107%.
The HCI energies indicate that different spin states lie within 1 kecal /mol, which is the
signature of SSC. Converging absolute energies up to the usual chemical accuracy,
namely 1 kcal/mol, may not be appropriate to resolve the energy scale of strongly
spin-correlated systems like this SMM system. CCVB and CCVB+i3 show more or
less the same results except for the S = 1/2 state. For the doublet state, there is a
roughly 44 kcal /mol energy lowering going from 2P to 3P. This shows the significance
of 3P substitutions when describing low-spin states of spin-frustrated systems. As
the CCVB+i3//CCVB results are all above the converged HCI//CCVB energies,
CCVB+i3//CCVB is practically variational.

Increasing the value of €; to 5 x 107* results in catastrophic HCI failures for
low-spin states, S = 1/2 —9/2. These energies are considered qualitatively wrong as
the relevant energy scale is less than a kcal/mol in this system. In passing we note
that the quality of CCVB orbitals for S = 1/2 may be poor compared to other states
given that there is a 0.60 kcal/mol energy jump going from S = 3/2 to S =1/2 in
HCI//CCVB. The unconverged HCISCF calculations indicate that spin-gaps are of
the order of 0.01 kcal/mol for all states.

Table presents the solutions obtained using the PP reference in Figure [6.11
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CT/;

HCI HCI HCI

s | covp | CCVB+is// | HOVD ook | covb | oovh
CCVB 10-4) (e1=10"%) | (e, =107%) | (¢, = 1079)
/2| 45.82 105  63.81 0.67 0.65 0.64
3/2| 036 034| 51742 0.07 0.07 0.06
5/2| 033 031 | 53089 0.06 0.05 0.05
7/2| 032 031| 6320 0.05 0.06 0.05
9/2| 031 028 | 50525 0.06 0.05 0.05
1/2| 031 028 016 0.06 0.05 0.04
13/2] 029 025 013 0.04 0.04 0.04
15/2| 028 022 009 0.04 0.05 0.04
17/2] 025 023 008 0.04 0.04 0.03
19/2] 017 013| 005 0.04 0.06 0.04
21/2| 013 012 003 0.02 0.02 0.02
23/2 | 0.05 005 002 0.01 0.01 0.01
25/2 | 0.07 007| 001 0.00 0.00 0.00
27/2 | 0.00 000 000 0.00 0.00 0.00

Table 6.9: The relative energies (kcal/mol) of different spin states of Cr,.
The PP reference used for CCVB calculations corresponds to Figure [6.11] (a).
CCVB+i3//CCVB denotes the CCVB+i3 energies evaluated with converged CCVB
orbitals. HCI//CCVB denotes the HCI energies evaluated with converged CCVB
orbitals. For S = 27/2, every method is exact since ROHF is exact for that state.
The corresponding S = 27/2 energy is -14101.38880 Ej,. These spin-gaps are directly
comparable across different methods as they are measured with respect to this same
energy.

(b). As CCVB energies are not invariant to the choice of a PP reference, we obtain
different results. CCVB has a strong dependence on the PP reference because with
this new reference the S = 1/2 energy is 18 kcal/mol lower and the S = 3/2 energy is
20 kcal/mol higher compared to the previous case. The qualitative failure of CCVB
for S = 1/2 and S = 3/2 can be understood similarly to the Dsj, cases discussed
above as we have a localized triangle in the PP reference. HCI//CCVB exhibits a
catastrophic behavior for large €; values, but is adquately converged with ¢; = 1075,
In the case of ¢; = 5x 10™*, HCI//CCVB fails for all spin states lower than S = 15/2
but S = 3/2.

