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ABSTRACT OF THE DISSERTATION

Inter- and intratumoral heterogeneity of circular extrachromosomal DNA in
medulloblastoma and other pediatric cancers

by

Owen Chapman

Doctor of Philosophy in Bioinformatics and Systems Biology (with a specialization in
Biomedical Informatics)

University of California San Diego, 2023

Professor Jill Mesirov, Chair
Professor Bing Ren, Co-Chair

ecDNA is an important driver of aggressive adult cancers, but its role in pediatric tumors

is not yet well-understood. To survey the genomic landscape of ecDNA amplifications across

pediatric cancers, we applied computational methods to detect ecDNA in the genomes of a

cohort of 1670 pediatric tumors from 1481 patients. ecDNA was detected in at least 10% of

pediatric ETMR, osteosarcoma, rhabdomyosarcoma, high-grade glioma, retinoblastoma, and

medulloblastoma (MB) tumors. To assess the clinical importance of ecDNA in MB, the most

common malignant pediatric brain tumor, we applied the same methods to a cohort of 468
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MB patients. ecDNA was detected in 18% of MB tumors and carried a threefold greater risk

of mortality within 5 years. Affected genomic loci harbor up to hundredfold amplification of

oncogenes including MYC, MYCN, TERT, and other novel putative oncogenes. To elucidate

the functional regulatory landscapes of ecDNAs in MB, we generated transcriptional (RNA-

seq), accessible chromatin (ATAC-seq), and chromatin interaction (Hi-C) profiles of 6 MB

tumor samples. In each case, we identified regulatory interactions that cross fusion breakpoints

on the ecDNA, representing potential “enhancer rewiring” events which may contribute to

transcriptional activation of co-amplified oncogenes. To test this hypothesis, we conducted

an in vitro CRISPRi screen targeting regulatory regions on the ecDNA of a MB cell line and

identified distal enhancers which promote proliferation. Using single-cell sequencing, we have

also developed methods to explore intratumoral heterogeneity of ecDNA in a p53-mutant SHH

MB patient tumor and its corresponding PDX model. In summary, our study analyzes the

frequency, diversity, and functional relevance of ecDNA across MB subgroups and provides

strong justification for continued mechanistic studies of ecDNA in MB with the potential to

uncover new therapeutic approaches.
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Cancer is a heterogeneous disease of common phenotypes but diverse genetic roots. To

become malignant, a tumor must overcome several molecular hurdles known as the “Hallmarks

of Cancer”, including sustaining proliferative signalling, evading immune destruction, resisting

cell death, and evading growth suppressors, among others [39]. The possible genetic mechanisms

for achieving these transformations, however, are extremely diverse. Accordingly, the standard of

care for cancer treatment varies by tissue, cell of origin, and genetic, epigenetic, and molecular

features of the tumor. The practice of personalized oncology, or the tailoring of therapy to the

unique combination of molecular features present in a tumor, has become increasingly feasible in

recent decades with the advent of genomic data science. Specific molecular targeting of tumor

dependency genes has led to improved prognoses of many molecular subtypes of cancer [147];

however, some tumors evade molecular therapy and prognoses for these patients remain poor.

Cancers harboring circular extrachromosomal DNA (ecDNA) comprise one such class

of tumors for which current therapies often fail. ecDNA-containing (ecDNA+) tumors are

associated with poorer overall survival across many histological tumor types [55], including

gliomas [96], neuroblastoma [58], leukemias [131], lung cancer [103], and breast cancer [150].

In vitro experiments have shown that ecDNA amplification mediates drug resistance in colon

cancer [92] and glioblastoma [95] cell lines. Recent continued work on the same glioblastoma cell

line showed that ecDNA copy number is modulated in response to administration or subsequent

withdrawal of targeted therapy, and a similar pattern may be observed in sequential biopsies

of ecDNA+ treatment-naı̈ve and post-treatment patient tumors treated with targeted therapies

[63]. These results constitute strong evidence that ecDNA contributes to the evolution of therapy

resistance.

The mechanistic link between ecDNA and poor prognosis is most likely explained by

sequence dynamics of ecDNA molecules under selective pressure. ecDNAs are defined as circular,

acentric (ie., lacking a centromere) chromatin bodies hundreds of kilobases to tens of megabases

in length [148]. Tumors containing ecDNA commonly have been observed to accumulate ten-
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or hundredfold copy-number alteration (CNA) per cell of the circularized sequence, driving

high oncogenic expression of one or more genes amplified on the ecDNA [141]. Because

ecDNAs lack centromeres, they segregate randomly rather than equally during cell division [63].

This non-Mendelian pattern of inheritance allows a tumor to acquire intratumoral copy-number

heterogeneity with each cell division, which in turn enables rapid tumor evolution in response to

selective pressure [148, 37, 63].

There is accumulating evidence that ecDNA is subject to unique patterns of epigenetic

regulation as well. Experiments in glioblastoma and other cell line models have shown that

ecDNAs have highly accessible chromatin [160] and bring functional regulatory elements, or

enhancers, in contact with co-amplified oncogene promoters [93, 42]. Furthermore, ecDNA-

amplified enhancers have been observed to bind in trans to promoters on entirely different

molecules, namely chromosomal promoters [166] and other distinct lineages of ecDNA [45].

Thus, co-amplified regulatory elements on ecDNA appear to play previously underappreciated

oncogenic roles.

New and emerging technologies have powered these recent advances in ecDNA biology.

The growth of large cancer genomics cloud data resources such as the Pan Cancer Analysis of

Whole Genomes (PCAWG) [13], St Jude Cloud [86], and the Kids First Data Resource Com-

mons (KF-DRC) [41] have made thousands of cancer genomes available for public research,

alongside high-quality clinical metadata. Concurrently, the algorithmic softwares AmpliconAr-

chitect (AA) [22] and AmpliconClassifier [55] have enabled robust and reproducible detection

of ecDNA from whole genome sequencing. Finally, new technologies facilitate investigation

of ecDNA sequence and gene transcription: CRISPR-CATCH (ecDNA length and circularity)

[44], ATAC-seq (accessible chromatin) [12], Hi-C (chromatin interactions) [110], single-cell

multiome sequencing (single cell resolution gene regulation) [1], and others. These technologies

have enabled investigation of the roles of ecDNA in oncogenesis at ever-greater resolution.

While the frequency of ecDNA is known in most adult cancer types and some pediatric
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tumor types, only isolated case reports describe ecDNA in rare pediatric cancers. Here, The

accumulation of whole genome sequencing (WGS) data in cloud genomic data platforms now

offers the opportunity to examine ecDNA in pediatric patient populations at unprecedented

resolution. In Chapter 1, I apply AA to a large retrospective cohorts of medulloblastomas to

identify and characterize ecDNA across pediatric tumor types. I perform survival analysis with

respect to ecDNA and other clinical and genomic metadata to establish association between

ecDNA and patient outcomes.

In Chapter 2, I present new methods to characterize intratumoral heterogeneity of ecDNA

in medulloblastoma (MB) tumors. Using fluorescence in situ hybridization (FISH), we label

genomic copies of a marker gene on ecDNA in archival formalin fixed paraffin embedded (FFPE)

tissue of patient tumors, then apply an automated computational pipeline to estimate ecDNA

copy number across thousands of cells. This analysis establishes that the ecDNA has greater

average copy number and greater variance in copy number per cell than other focal amplifications,

consistent with previous reports of copy number heterogeneity in cell lines[63]. In addition, we

perform high-throughput sequencing of single cells to characterize the transcriptomes of cell types

present in ecDNA+ tumors. We show that this approach enables detection and characterization

of a distinct ecDNA+ cell population within a heterogeneous tumor. We anticipate that further

application of these approaches may illuminate the evolutionary dynamics of ecDNA+ tumors

under therapeutic pressure.

In Chapter 3, we map the transcriptomes, accessible chromatin, and chromatin interactions

of ecDNA sequences in patient and model tumors. In doing so, we reveal ectopic chroamatin

interactions linking accessible transcriptional enhancer elements to highly-expressed gene loci,

both co-amplified on the same ecDNA sequences. The frequency and diversity of these putative

“enhancer rewiring” events suggests that dysregulation of gene transcription likely contributes to

oncogenic activation of ecDNA-amplified genes.
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Chapter 1

CLINICAL IMPORT OF CIRCULAR

ECDNA IN MEDULLOBLASTOMA AND

OTHER PEDIATRIC CANCERS
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1.1 Abstract

Motivation — Medulloblastoma (MB) is the most common malignant pediatric brain

tumor. The current standard of care for MB consists of maximal safe resection followed by

chemotherapy and/or radiation, and carries substantial risk of co-morbidity and secondary neo-

plasms. So far, targeted molecular therapies have failed to reliably achieve sustained remission.

Notably, the genomic features of MB subgroups with the worst prognoses, namely TP53 inactiva-

tion and MYC family amplification, are also associated with ecDNA in other tumor types. We

therefore asked whether extrachromosomal DNA (ecDNA) may be a prognostic biomarker of

patient survival in MB, and investigated the genomes of ecDNA sequences found in MB patient

tumors to elucidate their possible oncogenic roles.

Results — In MB, the presence of ecDNA in a tumor sample correlates with other known

molecular prognostic indicators, namely TP53 mutation and MYC gene family amplification,

and is itself strongly associated with poor progression-free survival. We propose a causal model

whereby TP53 inactivation promotes genome instability, which may affect response to therapy by

the formation of ecDNA or by the formation of other structural variants.

Availability and implementation — This chapter summarizes work from the following

publication: [14] Code is available at https://github.com/auberginekenobi/medullo-ecdna.

1.2 Introduction

Circular extrachromosomal DNA (ecDNA), defined as circular, acentric megabase-scale

genomic DNA found exclusively in cancer cells [148, 3], has been associated with high-copy

oncogenic amplification [141], intratumoral heterogeneity [63, 161], evolution of targeted therapy

resistance [19, 95], and poor patient outcomes across various tumor types [55, 58]. Although the

frequency, sequence content, and prognostic value of ecDNA is well-described in various adult

solid tumor types [55] and pediatric neuroblastoma [58], the clinical presentation of ecDNA in
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MB has not yet been described. Therefore, there is compelling need to survey the frequency,

genomic sequence, and prognostic utility of ecDNA across the molecular subgroups of MB, to

determine how extrachromosomal amplification may affect the response of a tumor to the current

standards of care. Here we computationally screen for ecDNA across a large cohort of whole

genome sequencing (WGS) of pediatric solid tumors from the St. Jude Cloud [86], International

Cancer Genome Consortium (ICGC), and Children’s Brain Tumor Network (CBTN) [71], and

identify key clinical and genomic features of ecDNA in MB.

Medulloblastomas were represented among the first patient case reports describing ecDNA

[17, 77], and several patient-derived cell line models of MB are known to contain ecDNA [93].

Few effective targeted molecular treatments exist for MB, and the current standard of care carries

substantial risk of developmental disorder, neurological damage, and secondary metastasis [121].

There are four major molecular subgroups of MB: WNT, SHH, Group 3 (G3) and Group 4

(G4) [49]. Prognosis is especially poor for a subset of aggressive MYC-activated Group 3

tumors, and for p53-mutant SHH subgroup tumors [98, 108]. Both MYC amplification and p53

mutation have been co-reported alongside ecDNA in MB [119, 111], but the strength of any

possible association has not yet been quantified in a patient population. Although the genomic

landscape of medulloblastoma subgroups has been largely characterized [98], it remains unknown

how frequently ecDNA occurs in MB patients, and whether the presence of ecDNA may affect

prognosis or correlate with other molecular features.

1.3 Results

1.3.1 ecDNA amplifies known and putative medulloblastoma oncogenes.

To examine the landscape of ecDNA in medulloblastoma, we accessed WGS data available

in three cancer cloud genomics platforms: St Jude Cloud [86], the Children’s Brain Tumor

Network (CBTN) [71], and the International Cancer Genome Consortium (ICGC) [13]. In
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addition, we included 43 tumors from a previous proteomic analysis [2] and 8 tumors from

MB patients diagnosed at the Rady Children’s Hospital, San Diego. In total, we analyzed a

retrospective cohort of WGS data of 481 tumor biopsies from 468 different patients. Using DNA

fingerprint analysis, we ensured that the combined cohort WGS data contained no duplicate

specimens (see section 1.5). Clinical metadata were available for most patients and included age

at diagnosis, sex, MB molecular subgroup, and survival (Suppl. Tbl. 1 from [14]). To detect

ecDNA, we applied AmpliconArchitect (AA), an algorithm that detects ecDNA using paired-end

WGS data [22]. 102 putative ecDNA sequences were detected in tumor samples from 82 of 468

(18%) patients. By molecular subgroup, ecDNA+ patients were distributed as follows: WNT

0/22, SHH 30/112 (27%), Group 3 19/107 (18%), and Group 4 26/181 (14%) (Fig. 1.1). SHH

subgroup tumors were significantly more likely to contain ecDNA than tumors from the other

MB subgroups (χ2 = 7.66, p = 0.006). Among the ecDNA-amplified genes occurring in two or

more samples in this cohort were known or suspected MB oncogenes MYC, MYCN, MYCL1,

TERT, GLI2, CCND2 (Cyclin D2) [28], PPM1D (WIP1) [156], and ACVR2B [91]; members

of signaling pathways commonly dysregulated in cancer, such as DNA repair (RAD51AP1 and

RAD21); and p53 pathway inhibitors (PPM1D [76] and CDK6 [9]) (Fig. 1.2). Of MYC gene

family amplifications, 19/23 MYCN, 11/18 MYC, and 3/3 MYCL1 were on ecDNA, as were

all amplifications of CCND2, GLI2 and TERT. These results reveal that known MB oncogenes

are frequently amplified as ecDNA in MB patients, potentially providing future therapeutic

opportunities to target ecDNA-specific properties such as their generation [126], inheritance [63],

micronucleation [125], or aggregation [146, 45].

1.3.2 ecDNA predicts poor prognosis in medulloblastoma.

To evaluate ecDNA as a potential prognostic marker in MB, we performed survival

analyses across patients for whom clinical metadata were available. Patients with ecDNA-

containing (ecDNA+) tumors had significantly worse overall and progression-free 5-year survival

8



Figure 1.1: Presence of ecDNA by molecular subgroup across 468 MB patient tumors.
TP53-mut/WT: TP53-mutant/wild-type. MYC-amp: MYC copy number ≥ 5 estimated from
WGS.

(OS, PFS) compared to patients with ecDNA-negative tumors (ecDNA-) (log-rank test, p< 0.005;

Fig. 1.3). Stratified by molecular subgroup, ecDNA+ patients had worse overall survival in the

SHH, Group 3 and Group 4 MB subgroups (p < 0.05 for all subgroups; Fig. 1.4). Survival of

WNT subgroup patients was not analyzed because no WNT tumors in our patient cohort were

ecDNA+. To determine whether ecDNA+ patients had worse outcomes than patients with tumors

harboring other types of focal somatic copy number amplification (fSCNA), we stratified patients

by the topology of the amplification(s) present in the tumor genomes, using previously published

methods [55]. As expected, ecDNA+ patients had the poorest clinical outcomes, significantly

worse compared to patients without fSCNAs or with linear amplifications (p < 0.005, Fig. 1.5).

To further estimate the prognostic value of ecDNA, we conducted Cox proportional

hazards models controlling for sex, age, and molecular subgroup. Patients with ecDNA+ tumors

had greater estimated risk for progression (hazard ratio 2.36, p< 0.005) and mortality (HR= 2.99,

p < 0.005) compared to patients with ecDNA- tumors (Fig. 1.6, Supplementary Table 2 of [14]).
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Figure 1.2: Recurrently amplified genes on ecDNA in MB. A subset of recurrently (n ≥ 2)
amplified genes on ecDNA in this patient cohort. p53 inhibitors: negative regulators of p53
pathway activity; COSMIC: genes listed as tier 1 or 2 of the COSMIC Cancer Gene Census
[127].

(a) (b)

Figure 1.3: Survival of ecDNA+ and ecDNA- MB patients. (a) 5-year overall survival and (b)
progression-free survival of ecDNA+ and ecDNA- MB patients.

1.3.3 TP53 alterations are associated with ecDNA in SHH MB tumors.

The tumor suppressor protein p53 (TP53) is involved in DNA damage sensing, cell cycle

arrest and apoptosis, and is frequently affected by somatic mutations and pathogenic germline
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(a) (b) (c)

(d) (e) (f)

Figure 1.4: Survival of ecDNA+ and ecDNA- MB patients, stratified by molecular subgroup.
Survival curves indicating (a-c) 5-year overall survival and (d-f) progression-free survival of
ecDNA+ and ecDNA- MB patients. a-b: SHH. c-d: Group 3. e-f: Group 4. WNT subgroup was
not analyzed because ecDNA was not detected in WNT MB tumors.

variants in SHH MB [108, 66, 155]. Moreover, SHH-subgroup MBs with inactivating TP53

mutations are known to be associated with chromothripsis [111], a process of catastrophic

shattering of a chromosome that has been shown to precede ecDNA formation in cell line models

[126, 142]. To test whether TP53 mutations were associated with the presence of ecDNA in

MB, we accessed the somatic and germline TP53 mutation status available for 92 SHH MBs.

