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Quantifying the local adaptive landscape of a
nascent bacterial community

Joao A. Ascensao 1, Kelly M. Wetmore2, Benjamin H. Good 3,
Adam P. Arkin 1,2 & Oskar Hallatschek 4,5,6

The fitness effects of all possible mutations available to an organism largely
shape the dynamics of evolutionary adaptation. Yet, whether and how this
adaptive landscape changes over evolutionary times, especially upon ecolo-
gical diversification and changes in community composition, remains poorly
understood. We sought to fill this gap by analyzing a stable community of two
closely related ecotypes (“L” and “S”) shortly after they emerged within the
E. coli Long-Term Evolution Experiment (LTEE). We engineered genome-wide
barcoded transposon libraries to measure the invasion fitness effects of all
possible gene knockouts in the coexisting strains as well as their ancestor, for
many different, ecologically relevant conditions. We find consistent statistical
patterns of fitness effect variation across both genetic background and com-
munity composition, despite the idiosyncratic behavior of individual knock-
outs. Additionally, fitness effects are correlated with evolutionary outcomes
for a number of conditions, possibly revealing shifting patterns of adaptation.
Together, our results reveal how ecological and epistatic effects combine to
shape the adaptive landscape in a nascent ecological community.

Microbial communities are ubiquitous across all environments, and
are key players in disease processes, biogeochemical cycling, and
ecosystem functioning1–6. While most research on natural micro-
biomes has been fueled by their ecological significance, recent studies
have begun to focus on microbial community evolution and uncov-
ered clear signs of adaptation anddiversification7–10. Thus,microbiome
assembly, structure, and functionmay have to beunderstood against a
backdrop of an ever-churning evolutionary dynamics.

That evolutionary and ecological changes often go together has
been most clearly shown in controlled experiments on synthetic
microbial communities: evolution can change the way microbes con-
sume resources or otherwise interact with each other11–15. This leads to
environmental changes that modify selection pressures, forcing
lineages into new evolutionary paths16–21. Complex adaptive land-
scapes have been hypothesized to chiefly shape the feedback between
ecology and evolution in microbial communities19,22, but it is still

unclear how diversification and other ecological shifts change those
landscapes.

In ecologically simple monoculture populations, population
genetic theory has shown that the evolutionary dynamics are largely
predictable from knowing local aspects of a static fitness landscape,
encoding the fitness effects of all currently available mutations, which
is called the “distribution of fitness effects” (DFE)23–28. Such work has
been successful in rationalizing and predicting outcomes of evolution
experiments from DFE measurements29,30.

High-quality measurements of the DFE in a given system require
sampling and measuring the fitness effects of sufficiently many
mutations across the genome. This has only become possible recently,
due to the rise of sequencing technologies. DNA barcoding systems
have become especially influential to better understand microbial
adaptive evolution. By taking advantage of amplicon sequencing
methods tomeasure barcode frequency dynamics, these systems have
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been used with great success to directly observe evolutionary
dynamics30–33, and identify selected mutations and the statistical pat-
terns that characterize them34–39.

However, the concept of a single, staticDFEmay not be applicable
or useful to describe a diversified population. It is possible that dif-
ferent ecotypes experience different adaptive landscapes, even if they
are closely related, which moreover may shift in response to compo-
sitional or other ecological changes. Despite the importance of
microbial communities, very little is known about howmuch the local
landscape depends on biotic interactions with their coexisting strains
versus genetic background alone, and how those patterns shift upon
diversification.

Here we aim to elucidate the adaptive landscape of a recently
diversifiedmicrobial community bymeasuring how the invasion fitness
effects of a large panel of mutations depends on the state of the eco-
system. Invasion fitness refers to the growth rate of amutant relative to
its ancestor when the mutant is rare in the population. To sample from
the DFE, we create genome-wide knockout libraries via random-
barcoded transposon mutagenesis40,41 on the backgrounds of the
coexisting ecotypes. While knockout mutations do not represent all
possible mutations in the genome, this approach allows us to sample a
wide variety ofmutations across the genome and to compare the effect
of the same mutation across different genetic backgrounds and com-
munity compositions. The resulting ecotype-, and composition-
dependent DFE statistically characterizes the abundance and specifi-
city of beneficial mutations and, thus, reveals how the rate and pattern
of mutation accumulation depends on the state of the ecosystem.

We reasoned that the ecologically-dependent DFEs accessible by
our approach are particularly relevant to the fate of a recently diversi-
fied ecosystem, consisting of closely related ecotypes with overlapping
niches. Additionally, quantifying the DFEs of such a nascent community
would shed light on how the discovery and infiltration of a new niche
changes the local adaptive landscape, in both focal and “nearby”
environments. The composition-dependence of the DFE would also
provide information on the types of mutations available to the com-
munity—“pure fitness” mutations would show minimal fitness changes
in response to composition shifts, whereas frequency-dependent
mutations may point to shifts in niche occupation/strategy. Theory
suggests that the relative availability of “pure fitness” versus frequency-
dependentmutationsmay strongly influence the resulting evolutionary
dynamics, but there have been few empirical measurements of how
many mutations show frequency-dependent effects19.

We therefore chose to focus on a model ecosystem that sponta-
neously emerged in the course of the E. coli Long Term Evolution
Experiment (LTEE)—an experiment that has tracked the evolution of
several E. coli populations over the course of over 70,000 generations
(at the time of writing). Early in the LTEE, it was recognized that one of
the twelve lineages, the ara-2 population on which we focus in this
study, spontaneously diversified into two lineages that coexist via
negative frequency dependence, termed S and L (for their small and
large colony sizes on certain agar plates)42. S and L coexist by inha-
biting different temporal/metabolic niches in the LTEE environment,
set up as serial dilutions in glucose minimal media—L grows more
quickly on glucose during exponential phase, while S specializes on
stationary phase survival and utilizing acetate, a byproduct of overflow
metabolism43,44. Following diversification, the lineages have persisted
to this day and continued to evolve and adapt, diverging on genetic,
transcriptional, and metabolic levels16,42–47. While our focal ara-2 line is
the best studied case of diversification in the LTEE, it is not the only
one. Recent time-resolved metagenomic sequencing of the LTEE has
shown that, in fact, 9 out of the 12 populations evolved two separate
lineages that coexisted with each other for tens of thousands of gen-
erations, while continuing to accumulate mutations and adapt47,
demonstrating that spontaneous diversification followed by coevolu-
tion is a major adaptive route for this system.

Here we show how the adaptive landscapes change between the
ancestor and derived strains of the LTEE, and how they are different
between two closely related ecotypes. We found that the invasion fit-
ness effects of many gene knockouts sensitively depends on the
genetic background and the ecological conditions, as set by the abiotic
environment and relative frequency of both ecotypes. Despite the
idiosyncratic behavior of individual knockouts, we still see consistent
statistical patterns of fitness effect variation across both genetic
background and community composition. Beneficial knockouts gen-
erally show a strong dependence on the community composition,
indicating that there are few “purefitness”mutations. Genes that are in
the same operon, or that strongly interact with each other, are more
likely to be correlated with each other across backgrounds compared
to random pairs of genes. Additionally, fitness effects are correlated
with evolutionary outcomes for a number of conditions, possibly
revealing shifting patterns of adaptation. Together, our results reveal
how ecological and epistatic effects combine to shape the adaptive
landscape in a nascent ecological community.

Results
Measuring knockout fitness effects
We sought to measure the knockout fitness effects available to the
small LTEE-derived ecosystem of S and L, and how they depend on
ecological conditions, specifically, (i) the composition of the commu-
nity, and (ii) openness of a given metabolic niche. To this end, we
created randomly barcoded transposon libraries of three LTEE clones,
using previously developed methods (RB-TnSeq)40,41—S and L clones
sampled from 6.5k generations, shortly (<500 generations) after
diversification16,42, and their LTEE ancestor, REL606 (Fig. 1A). We used
these libraries tomeasure the knockoutfitness effects of nearly all non-
essential genes in various environments relevant to the evolution of
the population in the LTEE (Table 1), by propagating the libraries in
defined conditions (with two biological replicates per experiment) and
using Illumina amplicon sequencing to track the frequency trajectories
of different barcodes (Fig. 1B). By essentially measuring the log-slope
of the frequency trajectories, we can estimate the fitness effect, s, of a
given mutant (Fig. 1C), which we report in units of 1/generation.
Transposon insertion events were highly redundant, with a median of
~20 insertions per gene, allowing us to combine information from
multiple barcode trajectories into one fitness measurement through
our statistical fitness inference pipeline and identify significantly non-
neutral mutations (FDR correction; α =0.05). We carefully quantified
sources of error in barcode frequency measurements and propagated
them to our fitness estimates, which was crucial to effective and
accurate analysis of the data (see methods section “Fitness inference
pipeline”)—for example, we could exclude knockouts with overly noisy
fitness measurements, or weight measurements by their error.

Barcoded transposon mutagenesis has been successfully and
consistently used to measure knockout fitness effects across many
contexts40,41, but as the knockouts are not bonafide deletions, it is
possible that some genes with transposon insertions retain some
activity. However, the fact thatwe havemultiple transposon insertions
spread across the length of each gene, along with our outlier barcode
detection scheme, allows us to be more confident that our fitness
measurements are dominated by the typical effects of an insertion.

After inferring the fitness effect of each gene knockout, we can
compare fitness effects across genetic backgrounds and environ-
ments. We can first look at knockout fitness effects in the evolutionary
condition proxies—the closest approximation to the environment
where evolution in the LTEE took place: the REL606 library in mono-
culture, and S and L libraries together, coexisting at the ecological
equilibrium frequency. We chose to highlight the condition where S
and L were coexisting at their ecological equilibrium to be able to
distinguish environmental versus genetic contributions to fitness
effects—the libraries were cocultured together, in the same flasks, thus
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Fig. 1 | Measuring mutational fitness effects. A Timeline of evolution in the ara-2
LTEE population, showing mutation accumulation and diversification into S and L
around 6k generations, then clone sampling at 6.5k generations; data from47, jitter
added to mutation fixation time for easier visualization. Hypermutator phenotype
appeared around 2.5k generations59. B Schematic of transposon mutagenesis
process to generate barcoded libraries of REL606, 6.5k S and L, as well as experi-
mental procedure to observe barcodedynamics. The erlenmeyerflask clipart (flask-
2 icon by DBCLS) shown here is used and modified under a CC-BY- 4.0 creative
commons license. C Barcoded knockout mutant frequency trajectories in the
evolutionary condition for each genetic background, colored by estimated fitness.
All barcodes within a gene were summed together; shown are the trajectories from
replicate 1 in the evolutionary condition for eachgeneticbackground (monoculture
for REL606, together at ecological equilibrium frequency for S and L; representa-
tive of both replicates).DOverall distributions of fitness effects in the evolutionary
condition for each genetic background. Themajority of knockouts were neutral, so

only genes thatwere called as significantly non-neutral were included (seemethods
section “Probabilistic model of read count trajectories and fitness inference”).
E Replicate–replicate correlation of estimated fitness effects. F Comparison of
knockout fitness effects across genetic backgrounds, which are generally uncor-
related. Points with a blue interior correspond to genes that were mutated
(excluding S-SNPs) in 6.5k S/L relative to REL606 (sequencing data from ref. 46).
Points with red outlines correspond to genes that were mutated in parallel in
nonmutator LTEE populations (data from ref. 47). The correlation coefficients
decrease slightly if we recompute them, excluding likely neutral genes (ρ =0.14,
0.03, 0.03; top to bottom). In panels E, F, knockouts with high measurement noise
(σs >0.3%) were excluded (except for labeled genes), ρ is the weighted pearson
correlation coefficient, and error bars represent standard errors, as calculated in
methods section “Probabilistic model of read count trajectories and fitness infer-
ence”. Also in panels E, F, the “cloud” of points around 0 mostly represents likely
neutral knockouts.