Based on the results discussed in Table and Table [6.10, we conclude that
CCVB+i3 is less sensitive to the underlying PP reference and its accuracy lies some-
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ACT/]

HCI HCI HCI

s | covp | CCVB+is// | HOVD ook | covb | oovh
CCVB 10-4) (e1=10"%) | (e, =107%) | (¢, = 1079)
/2] 27.62 057 | 31640 0.23 0.26 023
3/2| 2095 046 | 022 0.20 0.19 0.17
5/2| 039 037 | 64684 0.06 0.06 0.05
72| 0.26 025 | 53896 63.37 0.04 0.03
9/2| 043 041 | 18954 63.06 0.05 0.05
/2| 022 020 | 58493 0.06 0.04 0.03
13/2| 021 016 | 189.34 0.09 0.04 0.02
15/2| 026 025| 6344 63.05 0.04 0.04
17/2] 018 014 | 014 0.04 0.04 0.02
19/2] 016 016 010 0.03 0.03 0.02
21/2| 007 007| 005 0.02 0.02 0.01
23/2| 011 010| 003 0.02 0.01 0.01
25/2 | 0.06 006 001 0.00 0.00 0.00
27/2 | 0.00 000 000 0.00 0.00 0.00

Table 6.10: Same as Table except that the PP reference used here corresponds
to Figure [6.11] (b).

where in between HCI of ¢; = 107 and ¢; = 5 x 107°. We further compare those
two methodologies in terms of the number of independent wavefunction parameters
and we emphasize the compactness of the CCVB+i3 wavefunction as shown in Table
[6.1T} Due to the larger system, the difference in the number of parameters is larger
in [Cry| than in P, (shown in Table [6.8). CCVB+i3 has a 300-500 times smaller
number of parameters than HCI (¢; = 107%) for S = 1/2 in [Cry] whereas in Py it
was only 150 times smaller compared to HCISCF (¢; = 107*). One may think that
orbital optimization must help reduce the number of determinants in HCI in the case
of [Crq]. However, as the effect of orbital optimization is very small in this system
we believe that the conclusion here will not be altered.

The situation will become only more favorable to CCVB when studying larger
molecules or bulk materials as there will be too many determinants to include for
HCISCF even to just achieve a similar accuracy as CCVB. The strength of CCVB
is at the use of a CC-type expansion to avoid including an exponential number of
wavefunction parameters while being able to describe strong spin correlation and
yielding a size-consistent, spin-pure energy and wavefunction.

Lastly, we note that the singular Jacobian problem we faced in this system is not
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HCI// HCI// HCI// HCI//

S | CCVB+i3 CCVB(a) CCVB(a) CCVB(b) CCVB(b)
(e1=5x107%) | (g =107%) | (¢, =5x107%) | (¢, =107%)
1/2 104 8361 53061 17446 32707
3/2 114 9557 31082 12661 42455
5/2 121 5793 14178 12291 36431
7/2 125 6678 23750 9217 49014
9/2 126 4828 15764 7936 35872
11/2 124 2797 10107 4266 28343
13/2 119 1768 6029 6851 30096
15/2 111 1287 4743 2149 13229
17/2 100 912 3039 2320 8682
19/2 86 484 1218 1418 5804
21/2 69 310 781 860 1715
23/2 49 98 212 186 371
25/2 26 52 87 56 76
27/2 0 0 0 0 0

Table 6.11: The number of independent wavefunction parameters used in each

method in the [Cry] SMM. CCVB(a) and CCVB(b) denote the CCVB orbitals with
the PP references in Figure [6.11] (a) and (b), respectively.

necessarily an indication of redundant wavefunction parameters. When evaluated
with a solution to CC amplitude equations, a CC Jacobian is often interpreted as
an equation-of-motion (EOM) CC Hamiltonian. Eigenvalues of the CC Jacobian are
excitation gaps. We checked the first 5 roots of each spin state from HCI//CCVB
and observed that the first 5 roots are all within 10 gH. This is consistent with the
singular values of Jacobian we observed in CCVB+i3. Strongly spin-correlated sys-
tems have a dense spectrum of low-lying excited states which would necessarily imply
(nearly) singular CC Jacobians. It is thus important to develop a better amplitude
solver to tackle strongly correlated systems with non-linear CC wavefunctions. In
passing we note that this may indicate that the EOM treatment to CCVB can yield
quite accurate excitation gaps for strongly correlated systems. This will be further
investigated along with EOM-CCVB-SD in future work.
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6.5 Conclusions and Outlook

In this paper, we tested the CCVB ansatz on spin-frustrated systems with SSC.
Those systems include N3, V50, the cubane subunit of oxygen-evolving complex,
P., and the [Cry] single molecular magnet. We showed that the model catastroph-
ically fails to describe the lowest-spin states of such systems. As an attempt to
fix this problem, we introduced an improved electron correlation model, CCVB+i3,
which includes 3-pair correlations that are missing in CCVB. Our working hypothe-
sis is that the new model can in principle reach any bond dissociation limits exactly
within an active space, and we numerically showed that it provides a qualitatively
correct description of those spin-frustrated systems when CCVB fails. It was also em-
phasized that the new model involves the same number of independent wavefunction
parameters as CCVB and scales the same.

