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Abstract: Autonomous electric vehicles (AEVs) can potentially revolutionize the transportation
landscape, offering a safer, contact-free, easily accessible, and more eco-friendly mode of travel. Prior
to the market uptake of AEVs, it is critical to understand the consumer segments that are most likely
to adopt these vehicles. Beyond market adoption, it is also important to quantify the impact of
AEVs on broader transportation systems and the environment, such as impacts on the annual vehicle
miles traveled (VMT) and greenhouse gas (GHG) emissions. In this pilot study, using survey data,
a statistical model correlating AEV adoption intention and socioeconomic and built environment
attributes was estimated, and a sensitivity analysis was conducted to understand the importance of
factors impacting AEV adoption. We found that the market segments range from early adopters who
are wealthy, technologically savvy, and relatively young to non-adopters who are more cautious to
new technologies. This is followed by a synthetic population microsimulation of market penetration
for the San Francisco Bay Area. With five household vehicle replacement scenarios, we assessed the
annual VMT and tailpipe carbon dioxide (CO2) emissions change associated with vehicle replacement.
It is found that adopting AEVs can potentially reduce more than 5 megatons of CO2 yearly, which is
approximately 30% of the total CO2 emitted by internal combustion engine (ICE) cars in the region.

Keywords: autonomous electric vehicles; microsimulation; market scenarios; demand model; vehicle
miles traveled; greenhouse gas emissions

1. Introduction

Autonomous vehicles (AVs) can potentially revolutionize the transportation landscape,
offering a safer, contact-free, easily accessible, and more eco-friendly mode of travel [1,2].
The intention to adopt AVs is influenced by a combination of factors, including demo-
graphic characteristics, socio-economic status, behavioral patterns, and individual attitudes.
Market research has identified that younger and wealthier people with higher educa-
tional attainment are more inclined to adopt AVs [3–6]. Behavioral factors, such as travel
mode preferences, also play a significant role in the intention to adopt AVs. Studies have
found that individuals who frequently use public transit, ridesharing, or other modes of
transportation tend to have a more positive view of AVs [7–9]. To better understand the
latent attitudinal variables, theories like the Technology Acceptance Model (TAM) [10] and
the Theory of Planned Behavior (TPB) [11] are widely applied. Research has shown that
factors such as perceived usefulness [8], environmental awareness [12], and technology
savviness [9,13] are key factors of AV adoption. Consumers who are more open to new
technologies are generally more likely to embrace AVs, suggesting that personal attitudes
toward innovation play a critical role in the adoption decision [9].
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The impact of adopting AVs on transportation systems has become a prominent
research topic, given its potential to significantly reshape mobility, vehicle ownership,
travel demand, road capacity, and infrastructure needs [14,15]. Studies have found that
high penetration of AVs could lead to a substantial increase in road capacity through
platooning [16] and a reduction in parking demand [17]. The literature on the poten-
tial effects of AV adoption (or ownership) on travel demand remains inconclusive [15].
The introduction of autonomous technology is expected to increase vehicle utilization
rates, particularly through on-demand services such as autonomous ride-hailing and car-
sharing [9]. These services could reduce the number of privately owned vehicles on the
road, potentially alleviating congestion [18,19]. However, some studies suggest that the con-
venience and flexibility offered by AVs may increase overall travel demand, particularly in
urban areas, as consumers may opt for more spontaneous trips. Additionally, autonomous
driving could encourage long-distance travel, which may increase vehicle miles traveled
(VMT) [20–22]. The overall impact on VMT remains uncertain and will depend on how
AVs are integrated into existing transportation networks, as well as whether they primarily
serve as shared mobility solutions or continue to be used as privately owned vehicles.

The environmental impact of AV adoption has been extensively studied. Since AVs
can communicate with each other and optimize traffic flow, they have the potential to in-
crease road capacity [23,24], reduce traffic congestion [18], and subsequently lower energy
consumption and greenhouse gas (GHG) emissions [24]. Additionally, the ability of AVs
to increase vehicle utilization rates in urban areas through ridesharing and reduce vehi-
cle ownership could further reduce energy use and carbon dioxide (CO2) emissions [25].
Unlike internal combustion engine (ICE) vehicles, EVs produce zero tailpipe emissions,
directly reducing air pollution. Numerous studies have demonstrated that EVs can sub-
stantially lower CO2 emissions, especially in regions where the electricity grid is powered
by renewable or low-carbon energy sources [26]. By improving traffic efficiency, facilitating
more sustainable travel patterns, and integrating EVs with AVs (i.e., autonomous elec-
tric vehicles, also known as AEVs), AEVs offer a promising path toward a cleaner, more
energy-efficient transportation system.

