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Circuit mechanisms of hippocampal reactivation during sleep

Paola Malerba1Maxim Bazhenov*

Department of Medicine, University of California San Diego, United States

Abstract

The hippocampus is important for memory and learning, being a brain site where initial memories 

are formed and where sharp wave – ripples (SWR) are found, which are responsible for mapping 

recent memories to longterm storage during sleep-related memory replay. While this conceptual 

schema is well established, specific intrinsic and network-level mechanisms driving spatio-

temporal patterns of hippocampal activity during sleep, and specifically controlling off-line 

memory reactivation are unknown. In this study, we discuss a model of hippocampal CA1-CA3 

network generating spontaneous characteristic SWR activity. Our study predicts the properties of 

CA3 input which are necessary for successful CA1 ripple generation and the role of synaptic 

interactions and intrinsic excitability in spike sequence replay during SWRs. Specifically, we 

found that excitatory synaptic connections promote reactivation in both CA3 and CA1, but the 

different dynamics of sharp waves in CA3 and ripples in CA1 result in a differential role for 

synaptic inhibition in modulating replay: promoting spike sequence specificity in CA3 but not in 

CA1 areas. Finally, we describe how awake learning of spatial trajectories leads to synaptic 

changes sufficient to drive hippocampal cells’ reactivation during sleep, as required for sleep-

related memory consolidation.
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1. Introduction

Sleep-mediated memory consolidation is the process by which the brain reinforces selective 

memories acquired during the day, rendering them resilient to interference from what we 

learn in future days. While the hippocampus quickly stores information on daily events, 

sleep represents a concerted brain-wide effort in which the dialogue of hippocampus and 

cortex mediates memory consolidation. Consolidation is selective (Feld et al., 2016; 

Ellenbogen et al., 2006; McDevitt et al., 2015)), integrative (new memories are embedded in 

the personal narrative and knowledge (Rasch & Born, 2013)) and progressive (the memory 

processing continues for hours to years (Diekelmann & Born, 2010)). This very layered and 

complex brain function is tied to some characteristic brain rhythms, particularly those found 

during Non-Rapid Eye Movement (NREM) sleep, which cover a range of regions, 
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frequencies and time scales (Rasch & Born, 2013): slow oscillations in cortex (0.2–1.5 Hz, 

lasting from a few cycles to minutes of oscillations), cortico-thalamic spindles (9–16 Hz, 

each event lasting 0.5–3 s) and hippocampal sharp-wave ripples (150–250 Hz, each event 

lasting 60–100 ms). This rhythmic orchestra is found to play during sleep in an organized 

manner, where the slowest rhythm (slow oscillations) modulates the occurrence probability 

of the intermediate rhythm (spindles) and in turn the coordination of slow oscillations and 

spindles modulates the occurrence of hippocampal ripples (Latchoumane, 2017; Molle & 

Born, 2011; Rasch & Born, 2013; Sirota et al., 2003; Staresina, 2015). The differential 

neurotransmitter levels that characterize sleep are thought to play a role in facilitating the 

generation of these oscillations, in particular hippocampal ripples (Atherton et al., 2015; 

Buzsaki et al., 1983; Hasselmo, 1999; Vandecasteele, 2014). The known connections 

between these rhythms and memory consolidation include: (a) increased power of slow 

oscillation, e.g., by auditory cues or electrical stimulation during sleep, enhances memory 

performance (Marshall, 2006; Ngo, 2013; Ngo, 2013), (b) intense learning increases the 

number of spindles found during sleep (Studte et al., 2017) , and (c) disrupting ripples 

impairs memory consolidation (Ego-Stengel & Wilson, 2010; Girardeau, 2009) . 

Furthermore, cell sequence replay, a phenomenon in which cells active during the task 

reactivate during sleep preserving their firing order, happens in the hippocampus during 

sharp waveripple (SWR) events , and in cortex during the active parts of the slow oscillation 

(called Up states) (Foster & Wilson, 2006; Hoffman & McNaughton, 2002; Ji & Wilson, 

2007; Schwindel & McNaughton, 2011; Skaggs & McNaughton, 1996; Sutherland & 

McNaughton, 2000; Wilson & McNaughton, 1994; Wu & Foster, 2014) . One leading 

hypothesis is that sleep dependent consolidation happens due to coordinated reactivation of 

cell sequences across hippocampus and cortex, which enables appropriate synaptic plasticity, 

and that sleep rhythms and precise coordination between them are crucial for this organized 

hippocampo-cortical activation to occur (Mehta, 2007).