We found significant enrichment of TP53 alterations in ecDNA+ SHH MB tumors (12 of 23,

52%) compared to ecDNA- SHH MB tumors (2 of 69, 3%; p = 1.3e−7, Fisher exact test; Table

1.1). We did not find a significant association between TP53 alterations and ecDNA either in the

other MB subgroups or across the entire MB cohort, suggesting that in MB, a possible functional
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(a) (b)

Figure 1.5: Survival of ecDNA+ and ecDNA- MB patients, stratified by focal somatic
amplification(s) present in the tumor as classified by AmpliconClassifier [55]. ecDNA: tumor
harbors a circular extrachromosomal amplification. Heavily rearranged: Tumor harbors an
amplification classified as complex non-cyclic, but no cyclic ecDNA or BFB amplifications.
Linear: Tumor harbors a linear amplification, but no highly-rearranged, BFB, or ecDNA
amplifications. no fSCNA: no focal somatic copy number amplification detected.

(a) (b)

Figure 1.6: Survival regressions on ecDNA, MB subgroup, age and sex. Log hazard ratios
for ecDNA status, MB subgroup, age and sex estimated by Cox proportional hazards regression
on (a) overall survival and (b) progression-free survival. Model was fitted using maximum
likelihood estimation (MLE). Bars indicate 95% confidence intervals. Estimated hazard ratios
for ecDNA are HROS = 2.99, p < 0.005 and HRPFS = 2.36, p < 0.005.

relationship between TP53 alterations and ecDNA is restricted to the SHH subgroup.

We hypothesized that the established effect of p53 mutation on SHH MB patient survival

[167] may be mediated, at least partially, by ecDNA (Fig. 1.7). To test this, we conducted

mediation analyses using the Baron Kenny approach [8]. Briefly, variable M (ie, ecDNA status)

is considered a mediator of the effect of independent variable X (ie, p53 mutation) on outcome Y
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Table 1.1: TP53 mutation is associated with ecDNA in SHH subgroup MBs. We acquired
somatic and germline mutation status of 92 SHH MBs from our patient cohort. Nearly every
TP53-mutant patient tumor contained ecDNA (12/14). The two without ecDNA showed evidence
of breakage-fusion-bridge (BFB) amplification, a hypothesized precursor to ecDNA formation.

ecDNA+ ecDNA-
TP53mut 12 2
TP53WT 11 67

(ie, patient survival) if (1) X significantly predicts Y ; (2) X significantly predicts M; and (3) in a

multiple regression of Y on X and M, M significantly predicts Y and the effect of X on Y is reduced

relative to (1) (Fig. 1.7a) [48]. To test (1), we fitted a log-normal accelerated failure time (AFT)

regression of progression-free survival (PFS) parameterized on age, sex, molecular subgroup and

p53 mutation status, using MLE. Without information on ecDNA, this model estimates that p53

mutation significantly reduces survival time by 77% (µ =−1.46, p < 0.005, Wald test; Fig. 1.7b).

For (2), we have already shown that p53 mutation strongly predicts the presence of ecDNA given

molecular subgroup. To test (3), we refitted our AFT model parameterized on age, sex, molecular

subgroup, p53 mutation, and ecDNA status. This model estimates that ecDNA significantly

reduces survival time by 56% (µ =−0.81, p < 0.005; Fig. 1.7c). The same model estimates an

insignificant reduction in survival time for p53 mutation, with a coefficient of lesser magnitude

than that of (1) (µ =−0.94, p = 0.06). We therefore concluded that the known prognostic effect

of p53 mutation on survival may be partially explained by an effect of ecDNA on prognosis and

by the frequent co-occurrence of ecDNA in p53-mutant tumors.

To evaluate whether there is a TP53-independent effect of ecDNA on survival, we per-

formed Cox regression including TP53 alteration as a covariate and controlling for collinearity.

The effect of ecDNA on survival remains significant but diminished when we include p53 al-

teration as a covariate in our Cox models (HRPFS = 1.87, p = 0.01; HROS = 2.32, p < 0.005;

Fig. 1.8), indicating that there is an effect of ecDNA on survival that cannot be explained by p53

mutation alone. Such an effect may be explainable by a p53-independent mechanism of ecDNA
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(a)

(b) (c)

Figure 1.7: Mediation analysis of p53 mutation, ecDNA, and progression-free survival.
(a) Model diagram of the proposed mediation relationship. p53 inactivation may predispose
a tumor to form ecDNA, which then affects survival; p53 may also have ecDNA-independent
effects on survival, eg. by formation of other structural variants. (b) Top: estimated time ratios
for effects of age, sex, molecular subgroup and p53 mutation on PFS. Bottom: effect size and
p-value for p53 mutation are illustrated in the diagram below. (c) Top: estimated time ratios
for effects of age, sex, molecular subgroup, p53 mutation, and ecDNA on PFS. Bottom: effect
size and p-values for p53 mutation and ecDNA are illustrated in the diagram below. The effect
size of p53 on survival is decreased when controlling for ecDNA as a covariate, suggesting that
ecDNA partially mediates the effect of p53 on survival.

formation, or by inactivation of the p53 pathway by other means such as CDKN2A deletion or

PPM1D, CDK6, MDM4 or MDM2 amplification [85]. Although causality cannot be inferred

from these data alone, our survival analyses identify TP53 alteration and ecDNA as clinically

relevant biomarkers for a subset of highly aggressive SHH MB tumors.
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(a) (b)

Figure 1.8: Survival regressions on ecDNA status, MB subgroup, age, sex, and p53 mu-
tation. Log hazard ratios for ecDNA status, MB subgroup, age, sex, and p53 mutation esti-
mated by Cox proportional hazards regression on (a) overall survival and (b) progression-free
survival. Model was fitted using ridge regression to control for collinearity. Bars indicate
95% confidence intervals. Estimated hazard ratios for ecDNA are HROS = 2.32, p < 0.005;
HRPFS = 1.87, p = 0.01.

1.4 Discussion

As in other cancers [141, 55, 79], ecDNA frequently amplifies known oncogenic MB

driver genes. Our results identify ecDNA as a frequent feature of MYC-amplified Group 3 and

p53-mutant SHH tumors, which share exceptionally poor prognoses [119, 111] but few other

recurrent driver mutations. Recent longitudinal analysis of Barrett’s esophagus suggests that TP53

alteration is an early event in ecDNA-driven malignant transformation [79]. However, the absence

of detectable ecDNA in TP53-mutant WNT subgroup tumors, and the frequent occurrence of

ecDNA in Group 3 tumors with wild type TP53, suggest that the mechanisms for the generation

and selection of tumor cells with ecDNA are MB subgroup-specific and thus may be modulated

by the different cellular contexts of MB progenitor cells.

A long-standing problem in the clinical management of medulloblastoma tumors has

been the paucity of effective targeted molecular treatments for MB, especially in relapsed cases.

For example, the SMO inhibitor vismodegib, one of few targeted drugs approved for SHH

medulloblastoma, is ineffective against TP53-mutant, MYCN-amplified or GLI2-amplified tumors
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[115], each a recurrent feature of ecDNA+ MB in our patient cohort. Through a retrospective

analysis of one of the largest cohorts of WGS and clinical outcome data from MB patients

assembled to date, we demonstrate that the occurrence of ecDNA significantly associates with

poor outcome across the entire cohort and within individual MB subgroups. Our survival analysis

estimates that relative to ecDNA- patients, ecDNA+ MB patients are more than twice as likely

to relapse and three times as likely to die during the follow-up interval. The identification of

MB patients with ecDNA is therefore crucial to pave the way for precision medicine approaches

targeting ecDNA-specific properties.

1.5 Methods

1.5.1 Statistical methods

Statistical test, test statistic and p-values are indicated where appropriate in the main text.

Categorical associations were established using the chi-squared test of independence if N > 5

for all categories, and Fisher exact test otherwise. For both tests, the python package scipy.stats

v1.5.3 implementation was used [151]. Multiple hypothesis corrections were performed using the

Benjamini-Hochberg correction [10] implemented in statsmodels v0.12.0 [123]. All statistical

tests described herein were two-sided unless otherwise specified.

1.5.2 Medulloblastoma WGS

Paired-end whole genome sequencing (WGS) data were acquired for each of the sources

described below. In total the WGS cohort comprised 468 patients, 4 cell lines and 26 PDX

models. Unless otherwise specified, WGS was acquired for 1 tumor biosample per patient.
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CBTN – Children’s Brain Tumor Network (114 biosamples from 101 patients)

WGS of medulloblastoma tumor biopsies were identified using the Gabriella Miller

KidsFirst Data Resource center portal (https://portal.kidsfirstdrc.org/) on 29 May 2020. Patients

were originally sequenced as part of the Pediatric Brain Tumor Atlas (PBTA) (https://cbtn.org/

pediatric-brain-tumor-atlas). WGS data were preprocessed and aligned using the KidsFirst

harmonized WGS pipeline (hg38) and subsequently analyzed using Cavatica (https://cavatica.

sbgenomics.com/), on the cloud genomic analysis platform for KidsFirst genomic data. Docker

containers containing fingerprint and AmpliconArchitect software were installed on the Cavatica

cloud genomics platform (see Methods: “EcDNA detection and classification”).

St Jude (79 patients)

WGS of MB biopsies were identified using the St Jude Cloud Data Portal (https://platform.

stjude.cloud/data/) on 11 February 2020. WGS was preprocessed and aligned by bwa-mem to

hg38 as described in McLeod et al31. Docker containers of fingerprint and AmpliconArchitect

software were installed on the DNANexus cloud genomics platform (see Methods: “EcDNA

detection and classification”).

ICGC - International Cancer Genome Consortium (237 patients)

WGS of MB tumor biopsies was identified using the ICGC Data Portal (https://dcc.icgc.

org/) on 12 May 2020 and downloaded from the Collaboratory cloud genomics platform using

the ICGC Score download client. These tumor genomes were previously sequenced, aligned and

deposited with ICGC in other publications (GRCh37)[98, 13].

Archer et al. (43 patients)

All WGS data for these 43 patients were previously published elsewhere[98]. Sequencing

data were aligned to human genome reference GRCh37 processed according to the best practice
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pipelines at the Cancer Genome Analysis group at the Broad Institute[2].

Rady Children’s Hospital (8 patients)

Tumor biopsies were collected and consented for research as part of the Rady Molecular

Tumor Board (MTB). Paired end reads were acquired from Rady’s Children hospital. Sequencing

depth for all samples were at least 30x. Raw fastq reads were aligned to UCSC hg38 coordi-

nates using BWA v0.7.17-r1188 [67]. Reads were sorted by samtools v0.1.19 [68], marked for

duplicates with Picard Tools v2.12.3, and recalibrated with GATK v3.8-1-0 [83, 21, 145].

Cell lines and PDX models (4 cell lines, 26 PDXs)

Low-coverage WGS for 19 PDX models and 9 corresponding origin human tumors

were obtained from a previous publication [117]. An additional 6 PDX biosamples (RCMB25,

RCMB32, RCMB56, RCMB57, RCMB58 and RCMB69) were contributed by Wechsler-Reya

lab using similar methods to establish PDX lines. Cell lines (D283, D341, D425 and D458)

were contributed by Bagchi (SBP), Taylor (U. Toronto) and Wechsler-Reya (SBP) labs. WGS

was performed at the UCSD IGM Genomics and Sequencing Core (hg38) for all samples except

D283, for which no WGS was obtained. Preprocessing and alignment was performed using the

same protocol as the RCH patient biopsies above.

1.5.3 ecDNA detection and classification from bulk WGS

To detect ecDNA, all samples in the WGS cohort were analyzed using AmpliconArchitect

[22] v1.2 and AmpliconClassifier [55] v0.4.4. Briefly, the AmpliconArchitect algorithm was

performed as follows. Copy number segmentation and estimation were performed using CNVkit

v0.9.6 [134]. Segments with copy number ≥ 4 were extracted using AmpliconSuite-pipeline

(April 2020 update) as “seed” regions. For each seed, AmpliconArchitect searches the region and

nearby loci for discordant read pairs indicative of genomic structural rearrangement. Genomic
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segments are defined based on boundaries formed by genomic breakpoint locations (identified

by discordant reads) and by modulations in genomic copy number. A breakpoint graph of the

amplicon region is constructed using the CN-aware segments and the genomic breakpoints,

and cyclic paths are extracted from the graph. Amplicons are classified as ecDNA, breakage-

fusion-bridge, complex, linear, or no focal amplification by the heuristic-based companion script,

AmpliconClassifier. Biosamples with one or more classifications of “ecDNA” were considered

potentially ecDNA+, and all others were considered ecDNA- (Supplementary Table 1c from

[14]). We manually reviewed all potential ecDNA+ assembly graphs and reclassified those with

inconclusive ecDNA status, which we defined as any of the following:

• Low-copy amplification (< 5) AND no copy number change at discordant read breakpoints

• Cycles consisting of the repetitive region at chr5:820000 (GRCh37).

Code is available at:

• AmpliconSuite-pipeline: https://github.com/jluebeck/AmpliconReconstructor

• AmpliconArchitect: https://github.com/jluebeck/AmpliconArchitect

• AmpliconClassifier: https://github.com/jluebeck/AmpliconClassifier

The ecDNA- status of the D283 cell line was not determined computationally by WGS, but by

copy number analysis of DNA methylation, FISH (see Methods: “FISH”).

1.5.4 Fingerprinting analysis

To uniquely identify WGS from each patient, we counted reference and alternate allele

frequencies at 1000 variable non-pathogenic SNP locations in the human genome according

to the 1000 Genomes project [27], and performed pairwise Pearson correlation between all

WGS samples. Biospecimens originating from the same patient tumor (eg., primary/relapse
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or origin/PDX pairs) were readily distinguishable by high correlation across these sites (r >

0.80). We identified one case in our cohort in which 2 tumor biosamples had highly correlated

fingerprints: MDT-AP-1217.bam and ICGC MB127.bam. We arbitrarily removed ICGC MB127

from the patient cohort.

1.5.5 Patient metadata, survival, and medulloblastoma subgroup annota-

tion.

Where available, patient samples and models were assigned metadata annotations in-

cluding age, sex, survival, and MB subgroup based on previously published annotations of

the same tumor or model [2, 98, 155, 117, 47, 114, 100]. Sample metadata are also avail-

able in some cases from the respective cloud genomics data platform: https://dcc.icgc.org/

(ICGC), https://pedcbioportal.kidsfirstdrc.org/ and https://portal.kidsfirstdrc.org/ (CBTN), and

https://pecan.stjude.cloud/ (St Jude). Where primary sources disagreed on a metadata value,

that value was reassigned to NA. Patient tumors from the CBTN were assigned molecular sub-

groups based on consensus of 2 molecular classifiers using RSEM-normalized FPKM data:

MM2S [30] and the D3b medulloblastoma classifier at the Children’s Hospital of Philadelphia

(https://github.com/d3b-center/medullo-classifier-package). To determine molecular subgroup

of PDX samples, we generated or obtained from a previous publication [117] DNA methylation

profiles (Illumina 450k or EPIC) and classified samples by molecular subgroup according to the

DKFZ brain tumor methylation classifier (https://www.molecularneuropathology.org/mnp) [98].

1.5.6 TP53 mutation annotation

Somatic mutations

Somatic TP53 mutation information for the ICGC and CBTN cohorts was acquired from

a previous publication [155] and from the ICGC and CBTN data portals (see Methods ”Patient
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metadata, survival, and subgroup annotation”. Somatic TP53 mutation information for the St.

Jude cohort was extracted from the standard internal St. Jude variant calling pipeline [86].

Somatic mutations were only considered which were protein-coding and missense, nonsense,

insertion or deletion, or affected a splice site junction.

Germline variants

Whole-genome sequencing (WGS) GVCF files were downloaded from the ICGC data

portal (https://dcc.icgc.org/), the KidsFirst data portal (https://portal.kidsfirstdrc.org/dashboard)

and DNAnexus for St. Jude Pediatric Cancer Genome Project (PCGP). xGVCF files were

merged with GLnexus [73] and converted to PLINK format for analysis of ICGC, PCGP and

KidsFirst genotypes. PCGP genotypes were converted to hg19 coordinates using liftover. Vari-

ants from TP53 genomic locus (hg19 chr17 7571739-759080) were extracted and annotated

with REVEL [46], CADD [113], ClinVar (accessed June 2021) and Variant Effect Predic-

tor (VEP) [84]. REVEL GRCh38 scores were downloaded from https://sites.google.com/

site/revelgenomics/ (date accessed: 03/05/2021). CADDv1.6 scores were downloaded from

https://cadd.gs.washington.edu/info (date accessed: 03/23/2020). VEP scores were calcu-

lated with http://grch37.ensembl.org/index.html release 104 (date accessed: 04/27/21). Clinvar

scores were obtained from https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf GRCh37/ (Date accessed:

04/27/21). VEP variants considered pathogenic included ”frameshift” and “splice” variants. Clin-

Var annotations considered pathogenic included “frameshift”, “stop”, “splice”, and “deletion”,

and whose clinical significance were “pathogenic” or “likely pathogenic”. CADD “pathogenic”

variants had a CADD score of at least 10 (Phred score). REVEL “pathogenic” variants had a

REVEL score of at least 0.5. Only variants with minor allele frequency (MAF) less than 5%,

according to the gnomAD r2.1.1 database, were analyzed [50].
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1.5.7 Survival analyses

Kaplan-Meier (KM), Cox Proportional Hazards (CPH), and accelerated failure time (AFT)

analyses were performed with Lifelines v0.26.5 [18]. For all analyses, the sample set was all

patients annotated with the included covariates; no imputation was performed.