Car ownership and vehicle replacement are long-standing research topics in travel
behavior and have motivated a variety of studies spanning a wide spectrum of policy
questions including social exclusion [27], cultural and social assimilation [28], residen-
tial location choice and car use [29], and of course the strong relationship with fuel type
choice [30]. The decision to replace traditional ICE vehicles with AEVs is influenced by
a range of factors, including cost considerations and environmental motivations. Safety
improvements, increased accessibility, lower per-mile ”fuel“ costs, reduced maintenance
expenses, and government incentives can make AEV ownership more attractive. Addition-
ally, the zero tailpipe emissions of AEVs appeal to environmentally conscious individuals
seeking to reduce their carbon footprint and contribute to sustainability efforts. However,
despite these advantages, barriers such as range anxiety, concerns over vehicle performance
in extreme weather conditions, and the availability of charging infrastructure remain sig-
nificant obstacles for potential AEV adopters [31]. When a household owns more than
one vehicle, the decision of which vehicle to replace with an AEV is influenced by factors
such as vehicle usage patterns, vehicle age, and condition [32]. Replacing an older vehicle
typically offers greater environmental benefits as it can lead to a more significant reduction
in GHG emissions. On the other hand, replacing a high-mileage vehicle may result in
greater fuel cost savings over time, as these vehicles tend to have higher operating costs. In
general, the choice of which vehicle to replace with an AEV depends on both environmental
and financial considerations.

While existing studies typically use aggregate-level penetration rates to estimate the
impacts of AV and/or EV adoption, few have explored individual-level adoption patterns
and applied AEV replacement scenarios to assess their effects on VMT and CO2 emissions.
In this study, using the 2019 California Vehicle Survey data, an ordinal logistic model
was built to understand the relationship between people’s intention to buy an AV and
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their socioeconomic and built environment attributes at the household level. Sensitivity
analysis was conducted to understand the importance of the covariates that impact AV
adoption. The results suggest that electric vehicle (EV) ownership greatly affects the
intention to adopt AVs. This motivated the research to jointly study AVs and EVs together,
given their significant potential to contribute to the decarbonization of the transport sector.
Applying an estimated ordinal model to the synthetic population of the nine counties
in the San Francisco (SF) Bay Area region, Monte Carlo simulations were generated to
simulate the market share of AEVs and assess how travel-related measures such as VMT
and tailpipe CO2 emissions change at the regional level, while solely accounting for the
behavioral utilization aspect. Five vehicle replacement scenarios were developed to assess
AEV adoption impacts; they included replacing an AEV with (1) the highest VMT vehicle
in a household, (2) the lowest VMT vehicle in a household, (3) the electric vehicle in a
household, (4) the oldest vehicle (defined by vehicle age) of a household fleet, and (5) a
random vehicle in the fleet. For each scenario, the simulated data were used to assess
the impact on VMT and GHG emissions per replacement scenario. It was found that
adopting AEVs can reduce more than 5 megatons of CO2 yearly, which is around 30% of
the total CO2 emitted by ICE vehicles in the synthetic population. This study enhances our
understanding of the important covariates that influence AEV adoption (or ownership).
Further, the microsimulation approach adopted in this study quantifies the impact of
AEV adoption on transportation systems and the environment. It also points to a new
direction in AV and EV research that can simulate an entire region and assess the impact
of the complex relationships among technology, policy design, and behavior at the most
foundational level of decision making.

The structure of this paper is organized as follows. The next section introduces
the survey and datasets used in this study. The third section presents the modeling
methodology. The fourth section outlines the results of the model estimation. Concluding
thoughts, linkage to the energy and technology literature, and directions for future research
are provided in the fifth and final section.

2. Data Description

This study aims to understand people’s intention to adopt (or own) AVs and to identify
covariates that significantly impact AV adoption. The estimated AV adoption model is
applied to the synthetic population and vehicle data for nine counties in the SF Bay area
to evaluate impacts of adoption. Detailed descriptions of the two following datasets are
presented in this section: (a) 2019 California Vehicle Survey; (b) Synthetic population and
vehicle data of the San Francisco Bay Area region.

2.1. 2019 California Vehicle Survey Data

This research uses data from the 2019 California Vehicle Survey (CVS) [33], which was
conducted periodically on residential and commercial light-duty vehicle ownership. The
survey also has a subset of targeted EV users to gather insights on their charging behavior
and purchase motivation. The survey included a questionnaire regarding the preference of
adopting AVs, which is detailed in Section 2.1.2.

2.1.1. Household Characteristics

The 2019 CVS dataset contains a total of 4248 households, encompassing 8365 indi-
viduals (average household size, 2 persons) and 8049 vehicles (average household vehicle
ownership, 2 vehicles). The descriptive statistics of the sample households are presented
in Table 1. The population statistics are based on the US Census American Community
Survey (ACS) 2015-2019 5-year estimates. While there are slight differences between sample
and population characteristics, the socio-demographic characteristics are controlled in the
modeling process, as explained later in this paper.
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Table 1. Household-level descriptive statistics (N = 4248).

Variable Category Sample Sample (%) Population (%)
(N = 4248) (N = 13,044,266)

Household size

1 1090 25.66 23.81
2 1867 43.95 30.42
3 593 13.96 16.69
4 482 11.35 15.25

5 or more 216 5.08 13.83

Number of children ab 0 3453 81.28 65.63
1 or more 795 18.72 34.37

Householder age b 18 to 64 2774 65.30 76.06
65 and over 1474 34.70 23.94

Household Income

Less than $24,999 294 6.92 16.39
25,000 to 49,999 575 13.54 17.96
50,000 to 99,999 1213 28.55 27.93

100,000 to 149,999 779 18.34 16.63
150,000 to 199,999 430 10.12 8.93
$200,000 or more 582 13.70 12.16