Table 1 | Summary of BarSeq experiments reported in this work

Experiment Libraries Same flasks? Description 〈fS〉

Mono R, S, L N Library monoculture

1:10 dil R, S, L N Library monoculture, 1:10 daily dilution

Glu exp R, S, L N Library monoculture, kept in glucose exponential phase

Ac exp R, S, L N Library monoculture, kept in acetate exponential phase

Eco Eq 1 S, L Y S + L libraries with wt L at ecological equilibrium 0.15

Eco Eq 2 S N S library with wt S + L at ecological equilibrium 0.17

Eco Eq 2 L N L library with wt S + L at ecological equilibrium 0.21

L in maj S N S library with wt L in majority 0.08

S in maj 1 L N L library with wt S in majority 0.97

S in maj 2 S, L Y S + L libraries with wt S in majority 0.98

S in maj 3 L N L library with wt S in majority 0.97

Dilution rate was variable in the glucose/acetate exponential phase experiments, to keep the populations in exponential phase (see methods section “BarSeq experiments”), but unless otherwise
noted, the daily dilution rate was 1:100, consistent with the LTEE condition. All experiments were performed in the LTEE media, DM25, except for the acetate exponential phase experiment. The
abbreviations R, S, and L refer to REL606, and 6.5k S/L, respectively. In coculture experiments, 〈fS〉 is the total frequency of S, averaged overall timepoints and replicates.
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experiencing the same environment. In coculture experiments, the S/L
libraries aremixed in theminority togetherwithwild-type S/L clones at
the desired frequency (see methods section “BarSeq experiments”).
The ecotype frequencies do not change considerably over the time
period considered (Fig. S3).

If we look at the overall DFE in the evolutionary condition proxies,
we see that REL606 has access to beneficial knockouts of much larger
effect size than either S or L (Fig. 1D), suggesting that REL606 would
adapt much quicker than S or L. Additionally, S has a larger beneficial
DFE compared to L, which may be because S is starting to exploit an
under-utilized niche (acetate specialization), where more significant
gains can be made by improving the exploitation of the niche. On the
other hand, L has inherited the putative old niche (glucose speciali-
zation), whichwas presumably the primary target of adaptation during
the first ~6k generations of evolution. As previously mentioned, the
overall shape of the DFE largely controls the instantaneous speed of
adaptation23–28. The evolutionary tendency towards a “shrinking DFE”
is known as global diminishing returns epistasis, which has previously
been proposed as a mechanism to explain the decelerating fitness
trajectories of the LTEE populations48,49. While diminishing returns
epistasis was previously observed to affect the first couple common
LTEEmutations50, global diminishing returns (affecting the whole DFE)
after the accumulation of many mutations had not yet been directly
observed.

We can also compare the fitness effects of each knockout
mutation both between replicates and across genetic backgrounds
(Fig. 1E, F), to contrast within-sample to between-sample variance. In
contrast to a strong replicate–replicate correlation, we see that fit-
ness effects are largely uncorrelatedbetweengenetic backgrounds. It
may be unsurprising that mutational effects of S and L are uncorre-
lated with those of their ancestor, as REL606 may be creating and
experiencing a slightly different environment compared to S and L,
even though they were all started in the same media. However, as
previously mentioned, we measured the fitness effects of S and L
while they were coexisting in the same flasks, so the two ecotypes
were experiencing the exact same environment. Thus, the lack of
correlation between the fitness effects of S and L must be due to
epistatic effects. It appears that individual mutations behave idio-
syncratically despite statistical patterns of epistasis, in contrast with
previous experiments50,51 which saw diminishing returns both glob-
ally and with individual mutations. Most knockout mutations that
were strongly beneficial in REL606 and then acquired a mutation in
that gene in the 6.5k S/L backgroundbecameeffectively neutral when
knocked out in S/L (nadR, pykF, ybaL, ygaZ); it makes sense that
mutating a gene that was already mutated (with a fitness effect)
would not have an effect, if the mutation was effectively a loss-of-
function. One gene, spoT, was beneficial in REL606 but deleterious in
both S and L when knocked out, indicating that the natural spoT SNP
may represent a change-of-function rather than a loss-of-function
mutation. However, the majority of selected genes in REL606 were
not mutated between 0 and 6.5k generations in S/L, so the fact that
their fitness effects significantly changed across genetic background
implicates the role of widespread, global idiosyncratic epistasis.
Furthermore, there are several genes that weremutated in parallel in
multiple lines of the LTEE, but are only beneficial on the S back-
ground (trkH, ybbN) or both the S and L backgrounds (fadL) when
knocked out, while being neutral or deleterious on the REL606
background, suggesting that predictable epistasis could have shaped
which mutations became beneficial in the LTEE. ‘Coupon collection’
is a nullmodel ofmutation accumulation/epistasis, where a beneficial
DFE is composed of a finite number of mutations, and only changes
due to the depletion of those mutations when they fix in a popula-
tion. While the coupon collecting model is clearly relevant for some
mutations, the lack of fitness effect correlation between genetic
backgrounds seems to be largely driven by global epistasis.

As a simple check, we compared the fitness effect of one of the
largest effect knockouts in our collection, pykF, to previously collected
data. We reanalyzed data from ref. 52 (to recalculate fitness using the
metric that we use) and found that their pykF deletion mutant had a
selective coefficient s ≈4%, compared to our measurement s≈ 12%; the
highest fitness effect of a pykF nonsynonymous mutation on the
ancestral background was s ≈9%, which is similar to our measurement.
Additionally, ourmeasured fitness effect ofpykF is quite consistent–it is
approximately the same across all replicates in the Mono 1 and 2
experiments in REL606 (performed on different days). And all of the
individual barcodes that landed in pykF appear to have approximately
the same slopes. One possibility to describe the discrepancy could be
the presence of frequency-dependent fitness effects—the strength of
selection may be higher when the mutant is rare (as is the case in our
data), compared towhen it occupies a sizable portion of the population
(as in ref. 52). Another possibility could be that transposon insertions did
not completely eliminate pykF activity, as it would in a deletion.

Knockout fitness effects strongly depend on ecological
conditions
The ecological interactions between S and L aremediated through the
environment, most likely primarily through cross-feeding43,44. There-
fore, it’s reasonable to think that the environment will change with the
ecosystem composition, which could be modified by both ecological
and evolutionary processes–indeed, ecotype composition does
change significantly and relatively rapidly over evolutionary time
(~1k–10ks generations)42,47. Thus, we sought to explore howmutational
fitness effects varied with ecosystem composition. Notably, we see a
consistent trend where fitness effects generally have a smaller mag-
nitude when S and L are inmonoculture compared to when they are in
coculture (Figs. 2A, S7A). Additionally, we also see that the overall
shape of the DFEs change as a function of frequency, with generally
larger fitness effects when the ecotype is in the minority, for both
beneficial and deleterious knockouts (Figs. 2B, S7B). Analogous to the
caseof global diminishing returns epistasis, this observationholds ona
statistical level, but does not explain all of the fitness effect variation
between the different conditions, implying that individual mutations
are affected by the ecosystem composition in idiosyncratic ways—
statistical properties of the DFE seem to be strongly dependent on the
ecosystem composition, but the effects of individual mutations may
depend on their underlying physiological consequences and how they
affect ecological interactions. Thus, it appears that the impact of both
ecotypes on the environment is different enough to make selection
pressures strongly dependent on the current mixture of ecotypes.

The LTEE environment, while relatively simple, varies quite sig-
nificantly over the course of a single cycle43,53, allowing ecotypes to
carve out different temporal ecological niches during cycles of lag,
exponential, and stationary phases. To explore how selection pres-
sures vary in different niches in the growth cycle, we measured fitness
in exponential growth on glucose and acetate (which appears in the
LTEE environment due to overflow metabolism), and at a reduced
dilution rate of 1:10 such that portion of the growth cycle in stationary
phase is increased (Table 1). We found that the shape of the DFE
changed substantially based on the environment (Fig. 2B). For exam-
ple, while S and L have a similar beneficial DFE shape inmonoculture, L
has access to stronger beneficial knockout mutations in glucose
exponential phase compared to S. As another example, the beneficial
DFE in acetate is larger than any other DFE in both S and L, potentially
pointing to a substantial, as-of-yet unrealized adaptive potential for
adaptation on acetate. Interestingly, despite the environmental varia-
tion, REL606 always has a more pronounced beneficial DFE compared
to S and L.

It is important to note that measurement noise varied non-
negligibly across experiments, primarily because of changes in bot-
tleneck size (and thus in the strength of genetic drift) due to
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differences in library frequency and and other experimental differ-
ences (seemethods section “BarSeq experiments”). Thus, our power to
detect selected mutations close to neutrality varied across
experiments.

In contrast to previous work35, it appears that there is no con-
sistent relationship between background fitness and shape of the
deleterious DFE, which instead appears to depend more on environ-
ment. Possible reasons for the discrepancy include species-dependent
differences, and the fact that our set of experiments usedbackgrounds
connected by evolution, while Johnson et al. used evolutionarily
unrelated yeast hybrids with varying fitness in the test environment,
whose changing DFEs were not controlled by evolution. One possible
evolutionary explanation could be second-order selection against
mutants withwider deleterious DFEs, because thosemutants would be
more likely to pick up a deleterious hitchhikermutation alongwith any
beneficial driver mutation.

In addition to the strong dependence of the macroscopic DFE on
environment, it appears that the fitness effects of individualmutations
can also change radically by environment. Strikingly, in the set of
considered environments, conditional non-neutrality and sign-flipping
appear to occur across all three genetic backgrounds (Fig. 2C). The
majority of knockouts are non-neutral in at least one measured
environment; just about ~20%of knockouts are called as neutral across
all environments. Very fewmutations are unconditionally beneficial or
deleterious across all environments, and many more mutations flip
signs across environments, suggesting the presence of widespread
tradeoffs between adapting to different components of an environ-
ment. The ubiquitous presence of sign-flipping also suggests that
subtle changes to environmental conditions—by changes to commu-
nity composition or niche openness via adaptation–could mean-
ingfully affect evolutionary outcomes by changing which mutations
are likely to establish. The presence of sign-flipping still holds if we
reduce the p-value cutoff from 0.05 to 10−3 or 10−5 to determine non-
neutrality (Fig. S8), or only consider genes with ∣s∣ > 1% or ∣s∣ > 2% as
non-neutral (Fig. S9), although more genes are called as neutral, as

would be expected. However, it is important to note that we only
considered genes to be non-neutral if their fitness was significantly
different from0; thus, it is likely that some knockouts were incorrectly
called as neutral, especially if their fitness effect is small. Additionally,
we have only measured a relatively small set of closely related envir-
onments “nearby” the LTEE environment, sowemight expect that if we
measure fitness in a sufficiently large number of environments, many
more genes would be non-neutral in at least one.