Kaplan-Meier

Sample sizes were n = 362 (65 ecDNA+; 297 ecDNA-). Differential survival was

determined by log-rank test. For KM analyses by class of structural variant, samples were

classified as previously described [55]. Our sample of patients with breakage-fusion-bridge

(BFB) amplification but no ecDNA was too small to test (n = 2).

Cox Proportional Hazards on age, sex, molecular subgroup, & ecDNA

Sample was n = 352 observations. Model was fitted by maximum likelihood estimation

(MLE).

Cox Proportional Hazards on age, sex, molecular subgroup, p53 mutation, & ecDNA

Sample was n = 322 observations. Collinearity, i.e. strong correlation between predictive

variables in a regression model, can result in model instability and unreliable estimation of the

collinear coefficients [75]. To address collinearity between ecDNA and p53 status in our model,

we performed ridge estimation of model coefficients [149, 162], determining the ridge penalty

parameter λ by grid search on 5-fold cross validation of model likelihood on the withheld set.

Accelerated failure time models and mediation analysis

Mediation analysis was performed using the Baron-Kenny framework [8], following

recent best practices [64]. Because of the non-collapsibility of hazard ratios, the proportional

hazards assumption and CPH model may not be suitable for mediation analysis in which we need

22



to compare the coefficients with and without the mediator. Thus, we fitted we fitted parametric

log-normal AFT regression models as a reasonable alternative to Cox regression. Percent change

values reported herein were calculated as

PERCENTAGE CHANGE = 100(eβ̂k −1),

where β̂k is the MLE regression coefficient for random variable k [20].
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Chapter 2

INTRATUMORAL HETEROGENEITY

OF ECDNA AT SINGLE-CELL

RESOLUTION
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2.1 Abstract

Motivation — Intratumoral copy number heterogeneity of extrachromosomal DNA

(ecDNA) in single cells of a tumor is widely believed to contribute to tumor evolution and

drug resistance. The capacity to count ecDNA in a large number of single cells would enable the

observation of this heterogeneity in sequential tumor biopsies, revealing the population dynamics

of ecDNA under therapeutic selection. Numerous algorithms have been developed to estimate

genomic copy number from single-cell sequencing data. However, none are designed to quantify

ecDNA copy number from single-cell profiles of accessible chromatin (scATAC-seq).

Results — To estimate the copy number of a known ecDNA sequence from scATAC-

seq data, we compare sequencing read coverage at the ecDNA locus to that elsewhere in the

genome. ecDNA copy number estimated by this approach strongly correlates to transcriptional

measures of ecDNA activity. We apply our method to a dataset of multiome single cell ATAC

+ Gene Expression (scRNA+ATAC-seq) data from the primary human tumor (HT) and patient-

derived xenograft (PDX) of a p53-mutant, SHH subgroup medulloblastoma (MB), and show that

ecDNA-containing (ecDNA+) cells were strongly selected during PDX model establishment. We

orthogonally validate our model by estimating ecDNA copy number in the same tumor using

automated image analysis on FISH imaging of interphase nuclei stained for ecDNA.

Availability and implementation — A software implementation of our approach is available

at https://github.com/auberginekenobi/ecdna-quant.

2.2 Introduction

Intratumoral copy number heterogeneity of extrachromosomal circular DNA (ecDNA) in

single cells of a tumor is widely believed to contribute to tumor evolution, drug resistance, and

poor patient outcomes [3]. In the previous chapter, we detected circular ecDNA by assembling

cyclic sequences in short-read whole genome sequencing (WGS) of bulk patient tissue, enabling
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us to survey a large retrospective cohort of patient data. However, assembly of bulk WGS cannot

distinguish variation of ecDNA sequence, copy number, and and gene expression between tumor

cells, limiting our capacity to measure intratumoral heterogeneity within a given tumor sample.

Therefore, to understand the population dynamics of an ecDNA+ tumor, it is necessary to employ

emerging methods to examine ecDNA at single-cell resolution.

To address this challenge, we have applied four orthogonal technologies to the patient-

derived xenograft (PDX) MB model tumor RCMB56-pdx. We apply optical genome mapping,

Bionano Genomics (OGM) and CRISPR-CATCH [44] to reconstruct high-confidence sequence

assemblies of 2 ecDNA lineages originating from distinct portions of the reference human genome,

and show that both sequences are conserved in the corresponding patient tumor RCMB56-ht.

Next, we analyze FISH microscopy and single-cell sequencing data to estimate ecDNA copy

number amplification at single-cell resolution, and show that a clonal expansion of ecDNA+ cells

occurred during the engraftment interim between RCMB56-ht and RCMB56-pdx. We anticipate

that similar approaches may shed light on clonal dynamics of ecDNA+ cell populations under

other selective pressures such as conventional or targeted therapy.

2.3 Results

2.3.1 Linear and circular extrachromosomal amplifications co-exist in the

RCMB56 patient tumor and PDX model.

We have previously described a SHH MB primary tumor with heterozygous somatic

TP53 mutation (RCMB56-ht) [117], which we have established as a PDX model (RCMB56-

pdx). Analysis of WGS from RCMB56-ht predicted two distinct amplifications, a circular

ecDNA of length 3.2Mbp comprising three regions of chr1 (amp1, Fig. 2.1a), and a complex,

possibly chromothriptic, 4.5Mbp amplicon comprising 21 segments of chr7 and chr17, with ends
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mapping to pericentromeric and peritelomeric regions (amp2, Fig. 2.1b). Analysis of WGS

from RCMB56-pdx confirmed that both focal amplifications were unchanged as compared to the

original primary human tumor. To assemble high-confidence sequences for the two amplicons, we

performed optical genome mapping (OGM, Bionano Genomics) of ultrahigh molecular weight

DNA (UHMW DNA) from RCMB56-pdx. Assembly from deep WGS and OGM validated

the circular amp1 composed of three DNA segments from chr1 (Fig. 2.1a). This analysis also

validated the contiguous chromothriptic amplification comprising 21 segments of chr7 and chr17;

however, a circular structure could not be conclusively established from OGM and WGS data

(Fig. 2.1b). Copy number of amp1 and amp2 was estimated from WGS data at 20 and 10 in

RCMB56-ht, and 30 and 25 in RCMB56-pdx (Suppl. Figs. 5-6 of [14]).

(a) (b)

Figure 2.1: Sequence assemblies of extrachromosomal amplifications in RCMB56. (a)
RCMB56 amp1 is a circular amplification composed of 3 segments of chr1p. (b) RCMB56 amp2
is a noncircular assembly composed of 21 segments of chr7 and chr17. Ends of the assembly
map to pericentromeric (pictured, supported by WGS and OGM data) and peritelomeric (not
pictured, supported by WGS data only) regions of chr7. Sequences were assembled from WGS
aligned to the hg38 reference genome and scaffolded by OGM data [55].

To further validate the sequence assemblies of amp1 and amp2, we used a recent method

for targeted profiling of ecDNA, CRISPR-CATCH [44]. As expected, cutting amp1 in UHMW

DNA from RCMB56-pdx produced a single fraction of DNA with the predicted length of ecDNA
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amp1. Moreover, short read sequencing maps this DNA to the amp1 sequence identified from

bulk sequencing, confirming its circular structure (Fig. 2.2a-b).

Cutting amp2 produced 2 distinct fractions of DNA with lengths substantially shorter than

amp2, which mapped to mutually exclusive segments of the amp2 assembly. Not cutting amp2

produced a single fraction with the predicted length of amp2 and mapping to the amp2 sequence

(Fig. 2.2c-d). Both observations are consistent with the linear sequence assembly shown in Fig.

2.1a, and inconsistent with a hypothetical sequence linking the two ends of the amp2 assembly.

Visual inspection of the WGS data also revealed a low-copy gain (gain1) of unknown

architecture composed of other segments of chr7 (35Mbp) and chr17 (800kbp). DNA fluorescence

in situ hybridization (FISH) imaging of metaphase cells for marker genes DNTTIP2 (amp1),

KMT2E (amp2) and ETV1 (gain1) indicated that amp1 and amp2 are amplified extrachromoso-

mally (Fig. 2.3). To confirm co-occurrence in the same cells, we performed multi-channel FISH

imaging for the same markers in interphase cells. We observed distinct fluorescence spots for

each gene, indicating that copies of each amplified gene are located on distinct chromatin bodies

(Fig. 2.4).

2.3.2 MB patient tumors with ecDNA exhibit high intratumoral copy num-

ber heterogeneity.

Substantial intratumoral copy number heterogeneity is expected in an ecDNA+ tumor

due to random segregation of ecDNA during mitosis, driving tumor evolution and treatment

resistance [63]. To determine the extent of ecDNA copy number heterogeneity in patient MB

tumors, we established an automated image analysis pipeline to estimate the distributions of

copy number per cell in interphase FISH microscopy imaging (see Methods 2.5.2) and applied

it to four primary MB tumors harboring ecDNA: MB036 (MYCN), MB177 (MYCN), MB268

(MDM4), and RCMB56 (DNTTIP2, KMT2E, ETV1). The estimated copy number per cell of

all ecDNA-amplified marker genes had significantly greater mean (Wilcoxon test) and variance
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(a)
(b)

(c) (d)

Figure 2.2: CRISPR-CATCH indicates circular and linear extrachromosomal amplifica-
tions in RCMB56 tumors. (a) UHMW DNA from RCMB56-pdx was cut using CRISPR-Cas9
targeting locations on amp1 or amp2, then sorted by size using pulsed-field gel electrophoresis
(PFGE). Size-sorted bands were then sequenced and aligned to the human reference genome
hg38. Circular and chromosomal DNA do not migrate, and are sampled in bands 1A and 1B. (b)
WGS depth of sequencing coverage of all bands at the amp1 locus. When amp1 is cut (green
tracks), PFGE enriches linear UHMW DNA mapping to amp1 with a unimodal size distribution
centered at s ≈ 3Mbp (band 1F). When amp1 is not cut (red tracks), no enrichment of amp1
sequences is detected. (c) WGS sequencing coverage of all bands at the amp2 locus. When
amp2 is not cut (green tracks), PFGE enriches linear UHMW DNA mapping to amp2 with size
s ≫ 3Mbp (band 1D). When amp2 is cut (red tracks), PFGE enriches two distinct fractions
of UHMW DNA, mapping to mutually exclusive fragments of the amp2 assembly and with
lengths s1 ≈ 2.8Mbp (band 2E) and s2 ≈ 2.4Mbp (band 2F). (d) Genomic map of the fragments
of amp2 enriched in bands 2E and 2F.
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(a) (b) (c)

Figure 2.3: FISH imaging of amplified marker genes in metaphase spreads of RCMB56-
pdx nuclei. (a) Marker gene DNTTIP2 (amp1). (b) Marker gene KMT2E (amp2). (c) Marker
gene ETV1 (gain1). DAPI chromatin stain in blue. Scale bars 10µm.

Figure 2.4: Multi-channel FISH imaging of amplified marker genes in RCMB56-ht inter-
phase cells. Example image shown on top row, 10x zoom of an example single cell on bottom
row. Columns from left to right: DAPI channel (chromatin), DNTTIP2 (amp1), KMT2E (amp2),
ETV1 (gain1), merge of all channels. Marker gene copies are spatially independent, indicating
distinct amplifications of all 3 markers in the same cells.

(Levene’s test) than the ecDNA- cell line COLO320-HSR (Fig. 2.5) which includes MYC on

a chromosomal amplification [45]. These results from human MB tumors are consistent with

high copy number heterogeneity observed in human cancer cell lines with ecDNA [63]. In each

primary tumor analyzed, ecDNA was amplified (copy number greater than 5) in only a subset of

cells (22-41%, Supplementary Table 5 of [14]).

To determine whether copy number heterogeneity of an ecDNA+ tumor is accompanied

by transcriptional heterogeneity, we analyzed 2,762 single nuclei from frozen tissue of RCMB56-

ht using a multiome snRNA+ATAC-seq assay (10X Genomics) to profile transcriptomes and
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(a)

(b)

Figure 2.5: Copy number estimation of ecDNA in single cells from FISH microscopy. (a)
Example output of automated image analysis pipeline. Segmentation: nuclear boundaries were
detected from the DAPI channel image using NuSeT [163]. FISH annotations: The number
of FISH foci was inferred using ecSeg-i [107]. (b) Estimated copy counts for amplified foci
on ecDNA and other copy gains. Red line indicates n ≥ 5, the threshold whereupon a cell was
classified as amplified.

accessible chromatin of the same individual cells. Consistent with previous findings in bulk

samples [141, 160] RCMB56-ht single nucleus ATAC-seq (snATAC-seq) sequencing coverage

was enriched at the amp1 and amp2 loci at the aggregate level, and also in individual cells (Fig.

2.6a). To detect focal amplifications in single nuclei, we performed Monte Carlo permutation

tests comparing snATAC-seq read density at the amplicon locus to that at random locations

elsewhere in the genome (excluding blacklisted regions, see Methods 2.5.3). Z-score normalized

read density at the amp1 and amp2 loci had greater mean and variance than at gain1 (Fig. 2.6b),

consistent with the copy number heterogeneity we observed in the interphase FISH data. We

conservatively estimate that at least 224 out of 2762 (8%, FDR q < 0.10) cells contained amp1 or

amp2 (ecDNA+ cells). Of these, both amp1 and amp2 were detected together in only a minority
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of cells (72 out of 224, 32%) (Fig. 2.6c). Thus, evidence from quantitative FISH microscopy and

multiome single-cell sequencing show that only a fraction of tumor cells in ecDNA+ MB tumors

harbor high-copy ecDNA, and that these have highly variable copy numbers of extrachromosomal

amplifications.

(a)

(b)

(c)

Figure 2.6: Detection of ecDNA in in single cells from single-cell ATAC-seq of RCMB56-ht.
(a) Mapped read density of sequencing modalities at RCMB56 amp1 and amp2 loci. Tracks
from top to bottom: bulk WGS, aggregate scATAC-seq across all cells, and scATAC-seq of
individual cells. (b) Distribution of Z-score normalized read coverage at the amp1, amp2, and
gain1 loci. ** p < 0.005, Mann-Whitney test. (c) Sets of RCMB56 cells identified as harboring
high-copy amplification of amp1 and amp2. Monte Carlo permutation test, q < 0.05.

2.3.3 ecDNA+ and ecDNA- tumor cell populations in the same tumor have

distinct transcriptional profiles.

Clustering single cells using the Weighted Nearest Neighbors algorithm (WNN, [40])

placed the majority of ecDNA+ cells in a single cluster with distinct transcriptional and epigenetic

features (Fig. 2.7). As expected, cells in the ecDNA+ cluster overexpressed DNTTIP2 (q < 0.001,

Wilcoxon Rank Sum test) and KMT2E (q < 0.001), the marker genes amplified on amp1 and
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amp2. Compared with other tumor and normal cells, ecDNA+ tumor cells also overexpressed

GLI2 (q < 0.001), a known mediator of SHH-mediated transcription and a marker for SHH

medulloblastoma (MB), despite GLI2 not being affected by copy number alteration in this tumor.

(Fig. 2.7c, Supplementary Table 6 of [14]). To further investigate the relationship between ecDNA

copy number and transcription, we estimated first, ecDNA copy number in single cells (z-scores),

and second, the transcriptional activity of genes amplified on ecDNA in each cell (ssGSEA

[6] scores, see Methods 2.5.3). As expected, ssGSEA scores were positively correlated with

z-scores, indicating increased transcription of ecDNA-amplified genes with increasing ecDNA

copy number (Fig. 2.8).

In addition to the ecDNA+ tumor cells, we identified two other clusters of tumor cells

not enriched for ecDNA and with low expression of the amp1 and amp2 marker genes, one of

which strongly expressed mitochondrial genes (‘ecDNA-’ and ‘ecDNA- MT high’), as well as

normal cells such as astrocytes, oligodendrocytes and cells from the hematopoietic lineage (Fig.

2.7c). Normal cell types were annotated by cell cluster-specific expression of known marker

genes. Genomic copy number estimation from snRNA-seq confirms that normal cells had stable

genomes whereas the tumor cells were characterized by copy-number alterations (Fig. 2.9).