Prefer not to answer 375 8.83 -

Total Housing Units

1 (detached or attached) 3191 75.12 65.34
2 to 4 214 5.04 7.82

5 to 19 313 7.37 11.17
20 or more 397 9.34 12.13

Mobile home 104 2.45 3.43
Boat, RV, Van, etc. 9 0.21 0.12

Others 20 0.47 -

Number of vehicles

0 112 2.64 7.11
1 1529 35.99 30.42
2 1713 40.32 37.20
3 607 14.29 16.20

4 or more 287 6.76 9.07

Owns electric vehicle(s) (0/1) 1174 27.64 -
Has solar panels installed (0/1) 667 15.70 -

Region

Central Valley 249 5.86 9.87
Los Angeles 1922 45.25 46.23
San Diego 388 9.13 8.63

San Francisco 1005 23.66 20.94
Sacramento 343 8.07 6.82
Rest of State 336 7.91 7.51
I don’t know 5 0.12 -

Endogenous Variable Response Sample (%)
(N = 4248)

Non-adopters We would wait as long as possible and try to avoid ever buying a self-driving vehicle. 46.07
Late adopters We would eventually buy a self-driving vehicle, but only after they are in common use. 44.96

Early adopters We would be one of the first to buy a self-driving vehicle (either as a replacement or
additional household vehicle). 8.97

Note: (0/1) indicates binary variable. a: Children are defined differently in CVS (i.e., individuals below 16 years
old) and in the ACS data (below 18 years old). b: The statistics are based on aggregated categories for comparison
purposes given that the categories in CVS and ACS are not completely the same. The finer categories are used in
analysis and modeling.

Some derived variables are used in the modeling process but not included in Table 1.
For example, the healthcare and social assistance industry, one of the 20 sectors according
to North American Industry Classification System (NAICS), is used as a binary indicator
variable indicating whether this industry is the top 2 industry in terms of employment
population in the county where the household is located. The reason is that people’s
travel behavior and their intentions to adopt AVs can be influenced by various types of
employment. More details on the dataset can be found in Xiao and Goulias [8].

Compared to the California population, the sample households have smaller house-
hold sizes, a lower number of children, and more seniors with higher income. In terms of
vehicle usage, the sample households have a lower car ownership (number of vehicles) but
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higher percentage of EV owners (The EVs here include hybrid electric vehicles, plug-in
hybrid electric vehicles, fuel cell electric vehicles, and battery electric vehicles). The geo-
graphical distribution of the sample households is similar to the population at the regional
level. The percentage of households across most categories varies by no more than 5%
between the sample and the population, indicating that the sample is likely representative
of the population.

2.1.2. Endogenous Variable: Intention to Adopt AVs

We use the following survey question—“Now, consider your current situation with
the vehicles your household now owns (if any), and imagine that driverless vehicles have
become widely available for purchase. Which of the following scenarios best describes your
household?” to create the endogenous variable so that the sample is in three categories:
early adopters, late adopters, and non-adopters. As shown in Table 1, early adopters
account for 9% of the sample. Late adopters and non-adopters constitute 45% and 46%,
respectively. Figure 1 displays the spatial distributions of (a) “early adopter” and (b) “late
adopter” for California at the county level. The coastal region, including the San Francisco
Bay Area, is more positive to AV adoption in general, although the majority of households
are considered late adopters. In broader terms, the inclination to own an AV (late or early)
among the residents of the coastal region might be attributed to area characteristics (e.g.,
presence of more technology companies) making them more technology savvy.

(a) (b)

Figure 1. (a) Early adopter and (b) late adopter distribution at the county level in California, USA.
(Counties in gray have less than 20 observations).

2.2. Synthetic Population and Vehicle Data of the San Francisco Bay Area Region

This study uses a synthetic population and household vehicle data for the year 2017 for
microsimulation. The population data are generated by a demographic model (urbanSim:
https://github.com/psrc/urbansim/tree/master/urbansim/models (last accessed on 3
November 2024) implemented in urbanSim [34] by evolving the model yearly from a
base year 2010 to 2017. A population synthesizer SynthPop (SynthPop: https://github.
com/UDST/synthpop (last accessed on 3 November 2024) is used to create the base year
population that initializes the urbanSim model. A synthetic population is the person-by-
person and household-by-household representation of the population residing in a region.
It uses a relatively large sample of microdata (called the seed) and clones the persons and
households of the sample in a way that the resulting population matches the characteristics
of the real resident population with high fidelity. The fidelity of this simulation is by using
statistical criteria of fit between the synthesized persons and households in each geographic
unit (e.g., the US Census block group) to the demographic characteristics provided by the

https://github.com/psrc/urbansim/tree/master/urbansim/models
https://github.com/UDST/synthpop
https://github.com/UDST/synthpop
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US Census. The synthetic population used here contains over 6.8 million individuals living
in over 2.5 million households owning around 5 million vehicles. The households are in
the nine counties of the San Francisco Bay Area region (Alameda, Contra Costa, Marin,
Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma) of Northern California.