By computing the correlation of mutational fitness effects across
environments (weighted by measurement error), we can obtain a
measure of the functional similarity of environments, which we can
also use to cluster said environments (Fig. 3A). As a first observation
and check, it is reassuring to see the clustering of quasi-replicate
experiments, i.e., experiments with relatively minor differences in the
experimental setup and performed on different days—Eco Eq 1/2, S in
maj 1/2/3 (L), and Mono 1/2 (REL606) (see methods section “BarSeq
experiments”). However, the correlations between the quasi-replicates
are lower thanwe see for replicate experiments thatwe did at the same
time—this could indicate either that some fitness measurements are
sensitive to the small experimental differences (size of flasks, whether
libraries are cocultured or not, etc.), or simply performing the
experiments on different days with different environmental fluctua-
tions leads to deviations in measured fitness, as is perhaps the case in
other systems37. The latter hypothesis is further supported by the fact
that two experimentswere in fact performed at the same time (S inmaj
2 and 3), and had among the highest correlation of all quasi-replicates.

Otherwise, there are still some interesting patterns that we can
pick out by looking at correlations across environments. For example,
it looks like the environments related to the putative ecotype niches—
glucose and acetate exponential growth in L and S, respectively—
cluster with conditions where the ecotype is in the minority. On the
other hand, the monoculture experiment in S clusters with glucose
exponential phase. Also, inREL606andL, the acetate experiment is the
outgroup compared to all the other environments, and almost com-
pletely uncorrelated with fitness in glucose exponential phase, but

A

C

B

Fig. 2 | Statistical properties of DFEs as well as effects of individual mutations
sensitively depend on environment. A Knockout fitness effects tend to have a
largermagnitudewhenS andL are at ecological equilibriumversuswhen theyare in
monoculture. Line shown is a rolling average of fitness effects ± standard error.
Error bars on points represent standard errors, as calculated in methods section
“Probabilisticmodel of readcount trajectories andfitness inference”.BDistribution
offitness effects across environments, whereweonly included knockouts thatwere

called as significantly non-neutral. Please note that the DFEs of REL606 are on a
different scale than S and L. C Illustration of how the sign of fitness effects changes
across environments. Few mutations are unconditionally beneficial or deleterious,
many are non-neutral only in one or few environments, and sign-flipping of fitness
effects across environments is pervasive. REL606 only has 4 unique environments,
compared to 6 for S and L. Size of circle is proportional to number of genes that fall
into each class.
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most correlated with the 1:10 dilution condition. In S, this is not the
case, and acetate fitness is least correlated with 1:10 dilution fitness.
This may indicate that stationary phase in REL606 and L may have
much more acetate with which to grow on compared to S, and adap-
tation to acetate may involve tradeoffs with adaptation to glucose, at
least in REL606 and L. We also performed a principal components
analysis on our data, using (normalized) fitness effects as features
(Fig. 3B). We see that L experiments cluster separately from the S and
REL606 experiments, with the exception of the acetate exponential
phase condition. This may be surprising, given that S was thought to
have diversified fromanL-like common ancestor46. Otherwise, the PCA
largely reproduces the insights from the previous correlation cluster-
ing analysis.

Correlations between genes across environments
To explore the nature of the strong background dependence that we
observed, we sought to understand which genes are correlated with
each other across environments, with the intuition that genes that
perform the same function should change their fitness effects across
environments in similar ways. For example, the sufABCDSE operon
encodes proteins that help to assemble iron-sulfur clusters54, and they
all have correlated knockout fitness effects across environments in all
three genetic backgrounds (Fig. S11A)—as they should, if the knockouts
all have very similarmetabolic/ physiological consequences. However,
other gene sets are only correlated in a subset of backgrounds. Most
genes in the fecABCDE operon are correlated with each other in all
backgrounds except for fecA, which iswell correlatedwith theothers in

REL606, less correlated in S, and uncorrelated with the others in L
(Fig. 4A). Similarly, the genes in the proVWX operon are almost per-
fectly correlated, except one condition where proV has a ~7% higher
fitness than theother twoknockouts (Fig. S11B).We canalso look at the
fitness effects of a subset of knockouts that are beneficial at least once
for every genetic background, across environments (Fig. S12). We see
that subsets of genes that are sometimes beneficial on a background
are positively correlated with each other, e.g., pykF/cyoA in REL606
and ptsP/mrcA/gppA in 6.5k L, perhaps suggesting that the knockouts
have common functional effects. These correlations often break when
the mutations appear on different genetic backgrounds, e.g.,
pykF/cyoA are no longer correlated on (at least) the 6.5k L background,
and ptsP/mrcA/gppA are no longer correlated on the 6.5k S back-
ground, while ptsP/mrcA actually appear negatively correlated on the
REL606 background. Together, these examples suggest that correla-
tions between knockout fitness effects may change in idiosyncratic
ways across genetic backgrounds.

We systematically quantified the pairwise correlation of knockout
fitness across environments—termed “cofitness”, previously defined in
ref. 41—wherewe used theweighted pearson’s correlation coefficient to
account for differences in measurement error across environments.
We computed the cofitness of all pairs of genes (excluding those called
as neutral across all environments) across the REL606, S and L librar-
ies, as well as a null cofitness distribution for each pair to determine if
the two genes are significantly correlated; the set of all significant
gene-gene correlations determine the edges in the cofitness networks
(see methods section “Network of gene-by-gene correlations”). We
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Fig. 3 | Similarity of fitness effects between environments. A Clustering envir-
onments by using fitness effect correlation as a measure of similarity reveals which
environments are themost functionally alike. For example, environments related to
the putative ecotype niches--exponential acetate growth and glucose growth, for S
and L, respectively—cluster with conditions where the ecotype is in the minority.

The red and yellow dots indicate that the branch has ≥90% or ≥70% support
respectively, computed via bootstrapping. B Principal components analysis (PCA)
of our data, using (normalized)fitness effects as features (% variance).We see that L
experiments cluster separately from the S and REL606 experiments, with the
exception of the acetate exponential phase condition.
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explored the structure of the resulting cofitness networks via
clustering55 (see methods section “Network of gene-by-gene correla-
tions”), where we found sets of communities for all three libraries with
modularity > 0, indicating that there are more edges within each
community than between communities (Fig. 4B)56. We performed a
number of controls to ensure that our results were not driven by
measurement noise or technical effects of clustering; see methods
section “Network of gene-by-gene correlations” for more information.

The presence of strong communities suggests that most knock-
outs are significantly correlated with others, potentially pointing to
similar functional effects driving changes in fitness.We thenwanted to
compare how these clusters differ between the different genetic
backgrounds, with the idea that how and if clusters change should
reveal information on how the effective functions of genes differ
across genetic backgrounds. Surprisingly, we find that gene clusters
are not well preserved across genetic backgrounds, and in fact, genes
are typically seemingly randomly reassorted between genetic back-
grounds (Figs. 4B, S17). In further support of correlations breaking
between backgrounds, if we recompute the cofitness networks using
only one of the biological replicates per experiment, we see that
cofitness networks are more similar within genetic backgrounds

compared to between backgrounds (Fig. S15). There are a couple
clusters that show non-random sampling across genetic background,
however, the deviation from random sampling is mostly small, with
one noticeable exception—clusters 5, 3, and 1 in REL606, S, and L,
respectively, all seem to share a larger than random number of genes
with each other (p < 10−4 for all clusters). From a Gene Ontology
enrichment analysis, genes that are associated with biofilm formation
(GO:0043708), adhesion (GO:0022610), and pilus organization
(GO:0043711) are over-represented in these clusters, along with genes
involved in organonitrogen compound biosynthesis (GO:1901566),
although to a weaker extent (Fig. S18). This suggests that there is at
least one (large) functionally related group of genes that stay corre-
lated across genetic backgrounds, implying that their fitness-
determining effects are mostly the same, regardless of genetic
background.

We wanted to know why other functional groups of genes do not
stay correlatedwith each other, and if therewas any structurehiding in
the seeming randomness of cluster reassortment. A simple first test
could ask if genes in the sameoperon aremore likely to stay correlated
with each other across backgrounds, which is the case for several of
our aforementioned examples. This indeed appears to be the case
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Fig. 4 | Correlations between genes across environments. We observed that
many pairs of genes have correlated fitness effects across environments, for
example, A most genes of the fecABCDE operon. However, fecA is correlated with
the other genes to varying degrees, depending on the genetic background. Error
bars on points represent standard errors, as calculated in methods section “Prob-
abilisticmodel of readcount trajectories andfitness inference”.BWecomputed the
pairwise correlation of fitness effects (cofitness) for all pairs of genes, and then
clustered genes with a community detection algorithm55. We then rearranged the
cofitness matrices by reordering genes based on “optimal” clustering of other
genetic backgrounds. For each column, we ordered the genes based on the

clustering of a given genetic background. For each row, we used the cofitness
matrix for a given background. It is apparent that replotting the cofitness matrix
using another strain’s clustering does not produce noticeable structure.
C, D Cluster reassortment is not entirely random—pairs of genes C in the same
operon and D that strongly interact with each other (high EcoliNet score), tend to
stay in the same clusters across genetic backgrounds. In contrast, the cofitness of
pairs of genes that are not in those categories appear to change in a way that is
indistinguishable from random reassortment. In panels C and D, the abbreviations
R, S, and L refer to REL606, and6.5k S/L, respectively. Error bars represent standard
errors.
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across all genetic backgrounds (Fig. 4C). However, genes often share
functions with other genes outside their operons, so we turned to
investigating the relationship between the cofitness and genetic net-
works. We used EcoliNet as a representation of the E. coli genetic
network, as it attempts to capture all interactions between genes by
integrating various data-types, regardless of the mechanism (tran-
scriptional, protein–protein, etc), and assigns a score to each interac-
tion that effectively represents the strength of the interaction57. We
then computed the probability that two genes are in the same com-
munity in one genetic background, given that they are together in
another background, as a function of EcoliNet score (Fig. 4D). We see
that gene pairs that are predicted to strongly interact (high EcoliNet
score) are much more likely to be correlated across genetic back-
grounds.We can also see these same patterns without referencing any
cluster labels—if we look at the correlation between all cofitness pairs
across genetic backgrounds, pairs that are in the same operon
(Fig. S19A) and those with the highest EcoliNet score (Fig. S19B) give
the highest correlation. It also appears that the shortest distance
between two nodes in the EcoliNet network (Fig. S21) also predicts if
the two genes will stay correlated across genetic background, albeit
the effect is weaker. We should note that it is perhaps the case that
there are weaker consistencies across backgrounds for non-operon/
noninteracting genes pairs that we do not have the statistical power to
detect. Still, these analyses suggest that evolution significantly changes
which functional effects of genes are important for determining

fitness, such that the cofitness of genes pairs is much more preserved
across geneticbackground for themost strongly interacting genes, but
not as much for other gene pairs.

Fitness effects are correlated with evolutionary outcomes
We sought to explore if the knockout fitness effects that we measured
were correlated with evolutionary outcomes in the LTEE, i.e., estab-
lishment of mutations and changes in gene expression. So, we first
investigated if genes with non-neutral knockout fitness were more or
less likely to bemutated and rise to a sufficiently high frequency in the
population. Using the clonal sequencing data from Tenaillon et al.58

and Plucain et al.46, we identified genes thatmutated between selected
LTEE timepoints, and ran a logistic model with fitness effect as the
predictor and mutated status as the response variable (see methods
section “Genome evolution”), separately for beneficial (Fig. 5A) and
deleterious genes (S22A). We used three sequenced clones (one
available for each time point) for both S and L, while we used all clones
from all nonmutator populations (at a given time point) for REL606.
We used the appearance of a mutation (excluding synonymous SNPs)
within a gene as a proxy for establishment.