2.3.4 A PDX model resembles ecDNA+ cells of its origin human tumor.

Patient-derived xenografts (PDX) and cell lines have been used as preclinical models for

identification and testing of compounds for new targeted therapies for MB [117]. To test whether

cells in a PDX faithfully model ecDNA in the corresponding human tumor, we applied multiome

scRNA+ATAC-seq to fresh tissue from passage 1 of the RCMB56-pdx model. In contrast to

RCMB56-ht, nearly every human cell in the RCMB56-pdx sample contained ecDNA (9608 out

of 9,620, 99.96%, q < 0.10) (Fig. 4f, Supplementary Fig. 7b). The majority of these contained

both amp1 and amp2 (8554 out of 9608, 89%). Batch-correction and dimensionality reduction on

the unified set of transcriptomes from both samples, using the Conos package [7], indicates that
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(a) (b)

(c)

Figure 2.7: RCMB56 ecDNA+ cells express a distinct transcriptional and epigenetic profile.
(a) UMAP projection of 2,762 RCMB56-ht cells were clustered by joint transcriptional and
epigenetic profiles using the WNN algorithm [40]. ecDNA- tumor: cells harboring other
structural variants but not enriched for ecDNA (see also Fig. 2.9). ecDNA- MT high: ecDNA-
tumor cells with high expression of mitochondiral genes. Normal cells were identified by
expression of marker genes. (b) UMAP projection of RCMB56-ht cells labelled by high-copy
focal amplification of ecDNA, identifed by depth of scATAC-seq coverage at ecDNA loci. (c)
Transcription of marker genes in single cells of RCMB56-ht.

the cells of the PDX are transcriptionally similar to ecDNA+ cells in RCMB56-ht, and distinct

from all other RCMB56-ht cells (Fig. 2.10). We then asked whether the human tumor ecDNA+

cell subpopulation harbored additional identifying genomic alterations which could be confirmed

in the PDX. Genomic copy number estimation from the scRNA-seq data indicated that tumor

cells of the RCMB56-ht ecDNA+ cluster uniquely harbored chr3p deletion and chr3q duplication

but not chr5q duplication (Fig. 2.9). Cells from RCMB56-pdx universally harbored the same
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(a) (b)

(c) (d)

Figure 2.8: ecDNA copy number is associated with gene expression of ecDNA-amplified
genes. Pearson correlations between copy number at the amplified locus (z-scores) and tran-
scriptional activity of amplified genes (ssGSEA scores). Copy number of amp1 is associated
with transcription of amp1-amplified genes, but not with transcription for amp2-amplified genes.
Conversely, copy number of amp2 is associated with amp2-amplified, but not amp1-amplified,
gene expression.

alterations (Fig. 2.11). These results indicate that the PDX tumor RCMB56-pdx is a clonal

expansion of the ecDNA+ cells of the human tumor RCMB56-ht.

2.3.5 The relapsed RCMB56 patient tumor karyotype was present in a

subpopulation of ecDNA+ cells in the primary.

Following maximal resection, the RCMB56 primary tumor had been treated according

to the standard of care with high-dose craniospinal proton therapy and chemotherapy including

cisplatin, cyclophosphamide, and vincristine [117]. Two years after initial diagnosis, however, the
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Figure 2.9: Aneuploidy estimated from single-cell transcriptomes of 2,762 cells from
RCMB56-ht using inferCNV [137]. Diploid cells comprising the astrocyte, neuron, OPC,
hematopoietic and oligodendrocyte cell clusters comprised the reference set of normal cells.
The cluster enriched for high-copy ecDNA is annotated. This cluster also uniquely harbors
chr3p deletion and chr3q gain.

RCMB56 tumor recurred and a second surgical resection was performed. WGS data from formalin

fixed paraffin embedded (FFPE) tissue of the relapsed tumor (RCMB56-r1) indicated copy-

number amplification at the amp1 locus but not the amp2 locus (data not shown). Computational

reconstruction using AmpliconArchitect (AA) confirmed that the amp1 sequence remained largely

unchanged. Following WGS, no tissue remained of the relapsed tumor for further analysis. Thus,

although we cannot rule out that amp2 was present in an area of the relapsed tumor which was

not sampled, we observe amp1 but no evidence of amp2 in the RCMB56 relapsed patient tumor.
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(a) (b)

Figure 2.10: High-copy ecDNA is universally present in 9,620 RCMB56-pdx cells. (a) Low-
dimensional UMAP embedding of 9,620 RCMB56-pdx accessible chromatin and transcriptomes,
annotated by ecDNA detected by scATAC-seq. (b) Low-dimensional embedding of 9,620
RCMB56-pdx and 2,762 RCMB56-ht transcriptomes, integrated and batch-corrected using
Conos [7]. PDX cells (pink) overlap ecDNA+ cells from the patient tumor, but are distinct from
other RCMB56-ht cell clusters.

Figure 2.11: Aneuploidy estimated from single-cell transcriptomes of 9,620 cells from
RCMB56-pdx using inferCNV [137]. PDX cells univerally harbor the chromosomal copy gain
(chr3q) and loss (chr3p) which uniquely identify ecDNA+ cells in the RCMB56-ht human tumor
(Fig. 2.9).
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2.4 Discussion

Analyses of the p53-mutant SHH tumor RCMB56-ht reveal intratumoral heterogeneity not

present in subsequent longitudinal biopsies of the same tumor. Sequence assembly, from whole

genome short-read sequencing, optical genome mapping on long reads, and CRISPR-CATCH,

reconstructs two distinct high-copy extrachromosomal focal amplifications, one from 3 segments

of chr1 and the other from 20 segments of chr7 and chr17. Analyses of FISH microscopy and

single-cell sequencing of RCBM56-ht tissue concur that both amplicons may be found in the

same tumor cells, and that amplicon copy number is highly variable between cells. Further

analysis of multi-omic single-cell sequencing data reveals that tumor cells with high-copy ecDNA

expressed a distinct transcriptional and epigenetic program, including GLI2, a marker of malignant

SHH subgroup MB. Thus, the RCMB56 patient tumor comprised a population of cells with

heterogeneous ecDNA sequences, ecDNA copy number, and cell states.

Although ecDNA+ and ecDNA- tumor cells coexisted in RCMB56-ht, the presence or

absence of ecDNA became fixed in subsequent tumors descended from the primary tumor. In

the relapsed tumor RCMB56-r1, resected 2 years after original diagnosis, we find amp1 but no

evidence of amp2. In RCMB56-pdx, amp1 and amp2 are near-univerally present, indicating loss

of the ecDNA- tumor cell subpopulation during engraftment. Thus, in either RCMB56 tumor, we

observe substantial changes of intratumoral heterogeneity of ecDNA following a strong selective

pressure. It remains to be seen whether similar changes in ecDNA+ cell populations occur in

other patient tumors during tumor progression, or in other PDX models under selective pressure.

Data from multiple modalities confirm the circular extrachromosomal sequence of amp1,

but not amp2. Whereas sequence assembly from WGS and OGM data fully reconstruct the

circular amp1 sequence, the same data map a linear amp2 sequence assembly, with ends mapping

to pericentromeric and peritelomeric regions of chr7. Cutting circular amp1 by CRISPR-CATCH

yields linear DNA of the approximate length of the amp1 assembly, but cutting amp2 results in 2
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fractions of linear DNA, whose lengths and sequences sum to the length and sequence of the amp2

assembly. In chapter 3, we will observe in Hi-C data that the ends of the amp2 assembly do not

co-localize spatially. Nevertheless, amp2 appears a high-copy extrachromosomal amplification in

FISH imaging, and the copy number distribution per cell resembles that of circular amp1. The

base-resolution sequences of the amp2 assembly ends remain an intriguing unresolved question,

and may shed light on whether stable linear extrachromosomal amplification can arise in human

tumors.

2.5 Methods

Animals

NOD-SCID IL2Rγ null (NSG) mice used for intracranial human tumor transplantation

were purchased from The Jackson Laboratory (#005557). Mice were bred and maintained in the

animal facilities at the Sanford Consortium for Regenerative Medicine. All experiments were

performed in accordance with national guidelines and regulations, and with the approval of the

animal care and use committees at the Sanford Burnham Prebys Medical Discovery Institute and

University of California San Diego (San Diego, CA, USA).

Establishment and maintenance of RCMB56-pdx

The RCMB56 patient-derived xenograft model was established by implanting 0.5-1x106

dissociated patient tumor cells directly into the cerebellum of NSG mice. Subsequent tumors were

harvested from mice, dissociated and reimplanted into new NSG mice without in vitro passaging.

Ex vivo experiments were performed with PDX RCMB56 cells of in vivo passage 1 (x1).
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2.5.1 Optical genome mapping data collection and processing

Ultra-high molecular weight (UHMW) DNA was extracted from frozen cells preserved in

DMSO following the manufacturer’s protocols (Bionano Genomics, USA). Cells were digested

with Proteinase K and RNAse A. DNA was precipitated with isopropanol and bound with

nanobind magnetic disks. Bound UHMW DNA was resuspended in the elution buffer and

quantified with Qubit dsDNA assay kits (ThermoFisher Scientific).

DNA labeling was performed following manufacturer’s protocols (Bionano Genomics,

USA). Standard Direct Labeling Enzyme 1 (DLE-1) reactions were carried out using 750 ng

of purified UHMW DNA. The fluorescently labeled DNA molecules were imaged sequentially

across nanochannels on a Saphyr instrument. A genome coverage of at least 400x was achieved

for all samples.

De novo assemblies of the samples were performed with Bionano’s De Novo assembly

Pipeline (DNP) using standard haplotype aware arguments (Bionano Solve v3.6). With the

Overlap-Layout-Consensus paradigm, pairwise comparison of DNA molecules was used to create

a layout overlap graph, which was then used to generate the initial consensus genome maps.

By realigning molecules to the genome maps (p < 10−12) and by using only the best matched

molecules, a refinement step was done to refine the label positions on the genome maps and to

remove chimeric joins. Next, during an extension step, the software aligned molecules to genome

maps (p < 10−12), and extended the maps based on the molecules aligning past the map ends.

Overlapping genome maps were then merged (p < 10−16). These extension and merge steps

were repeated five times before a final refinement (p < 10−12) was applied to “finish” all genome

maps.
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2.5.2 ecDNA reconstruction with OGM data

We used an ecDNA reconstruction strategy which incorporated the short-read derived

CN-aware breakpoint graph generated by AA[22] with OGM contigs generated by the Bionano

de novo assembly Pipeline, and in RCMB56 we utilized contigs from both the Bionano DNP as

well as the Rare Variant Pipeline (RVP).

We used AmpliconReconstructor (AR) v1.01[78] to scaffold together individual break-

point graph segments using the collection of OGM contigs. We ran AR with the –noConnect flag

set and otherwise default settings. A subset of informative contigs with alignments to multiple

graph segments as well as a breakpoint junction were then selected for subsequent scaffolding by

AR, using the “–contig subset” argument of AR’s OMPathFinder.py script. For exploration of

unaligned regions of OGM contigs used in the reconstructions, we utilized the OGM alignment

tool FaNDOM[106] v0.2 (default settings). FaNDOM was used to identify the loose ends of the

RCMB56 amp2.

RCMB56 amp1 and D458 were fully reconstructed as described above; however, RCMB56

amp2 required more manual intervention. Due to the fractured nature of the breakpoint graphs

in RCMB56 amp2, we searched for CN-aware paths in the AA breakpoint graph (using the

plausible paths.py script from the AmpliconSuite pipeline), then converted these to in silico OGM

sequences and aligned paths to OGM contigs directly using AR’s SegAligner.

Metaphase spreads

Cell lines were enriched for metaphases by addition of KaryoMAX (Gibco) at 0.1μg/mL

for between 2h.-overnight (0.02μg/mL overnight for dissociated PDX cells). Single cell sus-

pensions were then incubated with 75mM KCl for 8-15 minutes at 37◦C. Cells were then fixed

by carnoy fixative (3:1 methanol:acetic acid) and washed in fixative 3 times. Cells were then

dropped onto humidified slides.
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FISH

Slides containing fixed cells were briefly equilibrated in 2X SSC, followed by dehydration

in 70%, 85%, and 100% EtOH for 2 minutes each. FISH probes (Empire Genomics) diluted

in hybridization buffer (EG) were applied to slides and covered with a coverslip. Slides were

denatured at 72°C for 1-2 minutes and hybridized overnight at 37°C. The slide was then washed

with 0.4x SSC, then 2x SSC-0.1 Tween 20. DAPI was added before washing again and mounting

with Prolong Gold.

Microscopy

Conventional fluorescence microscopy was performed using either the Olympus BX43

microscope equipped with a QiClick cooled camera, or the Leica DMi8 widefield fluorescence

microscope followed by Thunder deconvolution using a 63X oil objective. Confocal microscopy

was performed using a Leica SP8 microscope with lightning deconvolution and white light laser

(UCSD School of Medicine Microscopy Core). Excitation wavelengths for multiple color FISH

images were set manually based on the optimal wavelength for the individual probes, with care

taken to minimize crosstalk between channels. ImageJ was used to uniformly edit and crop

images.

2.5.3 Automated FISH analysis

Cell segmentation. We applied NuSeT [163] to perform cell segmentation. Since all

interphase tissue images were taken at the same resolution of 0.240 µm, we used the same NuSeT

parameters for all images. Parameters were min score 0.95, nms threshold of 0.01, a nuclei

size threshold of 500 and a scale ratio of 0.3. The average number of fish pixels per cell was

computed by counting the number of FISH pixels with a pixel intensity above 85 pixels in each

cell. Number of FISH blobs. We convolved the original image with a normalized gaussian kernel
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to determine which pixels have high local intensity. We used a sampled gaussian kernel with

a standard deviation of 3 pixels, and a size of 7 by 7 pixels. After convolving, we applied a

threshold of 15 / 255 pixel brightness. Then, to filter out low brightness noise, we set a binary

threshold that the brightness of these peaks must exceed one standard deviation above the average

FISH brightness, and added an additional minimum area requirement. Amplification mechanism.

We ran ecSeg-i [107] on each segmented cell to determine the amplification mechanism. ecSeg-i

produces three probability scores representing the likelihood of the cell having no amplification,

ecDNA amplification, or homogeneously staining region (HSR) amplification. We assigned the

amplification mechanism with the highest likelihood.

Sample preparation and single-cell multiome sequencing

From the RCMB56 primary human tumor (RCMB56-ht), disassociated cryopreserved

cells stored in 10% DMSO/FBS were used. Fresh tumor tissue was acquired from RCMB56

models grown as described above. At least 50mg of tissue (1M cells) was used for both samples.

Disassociated cells were prepared for single-nucleus multiome RNA-seq and ATAC-seq (10X

Genomics) (snRNA+ATAC) according to the manufacturer’s instructions[1]. Sequencing was

performed on an Illumina NovaSeq S4 200 to a depth of at least 250M reads for snATAC-seq and

200M reads for snRNA-seq.

Single cell coverage tracks

Sequencing coverage of single cells were visualized in IGV desktop v2.9.297. Bulk WGS

coverage (bigwig format) was generated from deduplicated sequencing reads using deeptools

v3.5.1[109] bamCoverage at 50bp resolution using default parameters. Single-cell coverage

tracks were parsed from CellRanger ARC atac fragments.txt.gz output format to .bed format

using a custom script, then converted to bigwig format using bedtools v2.27.1[105] genomecov

and UCSC browser tools[54] bedGraphToBigWig v4. Source code is available at https://github.
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com/auberginekenobi/rcmb56-single-cell.

Single cell data processing and clustering

Sequencing data were uniformly processed using CellRanger ARC v2.0.0 (10X) with

default parameters, followed by Seurat v4.0.4[40]. Cell barcodes were retained whose sequencing

coverage passed the following quality thresholds: ATAC mitochondrial fraction less than 0.1;

ATAC read count between 1,000 and 70,000; and RNA read count between 500 (ht) or 1000

(pdx) and 25,000. Doublets were identified and removed using DoubletFinder v2.0[82] using

default parameters. Host cells were identified and removed from the PDX sample, using Xenocell

v1.0.1[15], as barcodes with less than 90% of uniquely mapping reads mapped to the human

genome. Following preprocessing, 2,986 RCMB56-ht and 9,620 RCMB56-pdx cells remained.

Single cell transcription data were normalized using regularized negative binomial regression

implemented in the sctransform package[38] (SCT) included with Seurat. Clustering was per-

formed independently on each sample using the Weighted Nearest Neighbors algorithm[40] with

default parameters. To label cell clusters with cell type identities, differentially expressed genes

were found for each cluster using Seurat’s FindAllMarkers function with default parameters

(Supplementary Table 6 of [14]). Differentially expressed genes were cross-referenced against

known cell type marker genes[51]. Only the RCMB56-ht cell clusters were labelled in this way.

Single-cell data integration and batch correction

SCT normalized gene expression data for RCMB56-ht and RCMB56-pdx were integrated

and batch-corrected using Conos v1.4.4[7], using default parameters and following the walk-

through tutorial available at https://github.com/kharchenkolab/conos/blob/main/doc/walkthrough.

md. Low-dimensional embeddings plotted in 2.10b were estimated using the largeVis algorithm

implemented in Conos using random seed 47; other random seeds returned similar results. Code

is available at https://github.com/auberginekenobi/rcmb56-single-cell.
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Identification of ecDNA-containing cells

ecDNA-containing cells were identified by permutation tests comparing snATAC-seq read

coverage at the ecDNA regions to read coverage of random regions elsewhere in the genome. Code

is available at https://github.com/auberginekenobi/ecdna-quant. Briefly, deduplicated snATAC-

seq reads were obtained from the fragments.tsv output of CellRanger ARC and sorted by barcode.

For Monte Carlo permutation testing, 1000 random contiguous regions of the genome, excluding

centromeres, telomeres, known ecDNA, and low-mappability regions, were generated using

bedtools v2.27.1[105]. Read coverage was counted using PyRanges v0.0.112[132] and scaled to

region length. For each cell, empirical p-values were estimated as p̂ = (r+1)/(n+1), where r is

the rank of the test value out of n permutations[97]. Multiple testing correction was performed

using the Benjamini-Hochberg correction. Z-scores were calculated using the standard formula,

comparing the average read coverage at the ecDNA-amplified region to the mean and variance of

the Monte Carlo permutations.