We compared CCVB+i3 against an exponential-scaling heat-bath CI (HCI) method
for Py and [Cr,y]. For those systems, HCI was able to converge the energy below 0.1
kcal/mol with a reasonable amount of computational work. CCVB+i3 energies are
1-2 kcal/mol and 0.5 kcal/mol above those of HCI in the case of P, and [Crg], re-
spectively. We emphasized the promise of CCVB+i3 by comparing the number of
independent wavefunction parameters against HCI. To achieve a similar accuracy,
HCT involves roughly a 300-500 times larger number of parameters than CCVB+i3
in [Cry]. Towards the application to large molecules and bulk strongly correlated
systems, this scaling will become only more favorable to CCVB.

There are many promising future developments of CCVB and CCVB+i3. The
most interesting extension is perhaps to incorporate missing dynamic correlations not
only within the active space but also outside the active space. This could be achieved
either using density functional theory, |30, 611, 612] perturbation theory,[112} |113],
216, 269, [613-619] or extended random phase approximations.|620, 621] Another in-
teresting extension is to implement nuclear gradients and other properties of CCVB.
In particular, nuclear gradients will be particularly useful as CCVB equilibrium ge-
ometries are quite close to CASSCF at least in small molecular systems that have
been studied. Those two developments will help to put CCVB among the set of
routinely applicable electron correlation models.

Other theoretical questions of CCVB include whether it is necessary to go beyond
the IAA treatment of the 3P substitutions. The scope of CCVB+i3 remains unclear
although the numerical results so far indicate that it is capable of dissociating any
number of bonds. We are investigating its relation to the spin-projected generalized
Hartree-Fock (SGHF') wavefunction to learn more about its scope. The full CCVB-3
model is not size-consistent as shown in this work. The next level of a size-consistent
CCVB method would then be the one that includes everything up to the 4-pair
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contributions in the 3-pair amplitude equation. This will be an interesting model to
explore although the overall cost will no longer be the same as CCVB.

Another question is then whether we can take either CCVB+i3 or more sophisti-
cated wavefunctions and generalize them to a full CC model with singles, doubles and
triples. Given the promising initial success of CCVB-SD which generalizes CCVB,
it will be interesting to generalize a variant of the 3-pair model to a full CC model
as well. The main strength of CCVB+i3, as well as CCVB, is for systems where
the strong correlations are primarily strong spin correlations. Systems where strong
charge fluctuations are also important (e.g. mixed valence metal ions) require ionic
excitations that are excluded in CCVB and CCVB+i3. They are restored in full CC
model such as CCVB-SD. As mentioned in the main text, we are also investigating
excited states of CCVB and CCVB-SD within the equation of motion framework.

6.6 Appendix

6.6.1 Definitions

We begin by defining some fundamental quantities that will be used to compute
matrix elements and other relevant quantities discussed in the main text. Many of
definitions below are already given in ref. 280, but it is our intention to keep this
paper as self-contained as possible. Interested readers shall refer to 280 although it
is not necessary unless otherwise noted.

We define a set of spin orbitals S, for a pair a,

Sa = {aa,ag,da,dg} (659)
We define the density matrix of a closed-shell pair K,
Prcsuwaipr = (0] gu.calargl 4 10) (6.60)

where w and = denote the spin states of the pair either s,t;,t9, or t3 and p and r
denotes the spin-orbital indices in the set Sk. For a singly occupied orbital (or an
open-shell pair) p, only Py, = 1 and all the other elements are zero as they
include the fictitious orbital. These are used to define the following quantities: the
one-body contribution reads

Nawz = Z hp'rPK;wr;p'r; (661)
preSa
and the intrageminal Coulomb contribution follows