As part of the question of how is memory consolidation performed by the brain during sleep, 

understanding the specific mechanisms that shape the emergence of hippocampal SWRs and 

the sequence replay within them, is essential. Indeed, when experimental interventions 

impose the presence of a cell spiking sequence within SWR, they can engineer a new 

memory (Liu, 2012; Ramirez et al., 2013; Ramirez, 2013) and when the content of SWR 

replay is damaged, so is the memory performance after sleep (Ego-Stengel & Wilson, 2010; 

Girardeau, 2009). In this work, we show how a relatively simple biophysical model of 

activity in CA3 and CA1 can offer insights on the dynamics of sharp waves in CA3 and 

ripples in CA1, and particularly on how reactivation in CA3 and CA1 is shaped by different 

emergent mechanisms. We then show how a model of a “virtual rat” exploring an 

environment and learning one trajectory can be used to theorize on the relationship between 

plasticity during learning and spontaneous reactivation during sleep, in particular 

emphasizing how to learn a new memory it is crucial to choose which cells can encode for it 

in relation to the pre-existing coding structure already built. Any new learning always takes 

place on the background of existing memories, so it is a continuous process of integration 

and refining of synaptic architecture. Effective hippocampal sleep replay of novel 

information requires encoding of such information during learning that takes into account 

what is already learned (Grosmark & Buzsaki, 2016).
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2. Results

2.1. How are ripples generated in CA1?

Hippocampal sharp-wave ripples involve two different sub-regions, areas CA3 and CA1. In 

fact, they are commonly referred to as SWRcomplexes. While the activation in CA1 and 

CA3 during SWR complexes is closely related, it is also known to have different properties 

among the two regions at the level of single unity activity and LFP (Csicsvari, 2000; 

Csicsvari et al., 1999; Mizuseki, 2012; Sullivan, 2011). In this work, we are going to refer to 

sharp waves as the activity in CA3 which contributes to a SWR complex, and to ripples as 

the activity in CA1 which contributes to a SWR complex. Sharp waves are short-lived bouts 

of intense excitatory spiking which invade area CA3 and drive spiking of excitatory and 

inhibitory neurons in area CA1. Recordings of local field potentials (LFP) in area CA1 show 

that when CA3 sharp-wave inputs arrive, a high-frequency oscillation – ripple event - is 

developed in the CA1 pyramidal layer (Buzsaki, 2003, 2015; Csicsvari, 2000; Gan, 2017). 

The mechanism that makes a ripple appear in the presence of a CA3 sharp wave has been 

investigated in vitro (Kubota, 2003; Maier et al., 2003; Maier, 2009; Schlingloff, 2014) and 

in vivo (Buzsaki, 2003; English et al., 2014; Oliva, 2016; Patel, 2013; Stark, 2014; Ylinen, 

1995), and a number of computational studies have attempted modeling of CA1 ripples, 

either focusing on the role of electric coupling (known as gap junctions) between 

hippocampal pyramidal cells in generating and propagating a ripple (Draguhn, 1998; Traub 

& Bibbig, 2000; Traub, 1999), or suggesting a predominant role of more-than linear synaptic 

potentiation of the few and rare synaptic connections among pyramidal cells in CA1 (Jahnke 

et al., 2015; Memmesheimer, 2010). A different approach looks at CA1 ripples as their own 

local oscillation triggered by incoming CA3 excitation (Cutsuridis & Taxidis, 2013; 

Ellender, 2010; Taxidis, 2012), in which inhibitory synaptic connections are responsible for 

the oscillations in CA1, the latter can be called interneuron-based models of ripples.

In our recently proposed model of ripple generation in the presence of CA3 input (Malerba, 

2016), ripples are not persistent oscillations but rather emerge from a short-lived transient 

network behavior, driven by highly synchronous input onset. This newly designed ripple 

mechanism suggests that CA1 basket cells do fire at high frequency pacing the ripple (Fig. 