Single cell genomic copy number estimation

Copy number signature was identified in the human tumor and PDX using InferCNV

v1.3.3[137]. Code is available at

https://github.com/suneetz/githubSingleCell/blob/0243d6a8f8c6a2e96222d659bd5b3071c9ed28a4/

infercnvHT. Briefly, counts matrix and annotation files were obtained from CellRanger ARC and

Seurat outputs (see Methods 2.5.3). Normal reference cells were defined as ecDNA- cells belong-

ing to cell clusters labelled as normal cell types. Because no normal reference cells were present

in RCMB56-pdx, the set of normal cells from RCMB56-ht was spiked into the RCMB56-pdx

data prior to running inferCNV. The HMM fitting step was not performed for RCMB56-pdx. All

other parameters were default.
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Single-sample gene set enrichment analysis (ssGSEA)

ssGSEA is a variation of Gene Set Enrichment Analysis for quantifying aggregate expres-

sion of a gene set across the transcriptome of one sample[6]. To quantify transcriptional activity of

ecDNA in single cells, we performed ssGSEA of two gene sets comprising every gene amplified

on RCMB56 amp1 or amp2, treating each cell as a single sample. The population sample con-

sisted of n = 247 ecDNA+ cells from the RCMB56-ht sample. Gene expression values were the

SCT-normalized transcription matrix, generated as described above using Seurat v4.0.4. ssGSEA

was run using ssGSEA v10.0.11 implemented at https://cloud.genepattern.org[112]. Association

with z-score ecNDA copy number estimates was performed using Pearson’s R implemented in

scipy.stats v1.7.3 and visualized using Seaborn v0.9.0[154] histplot.
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Chapter 3

TRANSCRIPTIONAL REGULATION OF

ECDNA-AMPLIFIED GENE

EXPRESSION IN

MEDULLOBLASTOMA
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3.1 Introduction

In the previous chapter, we examined the RCMB56-ht patient tumor and showed that

high-copy ecDNA defined a subpopulation of tumor cells expressing a distinct transcriptional

program. In this chapter, we examine transcriptional dysregulation which occurs on and around

the ecDNA amplified sequences of the RCMB56-pdx and D458 medulloblastoma (MB) models

as well as several patient tumors. Gene transcription is frequently regulated by distal regulatory

elements (enhancers) located up to 1Mbp away [102]. In some medulloblastomas [99] and other

cancers [152], a somatic structural rearrangement (structural variant, SV) may juxtapose an

oncogene and an ectopic enhancer to activate oncogenic transcription. Comparing the enhancer

landscapes of the Group 3 MB cell lines D458 (MYC ecDNA) and D283 (MYC HSR), we

observe functional differences in the enhancer loci driving oncogene expression, indicating

that the enhancer landscape of the structural variant contributes to oncogenic transcriptional

dysregulation. These results add to accumulating evidence suggesting co-amplified enhancers as

potential therapeutic vulnerabilities in ecDNA-amplified cancers [45].

3.2 Results

3.2.1 ecDNA places oncogenes in new gene regulatory contexts.

It has been shown that some MB tumors are driven by “enhancer hijacking” events,

whereby somatic SVs cause an enhancer to be rewired to amplify transcription of GFI1 family

or PRDM6 genes [100, 98]. Given the extensive genomic rearrangement associated with some

MB ecDNA, we investigated whether new DNA interactions between co-amplified non-coding

regulatory enhancers and oncogenes emerge on circular ecDNA. To test this hypothesis, we

profiled the accessible chromatin of 25 MB tumors (11 ecDNA+, 14 ecDNA-) using ATAC-seq

[12], as well as chromatin interactions of 17 MB tumors (8 ecDNA+, 9 ecDNA-) using chromatin
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conformation capture (Hi-C) [110]. Consistent with previous reports [160, 60], bulk ATAC-seq

read density was markedly enriched across entire ecDNA regions, even for ecDNA with only

low-level amplification as estimated by bulk WGS. Hi-C sequencing reads exhibited a similar

pattern of enrichment at ecDNA regions (Fig. 3.1).

Figure 3.1: Chromatin interaction maps of chr8 in patient tumors with MYC ecDNA.
Chromosome-wide view of intrachromosomal interactions mapping to chr8 of the reference
human genome. Whole genome sequencing (WGS), ATAC-seq and Hi-C sequencing depth are
shown for two Group 3 MB samples harboring circular amplification of MYC. Extrachromoso-
mally amplified loci are indicated by arrows. These tumors are described further in [2].

In half of the analyzed ecDNA+ tumors (D458, MB106, MB268, and RCMB56), we

observed clear evidence of aberrant chromatin interactions on ecDNA which spanned DNA

breakpoints to link accessible loci and co-amplified genes from distal genomic regions. In

the MYC-amplified Group 3 MB primary tumor MB106, DNA interactions occurred between

the MYC locus and two co-amplified accessible regions located 13Mbp away on the reference

genome, but 75kbp and 800kbp away on the ecDNA (Fig. 3.2a). Comparing the MB106 Hi-C

interactome to that of MB288, a Group 3 MB primary tumor without ecDNA, we found that these

chromatin interactions were specific to the MB106 ecDNA (Fig. 3.2b).

In the SHH MB primary tumor MB268, we identified a 10.2Mbp ecDNA amplification

which included the p53 regulator MDM4 [139] and is among the largest ecDNA amplifications

identified in a patient tumor to date (Fig. 3.3). MDM4 is recurrently amplified on glioblastoma
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(a) (b)

Figure 3.2: Transcriptional regulatory circuitry of ecDNA in MYC-amplified Group 3
patient tumor MB106. (a) Circular multi-omic map of the ecDNA sequence identified in
Group 3 MB sample MB106. MYC is highly expressed, and interacts with distal accessible
loci located elsewhere on the ecDNA sequence. (b) Comparison of interaction densities at the
MB106 ecDNA locus between MB106 (Group 3 ecDNA+) and MB288 (Group 3 ecDNA-).
Ectopic interactions (arrows) between co-amplified segments of chr8 in MB106 are not present
in the MB288 tumor with unrearranged MYC locus.

ecDNA [22] and is a putative driver event in the MB268 tumor. On the same ecDNA, we

also observed aberrant DNA interactions with the immune complement system regulator CFH

promoter. However, the functional significance of these co-amplified genes and DNA interactions

remains unclear.

In two instances, the SHH MB tumor RCMB56-pdx and the Group 3 MB cell line D458,

we identified rewired interactions between genomic loci originating from different chromosomes

but co-amplified on the same ecDNA. As described above, RCMB56 harbored an ecDNA

comprised of segments of chr1, and a complex extrachromosomal amplification comprised of

segments of chr7 and chr17. Hi-C data indicated frequent chromatin interaction across breakpoints

in each of the two amplicons present in this tumor (Fig. 3.4-3.5). Aberrant chromatin interactions

mapping to amp1 targeted accessible regions at the DNTTIP2, SH3GLB1, and SELENOF gene

loci (Fig. 3.5a). Aberrant interactions on amp2 included intrachromosomal interactions mapping

to RPA3, HERPUD2, KLF14 and others; and trans-chromosomal interactions between the SP2
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Figure 3.3: Transcriptional regulatory circuitry of ecDNA in SHH MB tumor MB268. (a)
Circular multi-omic map of the ecDNA present in the SHH MB patient tumor MB268. MDM4
is a negative p53 regulator recurrently amplified in glioblastoma [22], and is a putative driver
oncogene on this amplicon. (b)Comparison of interaction densities at the MB268 ecDNA locus
between MB268 (SHH ecDNA+) and MB274 (SHH ecDNA-). Ectopic interactions (arrows)
between co-amplified segments of chr1 in MB268 are not present in unrearranged the MB274
tumor.

locus and the brain-specific long noncoding RNA LINC0301359, and from the PRR15L promoter

to an intragenic region upstream of SRI (Fig. 3.5b).

D458 harbors an ecDNA amplification containing MB oncogenes MYC and OTX2, from

chromosomes 8 and 14 respectively. Co-amplification of MYC and OTX2 on the same ecDNA

was validated by confocal FISH showing extrachromosomal co-localization of OTX2 and MYC

in D458 cells (Fig. 3.6a), and by assembly of the D458 ecDNA from WGS and OGM data

(Supplementary Fig. 11 of [14]). OTX2 is a known regulator of MYC transcription and both genes

are highly expressed in D458 (Fig. 3.6b). The Hi-C data revealed several interactions of the MYC

promoter with co-amplified regulatory elements of chr8 and chr14 (Fig. 3.7). In summary, these

results show that aberrant enhancer-promoter interactions resulting from structural rearrangements

on ecDNA are common in MB tumors.
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(a) (b)

Figure 3.4: Transcriptional regulatory circuitry of ecDNA sequences in RCMB56 p53-
mutant SHH MB tumors. (a) Transcription (RNA-seq, grey), accessible chromatin (blue),
and chromatin interactions (Hi-C, red arcs) mapped onto the amp1 assembly (outer track,
brown). Chromatin interactions occur across a structural breakpoint between accessible loci
near highly-expressed genes such as DNTTIP2. (b) Transcription, accessible chromatin, and
chromatin interactions mapped onto the amp2 assembly. The gap in the assembly is adjacent to
pericentromeric and peritelomeric loci. Ectopic interactions putatively target RPA3, HERPUD2,
KLF14, SP2, and others.

3.2.2 Co-amplified enhancers shape the transcriptional regulatory circuitry

of ecDNA.

To test whether the observed enhancer rewiring events in ecDNA have functional roles in

tumor cell proliferation, we performed a pooled CRISPRi proliferation screen in the Group 3 MB

cell line D458, targeting all 645 accessible loci co-amplified on the ecDNA using 32,530 small

guide RNA sequences (sgRNAs). These loci included 10 highly accessible regions from chr14,

each overlapping ENCODE candidate cis-regulatory elements (cCREs) [90]. Because enhancer

usage is highly conserved in Group 3 MB tumors [72], we performed the same screen in the

Group 3 cell line D283, in which MYC (but not OTX2) is tandem amplified on a 55Mbp HSR of
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(b)

Figure 3.5: Enhancer rewiring on ecDNA in RCMB56. See also Fig. 3.4. (a) Chromatin
interaction density map of the amp1 assembly. Arrows indicate putative enhancer rewiring
events, or chromatin loops which span a breakpoint on the amp1 assembly. (b) Chromatin
interaction density map of the amp2 assembly. Putative enhancer hijacking events are again
indicated by arrows. The two ends of this assembly do not interact (top of the triangle),
suggesting that they are spatially distant in the cell.
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(b) (c)

Figure 3.6: Two Group 3 MB cell lines with intra- and extrachromosomal MYC ampli-
fications. (a) Confocal FISH of MYC and OTX2 on a metaphase spread of a D458 cell. (b)
Gene transcription of all protein-coding genes in D458 and D283 from publicly available data
in DepMap [140]. MB Group 3 oncogenes MYC and OTX2 are highlighted. (c) FISH in a
metaphase spread of a D283 nucleus shows chromosomal homogeneously staining region (HSR)
MYC amplification. OTX2 is not amplified in D283.

chr8q (Fig. 3.6c). While the MYC promoter was essential in both cell lines, our screen identified

6 functional elements which, upon CRISPRi inhibition, specifically reduced D458 proliferation

compared to D283 after 21 days (MAGeCK MLE, q < 0.05; Fig. 3.8) [70]. On chr8, these loci

included two accessible regions of a known MYC superenhancer [72] and the PVT1 promoter. In

D458, much of the superenhancer is duplicated internally on the ecDNA, and PVT1 is amplified

in D458 but not in D283. Conversely, we observed that other accessible regions of the same MYC

superenhancer were specifically essential for D283 but not for D458, indicating altered regulatory

dependencies on the MYC-ecDNA compared to the MYC-HSR amplification. These results are

consistent with a previous comparison of ecDNA+ and ecDNA- glioblastoma cell lines, where

the impact of enhancer silencing on proliferation was associated with cell line-specific chromatin

accessibility and interactions [93].
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Figure 3.7: Transcriptional regulatory map of the D458 ecDNA. (a) Circular map of accessi-
ble chromatin (blue) and chromatin interactions (red) mapping to the D458 ecDNA sequence
assembly. (b) Interchromosomal interactions between segments of the D458 ecDNA originating
from chr8 and chr14. Arrows highlight putative chromatin loops included in (a). f: functional,
as determined by a significant and D458-specific effect on cell proliferation upon CRISPRi
inhibition (Fig. 3.8); nf: not identified as functional in the same pooled CRISPRi screen.

The Hi-C data indicated interactions between MYC on chr8 and regulatory elements

of chr14 co-amplified on the same ecDNA, two of which are essential for D458 proliferation

(Fig. 3.7b): a cluster of elements at the OTX2 locus as well as a distal enhancer [158] located

80kbp downstream of OTX2 on the reference genome, but inverted on the ecDNA. D283-specific
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elements on chr14 included peaks at the N-terminal exon of OTX2 and another distal enhancer

[158] 55kbp from OTX2 on the reference but also inverted on the ecDNA. To further test the

influence on transcription of regulatory regions essential in D458 but not in D283, we performed

additional CRISPRi inhibition experiments targeted against the PVT1 promoter and an accessible

region within the internal duplication of the MYC superenhancer. Consistent with the result of

the CRIPSRi proliferation screen, silencing of the MYC superenhancer reduced MYC expression

for 2 out of 3 tested sgRNAs in D458 but not in D283 (Fig. 3.9). No significant difference was

observed in OTX2 transcription in either cell line. Silencing of the PVT1 promoter abrogated

PVT1 transcription but not MYC or OTX2, in D458 but not in D283 (Fig. 3.10). Thus, although

proliferation in both Group 3 MB cell lines is driven by MYC amplification, the relative importance

of co-amplified genes and cis-regulatory elements is specific to the genomic architecture of the

amplicon.

3.2.3 ecDNA interacts with chromosomal oncogene loci.

Recent studies have revealed intermolecular enhancer-promoter interactions between

ecDNA molecules (‘ecDNA hubs’) [45] or between the chromosomes and ecDNA (‘mobile

enhancers’) [166]. To test for such intermolecular chromatin interactions in medulloblastoma, we

computationally identified interchromosomal loops from Hi-C of the SHH MB tumor RCMB56-

pdx, where one loop anchor mapped to the circular ecDNA amp1. This analysis revealed a nexus

of interactions mapping from the ARHGAP29 locus on amp1 to loci elsewhere in the genome

with plausible tumorigenic roles, including MECOM, RAD51AP2, POU4F1, and IGF1R (Fig.

3.11). However, the functional significance of these intermolecular chromatin interactions in MB

remains untested.
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Figure 3.8: A large CRISPRi screen identifies differentially active enhancers in two MYC
amplicons. Pooled CRISPRi screen in the two G3 MB cell lines D458 (MYC ecDNA) and D283
(MYC HSR) targeted against all accessible loci on the D458 ecDNA as identified by ATAC-seq.
Tracks from top to bottom: amplified regions of the D458 ecDNA; amplified regions of the
D283 HSR; refSeq genes; D458 bulk ATAC-seq signal; CRISPRi essentiality score tracks for
D458 and D283 generated by CRISPR-SURF [43]. Vertical highlighted bars indicate accessible
loci which are significantly depleted at T21 relative to T0, and colored by cell line specificity.
Grey: essential in D458 and D283 with no significant difference; green: significantly depleted in
D458 relative to D283; yellow: significantly depleted in D283 relative to D458. All significance
values determined by FDR-corrected MAGeCK-MLE permutation test [70] (q < 0.05).

3.3 Discussion

By mapping chromatin interactions occurring on ecDNA in patient and model tumors, we

observe ectopic chromatin interactions occurring between genomic loci which are distal on the

reference genome but proximal on the ecDNA. In representative tumors of the SHH and Group 3

MB subgroups, these interactions targeted known or putative oncogene loci, and coincided with

high gene expression. To determine the extent to which the enhancer landscape of an ecDNA may

affect cell proliferation, we performed pooled and targeted CRISPR inhibition experiments in

the Group 3 MB cell line D458, which amplifies oncogenes MYC, OTX2, and PVT1 on ecDNA.
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(c) (d)

Figure 3.9: A co-amplified enhancer on the D458 ecDNA promotes MYC expression. Rela-
tive expression of MYC and OTX2 in D458 (a-b) and D283 (c-d), measured by qPCR (2−∆∆Ct),
in D458 and D283 cell lines upon CRISPRi targeting of an accessible locus within a known
MYC superenhancer which promotes D458 proliferation (see also Fig. 3.8). sgNT: nontargeting
control; sgMYC-SE-A-C: sgRNAs targeting the MYC enhancer at D458 peak 30782, positions
chr8:127330655, chr8:127330840, and chr8:127330927 respectively. qPCR was performed on
all guides in technical triplicate. All co-ordinates refer to the hg38 assembly. ** p < 0.01; ***
p < 0.001; nested ANOVA with Dunnett’s correction.

These experiments reveal that a distal MYC superenhancer is essential to cell proliferation, and

that the relative importance of specific enhancer sub-elements is specific to the sequence of the

structural rearrangement. In this illustrative model, the rearranged enhancer landscape of the

ecDNA sequence contributes to the cell’s proliferative capacity.