Vehicle ownership level and fleet composition associated with the individual house-
holds in the synthetic population of year 2017 are generated by a vehicle fleet mix mod-
ule implemented in the vehicle transaction and technology adoption microsimulator AT-
LAS (Automobile and Technology Lifecycle-Based ASsignment) [35,36] as part of a larger
mesoscale agent-based transportation modeling system (BEAM CORE: Behavior, Energy,
Autonomy, and Mobility Comprehensive Regional Evaluator) [37]. Depending on the
socioeconomic and demographic attributes of the household, ATLAS predicts the number
of vehicles owned, and the body type, vintage, powertrain, tenure (own or lease), and
annual mileage of each of these vehicles.

Table 2 presents the descriptive statistics of the synthetic population and household
vehicles. On average, the number of vehicles owned per household is approximately two,
which is consistent with our expectation. Further, the average VMT per household is
18,910 miles per year and average VMT per vehicle is computed as 9471 miles per year,
consistent with the US Energy Information Administration [38]. The synthetic vehicles data
was generated from the vehicle ownership and transaction model developed at Lawrence
Berkeley National Laboratory; ATLAS [35] is also used in this study. Characteristics of the
synthetic vehicles are displayed in Table 2. About two-thirds of the vehicle body types
are passenger cars, while about one-fifth of them are sports utility vehicles (SUVs). The
majority of the vehicles are ICE, and more than 90 percent of the vehicles are owned by
the households. Interestingly, the dataset contains an equal proportion of vehicles aged
0–5 years and 12+ years. Overall, the synthetic dataset provides rich information to assess
the implications of AEVs on VMT and GHG emissions.

Table 2. Descriptive statistics of the synthetic population and the synthetic vehicles.

Variable Count / Median Percent / IQR a

Number of households 2,530,071 -
Number of persons (avg./household) 6,849,690 (2.71) -
Number of vehicles (avg./household) 5,051,465 (2.00) -
Total mileages for all households 47,844,975,328 -
Average VMT per household 18,910.53 -
Average VMT per vehicle 9471.505 -

Body type
Car 3,355,656 66.43%
SUV 1,057,989 20.94%
Pickup 368,167 7.29%
Van 269,653 5.34%

Vintage
0∼5 years 1,794,177 35.52%
6∼11 years 1,459,110 28.88%
12+ years 1,798,178 35.60%

Annual mileage 7230 (3310, 13,067)
Fuel type b

ICE 4,595,581 90.98%
Hybrid 330,318 6.54%
AEV 70,138 1.39%
PHEV 55,428 1.10%

Tenure
Own 4,721,254 93.46%
Lease 330,211 6.54%

Note: a: IQR = interquartile range. b: ICE = Internal Combustion Engine; Hybrid = Hybrid Electric
Vehicle; PHEV = Plug-in Hybrid Electric Vehicle; AEV = All-Electric Vehicle, also known as
Battery Electric Vehicle (BEV).
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3. Methods

This section presents an ordinal logistic model that utilizes the 2019 CVS data followed
by sensitivity analysis to understand the role of exogenous attributes in differentiating early
adopters from non-adopters. Then, the ordinal model is applied to the synthetic population
created for the nine-counties in San Francisco Bay Area in California, using Monte Carlo
simulations. In this way, the market uptake of AEVs in different scenarios of behavioral
response and concomitant vehicle ownership changes can be estimated.

3.1. Ordinal Logistic Model

The outcome variable intention to adopt AVs has three ordered responses (i.e., non-
adopter, late adopter, and early adopter). An ordered logistic model is used to find the
correlations between people’s intention to adopt AVs and their socio-economic characteris-
tics and environmental variables.

3.2. Sensitivity Analysis

Statistical significance of a behavioral determinant is not sufficient to assess the impact
on the propensity to adopt AVs. Sensitivity analysis offers a quantitative approach to assess
how the output changes given a change in each input. It increases the understanding of the
relationships between variables in the model and helps identify important covariates that
can significantly impact the endogenous variable of interest to this study.

In this study, the sensitivity analysis is performed by computing marginal effects.
A marginal effect measures how the outcome variable changes with one unit change in
a covariate while controlling for all other covariates. In ordinal logistic models with a
nonlinear link function, model parameters cannot be interpreted as marginal effects in the
way they are carried out in ordinary linear regression. Simply identifying marginal effects
at the link function scale (e.g., odds ratio scale for ordinal logistic model) rather than at
the probability scale provides limited information [39]. Thus, probability-based marginal
effects—average marginal effects (AMEs) and marginal effect at mean (MEM)—are used
here. AME computes the marginal effect of the explanatory variable for each observation
and then calculates the average probability change. MEM computes the marginal effect of
the explanatory variable x, setting all other variables to their mean.

3.3. Monte Carlo Simulations

The impact of combinations of variables and the combined impact of the household
population decisions needs to be examined when setting public policies and assessing
the region-wide impact of micro-decisions. Applying the ordinal logistic model to the
synthetic population, the probabilities of a household being in the three categories (i.e., non-
adopter, late adopter, and early adopter) are predicted. Rather than assigning categories
based on the highest probability for each household, Monte Carlo simulation is used to
introduce variability. One hundred simulations were generated for each household; in each
simulation, a random number r between 0 and 1 (where r ∼ U[0, 1], uniformly distributed
between 0 and 1) was generated and compared with the cumulative probability to assign
the category. If the random number r is not more than P(Y ≤ 1), the household is classified
as non-adopter; if the r is between P(Y ≤ 1) and P(Y ≤ 2), it is classified as late adopter;
otherwise, it is classified as early adopter. The mathematical formulation is as follows:

category =


non-adopter r ≤ (Y ≤ 1)
late adopter P(Y ≤ 1) < r ≤ P(Y ≤ 2)
early adopter r > P(Y ≤ 2)

For example, in a set of 100 simulations for a household, the household might be
classified as a non-adopter for 16 times, a late adopter for 62 times, and an early adopter for
22 times. In each simulation, measures such as total VMT replaced by electric AEVs for all
households and GHG emission reduced by all households can be computed to assess the
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impact of AV adoption at the aggregate level. With 100 simulations, the mean and variance
of these measures can also be obtained to check for robustness.