1A) but do not coordinate via their reciprocal inhibition. Instead, their initial coordination is 

due to the strong incoming CA3 input, and noise-induced phase dispersion dynamically 

constrains ripple duration (Fig. 1B). Local CA1 inhibition then selects which CA1 

pyramidal cells get an opportunity to spike (replay) in a given ripple event. This model 

shows strong agreement with the in vivo results of Stark (2014)), where optogenetic 

stimulation was used to drive spiking in the populations of basket cells and pyramidal cells 

together and separately; this study predicted that to observe a ripple in the CA1 LFP, input to 

both pyramidal and basket cells is necessary. In fact, the strong inhibitory transient in basket 

cells initiated by input (either from a CA3 sharp wave or from optical drive) will suppress 

pyramidal cell activity in CA1, resulting in a shunted CA1 LFP, if pyramidal cells were not 

excited by the same input.
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2.2. Role of CA3 in generation of sharp-wave ripple complexes

For a CA1 ripple to occur a CA3 sharp wave is required. While CA1 ripples have a distinct 

high-frequency signature and show locked spiking to the LFP in excitatory and inhibitory 

populations, activity in CA3 during a sharp wave is characterized by intense pyramidal and 

basket cell spiking, seems to be strongly related to the topology of recurrent connections 

between CA3 pyramidal cells, and does not show locking to CA1 ripples (Csicsvari, 2000; 

Csicsvari et al., 1999; Sullivan, 2011).Computational models of CA3 sharp wave activity 

have suggested either a role of gap junctions in initiating and propagating the activity 

(Draguhn, 1998; Traub & Bibbig, 2000; Traub, 1999) or emphasized the role of the variance 

in the strength of synaptic connections between pyramidal cells (Omura, 2015). In general, it 

is agreed that recurrent CA3 pyramidal cells connectivity is important if not crucial for CA3 

sharp waves to emerge in the network activity.

Here we propose a novel model of CA3-CA1 sharp-wave ripples (Fig. 2), extending our 

previous model of ripple generation in CA1 (Malerba, 2016) to hippocampal areas CA3 and 

CA1. This model shows spontaneously occurring large CA3 excitatory events (the CA3 

sharp waves) driving rhythmic spiking in CA1 interneurons (the CA1 ripples), which give 

the combined sharp-wave ripple complexes. CA3 activity emerged spontaneously and 

triggered stochastic activation of SWR complexes in CA3 and CA1 combined, with the 

termination of CA1 ripples driven by the same de-coordination mechanism as in the CA1 

model. In this new model of CA3-CA1 SWR complexes, different subsets of neurons in both 

CA3 and CA1 participated in different SWR events (Fig. 2A) as observed experimentally 

(Patel, 2013). This model of CA3-CA1 SWR complex activity was based on synaptically 

coupled populations of pyramidal cells and basket cells (Fig. 2A). It included highly 

recurrent strong excitatory AMPA receptor-mediated connections between CA3 pyramidal 

cells, and weak and sparse recurrent excitatory connections within CA1 pyramidal cells 

(Shepherd, 2004). CA3 pyramidal cells projected excitatory connections to CA1 cells, 

representing the Schaffer Collaterals. The CA3 network and its projections to CA1 had 

stochastic densities and strengths within a radius of about a third of the target network, 

which is consistent with experimental analysis of CA3 pyramidal cells arborization (Li, 

1994). Importantly, each neuron received an independent noise current which drove 

occasional irregular spiking, and a baseline constant drive which was selected from a 

Gaussian distribution. Details of the computational model rationale and equations are 

reported in Materials and Methods.

As shown in Fig. 2A, the CA3 network spontaneously organized into bouts of pyramidal cell 

spiking, which drove spiking events in CA1. As a result, CA1 interneurons organized their 

firing into high frequency oscillations, and a few pyramidal cells spiked within windows of 

opportunity left at the troughs of the lateral synaptic inhibition oscillations, thus forming a 

SWR complex event across the combined CA3-CA1 network. As in vivo (Davidson et al., 

2009), SWR complexes occurred in temporal clusters punctuated by long pauses. A 

representation of the LFP in the model obtained by averaging the synaptic currents 

impinging on subsets of pyramidal cells showed that combined SWR events in CA3 and 

CA1 were localized, and the location of the SWRs within the CA3-CA1 network changed in 

time (Fig. 2A). This is consistent with experimental findings showing that CA1 ripple events 
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can be localized in space (Patel, 2013; Ylinen, 1995) and that CA3 pyramidal cells are 

known to be very active during SWR, but do not spike phase-locked to CA1 ripples 

(Atherton et al., 2015; Sullivan, 2011). The general activity of the model was consistent with 

known properties of SWR complexes: ripple frequency was 174 ± 21.3 Hz, ripple durations 

were 54 ± 27 ms, sharp wave durations were 126 ± 23 ms and the interevent pauses (time 

durations between two successive sharp waves in CA3 or ripples in CA1) showed 

approximately exponential distributions, which fitted to exponential functions with rates of 