Fitness of beneficial knockouts in the 1:10 dilution condition and
monoculture (LTEE condition) in the REL606 background is strongly
correlated with which mutations establish from 0 to 5k generations,
while fitness in acetate exponential phase is only correlated with
establishment later in the evolution (difference in slopes between 0–5k

A

B

Fig. 5 | Fitness effects of beneficial genes are correlated with evolutionary
outcomes. We explored if genes with beneficial knockout fitness effects are cor-
related with A establishment of a mutation in a gene, and B changes in gene
expression over evolutionary time, relative to neutral knockouts. A Slopes from
logisticmodels, with presence of amutation in a gene as the response variable. The
fitness effects were normalized by the median beneficial fitness effect, so that
coefficients can be interpreted as the average difference in log-odds establishment
between neutral knockouts and the ‘typical’ beneficial knockout. REL606beneficial
knockout fitness is positively correlated with gene establishment probability for
most environments, but in different time intervals, potentially pointing to shifting
targets of selection. Error bars represent standard errors, which were calculated as
detailed in methods section “Genome evolution”. FDR-corrected p-values were
obtained from the logistic regression model. B We compared the distributions of
log-fold change in expression between genes with neutral knockout fitness effects,

less beneficial effects (lower 50%), and more beneficial effects (upper 50%). We
used the change in expression from 0k gens (REL606) to 40k gens (L), from 6.5k
gens (S) to 40k gens (S), and from6.5k gens (L) to 40k gens (L) for the REL606, 6.5k
S, and6.5k L panels, respectively. The expression changebetween ancestor and40k
L (left) is nearly identical to the expression change between ancestor and 40k S as
well as other timepoints (Fig. S25). Beneficial knockout fitness in REL606 is gen-
erally positively correlated with increasing gene expression over time. In S and L,
fitness in several environments--including the ecological equilibrium and acetate
and glucose growth--is correlated with decreasing gene expression. The center line
of the boxplot is the median; the limits of the box represents the first and third
quartiles; the whiskers extend to one times the inter-quartile range; outliers are not
shown. FDR-corrected Mann–Whitney U tests were used to compare conditions.
Asterisks denote coefficients/comparisons that are significantly different from 0
(FDR correction; *p <0.05, **p <0.01, ***p <0.001).
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and 5–20k is significant at p<0.05 via permutation test for 1:10 dilution
and acetate conditions, not for monoculture or glucose conditions).
This is potentially a signal that the targets of selection are shifting over
time—REL606 may initially adapt via lag phase shortening/stationary
phase survival, while only later adapting via increased acetate growth
rate. This could happen, for example, by either clonal interference
favoring the highest-effect mutations, or due to global epistatic
effects47. The former hypothesis is supported by the observation that
threemutations appear in geneswith beneficial acetate knockouts at 2k
generations, but they then disappeared by 5k generations, potentially
indicating that they were out-competed by other beneficial mutations
(Fig. S24). There is only one S/L condition that shows a significant dif-
ference in mutation establishment probability between beneficial and
neutral mutations—genes with beneficial fitness in acetate are less likely
to mutate compared to neutrals in S. However, changes in gene
expression suggest adaptation to acetate may be occuring through
indirect routes in S, as detailed below.However,we expect our power to
detect correlations between mutational fitness and mutation estab-
lishment to be lower for S andL. Theyhave a ~100×highermutation rate
than REL60659, implying that the ratio of neutral hitchhiking to bene-
ficial driver mutations is higher as well.

We also investigated if fitness effects are correlated with changes
in gene expression, using microarray data from Le Gac et al.16, which
measured gene expression in REL606, and S/L at 6.5k, 17k, and 40k
generations. These measurements serve as a distinct readout of evo-
lutionary change compared to genomicmutational dynamics, because
even if a gene is not directlymutated, gene expression can still change
through indirect genetic interactions. Thus, gene expression mea-
surements allow us to probe the effects of the cumulative mutations
fixed by evolution. We compared the distribution of log-fold expres-
sion changes over ~40k generations for genes with neutral and non-
neutral knockout fitness effects, separately for beneficial (Fig. 5B) and
deleterious genes (Fig. S22B). We see that the median change in gene
expression is significantly different between neutral and beneficial
genes across several conditions, but generally only for the upper 50%
of beneficial genes. This indicates that the magnitude of the knockout
fitness effect is important for determining howmuch themedian gene
changes in expression. We can get more power to detect relationships
between the magnitude of the knockout fitness effect and log-fold
change in gene expression by fitting linear models to the data
(Fig. S25). The same patterns hold if we restrict our analysis to highly
expressed genes (Fig. S26).

In REL606, genes with beneficial knockout fitness effects tend to
increase in expression (relative to neutral genes) over evolutionary
time; this is perhaps surprising, because we would expect selection to
decrease gene expression if knocking out that gene is beneficial. We
saw the same pattern with deleterious genes (Fig. S22B). One possi-
bility to explain tvery, the expression of growth-relevant genes is
increased by some mutation with a highly pleiotropic effect (e.g., in a
master regulator), whose overall benefits outweigh the costs of raising
the expression of beneficial knockout genes.

In contrast, in S and L, there are a couple of environments where
gene expression significantly decreases over evolutionary time for
genes with beneficial knockout fitness effects (compared to neutrals).
These conditions include environments related to the putative eco-
type niches—acetate and glucose exponential growth in S and L
respectively. On the other hand, while fitness in the ecological equili-
brium is associatedwithdecreasedgene expression, this is not the case
for fitness in monoculture and the 1:10 dilution environments, indi-
cating again that the latter environments are less relevant for evolution
in the LTEE environment. Despite the fact that acetate-adapting
mutations are not establishing on the S background (at least initially),
gene expression still decreases by 40k generations, perhaps indicating
that adaptation to acetate is occurring through routes other than
directly mutating genes with beneficial knockout effects.

We also saw that S and L beneficial knockout fitness in glucose
exponential phase is positively correlated with an increase in gene
expression from 0 to 6.5k (Fig. S25). On average, those same genes
decrease in relative gene expression when evolving on the L back-
ground, whereas they do not change on the S background. This set of
data could indicate that from 0 to 6.5k many genes increased in gene
expression via adaptive evolution that were actively unhelpful for
glucose growth, either because of transcriptomic misallocation or
other types of antagonistic pleiotropy, such that knocking them out
conferred a benefit. Upon diversification of S and L, the direction of
gene expression change appears to switch for L, perhaps suggesting
that L is evolving towards a more glucose growth-optimized tran-
scriptome, while S is not. This set of observations provides a possible
example of how diversification changes the selection pressures acting
on organisms.

Interestingly, deleterious knockout fitness effects across all
environments in S/L tend to be associated with an increase in gene
expression between 0 and 6.5k generations (Fig. S22B). This observa-
tion may provide a partial explanation for why some knockouts
become deleterious in S/L when they were neutral in REL606—6.5k
generations of evolution caused the genes to suddenly become
important, so they became more costly to knock out. Another, unre-
lated observation could help us to understand why some genes have
deleterious knockout fitness effects—it appears that deleterious genes
are more highly connected in the E. coli gene interaction network
(EcoliNet) compared to neutrals (on average), indicating that some
genes may be deleterious because when they’re knockout out, they
also affect the functioning of many other genes (Fig. S27).

Discussion
In order to be able to predict howevolutionwill proceed in community
contexts, we need to know the distribution of mutational fitness
effects, along with how it depends on genetic background and ecolo-
gical conditions. To that end,wemeasured the genome-wide knockout
fitness effects of a recently diversified ecosystem, S and L, and their
ancestor, REL606. Despite the fact that the fitness effects of individual
mutations appear to be highly dependent on both genetic background
and environment (strong (G × ) G × E effects), we saw consistent sta-
tistical patterns of variation across both axes, namely global dimin-
ishing returns epistasis and a negative frequency-fitness correlation (in
S and L). In contrast, previous studies that observed diminishing
returns epistasis saw both the mean of the DFE as well as the fitness
effects of individual mutations decrease as a function of background
fitness50,51; this discrepancy may indicate that uniform negative epis-
tasis of individual mutations may only be relevant for the first handful
of mutational steps, before yielding to more complex and idiosyn-
cratic forms of epistasis. While the underlying mechanism that gen-
erates this form of global epistasis is still unclear, our observations are
consistent with recent theoretical60 and experimental work61 that
suggest that global diminishing returns epistasismay arise as a general
consequence of idiosyncratic epistasis.

Even though S and L only diverged ~500 generations ago, the
mixing ratio of the two ecotypes strongly affects the DFEs, suggesting
that strong eco-evolutionary coupling is possible even in closely related
strains. This would imply that selective pressures depend strongly on
the community mixture, which changes significantly and relatively
rapidly due to evolution42,47. The sensitivity of knockout fitness effects
to relatively minor variations on the LTEE environment, such as chan-
ging niche availability or ecosystem composition,may be evolutionarily
significant—we know that the growth traits of S and L also change quite
drastically during their coevolution16,44, which along with changes to
ecosystem composition, will change the environment, and thus change
which mutations are favored by selection. One specific hypothesis that
emerges from our data is that selective forces may be more similar to
environments related to the putative ecotype niches when the ecotype
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is rare, for both S and L. This is supported by both clustering environ-
ments by fitness effect correlations, and which environments were
correlated with changes in gene expression. It would follow that selec-
tion could favor different degrees of specialization within the current
niche as the ecotype frequencies and growth traits change due to
evolution. Regardless of the specific implementation, theprocesswhere
(i) mutations change growth traits and ecosystem composition, which
(ii) change ecological conditions, which in turn (iii) change the muta-
tional fitness effects of both ecotypes, could represent an important
and pervasive type of eco-evolutionary feedback.

We aimed to better understand the background and environment
dependence of mutational fitness effects by systematically studying
fitness correlations across environments. Our intuition was that
knocking out genes with similar functions should have similar effects
across environments.We saw that, by and large, different sets of genes
were correlated with each other across genetic backgrounds; only
strongly interacting pairs of genes were likely to be correlated across
all backgrounds. These widespread changes could be caused by a
number of different evolutionary phenomena—for example, evolution
could have induced widespread changes in the functional effects of
genes or which functional effects matter for fitness. Additionally,
inasmuch as fitness in an environment is a reflection of phenotype—
e.g., fitness in exponential phase is likely a simple function of expo-
nential growth rate—the extensive changes in fitness across environ-
ments could be interpreted as support for ubiquitous pleiotropic
effects of knockout mutations.

We investigated if our measured knockout fitness effects were
correlated with evolutionary outcomes, i.e., mutation establishment
and gene expression changes.We found significant correlations across
several, but not all environments, leading to hypotheses on how
selection has acted on LTEE populations. From correlations of
knockout fitness effects with mutation establishment, we found
potential signals of shifting selection over time in REL606. Changes in
gene expression provide a distinct window into evolutionary change,
as expression can change through genetic interactions, even if a gene
is not directly mutated. Among other patterns, the fitness correlations
with gene expression changes potentially reveal how the traits under
selection changed from pre- to post-diversification, and how they are
different between S and L. Pinpointing the precise causes of these
patterns could be a fruitful avenue for future work. Overall, the con-
nections between evolutionary changes and knockout fitness effects
demonstrates the utility of our approach to understand how adapta-
tion happens in the “natural” evolutionary context.