IO@%WCL‘: Z <pqy|r3>fa;w;qua;x;rsa (662)

prqs€Sq



CHAPTER 6. OS CCVB AUGMENTED WITH AN INDEPENDENT
AMPLITUDE APPROXIMATION FOR THREE-PAIR CORRELATIONS 189

and the intergeminal Coulomb contribution reads

O abjwasyz = Z Z (Pallrs) Paswwipr Poyzigs: (6.63)

preSq qs€Sy

where
2 cos(fy)
= ’ 6.64
Frcssiacars V2(1 + cos?(0r)) o
—sin(fx
o _ 6.65
fK,S,KaKﬁ fK,S,KaKﬁ \/2(1 + COS2<0K)) ( )
1
fK;tuKaf{a - _fK;tuf(aKﬂ = frtakai, = _fK;t”KﬁKB N _E (000

and all the other f’s are zero. Obviously, we have p... = 0.

6.6.2 Proof of Eq. (6.40)

In the main text, we proved that if b is not on the same fragment as K then the
size-consistency claim is satisfied as tx, = 0. The rest of the proof is then showing
that the following matrix element is zero when b is on the same fragment as K:

2 3 ~ 3 .
<\II(KLa)’H‘(I)(Kb)(La)> = - 1—0<\D(KLG)"H’\I/(KL)(Q(,)> - 1_O<‘IJ(KLa)‘H’\Ij(Ka)(Lb)>
6 ~
+ g(‘I’(KLa)|H|\I’(Kb)(La)> (6.67)

where we wrote |®(xp)(q)) in terms of |V (xrywp)), [V (ka)(Lp)), and |V kp)(Lq)) using
the relevant ST in this 8-electron singlet subspace (see ref. 140 for details). After
some algebra, one can show that

36

(U (K La) |[HIP (k1) (1a)) = T(

5
(6.68)
The first term is zero because okt 15:5t5 = —OKbityta:st; a0d it can be shown that the

second term is also zero after little more algebra. Therefore, we proved Eq. (6.40)).

6.6.3 S and ST within the five-pair substitutions

The overlap matrix among vectors in the dual frame within the five-pair (5P)
substitutions is

9 .
OKbtatassta + OKbstatassts) = (VKN [Lalals | H Y (K]0 01 (Laa)s) = O
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1 1 1 1 1 1
s =505 5 75 5 0 00
3 LY (1) I ! 01 FEE
FCI T T R S S B S
g 1 7 1 1o 21
Sse= |12 0 1 5 o1 7 21 ¢ (6.69)
3 3 3 3 3 3 i‘}
i 1 0 0 -2 3 1 0 3 —3
i I
0 1 0 1 _1 1 1 1 1
ST S S S G U S B
-0 3 3 0 0 3 3 3 3 1_
where we ordered columns and rows as |V se)(k a)), |V (ab) (i Le)) |V (16) (Kae)) s | W (Kb)(Lac))

W rey(rab))s [YLoyian)s (Yoo, [Wikryae), |Yixayrse), and [¥(ayxbe). As
we expect only six orthogonal singlet configurations in this 12-electron singlet space,
these 10 vectors are necessarily linearly-dependent. Indeed, there are 4 zero sin-
gular values along with 6 non-zero singular values, %(5 + 2\/5) and four g’s. The

corresponding pseudoinverse is then

- 681 39 57 57 243 —243 39 () =60 60 T
1445 2879 1445 1445 1445 1445 2879 289 289
S A R R T S AP S 1
2879 289 289 2§9 289 289 289 289
5 S0 3054 486 501 666 80 -3 —1554 9491
1445 289 7225 7225 7225 7225 289 25 7225 7225
—b7 —30 —486 3954 666 201 -30 =3 2421 —1554
144 2 22 722 22 22 2 2 22 22
SR TR O 8 B ¥
+ 144, 2 22 22 22 22 2 2 22 22
Ssp= |8 % F X B 2 % ¥ P (6.70)
1445 289 7225 225 7225 7225 289 25 7225 7225
i A (N R S i A S GG i &
289 289 289 289 289 289 289 289 289
0 0 =3 =3 3 3 0 9 3 3
25 25 25 25 25 25
—60 —21 —1554 2421 —921 54 —21 3 4209 —741
2, 2 22 722 22 22 2 2 722 22
RO G+ R - TRL 7 O (R (N L 7 (RN '
L 289 289 7225 7225 7225 7225 289 25 7225 7225