4. Results
4.1. Ordinal Model Results

The ordinal logistic model was estimated using the R package ‘MASS’ (version 7.3).
The model was assessed using a likelihood ratio test; a p-value less than 0.001 suggests
a good overall model fit. In addition, the concordance index (a metric to evaluate the
prediction of the model) is 0.723, indicating that the model has good performance and fits
the data well by the standards of transport choice modeling.

The dependent variable is influenced by a variety of explanatory variables. Table 3
presents the regression coefficients for variables that are significantly different than zero
at a 90% confidence level or above. The sign of the estimate is behaviorally intuitive and
aligns with expectations. Males are more likely to be an early adopter, as are young and
highly educated adults. This finding is consistent with the literature [13]. The correlation
between household income and AV adoption is well established, suggesting that wealthier
households are usually the first to have access to expensive new technologies [13]. Asian
householders are more interested in AVs than non-Asians. Interestingly, having children in
households where the householder is between 35 and 64 years old increases the intention
to purchase AVs. However, this is not the case for householders in other age groups.
Households with higher vehicle ownership have lower proclivity to own an AV and might
fall into the no-adopter category [40]. Yet, households that own electric vehicles have
higher propensity to adopt AEVs, which presumably can be attributed to their technology
familiarity and knowledge [9]. This is also evidence of the leverage government policies
have on introducing AVs through a population segment that is already participating in
incentives for electrification. As for the commuting patterns, a higher telecommuting ratio
is associated with a greater disposition towards AVs. Spatial heterogeneity is also observed
with households residing in the county of San Francisco being more interested in AVs.
However, households in counties where healthcare and social assistance industries are
the leading industries (in terms of numbers of employees) have a lower proclivity to buy
an AV.

Table 3. Results of the ordinal logistic model.

Variable Est. S.E. t Value p-Value

(Intercept): Non-Adopter—Late Adopter 0.576 0.149 3.862 0.000 ***
(Intercept): Late Adopter—Early Adopter 3.460 0.16 21.56 0.000 ***
Male householder (0/1) 0.389 0.064 6.038 0.000 ***
Householder Age (reference: 65 and above)

Householder ages 18–34 1.369 0.107 12.786 0.000 ***
Householder ages 35–64 0.314 0.076 4.138 0.000 ***

Asian householder (0/1) 0.155 0.089 1.752 0.080 *
Householder with bachelor’s degree or higher (0/1) 0.217 0.072 3.020 0.003 ***
Number of people over 15-years-old in the household −0.129 0.049 −2.605 0.009 ***
Number of students in the household 0.431 0.076 5.653 0.000 ***
Lifecycle: householder ages 35–64 with children (0/1) 0.484 0.097 4.987 0.000 ***
Household income (reference: below 75 k)

Household income between 75 k and 100 k 0.272 0.100 2.710 0.007 ***
Household income between 100 k and 150 k 0.543 0.096 5.665 0.000 ***
Household income between 150 k and 200 k 0.632 0.117 5.387 0.000 ***
Household income between 200 k and 250 k 0.697 0.143 4.869 0.000 ***
Household income 250k and more 1.035 0.139 7.448 0.000 ***

Number of vehicles in the household −0.091 0.039 −2.345 0.019 **
Own electric vehicle(s) (0/1) 1.039 0.076 13.685 0.000 ***
Telecommuting ratio 0.332 0.128 2.598 0.009 ***
San Francisco County (0/1) 0.543 0.216 2.510 0.012 **
Healthcare and social assistance industry (0/1) −0.296 0.111 −2.659 0.008 ***

Observations 4248
Likelihood ratio test # (20) = 835.56, p < 0.001
Concordance index 0.723

Note: * p < 0.1; ** p < 0.05; *** p < 0.01; Est.: estimate, S.E.: standard error; (0/1) indicates binary variables.
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4.2. Sensitivity Analysis Results

The analysis presented in Figure 2 clearly reflects the role of variables in differentiating
early adopters from non-adopters. One of the most important quantitative roles in the
propensity to be an early AV adopter is the ownership of an EV, in addition to young
householders between 18 and 34 years old. Moreover, this propensity is also influenced
positively by the telecommuting mix in the household, suggesting that the ability to multi-
task and the flexibility of daily schedules are an important determinant of mode choice [41].
We also find that some places in California are far more likely to have households with
a higher propensity to be the early adopters of AEVs. All this supports the idea that the
niche market that will adopt AVs will most likely be a wealthy, technologically savvy, and
relatively young market segment living in places with high technology firms (e.g., San
Francisco). Ethnicity also plays a role in the adoption of AVs, with Asian individuals being
more likely to be early adopters. People in the very large age group (35 to 64 years old)
with children in the household are more likely to be non-adopters of AVs. The impact of the
distribution of employment types in each county supports the idea that adoption of AVs
in California will show substantial spatial heterogeneity requiring region-specific policies
along the same directions of EVs [42]. In addition, the income effect is similar to that of
other advanced technologies such as Urban Air Mobility [43].