Therapeutic targeting of rewired enhancers in patient tumors remains a major unresolved

challenge. In our example Group 3 MYC-amplified cell lines D283 and D458, the bromodomain

inhibitor JQ1 attenuates cell growth by downregulating MYC transcription [4]. The mechanism
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(d) (e) (f)

Figure 3.10: PVT1 promotes D458 cell proliferation. Relative expression of PVT1, MYC,
and OTX2, measured by qPCR (2−∆∆Ct), in D458 (a-c) and D283 (d-f) cell lines upon CRISPRi
targeting of the PVT1 promoter which promotes D458 proliferation (see also Fig. 3.8). sgNT:
nontargeting control; sgPVT1-D-F: sgRNAs targeting the PVT1 promoter at D458 peak 30920,
positions chr8:127794266, chr8:127794773, and chr8:127794945 respectively. qPCR was
performed on all guides in triplicate. All co-ordinates refer to the hg38 assembly. *** p < 0.001;
**** p < 0.0001; nested ANOVA with Dunnett’s correction.

of action is believed to be disruption of BRD4-mediated binding of transcriptional machinery

to MYC enhancers, downregulating MYC expression. However, clinical trials of BRD inhibitors

have so far shown high rates of adverse events and limited efficacy [133]. In addition, further

research will be required to resolve and target the exact oncogenic seuqences driving patient

tumors such as RCMB56, which does not amplify a known MB oncogene on either ecDNA

amplification.
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Figure 3.11: The RCMB56 amp1 ecDNA interacts with chromosomal gene loci. (a)
Interchromosomal chromatin interactions detected by FitHiC2 [52] between amp1 and other
chromosomes. Interactions mapping to a gene locus are labelled. (b) Interaction density map
between segments of chr1 and chr3, rendered in Juicebox [24]. Vertical stripes indicate increased
contact density between the ecDNA and chr3 over background interactions between chr1 and
chr3. Arrow indicates the chromatin loop detected between ARHGAP29 on amp1 and MECOM
on chr3.

3.4 Methods

3.4.1 ATAC-seq

Archer et al. samples. At least 25mg of pulverized frozen tissue from samples previously

included in proteomics analysis5 were sequenced by ATAC-seq according to an established

protocol for bulk ATAC-seq of frozen neuronal cells[88]. Reads were aligned, deduplicated and

preprocessed according to ENCODE best practices. Samples included in subsequent analyses

passed the following quality control thresholds: PCR bottleneck coefficient 1 (PBC1) > 0.7,

PCR bottleneck coefficient 2 (PBC2) > 3, non-redundant read fraction (NRF) > 0.8 and TSS

enrichment > 2.6. These samples had at least 13 million uniquely mapped single-end reads

62



(GRCh37). Accessible chromatin regions were identified using MACS2 v2.1.2 [165] using

Benjamini-Hochberg corrected p-value threshold q < 0.05.

RCMB56 and D458. Frozen dissociated cells were ATAC-sequenced at ActiveMotif,

Inc. (San Diego, CA). Briefly, 100K cells were permeabilized and transposase loaded with

sequencing adapters was added. Sequencing was performed on Illumina NextSeq 500. Reads

were aligned, deduplicated and preprocessed according to ENCODE best practices. Samples

had PBC1 > 0.9, PBC2 > 20, NRF > 0.5 and at least 30 million uniquely mapped paired-end

reads (hg38). Accessible chromatin regions were identified using MACS2 v2.1.2 [165] using

Benjamini-Hochberg corrected p-value threshold q < 0.05.

Chromosome conformation capture

Archer et al. samples (except MB248). Hi-C on frozen tumor tissue sample was carried

out using protocols previously described for tissue Hi-C experiments88. In brief, frozen tissues

are pulverized using a mortar and pestle kept cold on a bed of dry ice into a fine powder. The

tissue powder was then transferred to a 15mL conical tube containing 5mLs of DPBS and fixed

with 2% formaldehyde for 10 minutes. The fixation was quenched by addition of 0.2M Glycine.

The fixed tissue was pelleted by centrifugation, washed 1x with DPBS, and then flash frozen

until ready for further processing. For Hi-C experiments, the fixed frozen tissue pellets were

first resuspended in 3mLs of lysis buffer (10mM Tris-HCl pH 8.0, 5mM CaCl2, 3mM MgAc,

2mM EDTA, 0.2mM EGTA, 1mM DTT, 0.1mM PMSF, 1X Complete Protease Inhibitors). The

sample was transferred to an M-tube and dissociated using a GentleMACS Tissue dissociator

(Miltenyi) using the “Protein M-tube” setting. The sample was removed from the M-tube into

a 50mL conical. The M-tube was washed with 3mLs of lysis buffer with 0.4% Triton X-100

added, and this wash was combined with the original 3mLs of sample for a total volume of 6mLs

with final concentration of 0.2% Triton X-100. The sample was then passed through a 40µM cell

strainer. The strainer was washed with an additional 2mLs of lysis buffer with 0.2% Triton X-100.
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The sample was then centrifuged and washed with 1mL of lysis buffer with 0.2% Triton X-100.

After centrifugation, the sample was resuspended in 0.5% SDS and processed with previously

described in situ Hi-C method [110] using the MboI enzyme. Libraries were prepared using

the Illumina TruSeq LT sequencing adaptors. Initial QC sequencing was first performed on a

MiSeq to assess library quality, and if sufficient, was subject to production scale sequencing on

the HiSeq X or NovaSeq platform, respectively.

D458, RCMB56, and MB248. Hi-C experiments were carried out by Arima Genomics, Inc

(San Diego, CA) using the Arima-HiC Kit protocol with MboI restriction enzyme. Subsequently,

Illumina-compatible sequencing libraries were prepared by shearing the proximally ligated DNA

and then size-selecting DNA fragments using SPRI beads. The size-selected fragments containing

ligation junctions were enriched using Enrichment Beads (provided in the Arima-HiC Kit), and

converted into Illumina-compatible sequencing libraries using the Swift Accel-NGS 2S Plus kit

(P/N: 21024) reagents. After adapter ligation, DNA was PCR amplified and purified using SPRI

beads. The purified DNA underwent standard QC (qPCR and Bioanalyzer) and sequenced on the

NovaSeq following manufacturer’s protocols.

3.4.2 Hi-C data processing

Hi-C reads were trimmed using Trimmomatic 0.39 [11] and aligned to the hg38 hu-

man genome reference using the HiC-Pro toolkit v2.11.3-beta using default parameters[124].

Visualization and contact normalization was performed with JuiceBox v1.11.08 [24] and the

Knight-Ruiz algorithm [56]. Chromatin interactions were called using Juicer Tools GPU HiC-

CUPS v1.22.01 [25] using fdr threshold 0.2 and default recommended parameters for Hi-C [110].

From visual inspection, we found that HiCCUPS correctly annotated interactions mapping to

ecDNA, except for locus pairs mapping within 50kb of a structural rearrangement. Due to these

technical challenges, chromatin interactions described herein were manually curated based on

HiCCUPS interaction calls.
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3.4.3 Identification of intermolecular chromatin interactions

See also 3.11. To screen for putative intermolecular chromatin interactions originating

from possible mobile enhancers on ecDNA [166], we performed loop detection on Hi-C data

of RCMB56-pdx using FitHiC v2.0.8 [52] inter-chromosomal mode, at resolution 50kbp and

setting no bias upper bound, as recommended by the tool’s authors for this task. Interactions

with corrected q-values less than 0.05 were selected, then further filtered for loops with one

anchor mapping to RCMB56 amp1. To reduce false positive loop calls originating from changes

in copy number variation, loops were further filtered to remove those mapping to amp2 or to

within 100kbp of a breakpoint on amp1. After filtering, 46 high-confidence loops remained which

mapped from amp1 to elsewhere in the reference genome. Genes were associated with a loop if

the gene locus overlapped the 50kbp loop anchor. Panel 3.11a was generated using circos v0.69-8

[59].

3.4.4 Pooled CRISPRi proliferation screen

The pooled CRISPRi proliferation screen was designed according to methods described

previously [93]. Briefly, sgRNAs targeting the D458 ecDNA regulome were designed using

CHOPCHOP [61]. All sgRNAs with no exact homology elsewhere in the genome (ie, mm0 =

0) were included, totaling 32,530 sgRNAs. Targeted regions included 645 accessible regions on

the D458 ecDNA, and putative enhancers of MYC in medulloblastoma61. As positive controls,

sgRNAs targeting the promoter regions of POLR2A, MYC and OTX2 were also included. No non-

targeting sgRNAs were included; however 4 1kbp loci from chr8 with no evidence of regulatory

activity in D458 were also included. Pooled oligonucleotides were generated at Genewiz, Inc.

The library was amplified and packaged into lentivirus in 293FT cell line (Invitrogen) by SBP

Functional Genomics Core Facility.

D283 Med and D458 Med cells were infected by the lentivirally-packaged sgRNA library
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at a MOI of 0.3 at a multiplicity of 1000 cells/sgRNAs. Two independent infections were

performed for each cell line as biological replicates (A and B). Forty-eight hours post-infection,

infected cells were selected using puromycin (1μg/ml). After 2 days selection, the MOI was

measured and 30 million of cells were collected for NGS sequencing (timepoint 0 “T0”) as a

reference baseline for sgRNA distribution. Another 30 million of cells were re-plated into the

culture flasks and maintained for 21 days (timepoint 21 “T21”).

To ensure sgRNA representation in each replicate, 30 million cells were maintained

throughout the screen during cell passage every 3-4 days. Cells were harvested at T21, and

genomic DNA extraction was performed using the NucleoSpin Blood XL kit. The NGS samples

were prepared by the SBP Functional Genomics Core Facility using two-step PCR amplification

of the integrated sgRNA using the genomic DNA as a template. For the first PCR, “PCR1”

sgRNAs were amplified using Herculase II Fusion DNA Polymerases (Agilent 600675) from

total genomic DNA isolated from each replicate at T0 and T21. 4μg of genomic DNA was used

for each 50ul reaction. PCR1 products were cleaned up using QIAquick PCR Purification Kit

(Qiagen). For the second PCR “PCR2”, 5 μl of each cleaned PCR1 product was used for each

50μl reaction with primers designed to include Illumina Adaptors and unique barcodes to allow

for multiplexed NGS. PCR2 products were bead-purified (AMPure XP, Beckman), and eluted in

30 μl of low-EDTA TE buffer. Final concentrations of the desired products were determined by

TapeStation (Agilent) and equimolar amounts from each sample were pooled for Next Generation

Sequencing. Following selection, libraries were sequenced on an Illumina NovaSeq 6000 to a

minimum depth of 60M reads per sample. Sequencing data QC, alignment and preprocessing

was performed using MAGeCK-VISPR v0.4.165 [70] At least 85% of reads per sample were

uniquely mappable to a sgRNA sequence, and fewer than 100 sgRNAs (0.3%) were absent

from any library. CRISPRi score tracks were generated using CRISPR-SURF v1.06 [43]. To

identify D458-specific functional loci, T21 and T0 for both cell lines were compared using the

Robust Rank Aggregation (RRA) algorithm of MAGeCK. Essential loci were identified for each
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cell line where guides mapping to that locus were depleted at T21 (corrected p-value < 0.05).

Independently, D458-specific loci were identified by a linear model parameterized on cell line and

timepoint (MAGeCK MLE, corrected p-value < 0.05). The final set of D458-specific functional

loci was the intersection of the loci identified by these two analyses. Genomic tracks were plotted

in IGV desktop v2.9.2 [116].

3.4.5 Targeted CRISPRi experiments

For CRISPRi experiments, D283 and D458 medulloblastoma cells were lentivirally

transduced with dCas9-KRAB-mCherry plasmid [33] (Addgene #60954) to express dCas9 in

these cells. Cells stably expressing dCas9 were FACS sorted based on mCherry expression and

were transduced with sgRNA vectors. sgRNAs were cloned into the lentiGuide-puro plasmid

(Addgene #52963) as described previously [23]. All plasmids were verified by Sanger sequencing.

293T cells (ATCC Cat# CRL-3216) were used to generate lentiviral particles by cotransfecting

the packaging vectors psPAX2 and pMD2.G using LipoD293 transfection reagent (SignaGen,

SL100668) following the manufacturer’s instructions.

3.4.6 Quantitative RT-PCR

Five days after sgRNA transduction, cells from different conditions were collected and

Qiagen RNeasy Kit was used to isolate total cellular RNA from cell pellets according to the

manufacturer’s instructions. iScript cDNA Synthesis Kit (Bio-Rad, catalog 1708890) was used

for reverse transcription into cDNA. Quantitative real-time PCR was performed in technical

triplicate for 2 bioreplicates of each experimental condition on a Bio-Rad CFX384 Real-Time

System using SYBR Green PCR Master Mix (Bio-Rad, catalog 1725270). Gene transcription was

estimated from qPCR data using the delta delta Ct method (Exp = 2−∆∆Ct). Testing for change in

gene expression was performed using nested ANOVA with Dunnett’s multiple comparisons test,
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implemented in GraphPad Prism 9.5.2.
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Chapter 4

THE GENOMIC LANDSCAPE OF

ECDNA ACROSS PEDIATRIC CANCERS

4.1 Abstract

Circular extrachromosomal DNA (ecDNA) is a driver of oncogene amplification in

aggressive cancers. The frequency and diversity of ecDNA has been comprehensively described

in many different types of adult cancers and in some selected childhood cancer types, such as

neuroblastoma and medulloblastoma. However, the frequency of ecDNA and its association with

survival has not been comprehensively analyzed in the spectrum of pediatric cancers. In this study,

we used the Amplicon Architect (AA) bioinformatics tool via cloud computing to reconstruct

ecDNA sequence structures from Whole Genome Sequencing (WGS) data available in two of the

largest publicly accessible pediatric cancer data repositories, the Children’s Brain Tumor Network

(CBTN) and the St. Jude Cloud cancer genomics platform. In total, we analyzed a retrospective

cohort of over 1,600 tumor biopsies from 1,400 different patients, spanning 47 different childhood

tumor types. As a result, we identified ecDNA in 15 different pediatric tumor types, with an

overall incidence of ecDNA of 10% in the entire patient cohort. We estimate frequencies of
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ecDNA in pediatric osteosarcomas (47%), rhabdomyosarcomas (40%), retinoblastomas (19%),

ETMRs (all, n = 4), high-grade gliomas (20%), and others. Across this cohort, ecDNA was found

to be significantly associated with poor survival. Our results show that ecDNA is widely prevalent

in pediatric cancers, amplifies known and potentially novel oncogenes, frequently evolves during

disease progression, and significantly associates with worse clinical outcomes.

4.2 Introduction

Circular extrachromosomal DNA (ecDNA) has recently emerged as a mechanism for

rapid oncogene amplification. Also known as double minutes, ecDNA sequences are typically

greater than 1 Mb in size, contain one or more oncogenic sequences, and lack centromeres.

ecDNA is subject to non-Mendelian inheritance, leading to unequal segregation of ecDNA during

cytokinsesis and consequently intratumoral heterogeneity with every cell division [3]. The

mechanisms which promote and maintain ecDNA or which suppress or inhibit ecDNA have yet

to be fully elucidated. Several methods have emerged for identification of ecDNA, including

microscopic examination with FISH and sequencing-based approaches. Algorithmic assembly

from short-read whole genome sequencing has arisen as a cost-effective method to identify

ecDNA, and has been applied to estimate the prevalence of ecDNA in adult [55, 103, 79] and

some pediatric cancer types [58, 14]. However, we are aware of only isolated meta-analyses [29]

and case reports describing ecDNA in other pediatric solid tumors including rhabdomyosarcoma,

osteosarcoma, retinoblastoma, and others.

We and others have recently shown that many pediatric cancers harbor unique mutations

and driver oncogenes that differ from their adult counterparts [35, 80]. However, ecDNA analysis

was not included in these pan-cancer studies, in part because computational methods for recon-

structing ecDNA from whole-genome sequencing data were not available at the time. To address

this gap, we have now analyzed the frequency of ecDNA in two of the largest publicly available
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childhood cancer data repositories. The pediatric pan-cancer study presented here identifies

childhood cancer types commonly affected by ecDNA, catalogues ecDNA-amplified genes in

primary and recurrent tumors, and examines the association between ecDNA and patient survival.

In addition to being an indicator of prognosis, ecDNA provides an opportunity for therapies

targeting ecDNA-specific properties, but its real-time clinical applicability has yet to be explored.

This study seeks to take the first step in this process by highlighting the spectrum of childhood

patients who may benefit from future therapies targeting ecDNA.

4.3 Results

4.3.1 ecDNA occurs in at least 15 distinct pediatric tumor types.