6.6.4 Eq. (6.44) In Terms of Computable Quantities

We express the matrix elements pertinent to evaluating Eq. (6.44) in terms of
readily computable quantities. We write the following matrix elements,

Hab = <\:[10’ 7:l ‘é(ab)> = _\/go-ab;stQ;stga (671)
and

RKKab = \/6<\I][K]1[a}2[b}3‘ 7:[ ’q)(Ka)> = \/E (Uab;tgtl;tgs - UKb;t1t3;t35) (672)
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where we used the fact that Hamiltonian commutes with a singlet-projection operator
and both bra and ket states are singlets and

1

<\P[K]1[a]2[b]3‘ 7:[ |(I)(Ka)> = <0‘ gtl7th2,agt3,b?:£d22,l(agz,b ’0> = % (Uab;tztl;tss - UKb;tlts;tss) .
(6.73)
Similarly,
(Wicra)| H | xra)) = V6 (U icra | H Vi, mpas) (6.74)

= —OKLitstistits — OKastatrstats + (VK [Lsla)s | 7 | YK (Lalals)

Using this, we write wgr, in terms of computable quantities:

WKLa = <\IJ(KLa)’ H |\I’(KLa)> — (Wo| H | W)
= —OKLstoty;t1te — OKaitatytits
+ nK;tltl + nL;tztz + na;tgtg - nK;ss - nL;ss - na;ss
+ PK:ti;t + PL:ty;to + Pastsits — PK;s;s — PLis;s — Pags;s
+ O K Litity;tate + OKastitistats + O Lastotoststs — OKL:ss;ss — OKasss;ss — O La;ss;ss

+ § (UKb;tltl;ss + O Lb;toto;ss + Oab;tats;ss — OKb;ss;ss — OLb;ssiss — Uab;ss;ss)

b¢{K,L,a}
(6.76)

6.6.5 CCVB+i3 Jacobian
We derive the CCVB+i3 Jacobian which is used in amplitude solvers. The Jaco-

bian reads 90 OR o
() kapre = ot = — 2 4 Z B e a (6.77)
’ tre tvre Ot are ’
Oty Otmr véfreay OM
where
0RKk,
at £ = |WKa — 2tKaluKa - Z (thﬂ'Kb + tab,uab) 5Ka,Mc
Me b {K,a}
+ Z [(H'Kb - tKaPJab)(sab,Mc + ("iab - tKa,UKb)(SKb,Mc] (678)

b¢{K,a}
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and using Eq. (6.44]) we obtain

Otkab l KKab  MKa KKba HEKa
= 0Ka,Mc : tiab| + OrbMe | — = — tab
Ot e Aka Akab ’ Agay  Akap

Rab; K Hab
+ 0L Me [ ’ tKab:|
AKab AKab

(6.79)
where
Axay = (txaftia + troiirs + taptab) — Wiab (6.80)
6.6.6 CCVB+i3 Lagrangian and Its Derivatives
We derive derivatives of the CCVB+i3 Lagrangian defined in Eq. (6.48) and
write them in terms of computable quantities. From
oL
=0 6.81
Otka (6:81)

we obtain

ORwMb
315Ka Z v + Z Akab (KKab — tKabllKka)

, . (6.82)
b¢{K,a}

We already have %If—;f: from Eq. (6.78) and we have

OE
atKa = UKa

(6.83)

For the gradient of £ with respect to some parameters X (either © or A), most
terms are already discussed in ref. 280 and we discuss the 3P specific terms. First
consider

0
8_X I;lbgé%{: }tKab/fKa;b = \/§ Z Z tKaba_X (Jdb;tgtl;t3s — OKbityts t3s) (6 84)

K<ab¢{K,a}
- \/§ Z Z tKab (U()z%;tgtlgtgs - O-Ix(b;tlt‘g,;tgs) (685)
K<ab¢{K,a}
Here, we learned that

K%a;b - \/5 (U(i?);tztl;tgs - O—I)gb;tltytgs) (686)
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The derivatives of ¢’s with respect to ©® and A are available in ref. 280. The same
applies to the diagonal elements of Hessian. Similarly, the last term in Eq. (6.48])
follows