Figure 2. Marginal effects for all covariates in change of probability of being “non-adopters” and
“early adopters”.

4.3. Microsimulation Results
4.3.1. AEV Market Share and Replacement Rate

For each simulation, the market share of non-adopters, late adopters, and early
adopters is computed, assuming only one vehicle will be replaced. Further, the replaced
vehicle characteristics (e.g., mileage accrual and number of trips) are assigned to an AEV
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with the assumption they will be utilized similarly as the replaced vehicle. This assumption
appears to be crude given that AEVs are expected to influence daily activity travel patterns
and might be adopted and utilized differently [44,45], resulting in heterogeneity (e.g., high-
income households might adopt more than one AEVs, while low-income households might
own zero AEVs), which is not accounted for in the analysis. However, recent evidence
in the space of electric vehicles (also an emerging technology) indicates that they are uti-
lized as much as gasoline vehicles are currently [46]. Figure 3 is the average market share
(percentage) of the three categories as well as the variation in the percentage for the 100 sim-
ulations. Non-adopters account for about 40 percent of the market, while late adopters are
approximately 45 percent and early adopters a little over 10 percent. The variation of the
market share for categories is very small across simulations (the standard deviations are
less than 0.2% of their mean market share, so the error bars appear to overlap as one line
for each category in Figure 3), suggesting stability of the simulation algorithm employed
here. The average number of vehicles in a household and their annual mileage were also
computed and reported in Figure 4. It should be noted that early adopters on average have
more vehicles in their households when compared to non-adopters and late adopters. A
similar pattern is observed for household annual VMT. Interestingly, non-adopters and
late adopters have higher annual VMT compared to the number of vehicles owned. The
plausible explanation for that pattern is that multiple household members might be using
the same vehicle to meet their daily travel needs, thus resulting in higher annual VMT
compared with the number of vehicles that the household owns.

Figure 3. AEV market share and variation (error bars in black) based on simulations.

Figure 4. Average number of vehicles and average annual mileage per household for different type
of AEV adoption.
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4.3.2. Replacement Strategy by Vehicle Characteristics

There is considerable uncertainty about the availability of AEVs for consumers, regu-
lations and incentives for residential locations, and type of transaction and preference for
households in purchasing and using AEVs. One way to understand the uncertainty and
impacts of different household strategies is to develop scenarios of how an AEV can be used
to replace existing vehicles in the household. Then, for each scenario, use the simulated
data to assess the impact on VMT and GHG per replacement scenario. The different vehicle
replacement strategies for households having more than one vehicle are developed with
underlying reasoning/motivation:

1. Replace the vehicle with the highest annual VMT (e.g., to reduce fuel cost and decrease
driving fatigue).

2. Replace the vehicle with the lowest annual VMT (e.g., to avoid driving in congested
urban environments).

3. Replace the electric vehicle and, if there is no electric vehicle, a random vehicle is
replaced (e.g., purchase the next best technology).

4. Replace the oldest vehicle (e.g., to reduce GHG emissions and enhance household
fleet reliability).

5. Replace a random vehicle from the household fleet.

At the aggregated population level, the total VMT and its percentage traveled by
AEVs are computed and presented in Figure 5. For late adopters, the VMT through AEVs
is about 10–17 billion miles (20–32% of the total VMT) and 2.5–7 billion miles (5–14%)
for early adopters in different scenario settings. As expected, replacing the vehicle with
the highest annual VMT yields the most benefits in the replacement of a vehicle for both
early adopters and late adopters. However, note that due to the largest segment of late
adopters, all replacement strategies for late adopters have double and triple impact on
VMT replacement compared to that of early adopters. This is very important for the market
structure and introduction strategies for AEV technologies, highlighting the need to start
educating the public about gains of automation, pay attention to the used car market (and
possibly the positive role played by the used EV car market), and to more closely examine
the types of cars that are replaced. Figure 6 shows that the vehicles replaced in our scenarios
are mostly passenger cars because these are the most popular vehicle body types. ICE is
the predominant fuel type to be replaced, given that it is the dominant fuel type for current
household vehicles (see Figure 7). The percentage of vehicles replaced in each vintage
category does not vary much in different scenarios except for the oldest vehicle replacement
scenarios in Figure 8.

Figure 5. VMT and percentage by AEVs in different scenarios.
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Figure 6. The number of vehicles replaced by AEVs by body type under different scenarios.

Figure 7. The number of vehicles replaced by AEVs by fuel type under different scenarios.
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Figure 8. The number of vehicles replaced by AEVs by vintage under different scenarios.

4.3.3. GHGs Emissions

To approximately compute the maximum environmental impact of adoption of AEVs,
we assume that the CO2 tailpipe emission from ICE vehicles will be eliminated when they
are replaced by AEVs. Table 4 presents the average ICE CO2 emissions by vehicle body
type and vintage, which was calculated using the data published by U.S. Environment
Protection Agency [47] for each model year and vehicle body type. These values are
adjusted to account for different engines and vehicle weights and to reflect real-world
performance, which is typically 25 percent higher than unadjusted laboratory CO2 values.
Table 4 shows that emissions are higher for older cars, which is as expected because they
have older technologies and are less efficient.