To investigate the prevalence of ecDNA in pediatric tumors, we accessed whole genome

sequencing data from two large cloud genomic platforms: St Jude Cloud and Children’s Brain

Tumor Network (CBTN). In total, we analyzed a retrospective cohort of WGS data of 1670

tumor biopsies from 1481 different patients. Clinical data was available for some patients and

included age at diagnosis, sex, survival, tumor tissue site, race/ethnicity, and molecular subgroup

for some tumor types. To detect ecDNA, we applied AmpliconArchitect (AA), a tool that detects

and reconstructs focal genomic amplifications from whole genome sequencing data [22]. We

then applied AmpliconClassifier, which classifies the reconstructed sequence as ecDNA or a

separate noncircular amplification. Amplicons were classified as circular, breakage-fusion-bridge,

complex noncyclic, or linear (Fig. 4.1a). 174 ecDNA sequences were detected in tumor tissue

of 157 out of 1486 patients (10%). This cohort spans 47 different tumor types, 15 of which

were found to have ecDNA in at least one sample. The frequencies of ecDNA in these 15

cancer types were as follows: embryonal tumor with multilayered rosettes (ETMR) 4/4 (100%),

pineoblastoma (PB) 2/4 (50%), osteosarcoma (OS) 27/57 (47%), rhabdomyosarcoma (RMS)

14/35 (40%), choroid plexus carcinoma (CPC) 1/3 (33%), neuroblastoma (NB) 32/106 (30%),
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malignant peripheral nerve sheath tumor (MPNST) 1/4 (25%), high-grade glioma (HGG) 32/157

(20%), retinoblastoma (RB) 6/32 (19%), medulloblastoma (MB) 25/177 (14%), adrenocortical

carcinoma (ACC) 2/21 (10%), ependymoma (EPN) 2/73 (3%), craniopharyngioma (CPG) 1/39

(3%), ganglioglioma (GG) 1/44 (2%), and low-grade glioma (LGG) 1/290 (0.3%) (Fig. 4.1b).

ecDNA was significantly associated with tumor type (χ2 = 299.96, p value 2.2×10−16). ecDNA

was not identified in the 32 other tumor types in our cohort.

4.3.2 ecDNA status is predictive of 5-year survival across pediatric cancer

types.

To evaluate the relationship between ecDNA and survival across pediatric cancer types,

we performed Kaplan-Meier regression analyses across 345 patients for whom clinical metadata

were available. Patients with ecDNA-containing (ecDNA+) tumors had significantly worse

five-year overall and progression free survival compared to patients with ecDNA negative tumors

(log-rank-test, pOS < 0.001, pPFS < 0.001) (Fig. 4.2). Individual survival analyses for each

tumor type were not significant, attributable to low statistical power. To further substantiate

the association between survival and ecDNA status, we performed a Cox regression analysis

with ecDNA as the predictor and age and sex as covariates. ecDNA was significantly associated

with poor survival (HR = 3.17, p = 1.24×10−9). To determine whether ecDNA+ tumors had

worse outcomes than those with other forms of focal amplification, we compared survival across

different classes of amplification: no amplicon, ecDNA, linear, and highly rearranged amplicons).

Patients with cyclic amplification had significantly worse overall survival compared to patients

with no amplification and linear amplification (log-rank test, pOS < 0.001).

Molecular subgroup annotations were available for 108 for high-grade glioma (HGG)

tumors, facilitating comparison of the effect size of ecDNA on survival relative to other molecular

determinants of risk. The most current subgrouping of HGG includes classification into histone 3

lysine 27 mutant (H3K27mut), histone 3 glycine 34 mutant (H3G34mut), IDH mutant (IDHmut)
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(a)

(b)

Figure 4.1: Frequency of ecDNA sequences across a large restrospective cohort of pediatric
tumors. (a) Analysis workflow diagram of cloud cancer genomics databases of whole genome
sequencing data. (b) ecDNA frequencies for select tumor types in this cohort.

and H3 wild-type IDH wild-type (H3/IDHmut) tumors [81]. ecDNA was distributed across these

subgroups as follows: H3K27mut (14/56, 25%), H3G34mut (0/4, 0%), IDHmut (2/6, 33%), and

H3/IDHmut (11/42, 26%). Cox regression indicates that molecular subgroup, especially H3K27

mutation status, is a major determinant of patient outcome (HR = 4.39, p < 0.001), consistent
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(a)

(b)

Figure 4.2: Survival analysis of a retrospective cohort of 345 patients across n tumor types.
(a) Kaplan-Meier curves indicating 5-year overall survival for ecDNA+ and ecDNA- patients.
(b) Cox Proportional Hazards regression coefficients indicating log relative hazards for age, sex,
ecDNA status and tumor type.
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with previous results [81]. This model estimates a modest but insignificant effect of ecDNA on

patient survival (HR = 1.13, p = 0.6, Fig. 4.3).

(a)

(b)

Figure 4.3: Survival analysis of a retrospective cohort of 108 pediatric HGG patients. (a)
Kaplan-Meier curves indicating 5-year overall survival for ecDNA+ and ecDNA- patients. (b)
Cox Proportional Hazards regression coefficients indicating log relative hazards for ecDNA
status and tumor type.
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4.3.3 ecDNA most commonly amplifies MYCN in neuroblastoma.

The genomic landscape of ecDNA in neuroblastoma has been thoroughly described [58,

164], and the distribution of ecDNA in this neuroblastoma patient cohort is largely consistent with

previous observations. We identify circular ecDNA amplification in 32 out of 106 neuroblastomas

(30%). ecDNA amplification was almost exclusively detected at the MYCN oncogene locus (30

out of 31, 97%).

4.3.4 ecDNA amplifies C19MC-TTYH1 fusions in embryonal tumor with

multilayered rosettes.

Nine out of ten embryonal tumor with multilayered rosettes (ETMR) tumors harbor

oncogenic amplification and fusion of TTYH1 with the C19MC microRNA cluster [69, 62]. Our

cohort includes 4 ETMR tumors, all TTYH1-C19MC amplified on ecDNA. One of these also had

noncircular MYCN amplification, suggesting a secondary driver.

4.3.5 MYC amplification occurs on ecDNA in pineoblastoma

Pineoblastomas (PBs) comprise five molecular subgroups, including a subgroup harboring

recurrent amplification of MYC [65]. We identify 2 ecDNA sequences in 4 PB patient tumors,

one amplifying MYC and the other the C19MC cluster canonically amplified in ETMR. It remains

unknown whether the C19MC-amplified PB shares other molecular or clinical features with

ETMR tumors.
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4.3.6 ecDNA amplifies diverse rhabdomyosarcoma oncogenes including

FOXO1-PAX7 fusions.

ecDNA has been described in rhabdomyosarcoma (RMS) case reports since 1971 [34,

130, 87, 32, 94]. A review of case literature [29] identifies ecDNA in 15% of human rhab-

domyosarcomas (n = 84). We identify ecDNA in WGS of 14 out of 35 RMS tumors (40%).

Amplified oncogenes were SOX21 (putative, n = 3), MYCN (n = 2), FGFR1 (2), MDM2 (2),

NSD3 (2), and FOXO1-PAX7 fusion (2). One ecDNA sequence did not contain any known

oncogenes. Both MYCN amplification [157] and FOXO1 fusion [89] are prognostic indicators

of poor RMS patient outcomes; however it remains unknown whether properties of ecDNA

contribute to these outcomes.

4.3.7 Half of focal amplifications in osteosarcoma are circular.

Osteosarcomas have among the highest rates of structural variation among pediatric cancer

types [159], and over 90% carry inactivating mutations of the p53 pathway [16]. A previous case

literature review reported ecDNA in 21% of OS tumors (n = 146) [29]. We detect ecDNA in WGS

of 27 out of 57 OS patient tumors (47%). The genomic distribution of ecDNA amplifications

largely reflected the known regions of recurrent focal amplification in OS, including MYC (n = 4

patients) RUNX2 (n = 3), and chr17p11.2-p12 (n = 6). chr17p11.2-p12 contains unstable low-

copy repetitive sequences which are amplified in pediatric osteosarcoma (OS) [143] and MB

[14], and adult HGG [144], multiple myeloma (MM) [26], leiomyosarcoma (LMS) and malignant

fibrous histiocytoma (MFH) [53]. Genes with putative oncogenic roles within this region include

PMP22, COPS3, TOP3A, MAPK7, and MAP2K4 [143].
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4.3.8 ecDNA amplifies the known landscape of focal amplifications in pedi-

atric high-grade glioma (HGG)

Among adult patient tumors, ecDNA occurs most frequently in glioblastomas [55]. Re-

construction of circular ecDNA from WGS of a large cohort of adult glioblastomas previously

identified recurrent ecDNA amplification of EGFR, MDM2, CDK4 and MYCN in descending

frequency [122]. In a large cohort of pediatric HGG, also included in our dataset, focal amplifi-

cation was previously reported of oncogenes PDGFRA, MET, EGFR, MYC, MYCN, Cyclin D

family members CCND1/2/3, and Cyclin D-dependent kinases CDK4/6. The circular structure of

one of these amplicons (EGFR) was subsequently comprehensively described at diagnosis and

relapse [161]. We identify ecDNA in 32 of 157 HGGs (20%). Circular amplicons included all of

the oncogenes previously described as amplified in this cohort, establishing circular ecDNA as a

frequent form of oncogenic amplification in HGG.

4.3.9 MYCN amplification occurs on ecDNA in a high-risk subset of ependy-

momas.

Amplification of the MYCN oncogene defines a subset of ependymoma (EPN) tumors with

exceptionally poor prognoses [31]. Given that in neuroblastoma, MYCN is almost exclusively

amplified on ecDNA and confers poor prognosis, we investigated whether MYCN amplification

can occur on ecDNA in EPN. We identify 2 ecDNA sequences across 73 EPN tumors. This

cohort included a single patient with MYCN-amplified spinal EPN, where MYCN was amplified

on circular ecDNA in both primary and progressive tumors. The other ecDNA comprised

amplification of segments of chr13q33, which to our knowledge has not been described in EPN,

but is amplified in other cancers [57]. Genes with putative oncogenic roles within this amplicon

include ITGB1L1 [153], ZIC2 [74] and ZIC5 [135, 128].
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4.3.10 ecDNA amplifies RB1 fusion genes in RB.

Retinoblastoma (RB) is generally distinguished by early biallelic inactivation of the

RB1 tumor suppressor gene followed by subsequent driver mutations, but 3% of non-hereditary

RBs carry wild-type RB1 and high-copy amplification of MYCN [118]. Other high-copy focal

amplifications previously reported in RB include MDM4 and co-amplification of OTX2 and AKT1

[120]. Given that MYCN-amplified RB bears histological resemblence to neuroblastoma (NB)

[118], and that MYCN amplifications occur almost exclusively on ecDNA in NB (see 4.3.3), we

hypothesized that MYCN amplification in RB also occurs on ecDNA. We identify circular ecDNA

in 6 of 32 RB patient tumors. Two of these harbored MYCN amplification on ecDNA, out of

3 total MYCN-amplified RB tumors. Other notable oncogenes amplified on ecDNA included

OTX2 (n = 1), SMARCA5 (n = 1), and putative RB1 fusion genes (n = 2): RB1-THSD1 and

RB1-LHFPL6. Both amplicons fused the 5’ end of RB1 to the 3’ end of the partner gene. No

RNA-seq data were available to confirm expression of the putative fusion gene product. However,

the recurrent high-copy amplification of truncated RB1, and the absence of a high-confidence

oncogene on either amplicon, make it tempting to speculate that the RB1 fusion products provide

some other selective advantage beyond RB1 inactivation.

4.4 Discussion

Our survey of circular ecDNA across a large cohort of many different pediatric tumor

types reveals that ecDNA is most frequent in high-risk malignant tumors, and largely absent from

low-risk or benign tumors. For example, ecDNA was detected in one in five high-grade gliomas,

but only one in 290 low-grade gliomas. The landscape of ecDNA-amplified genes largely reflects

previously-known landscapes of gene amplification, indicating that the oncogenic sequence is

not only amplified, but circular and acentric as well. Similarly to a recent result in adult cancers,

patients with tumors harboring circular acentric amplifications had worse five-year survival than
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patients with other forms of amplification.

Recurrently ecDNA-amplified genomic loci in other pediatric tumor types span the spec-

trum of known oncogenes in pediatric cancer: MYC family proto-oncogenes, cyclin-dependent

kinases, C19MC, growth factor receptors, and others. We highlight unanswered questions around

a few recurrent ecDNA loci as promising areas of future study.

The chromosomal band chr17p11.2-p12 is ecDNA-amplified in 6 OS and 1 MB tumors

in our cohort, and its amplification has been described in various adult cancers. Copy number

variation in this region has also been shown to cause the childhood developmental disorders

Smith-Magenis syndrome (SMS) (deletion) [36] and Charcot-Marie-Tooth disease type 1A

(CMT1A) (tandem duplication) [136]. The mechanism underlying both syndromes is believed to

be unequal crossing over due to homologous recombination between flanking repeat gene clusters

[104]. It remains to be shown whether the ecDNA amplifications at that locus arise by a similar

mechanism.

4.5 Methods

4.5.1 Pediatric Tumor WGS

CBTN – Children’s Brain Tumor Network (992 biosamples from 831 patients)

WGS of a variety of pediatric tumor biopsies were identified using the Gabriella Miller

Kids First Data Resource center portal (https://portal.kidsfirstdrc.org/). Patients were originally

sequenced as part of the Pediatric Brain Tumor Atlas (PBTA) (https://cbtn.org/pediatric-brain-

tumor-atlas). WGS data were preprocessed and aligned to human reference genome hg38 using

the Kids First harmonized WGS pipeline (https://github.com/kids-first/kf-somatic-workflow) and

subsequently analyzed using Cavatica (https://cavatica.sbgenomics.com/), on the cloud genomic

analysis platform for Kids First genomic data. Docker containers containing fingerprint and
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AmpliconArchitect software were installed on the Cavatica cloud genomics platform (see section

4.5.2).

St. Jude – St Jude Cloud Repository (678 biosamples from 655 patients)

WGS of pediatric tumor biopsies were identified using the St Jude Cloud data portal.

Patients were sequenced as part of the Pediatric Cancer Genome Project (PCGP) and Real-Time

Clinical Genomics (RTCG). AmpliconArchitect software was installed on the SJ Cloud platform

(see section 4.5.2).

4.5.2 ecDNA detection and classification from bulk WGS

To detect ecDNA, all samples in the WGS cohort were analyzed using AmpliconArchitect

v1.2 [22] and AmpliconClassifier v0.4.4 [55]. Briefly, the AmpliconArchitect algorithm was

performed as follows. Copy number segmentation and estimation were performed using CNVkit

v0.9.667 [134]. Segments with copy number CN ≥ 4 were extracted using PrepareAA (April

2020 update) as “seed” regions. For each seed, AmpliconArchitect searches the region and nearby

loci for discordant read pairs indicative of genomic structural rearrangement. Genomic segments

are defined based on boundaries formed by genomic breakpoint locations (identified by discordant

reads) and by modulations in genomic copy number. A breakpoint graph of the amplicon region

is constructed using the CN-aware segments and the genomic breakpoints, and cyclic paths are

extracted from the graph. Amplicons are classified as cyclic (ecDNA+), breakage-fusion-bridge,

complex non-cyclic, linear, or no focal amplification by the heuristic-based companion script,

AmpliconClassifier. Biosamples with one or more classifications of “ecDNA”were considered

ecDNA+, and all others were considered ecDNA- (Supplementary Table 1). Code is available at:

• PrepareAA: https://github.com/jluebeck/PrepareAA

• AmpliconArchitect: https://github.com/virajbdeshpande/AmpliconArchitect
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• AmpliconClassifier: https://github.com/jluebeck/AmpliconClassifier

4.5.3 Patient metadata, survival and subgrouping annotation

Sample metadata was collected where available from the respective cloud genomics

data platform: https://pedcbioportal.kidsfirstdrc.org/, https://portal.kidsfirstdrc.org/ (CBTN) and

https://pecan.stjude.cloud/ (St Jude).

4.5.4 Survival Analyses

Kaplan-Meier (KM) and Cox Proportional Hazards (CPH) was performed with R with

the survfit package.

Kaplan-Meier: Sample size was n = 345 (50 ecDNA+, 295 ecDNA-). Differential survival

was determined by log-rank test. Individual analyses by cancer type were too small to test.

Cox Proportional Hazards on age, sex, cancer type and ecDNA: Sample size was n = 301

observations.

Cox Proportional Hazards on age, sex, HGG subgroup and ecDNA: Sample size was n =

102 observations.

4.5.5 Statistical Methods

Statistical test, test statistic and p-values are indicated where appropriate in the main text.

Categorical associations were established using the chi-squared test of independence if N > 5

for all categories, and the Fisher exact test otherwise. For both tests, the R package stats 3.6.2

was used. Multiple hypothesis corrections were performed using the Bonferroni correction. All

statistical tests described herein were two-sided unless otherwise specified.
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M. Sill, J.-M. Hübner, N. Mack, B. Schwalm, M. Ryzhova, V. Hovestadt, S. Papillon-
Cavanagh, J. A. Chan, P. Landgraf, B. Ho, T. Milde, O. Witt, J. Ecker, F. Sahm, D. Sumer-
auer, D. W. Ellison, B. A. Orr, A. Darabi, C. Haberler, D. Figarella-Branger, P. Wesseling,
J. Schittenhelm, M. Remke, M. D. Taylor, M. J. Gil-da Costa, M. Łastowska, W. Gra-
jkowska, M. Hasselblatt, P. Hauser, T. Pietsch, E. Uro-Coste, F. Bourdeaut, J. Masliah-
Planchon, V. Rigau, S. Alexandrescu, S. Wolf, X.-N. Li, U. Schüller, M. Snuderl, M. A.
Karajannis, F. Giangaspero, N. Jabado, A. von Deimling, D. T. W. Jones, J. O. Kor-
bel, K. von Hoff, P. Lichter, A. Huang, A. J. R. Bishop, S. M. Pfister, A. Korshunov,
and M. Kool. The molecular landscape of etmr at diagnosis and relapse. Nature,
576(7786):274–280, 2019.