Ultimately, we would like to predict the outcomes of evolution in
community contexts. By showing how the distribution of invasion fit-
ness effects changes as a result of genetic background and ecological
conditions, our dataset represents a major step forward in that direc-
tion. The invasion fitness effects directly impact the establishment
probability of a beneficial mutation, as well as the mutant dynamics
until it reaches a substantial proportion of the population. The dis-
tribution of deleterious invasion fitness effects also controls other
relevant evolutionary phenomena, including the equilibrium reached
by mutation-selection balance, and the probability that a deleterious
mutation will hitchhike on a beneficial mutant (“genetic draft”). How-
ever, in principal, the fitness effect of a mutation could change as it
approaches fixation (within the ecotype) due to frequency-dependent
effects.We arenot able tomeasure these effectswith our experimental
setup, as our ability to measure fitness effects in high-throughput
requires that mutants remain rare. However, frequency-dependent
mutations could significantly alter expected evolutionary dynamics, so
as such, measuring such effects are a major direction for future work.

As previously mentioned, we only surveyed the fitness effects of
knockout mutations, which represent a subset of all mutations avail-
able to an organism. While it is possible that other types of mutations
could display different patterns, knockout mutations appear to be

prevalent and important for adaptation in the LTEE47,62, and our mea-
sured knockout fitness effects are correlated with evolutionary out-
comes. Additionally, we studied a relatively simple ecosystem,
consisting of just two recently diverged ecotypes; measuring the
mutational effects in more complicated ecosystems and how they
change as a result of longer periods of evolution is likely a fruitful
future avenue of investigation. Overall, the methods and results pre-
sented here pave the way for future studies investigating how muta-
tional fitness effects depend on eco-evolutionary processes, and how
eco-evolutionary feedback arises from changing fitness effects.

Methods
Barcoded transposon library construction
To construct the barcoded transposon libraries, we isolated subclones
of REL606, REL11555 (6.5k S), and REL11556 (6.5k L), all gifts of Richard
Lenski (Michigan State University). Transposon mutagenesis was per-
formed as previously described40,41 by mating each LTEE clone with an
E. coliWM3064 donor (Diaminopimelic acid [DAP] auxotroph and pir+)
containing previously described40 randomly barcoded Tn5 plasmids
with a kanamycin cassette and an R6K origin of replication. The LTEE
cloneswere grown inDM2000 (DavisMinimalMediawith 2000mg/LD-
glucose), and thedonorwas grown in LB/Kan, all tomid-logphase. After
washing the cultures, each LTEE culture was thenmixed with the donor
in a 1:1 ratio, then placed on 0.45μMnitrocellulose filters (Millipore cat.
no. HAWP04700) on top of a 1% agar plate with EZ-MOPS rich, defined
media (Teknova cat. no. M2105) + 20mM sodium pyruvate (’EZ-py’) +
0.3mM DAP. The rich media was chosen because it had a number of
different carbon sources (glucose, amino acids, pyruvate) and sufficient
amounts of all other required macro/micronutrients, lessening the
chances of substantial negative selection in the growth media. After
conjugation, the filters were picked up and placed in rich media; sub-
sequently, the resuspended cells were plated on EZ-py agar plates
supplementedwith 50μg/mLkanamycin. After ~24 hof growth at 37 °C,
colonies were scraped up and grown in EZ-py liquid media with
50μg/mL kanamycin until OD ~ 1; we then saved the cultures in several
10% glycerol stocks. Transposon insertion mapping (Tn-Seq) libaries
were prepared as previously described40; libraries were then sequenced
on the Illumina HiSeq 4000 (150PE) at the Vincent J. Coates Genomics
Sequencing Laboratory at UC Berkeley. The resulting sequencing data
was used to create a table relating each barcode to a genomic insertion
location, using a previously developed script (MapTnSeq.pl)40.

BarSeq experiments
Setup of experiments. To start a BarSeq experiment, we first unfroze
1mL glycerol stock of the REL606, 6.5k S and/or 6.5k L transposon
libraries and transferred the entirety to 10mL EZ-py media (media
used for library construction) in 50mL glass erlenmeyer flasks, which
were grown for 16–24 h at 37 °C, shaken at 120 rpm. All cultures for all
experiments were grown with the same shaker, in the same 37 °C
warm room. In several experiments where we measured fitness
effects of 6.5k S/L barcoded libraries at various ecotype frequencies,
we also grew the wild-type S/L with the same media, under the same
conditions. The next day, we washed the cultures by pelleting via
centrifugation for 3min at 2500 × g, aspirating the supernatant, and
resuspending inDM0 (DavisMinimalMedia without a carbon source)
three times. After thoroughly vortexing the cultures, we transferred
them 1:1000 to the appropriate media in n flasks (see below)—
depending on the experiment, we used different numbers of flasks
and different sizes, either 10mL media in 50mL glass flasks or
200mL media in 1 L glass flasks (same ratios, scaled up). We used
multiple flasks and larger flasks to increase the total population size,
decreasing fluctuations due to genetic drift. We then performed two
more transfers in the appropriate conditions for the experiment to
help physiologically adapt the cultures to the conditions. If we were
doing a coculture experiment, we would mix the cultures at the
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appropriate frequencies during the second transfer. If we used
multiple flasks in an experiment, we would sample an equal amount
of culture from each flask into a microcentrifuge or Falcon tube,
thoroughly mix the cultures, and redistribute among the same
number of flasks with new media—thus, the cultures distributed in
multiple flasks were effectively all part of the same population. After
the third transfer, we would collect cells for day 0 of the experiment,
and use that culture to start two biological replicates that are inde-
pendently propagated for the remainder of the experiment. All cul-
tures were grown at 37 °C, shaken at 120 rpm. Cells were harvested at
defined timepoints by centrifugation at ~20,000 × g for 10min of
~60mL culture for all experiments except Ac Exp (10mL) andMono 2
(30mL), pooling culture from all flasks in an experiment/replicate at
equal ratios. Subsequently, the pellets were stored at −80 °C until the
experiment was finished.

The number of generations does not depend on the growth rate,
only on the initial and final abundance of the cultures, # generations =
log2ðnf =n0Þ. If the final density of the culture is approximately the
same across transfers, as is the case in all our experiments except the
“exponential phase” experiments, then the number of generations
only depends on the dilution rate, # generations = log2 (dilution rate).

Conditions for each experiment. Monoculture: For the Mono (1)
experiments, we propagated the libraries alone in DM25 (Davis Mini-
mal Media with 25mg/L D-glucose) in 5× 50mL flasks over the course
of 4 days. For the REL606Mono 2 experiment, we used 3× 50mL flasks
over the course of 8 days, with four biological replicates in DM25. We
transferred cultures 1:100 every 24 h, and took the number of gen-
erations per transfer as log2100.

Coculture experiments: Asmentioned above, we startedwild-type
cultures of 6.5k S and/or L clones (sameclones used tomake the RB-Tn
libraries) at the same time and with the same procedure as the library
cultures (Table 1), and mixing the cultures at the appropriate fre-
quencies at the second “adaptation” serial transfer. We measured the
ecological equilibrium frequency to be ~15–20% S (Fig. S4), so we
ensured that the S frequency was started in that range for the “eco-
logical equilibrium” experiments. We started the “S/L in majority”
experiments such that the minority ecotype was >10% of the total
population (Fig. S3).

We used DM25 media and propagated the cultures for 4 days,
except for S in maj 2/3 where we used 6 days, transferring 1:100 every
24 h (log2100 generations) for all coculture experiments. For the Eco
Eq 1 experiment, we mixed both S and L libraries in the same cultures
alongwithwild-type L, using4× 1 Lflasks. For the Eco Eq2 experiments,
S and L libraries were in separate cultures, both with wild-type S and L
set at the appropriate frequency, with RB-Tn library frequency around
5–10% (Fig. S3); cultures werepropagated in 10× 50mLflasks. For the L
inMaj and S inMaj 1 experiments, wemixedwtL + S library andwt S + L
library, respectively; cultures were propagated in 10× 50mL flasks. For
the S in maj 2/3 experiments, we mixed wt S with S+L and L libraries
respectively; cultures were propagated in 4× 1 L flasks.

We measured the frequency of S/L in the population by plating
and counting colonies at the end of a transfer on TM plates (tetra-
zolium maltose; 10g/L tryptone [Sigma T7293], 1g/L yeast extract
[Sigma Y1625], 5g/L NaCl, 16g/L agar, 10g/L maltose, 1mL/L 5% TTC
[SigmaT8877]), where S appears as red colonies andL appears aswhite
colonies, previously used in46. We could alsomeasure the frequency of
cells from RB-Tn libraries by plating the cultures on LB/Kanamycin
plates, as the transposon has a kanamycin resistance cassette (Fig. S3).
We diluted all cultures (at the end of a cycle) in DM0. Dilution rates
varied over experiments: in Eco Eq 1, we diluted cultures by a factor of
2 × 10−5 mL−1 to plate onbothTMandLB/Kanplates, in EcoEq 2weused
dilution rates of 10−5 mL−1 and 10−4 mL−1 to plate on TM and LB/Kan
plates respectively, in the L inMaj and S inMaj 1 experimentsweused a
2 × 10−5 mL−1 dilution rate to plate on just TM plates, and in the S inmaj

2/3 experimentsweuseddilution rates of 2 × 10−5 mL−1 and 2 × 10−4 mL−1

to plate on TM and LB/Kan plates respectively.
1:10 dilution: We propagated cultures with a 1:10 dilution, instead

of the standard LTEE dilution rate of 1:100, to investigate the effect of a
lengthened stationary phase relative to exponential phase. We used
DM27.8 media (Davis Minimal Media with 27.8mg/L D-glucose),
because the concentration of glucose would fall to 25mg/L after
dilution. We used 1× 1 L flask for each library culture (180mL media +
20mL culture), propagating the cultures for 8 days every 24 h with
log210 generations per day. We pelleted and saved cultures every
other day (0,2,4,6,8).

Acetate exponential phase: We sought to measure knockout fit-
ness effects when the RB-Tn libraries were kept in acetate exponential
phase, where we used DM2000-acetate (Davis Minimal Media with
2000mg/L Sodium Acetate) and grew the cultures in 1× 50mL flask.
We first measured exponential growth rates for wt REL606, L, and S
clones in DM2000-acetate, which were ~0.08/h, 0.12/h, and 0.18/h,
respectively. We also observed that all cultures were still in mid-
exponential phase at OD ~0.6. So, if we started at initial OD0 of 0.09,
0.03, 0.008 for REL606, L, and S respectively, the cultures would end
upatOD ~ 0.6 after 24 h. Thus, for each transfer,wewouldmeasure the
actual OD for each culture (after 24 h of growth) and transfer the
appropriate volume of old culture to new 10mLDM2000-acetate such
that the final concentrationwas the appropriate OD0.We recorded the
number of generations for each cycle as log2ODf =OD0. Due to the
variable number of generations per transfer for each genetic back-
ground (owing to different growth rates), we collected samples at days
0,2,4,6,8 for REL606; 0,1,2,4,5,6 for L; 0,1,2,3,4,5 for S.