091 X X X
Z AKLaa—Xa - Z /\KLa(tKL/fKL;a - tKaI{Ka;L + tLa’iLa;K

K<L<a K<L<a
— tira(—wi Lo + kLl T tKallka + tLaling)) (6.87)

Based on Eq. ([6.76), we can compute wX, in terms of other more fundamental
quantities discussed in ref. 280. For x derivatives, we apply Eq. [6.86, i derivatives
are available in ref. 280. The same applies to the diagonal elements of Hessian. From

oL

=0, 6.88
Otxrm ( )

we obtain

A . AKLKKL;M - AKMRKM;L + >\LM"<0LM;K (6 89)
KLM = .
tkrprr + kvt — WkLM

(6.90)
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Chapter 7

Conclusions

“You have to know how to
accept rejection and
reject acceptance.”

— Ray Bradbury

The work presented in this dissertation addresses two challenges in the electron
correlation problem. Various challenges in different aspects of modern quantum
chemistry methods are addressed during the author’s Ph.D. study and two represen-
tative examples are presented in this dissertation.

First, we addressed the challenge of distinguishing weak and strong correlation
between electrons. Distinguishing these two is necessary for choosing an appropriate
electron correlation model for systems of our interest. Namely, one could use a
perturbation theory for weakly correlated systems, whereas one must use much more
computationally demanding (if not impossible) approaches for strongly correlated
systems. Traditionally, symmetry breaking (SB) of a single determinant (SD) at the
Hartree-Fock (HF) level has been used as a probe to distinguish these two. One
concludes that a system is strongly correlated if the underlying HF SD is symmetry-
broken. This general wisdom has been challenged by numerous examples that exhibit
“artificial” SB. It is artificial because the SB in these cases is driven by the lack of
weak correlation in HF, not by the lack of strong correlation. There is a need for a
method that obtains an SD with only “essential” SB. It is essential in the sense that
the underlying wavefunction is ill-behaved without SB due to strong correlation such
as failing to dissociate bonds correctly.

To address this challenge, we developed a well-behaved perturbation theory (PT)
called regularized orbital-optimized second-order Mgller-Plesset theory (k-OOMP2)
whose energy no longer diverges even for strongly correlated systems, unlike other



CHAPTER 7. CONCLUSIONS 195

PT approaches. k-OOMP2 includes weak correlation while attenuating strong cor-
relation. As such, it yields an SD with only “essential” SB. k-OOMP2 has been
shown to be quantitatively accurate for a broad range of benchmark data sets and
applied to some “artificial” SB examples. For instance, Scuseria and co-workers [272]
concluded that Cg, (buckminsterfullerene) is polyradicaloid (or strongly correlated)
based on the SB found in an HF solution. As Cj, is a stable closed-shell molecule
in experiments, this claim was met with doubts and led to a controversy. As the
k-OOMP?2 orbitals exhibit no SB in Cy,, we concluded that Cy, is not strongly cor-
related and exhibits only “artificial” SB. This part of the dissertation provides a new
way to distinguish strong and weak correlation and redefines the common wisdom in
modern quantum chemistry.

The second challenge we addressed is due to the curse of dimensionality when
treating strong spin correlation (SSC). When there are many spatially separated
open-shell electrons, a spin-flip of an electron does not cost much energy. This is the
defining property of SSC. For a given spin quantum number, in general the dimension
of the corresponding spin space scales exponentially with the number of electrons.
A general belief in modern valence bond (VB) theory is that one needs to include
all possible ways to spin-couple open-shell electrons to describe SSC exactly, which
leads to an exponential cost for describing such systems.

We developed an approach called coupled-cluster VB (CCVB) and showed that it
is possible to incorporate all essential spin-couplings while maintaining a polynomial-
scaling cost, unlike the general belief in modern VB theory. We extended CCVB to
open-shell formalisms as well as a more black-box approach CCVB with singles and
doubles (CCVB-SD). This method has been applied to metalloenzymes and single
molecular magnets. The remaining challenge in strong correlation is then how we
incorporate “charge” strong correlation excluded from CCVB. As such, this part of
the dissertation sets new challenges for the future methodology development.
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