Table 4. Average ICE CO2 emissions by vehicle body type and vintage (g/mi.)

Body Type 0∼5 Years 6∼11 Years 12+ Years

Car 316.83 364.5 418.37
Pick up 496.5 542.33 543.3

SUV 393.17 455.58 558.4
Van 416.67 450.67 552.6

After running the scenarios described above, the results of CO2 emissions reduced
when replacing ICEs with AEVs, as shown in Figure 9. On average, adopting electric AEVs
(both early and late) can reduce more than 5 megatons of CO2 yearly, which is around 30%
of the total CO2 emitted by ICEs in the synthetic population. This alone is a major finding
because it shows the potential AEVs have in contributing to meeting GHG emissions
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targets in California reported by the California Air Resources Board—https://ww2.arb.ca.
gov/our-work/programs/sustainable-communities-program/regional-plan-targets (last
accessed on 3 November 2024). These targets are set regularly to meet the Senate Bill
375 requirements and are expressed as a percent change in per capita greenhouse gas
emissions from passenger vehicles compared to the levels in 2005. Even if one accounts for
the savings in CO2 emissions of the early adopters alone, the contributions are remarkable
and will make a difference in regions’ target requirements and decarbonizing the transport
sector. Moreover, providing incentives to replace older, most-used vehicles in a household
will also have the added benefit of reducing contributions to other pollutants from ICEs.
However, it should be noted that the increased demand on power grids, due to the transport
electrification required to realize these benefits, might be substantial. To fully realize the
outcomes of the scenario, it would be important to upgrade existing grid infrastructure
for increased capacity, enhanced distribution networks, and the integration of renewable
energy sources to meet the additional demand from the transport sector. While these
impacts on the grid are critical considerations, accounting for them is beyond the scope of
this study.

Figure 9. Total CO2 emissions reduced and percentage when replacing ICEs with AEVs under
different scenarios.

The scenarios show the benefits of replacing older vehicles and high-VMT vehicles in
a household fleet. They also show the substantial benefit from early adopters motivating
the recommendation of providing substantial incentives for the successful introduction
of AEVs in the market. In addition, the findings here also show that late adoption of the
technology further amplifies the major benefits to society in terms of fuel consumption and
mitigating the climate impacts of automobile use and mobile source emissions. From a
technical viewpoint, this paper shows a method to use an intention model and develop
scenarios of AEV market penetration and impact assessment, applied to the first tier of
regional activity-based microsimulation models. For example, see the activity-based models
developed by the Southern California Association of Governments (SCAG) at https://scag.
ca.gov/activity-based-model (last accessed on 3 November 2024), and by the San Diego
Association of Governments (SANDAG) at https://github.com/SANDAG/ABM/wiki
(last accessed on 3 November 2024).

5. Policy Implications

This study presents the demand model for AEVs and assesses its impacts on VMT and
direct GHG emissions from a vehicle annual operation perspective for different consumer
segments. It is observed that owners of relatively more advanced technologies are likely
to endorse and adopt AEVs. In addition, individuals that are young, wealthy, and living

https://ww2.arb.ca.gov/our-work/programs/sustainable-communities-program/regional-plan-targets
https://ww2.arb.ca.gov/our-work/programs/sustainable-communities-program/regional-plan-targets
https://scag.ca.gov/activity-based-model
https://scag.ca.gov/activity-based-model
https://github.com/SANDAG/ABM/wiki
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in places that induce variety in activity participation are more likely to be early adopters
of AEV technology. This segment alone can significantly contribute to a decrease in GHG
emissions and should be incentivized to do so. In California, there are specific locations
such as San Francisco that are more likely to have households with a higher propensity to
be early adopters of AEVs. All of this supports the idea that we may need geographically
differentiated incentive policies targeting wealthy, technologically savvy, young market
segments living in places with high technology firms (e.g., San Francisco) to jumpstart
the adoption of AEVs and create a robust new vehicle market. On the other hand, as the
technology matures and starts to penetrate the market, late adopters have the highest
potential to change the arithmetic of meeting regional targets set by the California Air
Resources Board (CARB) in its Senate Bill 375 compliance mandates for regions.

In the replacement scenario, for late adopters, the VMT through AEVs is about
10–17 billion miles (20–32% of total VMT) and 2.5–7 billion miles (5–14%) for early adopters.
Replacing the vehicle with the highest annual VMT yields the most benefits in the replace-
ment of a vehicle for both early adopters and late adopters. This is very important for the
market structure and introduction strategies for the AEV technologies pointing to a need
to start educating the public about benefits of automation, attention paid to the used car
market (and possibly the positive role played by the used EV car market), and the need to
examine more closely the types of cars that are replaced. Further, to understand the energy
implications, it is observed that adopting electric AEVs can reduce more than 5 megatons
of tailpipe CO2 emission yearly, which is around 30% of the total CO2 emitted by ICEs in
the synthetic population.