Glucose exponential phase:Wemeasured knockoutfitness effects
in glucose exponential phase with DM25 media in 1× 1 L flask. We
measured the length of DM25 exponential phase to be about 8.25 h for
REL606, and 5.25 h for both S and L after a 1:100 dilution into new
media. For the adaptation phase, we did two full 24 h cycles of growth
in DM25, followed by one cycle of growth for ~8 and ~5 h for REL606
and S/L, respectively. After the adaptation phase, we transferred cul-
tures 1:100 into new DM25 media (warmed to 37C) four times, after
7.5–8 h for REL606 and 4.5–5 h for S and L. As DM25 media is quite
dilute and thus OD measurements are relatively inaccurate, we esti-
mated the number of cells thatwere transferredbyplating the cultures
on LB plates at a 2 × 10−5 mL−1 dilution rate and counting colonies,
calculating the number of generations for that transfer as
log2100CFUf =CFU0. We only ended up including the first two trans-
fers of the REL606 library experiment (timepoints 0,1,2), as it was
apparent from CFUs that the third transfer resulted in a large bottle-
neck owing to a smaller than expected population size before the
transfer, likely because of slower than expected growth.

DNAextraction, PCR, sequencing. After the experiment was finished,
pellets were pulled from the -80C freezer and genomic DNA was
extracted with the Qiagen DNeasy tissue and blood extraction kit (cat
no. 69504), eluted in double distilled water with typical yields around
50 ng/μL. DNA barcodes were amplified from gDNA samples via PCR
with Q5 Hot Start Polymerase (NEB, cat. no. M0493S); 50ul reactions
were composed of 5μL PCR primers, 5μL gDNA, 10μL 5× buffer, 10μL
GC enhancer, 1μL dNTPs, 0.5μL Q5 polymerase, 18.5μL water. We
used custom dual-indexed primers that contained binding sites up-
and downstream of the barcode region, along with the necessary
Illumina read/index binding sites; fwd primer (AATGAT ACGGCG
ACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
NnXXXXXX GTCGAC CTGCAG CGTACG) where X stands for the cus-
tom forward 6bp index, and Nn is 1–4 random nucleotides, varying
with the primer pair; rev primer (CAAGCA GAAGAC GGCATA CGAGAT
XXXXXX GTGACT GGAGTT CAGACG TGTGCT CTTCCG ATCTGA
TGTCCA CGAGGT CTCT) where X stands for standard Illumina 6bp IT
index. We used a different primer pair for each gDNA sample from a
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different experiment/replicate/time point, so that we could demulti-
plex the samples after sequencing. The PCR program was 4min at
95 °C, [30 s at 95 °C, 30 s at 55 °C, 30 s at 72 °C] ×25 cycles, 5min at
72 °C.We verified thatwe had the correct PCRproducts via agarose gel
electophoresis. All PCR reactions were then pooled and cleaned with
the ZymoDNAClean and Concentrator kit (cat. no. D4013), and eluted
in double distilled water. The final pooled sample was then sequenced
on an Illumina HiSeq 4000 (50SR) at the Vincent J. Coates Genomics
Sequencing Laboratory at UC Berkeley.

Fitness inference pipeline
Read counting and error correction. We first processed the raw
(demultiplexed) sequencing reads using a previously developed Perl
script40,41 that pulls out the barcode sequence by trimming regions
corresponding to the sequencing primers and regions up/downstream
of the barcode, as well as discarding reads that do not match the
secondary sequencing index or have insufficiently high-quality scores
(MultiCodes.pl). Then, counts of unique barcodes are tabulated to get
a table corresponding barcode sequence to counts.

However, due to errors that arise during PCR and sequencing,
someof the barcode reads acquiremutations that would prevent them
from directly mapping to a transposon insertion location. Thus, we
must correct for these sequencing errors by matching mutated bar-
codes to their parent, and merging the read counts together. The
aforementioned Perl script identifies off-by-one barcode pairs; if the
minority barcode (the one with fewer counts) unambiguously maps to
a single majority barcode, the barcode counts are merged. To detect
larger mutational distances between the derived and parent barcodes,
we computed the Levenshtein (edit) distance between pairs of bar-
codes (as implemented in the Python C package Levenshtein63).
Barcode readcountsweremerged if the edit distancewas4or less, and
if the minority barcode only mapped to one majority barcode at the
minimum edit distance.

We then used previously acquired TnSeq data that maps the
barcode identity to its transposon insertion location in order to iden-
tify which gene (if any) the barcoded transposon disrupted. Transpo-
sons that hit the first or last 5% of the gene sequencewere excluded, as
it is possible that these insertions do not result in disruption of pro-
duction of the gene product.

To ensure that barcodes at least begin their trajectories at a suf-
ficiently high read count, if therewere barcodes within a genewith low
initial counts, r0,i < 80, we summed the lowest (initial) count barcode
into the next-lowest count barcode until min

i
r0,i ≥80. We restricted

our analysis to genes that had ≥4 barcodes, allowing us to gain con-
fidence that the measured knockout fitness is not dependent on rare
fluctuations or secondary mutations. Additionally, some barcodes
went extinctduring the course of the experiment, either due to genetic
drift or selection; if a barcode went extinct, i.e., has 0 counts from text
to T, we would trim all timepoints after, but not including, text. We
eliminated barcodes that go extinct after just one time point. Statistics
of the final constructed RB-TnSeq libraries are summarized in Table 2.

Probabilisticmodel of read count trajectories andfitness inference.
To infer thefitness of individual genotypes fromBarSeq count data, we
must first understandwhat frequency trajectories wewould expect for
a given fitness, and how technical noise (e.g., from sample preparation

and sequencing) and genetic drift affect those trajectories. Consistent
with previous work30,31,35, we construct a maximum-likelihood esti-
mator to infer fitness from trajectories of barcode read counts, using a
deterministic approximation of frequency dynamics.

On average, when the frequency of a lineage is sufficiently small
ft,i≪ 1, the frequency dynamics will exponentially grow/decay accord-
ing to the genotype fitness, s, as well as the mean fitness of the
population, �xt (see section “Estimation of mean fitness dynamics”),

hf t,ii= f 0,ieðs��xt Þt

Wemeasured the time in generations, which wemeasured for each
time point in each experiment (see section “Conditions for each
experiment”). The reasonwe used a timescale of 1/generation instead of
e.g., 1/cycle was to be able to better compare the magnitude of effects
across experiments—e.g., the two exponential phase experiments had
varying numbers of generations from cycle-to-cycle and between
strains (due to differences in exponential growth rates). However, the
fitness effects can be scaled by a factor of ~6.64 to get per-cycle fitness
effects, at least in the 1:100 serial dilution experiments. The number of
generations does not depend on the growth rate, only on the initial and
final abundance of the cultures, # generations = log2ðnf =n0Þ. If the final
density of the culture is approximately the same across transfers, as is
the case in our experiments, then the number of generations only
depends on the dilution rate, # generations = log2ðdilution rate Þ. This
is the typicalmanner inwhich thenumberof generations is calculated in
both the LTEE and other serial transfer-based evolution experiments.

The two sources of noise–genetic drift and measurement
noise–both arise from counting processes, so the combined noise will
follow var (ft,i)∝ 〈ft,i〉 (see section “Estimation of error parameters”). To
account for the inherent discreteness of counting sequencing reads—
especially important to accurately model deleterious genotypes that
quickly drop to low frequencies—we modeled the observed counts at
time t (alwaysmeasured in generations) of barcode i inserted in a given
gene, rt,i, as a negative binomial random variable,

rt,i∣s, f 0,i ∼NB ðμt,i, ctÞ ð1Þ

hrt,ii=μt,i ð2Þ

var ðrt,iÞ= cthrt,ii ð3Þ

μt,i =Rtf 0,ie
ðs��xt Þt ð4Þ

Where Rt is the total number of counts, and ct is the measured
variance parameter. The final likelihood for the fitness, s, of a given
gene knockout is obtained by numerically integrating over f0,i (’inte-
grated likelihood’ with a flat prior)—incorporating the uncertainty in
the intercept nuisance parameters into the fitness estimate and turn-
ing the problem into a one-dimensional maximum likelihood—and
then combining the likelihoods of all barcodes inserted into the gene,

Pðr i∣s,f 0,iÞ=
Y
t

Γ rt,i +
μt,i
ct�1

� �
Γ

μt,i
ct�1

� �
Γ rt,i + 1
� � ðct � 1Þrt,i

c
rt,i +

μt,i
ct�1

t

ð5Þ

Lðs∣rÞ=
Y
i

Z
df 0,i Pðr i∣s,f 0,iÞ ð6Þ

The point estimate of the knockout fitness, ŝ, is then numerically
computed as the maximum likelihood, and the standard error is

Table 2 | Summary of statistics of constructed RB-TnSeq
libraries

Library # genes hit ≥3 times # barcodes % bc reads mapped

REL606 3401 609,854 84%

6.5k S 3382 522,253 84%

6.5k L 2877 157,260 89%
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approximated as the inverse, square-root observed information,

ŝ = argmax
s

logLðs∣rÞ ð7Þ

std ŝ = 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�∂2

s logLðs∣rÞ∣ŝ
q

ð8Þ

We ran biological replicates for all experiments reported here; to
obtain combined genotype fitness estimates across replicates we
simply multiplied the likelihoods together, repeating the maximum-
likelihood procedure.

As the majority of barcoded knockouts are neutral or nearly so
(s ≈0), we must have a method to distinguish between likely neutral
and selected knockout mutations; this can be accomplished by com-
puting a p-value under the null hypothesis s =0. For ease of compu-
tation and generality we compute the p-value as the posterior
probability that the likelihood ratio between null and alternative
hypotheses is greater than 1, i.e., the probability that the data more
strongly support the null hypothesis over the alternative,

p=Ps∣r
Lð0∣rÞ
Lðs∣rÞ > 1

� �
Pðs∣rÞ / Lðs∣rÞ

This convenient definition has been shown to be equivalent to the
frequentist definition of the p-value using a likelihood ratio test sta-
tistic (if the distribution is invariant under transformation)64,65, and
does not require asymptotic approximations.

In practice, thisp-value canbe calculated byfirst,finely discretizing
the likelihood curve along s and normalizing it to get the posterior,

Pjðsj ∣rÞ=
Lðsj ∣rÞP
jLðsj ∣rÞ

ð9Þ

Then, calculating the log-likelihood ratio along all discretized s
values,

LLRj = logLð0∣rÞ � logLðsj ∣rÞ ð10Þ

And finally, summing to get the posterior probability that the data
support the null hypothesismore than the alternative, where I[ ⋅ ] is the
indicator function,

p=
X
j

I½LLRj >0�Pjðsj ∣rÞ

We used the standard method of Benjamini–Hochberg to control
for the false discovery rate at α =0.05.