1.08 Hz in CA3 and 1.2 Hz in CA1 (Buzsaki, 2015).

Spiking of the excitatory and inhibitory populations in CA3 and CA1 in our model revealed 

the fundamentally different dynamics in the two regions: with CA3 activity characterized by 

similar spiking (initiated by pyramidal cells) in the excitatory and inhibitory populations, 

while CA1 ripples were primarily inhibitory events where few pyramidal cells find small 

windows of opportunity to spike (Fig. 2B and C). This is evident when activity in a region 

(either CA3 or CA1) was measured by either the fraction of a cell population spiking during 

an event (CA3 sharp wave or CA1 ripple, respectively) (Fig. 2B) or by the number of spikes 

that each neuron shows during the event (Fig. 2C).

Despite the difference in the dynamics of sharp wave and ripples, the model captured the 

interaction between CA3 and CA1 patterns of activity during SWRs, which coordinated and 

modified their locations, timing and size when network connectivity was rearranged (Fig. 3). 

To test how CA3 activity is reflected on CA1 activity, we used a parameter which controls 

the density of the recurrent connectivity within CA3 pyramidal cells and of Schaffer 

Collaterals projections on CA1 pyramidal cells (k, see Section 6). Larger k values 

corresponded to less dense and more broadly distributed excitatory connections, and 

viceversa smaller k values resulted in more narrow and denser excitatory input convergence 

(Fig. 3A and B). Since SWRs in our model involved only ever-changing portions of the 

whole pyramidal cell population, we could mark a sharp wave location in CA3 by finding 

which cells were spiking in the event (and the same for CA1 ripples). For each different 

network organization (i.e. k value) we observed that the location of CA3 sharp waves 

changed: from more central and fixed in time for the most dense and narrow recurrence (i.e. 

the lowest k) considered, to distributed uniformly across most of the network in the less 

dense recurrence (largest k) condition (Fig. 3C). This pattern, from more concentrated and 

fixed to more distributed and varying, was mirrored in the CA1 network when we looked at 

the ripple locations (Fig. 3D). Changes in CA3 sharp wave activity were hence reflected in 

changes of CA1 ripples.

Overall, both the data and the model dynamics suggest that sharp wave and ripples are 

different dynamical objects which interact and depend on each other. Importantly, however, 

in vivo not all sharp wave –like events in CA3 dynamics are matched by a CA1 ripple (; 

Csicsvari et al., 1999; Sullivan, 2011) [. This leads to the question what properties of sharp 

waves in CA3 determine the likelihood of successful ripple event in CA1. Indeed, our model 

revealed the spontaneous occurrence of “failed” sharp waves: excitatory events in CA3 that 

could not induce ripples in CA1. To quantify the properties of successful vs failed SPW 

events, the following procedure was applied. We first detected putative sharp wave events in 

CA3 activity by thresholding on the ongoing CA3 pyramidal cell population spiking activity 
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(peaks higher than 1std above baseline are putative SPWs). We then looked at the ongoing 

CA1 activity in response to such inputs, and checked if a ripple was triggered by the putative 

SPW event. If no ripple was found, we labeled the SPW “failed”, otherwise “successful”. 

When comparing activity in CA3 during successful vs failed sharp waves, we found that 

they could be similar in the fraction of cell spiking during the events (in some sense their 

“size”, how many cells were spiking at all), but that the synchronicity of excitatory firing 

during a sharp wave was the property best predicting successful sharp waves vs. failing ones. 

This fact is illustrated in the comparison between Fig. 4A and B: in each panel we show the 

probability density of event size and synchronicity of either a successful (panel A) or failed 

(panel B) sharp wave; scaled within its own group. This means that if there were a ripple 

event in CA1, most often the corresponding sharp wave activity in CA3 would show high 

synchrony and about 35% of pyramidal cells spiking (Fig. 4A, red2 region). CA3 sharp wave 

events showing high peak synchrony (> 1) could be relatively rare (Fig. 4A, lighter blue 

area) but they always triggered CA1 ripples (dark blue in the corresponding region in Fig. 

4B). At the same time, if CA3 sharp wave event did not trigger a ripple in CA1, then most 

likely this CA3 event showed low synchrony and about 15–20% pyramidal cells spiking 

(Fig. 4B, red region).