[63] J. T. Lange, C. Y. Chen, Y. Pichugin, L. Xie, J. Tang, K. L. Hung, K. E. Yost, Q. Shi, M. L.
Erb, U. Rajkumar, S. Wu, C. Swanton, Z. Liu, W. Huang, H. Y. Chang, V. Bafna, A. G.
Henssen, B. Werner, and P. S. Mischel. Principles of ecdna random inheritance drive rapid
genome change and therapy resistance in human cancers. bioRxiv, 2021.

[64] L. Lapointe-Shaw, Z. Bouck, N. A. Howell, T. Lange, A. Orchanian-Cheff, P. C. Austin,
N. M. Ivers, D. A. Redelmeier, and C. M. Bell. Mediation analysis with a time-to-event

92



outcome: a review of use and reporting in healthcare research. BMC Medical Research
Methodology, 18(1):118, 2018.

[65] B. K. Li, A. Vasiljevic, C. Dufour, F. Yao, B. L. B. Ho, M. Lu, E. I. Hwang, S. Gururangan,
J. R. Hansford, M. Fouladi, S. Nobusawa, A. Laquerriere, M.-B. Delisle, J. Fangusaro,
F. Forest, H. Toledano, P. Solano-Paez, S. Leary, D. Birks, L. M. Hoffman, A. Szath-
mari, C. Faure-Conter, X. Fan, D. Catchpoole, L. Zhou, K. A. P. Schultz, K. Ichimura,
G. Gauchotte, N. Jabado, C. Jones, D. Loussouarn, K. Mokhtari, A. Rousseau, D. S.
Ziegler, S. Tanaka, S. L. Pomeroy, A. Gajjar, V. Ramaswamy, C. Hawkins, R. G. Grundy,
D. A. Hill, E. Bouffet, A. Huang, and A. Jouvet. Pineoblastoma segregates into molecular
sub-groups with distinct clinico-pathologic features: a rare brain tumor consortium registry
study. Acta Neuropathologica, 139(2):223–241, 2020.

[66] F. P. Li, J. Fraumeni, J. F., J. J. Mulvihill, W. A. Blattner, M. G. Dreyfus, M. A. Tucker,
and R. W. Miller. A cancer family syndrome in twenty-four kindreds. Cancer Res,
48(18):5358–62, 1988.

[67] H. Li and R. Durbin. Fast and accurate short read alignment with burrows–wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

[68] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
and R. Durbin. The sequence alignment/map format and samtools. Bioinformatics,
25(16):2078–9, 2009.

[69] M. Li, K. F. Lee, Y. Lu, I. Clarke, D. Shih, C. Eberhart, V. P. Collins, T. Van Meter,
D. Picard, L. Zhou, P. C. Boutros, P. Modena, M. L. Liang, S. W. Scherer, E. Bouffet, J. T.
Rutka, S. L. Pomeroy, C. C. Lau, M. D. Taylor, A. Gajjar, P. B. Dirks, C. E. Hawkins, and
A. Huang. Frequent amplification of a chr19q13.41 microrna polycistron in aggressive
primitive neuroectodermal brain tumors. Cancer Cell, 16(6):533–46, 2009.

[70] W. Li, J. Köster, H. Xu, C.-H. Chen, T. Xiao, J. S. Liu, M. Brown, and X. S. Liu. Quality
control, modeling, and visualization of crispr screens with mageck-vispr. Genome Biology,
16(1):281, 2015.

[71] J. V. Lilly, J. L. Rokita, J. L. Mason, T. Patton, S. Stefankiewiz, D. Higgins, G. Trooskin,
C. A. Larouci, K. Arya, E. Appert, A. P. Heath, Y. Zhu, M. A. Brown, B. Zhang, B. K.
Farrow, S. Robins, A. M. Morgan, T. Q. Nguyen, E. Frenkel, K. Lehmann, E. Drake,
C. Sullivan, A. Plisiewicz, N. Coleman, L. Patterson, M. Koptyra, Z. Helili, N. Van Kuren,
N. Young, M. C. Kim, C. Friedman, A. Lubneuski, C. Blackden, M. Williams, V. Baubet,
L. Tauhid, J. Galanaugh, K. Boucher, H. Ijaz, K. A. Cole, N. Choudhari, M. Santi, R. W.
Moulder, J. Waller, W. Rife, S. J. Diskin, M. Mateos, D. W. Parsons, I. F. Pollack, S. Gold-
man, S. Leary, C. Caporalini, A. M. Buccoliero, M. Scagnet, D. Haussler, D. Hanson,
R. Firestein, J. Cain, J. J. Phillips, N. Gupta, S. Mueller, G. Grant, M. Monje-Deisseroth,
S. Partap, J. P. Greenfield, R. Hashizume, A. Smith, S. Zhu, J. M. Johnston, J. R. Fangusaro,
M. Miller, M. D. Wood, S. Gardner, C. L. Carter, L. M. Prolo, J. Pisapia, K. Pehlivan,

93



A. Franson, T. Niazi, J. Rubin, M. Abdelbaki, D. S. Ziegler, H. B. Lindsay, A. G. Stucklin,
N. Gerber, O. M. Vaske, C. Quinsey, B. R. Rood, J. Nazarian, E. Raabe, E. M. Jackson,
S. Stapleton, R. M. Lober, D. E. Kram, C. Koschmann, P. B. Storm, R. R. Lulla, M. Prados,
A. C. Resnick, and A. J. Waanders. The children’s brain tumor network (cbtn) - accelerat-
ing research in pediatric central nervous system tumors through collaboration and open
science. Neoplasia, 35:100846, 2023.

[72] C. Y. Lin, S. Erkek, Y. Tong, L. Yin, A. J. Federation, M. Zapatka, P. Haldipur,
D. Kawauchi, T. Risch, H. J. Warnatz, B. C. Worst, B. Ju, B. A. Orr, R. Zeid, D. R.
Polaski, M. Segura-Wang, S. M. Waszak, D. T. Jones, M. Kool, V. Hovestadt, I. Buchhal-
ter, L. Sieber, P. Johann, L. Chavez, S. Groschel, M. Ryzhova, A. Korshunov, W. Chen,
V. V. Chizhikov, K. J. Millen, V. Amstislavskiy, H. Lehrach, M. L. Yaspo, R. Eils, P. Lichter,
J. O. Korbel, S. M. Pfister, J. E. Bradner, and P. A. Northcott. Active medulloblastoma
enhancers reveal subgroup-specific cellular origins. Nature, 530(7588):57–62, 2016.

[73] M. F. Lin, O. Rodeh, J. Penn, X. Bai, J. G. Reid, O. Krasheninina, and W. J. Salerno.
Glnexus: joint variant calling for large cohort sequencing. bioRxiv, page 343970, 2018.

[74] F. Liu, Z. Shi, W. Bao, J. Zheng, K. Chen, Z. Lin, H.-N. Song, X. Luo, Q. Dong, L. Jiang,
Y. Wang, G. Chen, and X. Chen. Zic2 promotes colorectal cancer growth and metastasis
through the tgf-β signaling pathway. Experimental Cell Research, 415(2):113118, 2022.

[75] G. Liu and S. Piantadosi. Ridge estimation in generalized linear models and proportional
hazards regressions. Communications in Statistics - Theory and Methods, 46(23):11466–
11479, 2017.

[76] X. Lu, T. A. Nguyen, S. H. Moon, Y. Darlington, M. Sommer, and L. A. Donehower. The
type 2c phosphatase wip1: an oncogenic regulator of tumor suppressor and dna damage
response pathways. Cancer Metastasis Rev, 27(2):123–35, 2008.

[77] H. A. Lubs and J. H. Salmon. The chromosomal complement of human solid tumors: Ii.
karyotypes of glial tumors. Journal of Neurosurgery, 22(2):160 – 168, 1965.

[78] J. Luebeck, C. Coruh, S. R. Dehkordi, J. T. Lange, K. M. Turner, V. Deshpande, D. A. Pai,
C. Zhang, U. Rajkumar, J. A. Law, P. S. Mischel, and V. Bafna. Ampliconreconstructor
integrates ngs and optical mapping to resolve the complex structures of focal amplifications.
Nature Communications, 11(1):4374, 2020.

[79] J. Luebeck, A. W. Tian Ng, P. C. Galipeau, X. Li, C. A. Sanchez, A. Katz-Summercorn,
H. Kim, S. Jammula, Y. He, S. M. Lippman, R. Verhaak, C. C. Maley, L. B. Alexandrov,
B. J. Reid, R. C. Fitzgerald, T. G. Paulson, H. Y. Chang, S. Wu, V. Bafna, and P. S. Mischel.
Extrachromosomal dna in the cancerous transformation of barrett’s esophagus. bioRxiv,
page 2022.07.25.501144, 2022.

[80] X. Ma, Y. Liu, Y. Liu, L. B. Alexandrov, M. N. Edmonson, C. Gawad, X. Zhou, Y. Li,
M. C. Rusch, J. Easton, R. Huether, V. Gonzalez-Pena, M. R. Wilkinson, L. C. Hermida,

94



S. Davis, E. Sioson, S. Pounds, X. Cao, R. E. Ries, Z. Wang, X. Chen, L. Dong, S. J.
Diskin, M. A. Smith, J. M. Guidry Auvil, P. S. Meltzer, C. C. Lau, E. J. Perlman, J. M.
Maris, S. Meshinchi, S. P. Hunger, D. S. Gerhard, and J. Zhang. Pan-cancer genome
and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature,
555(7696):371–376, 2018.

[81] A. Mackay, A. Burford, D. Carvalho, E. Izquierdo, J. Fazal-Salom, K. R. Taylor, L. Bjerke,
M. Clarke, M. Vinci, M. Nandhabalan, S. Temelso, S. Popov, V. Molinari, P. Raman, A. J.
Waanders, H. J. Han, S. Gupta, L. Marshall, S. Zacharoulis, S. Vaidya, H. C. Mandeville,
L. R. Bridges, A. J. Martin, S. Al-Sarraj, C. Chandler, H. K. Ng, X. Li, K. Mu, S. Trabelsi,
D. H. Brahim, A. N. Kisljakov, D. M. Konovalov, A. S. Moore, A. M. Carcaboso, M. Sunol,
C. de Torres, O. Cruz, J. Mora, L. I. Shats, J. N. Stavale, L. T. Bidinotto, R. M. Reis,
N. Entz-Werle, M. Farrell, J. Cryan, D. Crimmins, J. Caird, J. Pears, M. Monje, M. A.
Debily, D. Castel, J. Grill, C. Hawkins, H. Nikbakht, N. Jabado, S. J. Baker, S. M. Pfister,
D. T. W. Jones, M. Fouladi, A. O. von Bueren, M. Baudis, A. Resnick, and C. Jones.
Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic
pontine glioma. Cancer Cell, 32(4):520–537.e5, 2017.

[82] C. S. McGinnis, L. M. Murrow, and Z. J. Gartner. Doubletfinder: Doublet detection in
single-cell rna sequencing data using artificial nearest neighbors. Cell Systems, 8(4):329–
337.e4, 2019.

[83] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. The genome
analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing
data. Genome Res, 20(9):1297–303, 2010.

[84] W. McLaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. S. Ritchie, A. Thormann, P. Flicek, and
F. Cunningham. The ensembl variant effect predictor. Genome Biology, 17(1):122, 2016.

[85] R. McLendon, A. Friedman, D. Bigner, E. G. Van Meir, D. J. Brat, G. M. Mastrogianakis,
J. J. Olson, T. Mikkelsen, N. Lehman, K. Aldape, W. K. Alfred Yung, O. Bogler, S. Van-
denBerg, M. Berger, M. Prados, D. Muzny, M. Morgan, S. Scherer, A. Sabo, L. Nazareth,
L. Lewis, O. Hall, Y. Zhu, Y. Ren, O. Alvi, J. Yao, A. Hawes, S. Jhangiani, G. Fowler,
A. San Lucas, C. Kovar, A. Cree, H. Dinh, J. Santibanez, V. Joshi, M. L. Gonzalez-Garay,
C. A. Miller, A. Milosavljevic, L. Donehower, D. A. Wheeler, R. A. Gibbs, K. Cibulskis,
C. Sougnez, T. Fennell, S. Mahan, J. Wilkinson, L. Ziaugra, R. Onofrio, T. Bloom, R. Nicol,
K. Ardlie, J. Baldwin, S. Gabriel, E. S. Lander, L. Ding, R. S. Fulton, M. D. McLellan,
J. Wallis, D. E. Larson, X. Shi, R. Abbott, L. Fulton, K. Chen, D. C. Koboldt, M. C. Wendl,
R. Meyer, Y. Tang, L. Lin, J. R. Osborne, B. H. Dunford-Shore, T. L. Miner, K. Dele-
haunty, C. Markovic, G. Swift, W. Courtney, C. Pohl, S. Abbott, A. Hawkins, S. Leong,
C. Haipek, H. Schmidt, M. Wiechert, T. Vickery, S. Scott, D. J. Dooling, A. Chinwalla,
G. M. Weinstock, E. R. Mardis, R. K. Wilson, G. Getz, W. Winckler, R. G. W. Verhaak,
M. S. Lawrence, M. O’Kelly, J. Robinson, G. Alexe, R. Beroukhim, S. Carter, D. Chiang,

95



J. Gould, et al. Comprehensive genomic characterization defines human glioblastoma
genes and core pathways. Nature, 455(7216):1061–1068, 2008.

[86] C. McLeod, A. M. Gout, X. Zhou, A. Thrasher, D. Rahbarinia, S. W. Brady, M. Macias,
K. Birch, D. Finkelstein, J. Sunny, R. Mudunuri, B. A. Orr, M. Treadway, B. Davidson,
T. K. Ard, A. Chiao, A. Swistak, S. Wiggins, S. Foy, J. Wang, E. Sioson, S. Wang, J. R.
Michael, Y. Liu, X. Ma, A. Patel, M. N. Edmonson, M. R. Wilkinson, A. M. Frantz, T.-C.
Chang, L. Tian, S. Lei, S. M. A. Islam, C. Meyer, N. Thangaraj, P. Tater, V. Kandali, S. Ma,
T. Nguyen, O. A. Serang, I. McGuire, N. Robison, D. Gentry, X. Tang, L. E. Palmer,
G. Wu, E. Suh, L. Tanner, J. McMurry, M. Lear, A. S. Pappo, Z. Wang, C. L. Wilson,
Y. Cheng, S. Meshinchi, L. B. Alexandrov, M. J. Weiss, G. T. Armstrong, L. L. Robison,
Y. Yasui, K. E. Nichols, D. W. Ellison, C. Bangur, C. G. Mullighan, S. J. Baker, M. A.
Dyer, G. Miller, S. Newman, M. Rusch, R. Daly, K. Perry, J. R. Downing, and J. Zhang. St.
jude cloud-a pediatric cancer genomic data sharing ecosystem. Cancer Discovery, pages
CD–20–1230, 2021.

[87] M. Meddeb, A. Valent, G. Danglot, V. C. Nguyen, A. Duverger, F. Fouquet, M. J. Terrier-
Lacombe, O. Oberlin, and A. Bernheim. Mdm2 amplification in a primary alveolar
rhabdomyosarcoma displaying a t(2;13)(q35;q14). Cytogenetic and Genome Research,
73(4):325–330, 1996.

[88] P. Milani, R. Escalante-Chong, B. C. Shelley, N. L. Patel-Murray, X. Xin, M. Adam,
B. Mandefro, D. Sareen, C. N. Svendsen, and E. Fraenkel. Cell freezing protocol suitable
for atac-seq on motor neurons derived from human induced pluripotent stem cells. Scientific
Reports, 6(1):25474, 2016.

[89] E. Missiaglia, D. Williamson, J. Chisholm, P. Wirapati, G. Pierron, F. Petel, J.-P. Concordet,
K. Thway, O. Oberlin, and K. Pritchard-Jones. Pax3/foxo1 fusion gene status is the key
prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk
stratification. J Clin Oncol, 30(14):1670–1677, 2012.

[90] J. E. Moore, M. J. Purcaro, H. E. Pratt, C. B. Epstein, N. Shoresh, J. Adrian, T. Kawli,
C. A. Davis, A. Dobin, R. Kaul, J. Halow, E. L. Van Nostrand, P. Freese, D. U. Gorkin,
Y. Shen, Y. He, M. Mackiewicz, F. Pauli-Behn, B. A. Williams, A. Mortazavi, C. A. Keller,
X.-O. Zhang, S. I. Elhajjajy, J. Huey, D. E. Dickel, V. Snetkova, X. Wei, X. Wang, J. C.
Rivera-Mulia, J. Rozowsky, J. Zhang, S. B. Chhetri, J. Zhang, A. Victorsen, K. P. White,
A. Visel, G. W. Yeo, C. B. Burge, E. Lécuyer, D. M. Gilbert, J. Dekker, J. Rinn, E. M.
Mendenhall, J. R. Ecker, M. Kellis, R. J. Klein, W. S. Noble, A. Kundaje, R. Guigó,
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