Estimation of error parameters. In order to estimate fitness of indi-
vidual genotypes fromBarSeq data, wemustfirst obtain an estimate of
the error parameters for each time point in the experiments. There are
two distinct sources of noise in our BarSeq measurements—measure-
ment (technical) noise, arising from library preparation and sequen-
cing error, which is uncorrelated in time, and variance due to genetic
drift, which accumulates over time. Both sources of noise are count
processes, where the variance of barcode population frequencies will
be proportional to the mean,

hf t,ii=
hrt,ii
Rt

/ var ðf t,iÞ

In order to eliminate the dependenceof the varianceon themean,
we apply a variance-stabilizing transformation,

ϕt,i �
ffiffiffiffiffiffi
f t,i

q

The variance of barcode frequencies of neutral lineages over two
timepoints will then depend on the variance that has accumulated due
to genetic drift, as well as the technical noise at the sampled time-
points. If there are sufficiently many read counts/individuals such that
the central limit theorem applies, the variances will simply be additive,

κj,k � var ðϕi,j � ϕi,kÞ= ζ j + ζ k +
∣j � k∣
4Ne

ð11Þ

Where ζt is the technical noise at time point t, Ne is the effective
population size, and ∣j − k∣ is the number of transfers performed
between times j and k. The above equation defines a set of linear
equations, with ζt and Ne as unknown parameters.

We canmeasure κj,k for all possible combinations of tj and tk given
large enough set of neutral barcodes. Our RB-TnSeq libraries have a
large number of transposons that were inserted into intergenic
regions, the vast majority of which presumably have no fitness effect;
thus, we use these intergenic barcodes as our set of putatively neutral
barcodes. We confirmed that our measured κj,k did not systematically
vary as a function of rj (Fig. S28), indicating that the expected mean-
variance relationship, var (ft,i)∝ 〈ft,i〉, is consistent with our data.

Weonly included intergenicbarcodes that satisfy 50< rt,i < 500, as
our computation depends on having sufficiently many counts such
that the central limit theorem applies, and barcodes at a higher fre-
quency are more likely to have acquired secondary mutations and be
impacted by selection. In order to further guard against the effects of
potential ’outlier’ barcodes (those with non-neutral fitnesses), we
compute variance estimates, κ̂j,k , with a more robust measurement of
variability, the median absolute deviation (MAD),

ψi,j,k � ϕi,j � ϕi,k ð12Þ

MADj,k = med
i

∣ψi,j,k �med
i

ψi,j,k ∣ ð13Þ

κ̂j,k =
MADj,k

0:67449

� �2

ð14Þ

We resampled barcodes with replacement (standard boot-
strapping) 500 times to compute the relative errors on the κ̂ j,k mea-
surements. To decompose variability into the correlated (1/Ne) and
uncorrelated (ζt) components, we numerically minimized squared
error of the expected relationship (eq. (11)) between the noise para-
meters and the measured κ̂j,k , with inverse variance weighting,

ζ ,Ne = argmin
ζ ,Ne

X
j,k

ζ j + ζ k +
∣j�k∣
4Ne

� κ̂j,k

� �2

var ðκ̂j,kÞ

We subjected the minimization to the constraint that ζ t ≥
1

4Rt
, i.e.,

technical noise must be at least as large as variance due to sampling.
After converting the variance parameters from frequencies back to
read counts, the total marginal variance parameter at a single time
point is,

ĉt = ð4ζ t + 1=NeÞRt

The number of intergenic barcodes included varies across RB-
TnSeq libraries, experiments, and timepoints, but approximately on
the order of ~104 intergenic barcodes are used to estimate the variance
parameters. The errors on the estimated ĉt are generally small (≲1%),
so the point estimate ĉt was directly used for all downstream
inferences.

Estimation of mean fitness dynamics. As beneficial mutations
increase in frequency, and deleterious mutations decrease, the
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mean fitness of the population changes over time, impacting the
rate of frequency change of all genotypes in the population. To
estimate the mean fitness dynamics for each experiment, we can
track the dynamics of neutral genotypes, again using the large set of
intergenic barcodes. We obtain an estimate of the mean fitness
between times 0 and t by simply taking the negative log-slope over
many barcodes,

�̂xt,i = � 1
t

log
rt,i
Rt

� �
� log

r0,i
R0

� �	 


As detailed in the previous section, it is advantageous to use
robust forms of estimation to guard against the presence of outliers.
Groups of ~100 randomly selected intergenic barcodes with rt,i < 500
were summed together to create “super-barcodes”, in order to
improve individual estimates. The mean fitness �̂xt,i was estimated for
each super-barcode separately, and then the final estimate �̂xt was
obtained by taking the median overall super-barcodes. The standard
error was estimated via the median absolute deviation between all
super-barcodes, analogous to equations (13)–(14). Again, the point
estimate �̂xt is used for all downstream analyses, as mean fitness error
was consistently small.

Identification of putative outlier barcodes. We observed that some
barcodes had trajectories that noticeably differed from the rest of the
barcodes within the genotype, likely caused by the presence of sec-
ondary (selected) mutations that arose elsewhere in the genome or
rare frequency fluctuations. We observed outlier barcodes with both
beneficial and deleterious trajectories relative to the rest of the bar-
codes within the genotype. Problematically, some of these outlier
barcodes were at high abundance relative to the other barcodes in the
genotype, thus dominating the genotype fitness estimate. This
necessitated a need to either accommodate outliers in our fitness
estimation procedure or detect and reject outliers. We found that a
number of robust estimators that we explored (e.g., maximum med-
ian/trimmed likelihood) had unreasonably high variance in fitness
given our data (std ŝ ≳ ŝ). Thus,we opted to use amethod to detect and
reject outlier barcodes within genotypes. We based our outlier
detection method on the resistant diagnostic RDi introduced by
RousseeuwandLeroy (1987)66, a high-breakdownmeasureof statistical
deviation.

For every genotypewith at nbc ≥ 4 unique barcodes, we computed
a fitness estimate for each barcode, ŝi, via maximum likelihood (eqs.
(5)–(8)).We thenused a resampling approach to randomly sample 200
different combinations of nr = ⌈nbc/2⌉ barcodes, where samples are
labeled J. To get an estimate of the ’typical’ fitness, ŝJ,typ, of the bar-
codes within a gene, we either take the weighted median (nr < 10) or
weighted trimmed mean (nr ≥ 10, trim 30% off each tail) of the
resampled barcode fitnesses, where in both cases, samples are
weighted by their inverse variance, wi = 1=ðvar ŝiÞ. The weighted med-
ian is used for low number of samples, while the trimmed weighted
mean is used for high number of samples, because the trimmed
weighted mean generally has lower sampling variance when the
number of samples remaining after trimming is sufficiently large. To
compare the strength of evidence for a fitness of ŝi or ŝJ,typ for barcode
i, we compute the likelihood ratio,

LRJ,i = log
Liðŝi∣riÞ

LiðŝJ,typ∣r iÞ

The deviation of barcode i from the rest of the barcodes in the
genotype is then,

ui = max
J

LRJ,i

med
i

LRJ,i

The final resistant diagnostic isfinally calculated as a standardized
version of ui,

RDi =
ui

med
i

ui

If RDi > cutoff, then barcode i is considered an outlier and
thrown away.

Simulations: To determine an appropriate cutoff value, we per-
formed simulations of the data generating process, and calculated the
RD for each barcode within a simulated gene using the above method.
Specifically, we simulated trajectories of lineage frequencies with
s∈ { −0.02, 0, 0.02} gen−1 with the standard diffusion approximation,
assuming f≪ 1,

∂t f = sf +

ffiffiffiffiffiffi
f
Ne

s
ηðtÞ

hηðtÞi=0
hηðtÞηðt0Þi= δðt � t0Þ

We ’observed’ trajectories at the end of each ’day’ ( ≈ 6.64 gen) for
4 days, and added measurement noise,

ϕt �
ffiffiffiffiffi
f t

p
ϕobs

t ∣ϕt ∼N ðϕt ,ζ Þ
We used Ne = 108 day and ζ = 2 × 10−8. We then grouped 20 simu-

lated lineages together into a ‘gene’ (approximate median number of
barcodes per gene in our libraries), with n∈ {1, 2, 3} selected lineages
(of the same sign), and the rest as neutral lineages. After calculating the
RD for each simulated gene, we calculated the true positive/negative
rate for calling a lineage as an outlier for a given threshold (Fig. S29).

We can see that themethod can sensitively detect relatively small,
~2%, differences in fitness, while minimizing the number of neutral
barcodes that are incorrectly thrown away. True positive rate decrea-
ses somewhat if there are multiple outlier barcodes within a gene, but
the difference appears to be minimal, as expected from the con-
struction of the RD as a high-breakdown deviance statistic. From the
simulations, we chosea cutoff of 6,whichonly falsely throwsout ~5%of
neutral lineages, while detecting ~85–95% of outliers. This threshold
also seems to empirically work with our data, detecting at least the
most obvious outliers (see e.g., Fig. S30).

Consequences of potential barcode frequency biases. One major
assumption of the above analyses is that the frequency of barcodes
from BarSeq data represents an unbiased estimate of the actual fre-
quency of barcoded cells in the population. While we expect this
assumption to generally hold, there are two major ways that this
assumption could be violated: (1) if barcodes are differentially ampli-
fied due to e.g., differences in GC content, and (2) if genomic regions
near the chromosomal origin of replication are present at a higher
copy number due to fast growth. Both types of biases have been
observed in some previous RB-TnSeq experiments40,41. We can check
for the presence of frequency biases by comparing the inferred value
of the error parameter κt (see section “Estimation of error parameters”)
for barcodeswith different GC contents and across genomicpositions,
as biases in frequency measurements will change the apparent
strength of genetic drift. We see that κt generally does not change
across these conditions (Fig. S31), and thus the aforementioned sour-
ces of frequency biases do not seem to be particularly prevalent or
strong in our system.

Of course, other unknown sources of frequency bias could be
present, or too weak to detect; but, under our inference pipeline,
biases in frequency would only affect the variance of inferred s, not its
expected value, as long as the bias across timepoints remains constant.
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We can see this by considering the deterministic (mean) dynamics of
mutant frequencies f in a population with m genotypes,

f iðtÞ=
f 0,ie

sitPm
j f 0,je

sj t

We could then include a strain-specific, constant multiplicative
bias parameter, γi. The observed frequencies would then follow,

f iðtÞ=
γif 0,ie

sitPm
j γj f 0,je

sj t

By observing these biased frequencies instead of the actual fre-
quencies, we would infer si and γif0,i, therefore only biasing the nui-
sance intercept parameter.

As expected from the above analysis, there was no consistent,
detectable correlation between genomic position and inferred fitness
(Fig. S2). However, there is one exception: in a couple of the L
experiments, it looks like there is a dip in median fitness around
~2.7Mb, seemingly caused by a lack of neutral/beneficial variants. This
position is about ~1Mb downstream from the origin of replication
(3.8Mb), and ~1Mb upstream of the termination of replication and Dif
site (~1.5Mb). So it appears to be unlikely an artifact of uneven copy
numbers or a DNA extraction bias. The origin of this signal is unclear,
but seems to indicate that there is a region of the L genome that is
more likely to have deleterious effects from knockout mutations.
However, in any case, the dip seems to be isolated to a seemingly
unremarkable portion of the genome, and thus does not call into
question the general validity and assumptions of our model.

Analysis
Similarity of fitness effects across environments. To compute the
correlation of knockout fitness effects across environments for a given
genetic background (main text Fig. 3), we first removed genes with
noisy fitness effects (σs > 1%), then calculated the weighted pearson
correlation coefficient, where genes are labeled k and environments
are labeled i, j,

wk = 1=ðvar ŝi,k + var ŝj,kÞ ð15Þ

μðxÞ=
P

kwkxkP
kwk

ð16Þ

wcovðx,y;wÞ=
P

kwkðxk � μðxÞÞðyk � μðyÞÞP
kwk

ð17Þ

ρi,j =
wcovðŝi,ŝj;wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wcovðŝi,ŝi;wÞwcovðŝj ,ŝj;wÞ
q ð18Þ

We then performed hierarchical clustering using Ward’s method
across environments for each genetic background, with 1 − ρi,j as the
distance metric. Environment pairs with ρi,j < 0 are set to 0 for the
purposes of clustering, as there were few negative correlations, and all
were small.