In summary, we found that highly synchronous SPWs in the CA3 area never failed to trigger 

a ripple even if they were not necessarily the most common type of SPW in the spectrum of 

the CA3 activity. On the other hand, for CA3 events which show very low synchrony and 

low size, an event would very rarely lead to a ripple, regardless of how often such events 

actually happened in the CA3 area. We conclude from this observation that our model shows 

a nonlinear threshold in the mapping of CA3 sharp waves on CA1 ripple activity. The 

dynamic gating of CA3 sharp waves by CA1 ripple has a functional implication: potentially 

this mechanism can contribute to how the hippocampus “decides” what content of CA3 

activity should be consolidated (and hence broadcasted to cortex via ripple activity) and 

what should not, but this is a topic for further investigation.

2.3. Role of CA3 input in sequence replay during SWR complexes

The importance of understanding SWR dynamics lies in their crucial role in memory 

formation and consolidation. To date, the mechanisms underlying sequence reactivation 

during SWRs (one of the possibly essential components of the process of memory 

consolidation) are not known. One hypothesis is that input-driven partial reactivation in CA3 

can induce pattern completion within the highly recurrent CA3 network, which in turns 

drives a refined CA1 spike reactivation to be broadcasted to cortex.

We next used our model of CA3-CA1 SWR complexes to explore the relationship between 

spontaneously emerging cell pair activation during SWRs and the properties of the cells 

within such a pair (a cell pair being the simplest building block of a cell spiking sequence). 

To make predictions on which properties can determine the probability of reactivation in two 

pyramidal cells which are not necessarily directly connected, we considered both synaptic 

inputs and intrinsic excitability. Specifically, in our analysis, a pair is defined as two cells 

2For interpretation of color in Fig. 4, the reader is referred to the web version of this article.
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spiking together in specific order during many SWR. We studied pairs of CA3-CA3 and 

CA1-CA1 cells, and quantified inputs to the cell pairs differently depending on the 

hippocampal regions involved, but in all cases we considered the role of excitatory synaptic 

input, inhibitory synaptic input and intrinsic excitability of either one of the cells in the pair.

We first measured the degree of co-activation of a cell pair as the fraction of the SWR events 

in which both cells in the pair spiked in the correct order (we called it R-activation score), 

and tested all possible cell pairs in the CA3 network. For each cell pair, we also found the 

total excitatory input shared by the cells in the pair by finding all pyramidal cells which 

projected to both cells in the pair and multiplying the synaptic weights of such connections 

(Fig. 5A, left panel). We proceeded analogously for shared inhibitory connections, and used 

a parameter regulating the mean membrane voltage of each cell as a proxy for the intrinsic 

excitability of the cell. Hence, for each possible ordered cell pair, we had collected (1) a 

value of the excitatory connection strengths shared by the pair, (2) a value of the inhibitory 

connection strengths shared by the pair and (3) two values of intrinsic excitability (one for 

the first cell in the pair, labeled “A” in Fig. 5A, and one for the second – or “B” – cell in the 

pair). The average (across all pairs) value of each of these different properties was calculated 

for each range (±5%) of the R-activation score to plot the distributions (Fig. 5A, right panel). 

We found that CA3-CA3 pairs of neurons that spiked more often together during SPWs 

tended to have (a) higher amount of shared excitatory and inhibitory inputs; (b) higher 

intrinsic excitability of the first cell in the pair; (c) lower intrinsic excitability of the second 

cell in the pair. While it is intuitive that common synaptic excitation could promote co-

spiking in two cells, it could also make them to be activated more likely in random order and 

all the time. Thus, we predict that the role for an increased shared inhibitory input in 

promoting orderly and frequent R-activation of a CA3-CA3 cell pair during sharp waves is 

to make activation specific, in fact shared inhibition is an efficient mechanism to organize 

spiking in networks (when common inhibition is high network activity is more likely to 

organize (Bazhenov & Stopfer, 2010). Similarly, having high intrinsic excitability in the first 

cell of the pair could promote R-activation, but too high excitability of the second cell could 

harm the orderliness (and specificity) of the pair.