Since passenger cars have the highest annual VMT, incentives should prioritize them
over SUVs, pick-up trucks, or vans. Older cars used for a higher proportion of household
travel are also the types of vehicles that should be targeted (e.g., using scrappage vehicle
policies). This is not new in the US and has been a successful policy initiative (similar
to the Car Allowance Rebate System, also known as the ”cash for clunkers“ program).
We should expect that passenger cars will not only be replaced, but households may
switch vehicle body type in this program. This is something we could not study in this
analysis and needs to be explored further by looking at the types of vehicles replaced when
households purchase AEVs either in real world data collection or in hypothetical scenarios.
Understanding household inclination towards vehicle body type in the context of AEVs
might help automakers develop a focused, ready market as the AEV technology matures. In
the context of EVs, Higgins et al. [48] found that vehicle body type significantly influences
the decision-making behavior of EV consumers. Based on the findings in this study, it is also
important to explore the second-hand car market and identify the propensity of people to
adopt technologies after the early adopters move to more advanced options. In other words,
the used vehicle market will play a substantial role in increasing the market penetration
rate of AEVs by catering it to late and non-adopters and might disrupt the mobility market
significantly. Further, the second-hand market can be seen as a way to accelerate technology
adoption in disadvantaged communities. All of this provides added evidence of the need
to combine car autonomy with electrification, even in the absence of sharing [49]. This pilot
study shows that the combination of automation with electrification has the potential for
major tailpipe greenhouse gas emission reduction, provided that issues raised by other
research challenges are addressed [50], and reduces the uncertainty described by other
authors [51]. However, we also find that using more creative sets of incentive strategies
(e.g., commercial fleet scrappage programs and weighted incentivization combined with
photovoltaic energy production and affordable housing policies) and developing a second-
hand electric vehicle market makes sense in the adoption of technologies, as described later.

6. Conclusions

In this study, a statistical model correlating AEV adoption intention and socioeconomic
and built environment attributes was estimated using the 2019 CVS survey; a sensitivity
analysis was conducted to understand the importance of factors impacting AEV adoption.
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Using the San Francisco Bay Area synthetic population, a microsimulation of market
penetration with five household vehicle replacement scenarios assessed how the annual
VMT and tailpipe CO2 emissions associated with vehicle usage can change. It is found
that adopting electric AEVs can potentially reduce more than 5 megatons of CO2 yearly,
which is approximately 30% of the total CO2 emitted by Internal Combustion Engine cars
in the region.

There is substantial additional work that needs to be conducted to set policies such
as carbon tax and time-of-day charging systems that other research has explored in the
context of shared autonomous electric vehicles [52]. This is because AEV reductions in GHG
emissions are very sensitive to time-of-day vehicle operations, and we need to account
for important parameters such as vehicle utilization and charging operations, vehicle
technology, meteorological conditions, and energy generation to power the vehicles [53].
In addition, a vehicle replacement model should be integrated in the simulation since
our assumption that only one existing vehicle is replaced may not accurately represent
real-world scenarios. Households without any vehicles, such as individuals with age
limitations or disabilities, may acquire AEVs. Additionally, households with existing
vehicles may not simply replace one vehicle but, rather, replace multiple vehicles or add
new ones when adopting AEVs [54]. Even more substantial, however, may be the change in
travel behavior that influences both the owned and shared automobile market with strong
temporal and spatial differentiation in preferences guiding behaviors. One limitation of our
microsimulation is the assumption that household travel behavior—specifically, annual
VMT—remains constant. In fact, as part of future work, this study seeks to simulate
different types of activity–travel patterns replaced by AEV at individual levels throughout
the day across space. In order to do this, existing literature [7] on the knowledge of
the relationship between individuals’ spatio-temporal activity–travel patterns with their
dispositions to buying AEVs can be incorporated into a currently developing activity-based
model for the synthetic population and vehicles (e.g., ATLAS, mentioned earlier in this
paper). This study is just the beginning of a much larger microsimulation to address
many of the challenges described in [51] and going further into the integration with
other aspects of energy demand. One possible avenue is to consider total home energy
management and expand on recent research to optimize energy management in the building
sector [55]. Beyond this, using the methods developed here, researchers can possibly
simulate the impact of incentives on an entire region’s GHG emissions from the use of
energy storage systems by households [56], explore the impact of static and dynamic pricing
of battery charging at workplaces [57], and integrate in travel behavior daily simulation
community energy storage centers [58]. Yet another possible research direction is in future
fuels, the household propensity to consider AEVs and hydrogen-powered vehicles, and
the impact on VMT and GHG emissions to complement aggregate studies such as [59].
Moreover, this study is limited in scope as it specifically focuses on assessing the impact of
replacing ICEs with AEVs from a “behavioral utilization” and tailpipe emission perspective.
We acknowledge that this approach excludes a comprehensive evaluation of the entire
lifecycle emissions associated with AEVs, including factors such as electricity generation,
battery production, and other upstream and downstream processes. Additionally, the study
does not account for how factors such as temperature, driving habits, and road conditions
may influence the real-world performance and energy consumption of AEVs. Therefore,
the findings presented in this study provide an essential but partial perspective on the
environmental impact of the transition to electric AEVs. A more comprehensive assessment
would require the incorporation of these broader life-cycle considerations to provide a
more holistic understanding of the GHG emissions associated with AEV adoption.
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