We used a bootstrapping procedure to estimate the statistical
support for each cluster of environments. Using only the intersection
of genes that passed across all environments, we performed standard
resampling of genes with replacement, and then repeated the corre-
lation measurement of knockout fitness values for each pair of envir-
onments. Then we repeated the hierarchical clustering and compared
each branching of the original tree to the bootstrapped tree using the
method of ref. 67. We repeated the resampling procedure 5000 times
for each genetic background and reported the average support for
each clade.

We performed a principal components analysis on our data, using
normalized fitness effects as the features. We only included genes that
had measured fitness effects across all experiments. We normalized
the fitness data separately for each experiment so that the scale of
fitness effects was comparable across conditions. We first performed a
quantile transform (to a gaussian distribution) on the fitness effects
using sklearn.preprocessing.quantile_transform, and then
subsequently centered and scaled the data to turn it into a standard
normal. We performed the PCA with sklearn.decomposition.PCA.

Network of gene-by-gene correlations. To investigate potential
relationships between genes in the different strain investigated in our
work, we sought to quantify the degree of correlation of fitness mea-
surements across all environments between every pair of genes, a
quantity that has been referred to as cofitness41. Highly correlated fit-
ness measurements may indicate that genes are connected via gene
regulation. In order to account for the fact that themeasurement error
in fitness measurements varies between genes and environments, we
computed the cofitness of every pair of genes i, j as the weighted
pearson correlation coefficient, where environments are labeled k,
analogous to equations (15)–(18). We excluded genes that were not
called as significantly non-neutral in at leastone experiment, and genes
with successful fitness measurements in <4 experiments.

The vast majority of non-zero correlations are likely generated by
chance, due to the relatively small number of environments where
fitness is measured. Therefore, for each pair of genes, we generated a
null cofitness distribution through a resampling procedure performed
300 times, by (1) randomly permuting the fitness assignments for both
genes, (2) resampling each fitness value such that ŝboot ∼N ðŝ,std ŝÞ
(“parametric bootstrapping”), and (3) recalculating cofitness via
equations (15)–(18). We then compared the measured cofitness to the
null distribution to generate a one-sided p-value. After correcting the
set of p-values with a Benjamini–Hochberg FDR correction, we con-
sidered gene pairs to be signficantly correlated at α =0.05, effectively
drawing an edge between the two genes in the cofitness network.

After identifying statistically significant correlations between
genes across environments, we sought to cluster genes into commu-
nities, without considering the magnitude or sign of the cofitness
values. We used the ’Fluid Communities’ algorithm55, as implemented
in the networkx python package68, because of the flexibility of the
algorithm, and the resulting communities had the highest modularity
of all community-finding algorithms we explored. As the fluid com-
munities algorithm is initialized stochastically, and requires pre-
specifying k communities, we ran the algorithm on our data across
varying community sizes, k∈ [4, 20], with 200 replicates for each k
(Fig. S13). We then picked the communities with the highest mod-
ularity for each genetic background. For the purposes of community
finding, we treated all significant edges as the same, without con-
sidering the actual cofitness value of the edge. All community sets
found had modularity > 0, indicating that genes were more tightly
connected within their community compared to between
communities.

Standard gene ontology enrichment analysis was performed on
each community in each genetic background with the goatools
python package69, using Fisher’s exact test to find significantly over-
represented annotations in a gene set, with an FDR correction
and α =0.05.

We sought to check if variance in fitness across environments for
any given knockout could predict if two genes would stay in the same
cluster across genetic backgrounds, as a control for the observed
correlation with EcoliNet score. We average fitness variance across
environments over the two knockouts of interest, referring to the
quantity as 〈var (s)〉. We fit a logistic model with normalized EcoliNet
score of the gene pair, nscore � score=std score and nvar≡ 〈var (s)〉/
std〈var (s)〉 as the predictors (standard deviation is taken overall
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knockout pairs), and the probability that the two genes are together in
strain 2, if they were together in strain 1 as the response variable,
logpi=ð1� piÞ=nscoreβscore +nvarβvar +β0 + ϵi. The results are shown
in Fig. S20.

It is known that community detection algorithms can have
potential surfaces with large plateaus without a clear maximum, i.e.,
can give many solutions with similar modularity but different
groupings70. We wanted to see if the observed (mostly) “random
reassortment” of genes among clusters between genetic backgrounds
could be explained by this effect. Thus, we compared the optimal
partition of each background to the 100 next-best partitions across all
backgrounds (Fig. S14). For each suboptimal partition, we asked if two
genes were in the same cluster in the optimal partition, what is the
probability that they are also in the same cluster in the suboptimal
partition. We see that if we compare partitions in the same genetic
background, this probability is around 40%, while it is around 10%
when comparing partitions across background. This suggests that
different reasonable partitions of the cofitness networks are much
more similar within genetic backgrounds than between backgrounds.
We also reordered the genes of the cofitness network such that they
followed the ordering of another genetic background’s optimal parti-
tion (Fig. 4B). It is apparent that replotting the cofitness matrix using
another genetic background’s clustering does not produce noticeable
structure. Together, these results suggest that while different reason-
able partitions can give slightly different clusters, the observed reas-
sortment of knockout fitness correlations among backgrounds cannot
just be explained by failures of the community detection algorithm.
We also investigated the extent to which the structure of our cofitness
networks was driven by measurement noise (Figs. S15, S16). We
leveraged the fact that we had at least two biological replicates per
experiment, and computed new cofitness networks (in the same
manner as described above), only using either biological replicate “1”
or “2”. We can see that even when the data are independently split, the
cofitness networks within a genetic background are more similar than
between backgrounds.

Genome evolution. We sought to understand if knockout fitness
measurements could predict the probability that a gene wouldmutate
in the LTEE. To that end, we downloaded clonal sequencing data from
Tenaillon et al.58, where the authors isolated and sequenced clones
from a number of timepoints across all 12 lines of the LTEE, and
identified mutations relative to the REL606 ancestor. We excluded
synonymous SNPs from our analysis. A representation of the raw data
can be found in Fig. S24.

We then sought to understand if knockout fitness effects can
predict if amutationwill appear in a gene in the Tenaillon et al. dataset,
as a proxy for establishment. For REL606, classified a gene asmutated
if a mutation appeared in one of the 12 LTEE lines (excluding mutator
populations). For S and L, we classified genes as mutated only if they
were present in the appropriate sublineage, i.e., in REL11830,
REL11036, or REL11831, REL11035 for S and L, respectively. We also
excluded mutations that were already present in our S and L clones,
which we determined from clonal sequencing data from Plucain
et al.46. We then fit a logistic model with knockout fitness effect as the
predictor variable and gene mutated status (between timepoints) as
the response variable,

logpest,i=ð1� pest,iÞ= ±~siβest ± + β0 + ϵi

We fit two different coefficients for beneficial and deleterious
mutations in each environment, βest+ and βest−, respectively. We only
include genes that are putatively neutral, i.e., ∣s∣ < 0.005 and not called
as significantly non-neutral, along with genes that are either sig-
nificantly beneficial or deleterious, all at significance level α = 0.05.We
normalized the fitness values by the median value of the non-neutral

genes, i.e.,

~si =
si

med
i=2neutral

si ð19Þ

We use the logistic model implementation in the statsmodels
python package71. We used the standard method of
Benjamini–Hochberg to control for the false discovery rate, pooling all
tests across beneficial and deleterious coefficients. To test if there is a
significant difference between REL606 logit slopes at 0–5k and 5–20k,
we employed a permutation test. To construct a null distribution of the
difference in slopes, for eachgenewe shuffledwhether it ’established’ (0
or 1) between 0–5k and 5–20k and recomputed the regression coeffi-
cients 1000 times, recording the difference. We then compared the
actual difference in coefficients to the null distribution to get p-values.

Changes in gene expression. We used a microarray gene expression
dataset reported by Le Gac et al.16 to compare to our knockout fitness
measurements, downloaded from the NCBI Gene Expression
Omnibus72, importing data with GEOquery73. We primarily used the
GEO2R tool to process the raw microarray data along with the R
package limma74,75. After applying a log2 transform to the data, we
ensured that all collected samples had approximately the same
intensity distributions by performing a quantile normalization. Then,
pooling all replicates within a strain, we fit a linearmodel to our data to
determine the relative log-fold change in expression between different
strains, taking into account the measured mean-variance relationship.
A representation of the raw data can be found in Fig. S23. We also
compared the distribution of log-fold fitness effects between neutral
andnon-neutral genes (Fig. 5B).We computedp-values to compare the
distributions with standard Mann–Whitney U tests.

We then fit a linear model to investigate if there was a correlation
between fitnessmeasured in a given environment, si, and log-change in
gene expression between evolutionary timepoints ΔEi, such that

ΔEi = ±~siβexp± + β0 + ϵi

Similar to the gene establishment model, we fit two different
coefficients for beneficial and deleterious mutations in each environ-
ment, βexp+ and βexp−, respectively (Fig. S25). We only include genes
that are putatively neutral, i.e. ∣s∣ <0.005 and not called as significantly
non-neutral, along with genes that are either significantly beneficial or
deleterious, all at significance level α =0.05. We normalized the fitness
values by the median value of the non-neutral genes, in the same
manner as equation (19). We fit themodel with weighted least squares,
as implemented in the statsmodels python package71, with weights
wi∝ 1/varΔEi, to incorporate the fact that there are different levels of
measurement error in the log-fold change expression for each gene.
We used the standard method of Benjamini–Hochberg to control for
the false discovery rate, pooling all tests across beneficial and dele-
terious coefficients.

As a control, we also investigated if our results would change if we
excluded poorly expressed genes. It is perhaps the case that neutral
knockouts are potentially a bad comparison class, because many of
them may be poorly expressed at all times, and thus ineligible to
undergo large changes in expression. We can test for this alternative
hypothesis by focusing our analysis on solely initially highly expressed
(50th percentile) genes, excluding poorly expressed genes. The results
are shown in figure S26. The regression coefficients change somewhat,
but not qualitatively, showing that the aforementioned hypothesis is
not likely the driver of the signals we observed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Glycerol stock copies of the REL606, 6.5k S, and 6.5k L Tn5 barcoded
libraries are available upon request. Raw sequencing reads have been
deposited in the NCBI BioProject database under accession number
PRJNA900607. All processed data are available on GitHub, https://
github.com/joaoascensao/S-L-REL606-BarSeq. Other datasets refer-
enced may be accessed online: the LTEE time-resolved clonal sequen-
cing data (https://barricklab.org/shiny/LTEE-Ecoli/)58; the LTEE time-
resolved metagenomic sequencing data (https://github.com/
benjaminhgood/LTEE-metagenomic)47; S and L clonal sequencing
data (Plucain et al. SI)46; EcoliNet (https://www.inetbio.org/ecolinet/)57;
transcriptomic measurements of LTEE strains (BioProject
PRJNA144635)16.

Code availability
All codes used to process the data and perform the analyses are
available on GitHub, https://github.com/joaoascensao/S-L-REL606-
BarSeq.
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