We next repeated the analysis for CA1-CA1 pairs, and because there are few and sparse 

excitatory connections between CA1 pyramidal cells, we concentrated on the excitatory 

inputs coming from the CA3 network and reaching both cells in the pair (Fig. 5B). We found 

that excitatory input significantly modulated the co-activation of CA1 neurons, i.e., CA1 

pairs receiving overall larger shared excitatory synaptic inputs had higher R activation 

scores. Surprisingly, as shown by the small size of bars for GABA and intrinsic excitability 

in Fig. 5B, we found that inhibitory synaptic inputs and intrinsic excitability contributed 

differently to CA3 vs CA1 reactivation, in which they significantly promoted the activation 

of CA3 cell pairs, but not of CA1 cell pairs. We reasoned that in the case of CA1 ripple 

activity, the ongoing inhibitory background is so strong (because ripples are strong 

inhibitory events) that additional specific inhibitory synapses are not required to promote 

selectivity, while the shared excitability is still necessary to promote activation.

In light of these results, functionally we can suggest that reactivation during SWRs in CA3 

is a network-emergent mechanism, and as such carefully regulated by excitatory and 
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inhibitory synapses, while in CA1 it is input-driven, and as such regulated mainly by shared 

CA3 synaptic projections. Our work suggests a scenario in which activation during ripples is 

a network-wide phenomenon, shaped by synaptic inputs differently within CA3 and CA1, 

and happening during events which include non-linear dynamic gating of CA3 sharp wave 

activity by CA1 ripples. It further suggests that careful changes in synaptic inputs preceding 

sleep could induce changes in the cell sequence activation seen during sleep.

2.4. Connecting behavior to learning, and to spontaneous reactivation during sleep: 
learning a trajectory while forming a reactivation trace

Since our study suggests that CA3 input is not only necessary for ripples to happen in the 

CA1 area, but it is also required for appropriate reactivation of the CA1 sequences, we next 

asked if awake learning could lead to repeatable patterns of CA3 reactivation during sleep. 

To this aim, we embedded our network model of spiking cells in a narrative of three stages: 

Pre-sleep, Learning Experience and Post-sleep, often used in the experimental paradigms. 

Just as in vivo, our goal was to compare spiking in Post-sleep and Pre-sleep nights in 

relation to the activity during the Learning Experience. We chose to tie our model Learning 

Experience to a paradigm of “trajectory learning” (Jones, 2012, 2015), where an animal, in 

an enclosure furnished with a number of feeders (in our case 8), learns to visit three selected 

feeder locations in a given order motivated by reward. Experimentally, a maze and, in 

general, spatial learning is commonly used to look for learning-related sleep reactivation, 

because the hippocampus has been shown to build a spatial map of environments (Kudrimoti 

et al., 1999; Mehta, 2015; Wilson & McNaughton, 1993), where hippocampal pyramidal 

cells spike at selected locations (place cells) (Davidson et al., 2009; O’Neill et al., 2006), 

and these cell-location code seems to persist across days unless cues in the environment are 

significantly changed (Davidson et al., 2009; O’Neill et al., 2006; Nitz & McNaughton, 

2004; Mehta et al., 1997, 2002). Hence, in vivo, neurons with place fields along a trajectory 

spike in a specific order as an animal moves (spike sequence), and the spiking of the same 

cells can be observed during the sleep sessions (replay). It was shown that sequences 

representing learned trajectories reactivate more often in SWR in Post-sleep vs Post-sleep 

nights (Ji & Wilson, 2007; Kudrimoti et al., 1999; Skaggs & McNaughton, 1996; Sutherland 

& McNaughton, 2000; Wilson & McNaughton, 1993, 1994).

To model sleep phases (Pre-sleep and Post-sleep), we used our network of spiking CA3-CA1 

neurons generating SWR complexes as described above. To model awake and learning 

(Learning Experience phase) we chose to model a generic spiking activity from Poisson 

point processes (which we interpret as the awake spiking of pyramidal cells) with rates tied 

to the pre-defined place fields (Place Field model) (Fig. 6A) (Malerba et al., 2017). 

Specifically, we constructed a virtual squared enclosure, and tiled it with the place fields, 

each associated with a separate Poisson process at specific location. The spiking rate of each 

process depended on its place field, so that at any moment in time, the position of the 

“virtual rat” in the enclosure would produce a distribution of the probabilities of spiking 

among all locations. The motion paths were straight lines connecting a feeder to the next, 

and an experience was then given by a list of feeders to be visited sequentially. For a specific 

target trajectory (list of 3 specific feeders) to be learned in a Learning Experience phase 

(“target trajectory”), we alternated groups of 3 random feeders with the target trajectory 
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multiple times that generated spiking activity in place cells. These spike trains were then 

used to compute the effect that a classic spike-time dependent plasticity (STPD) rule would 

have had on the synapses between these virtual pyramidal cells. Consistent with intuition, 

synapses between cells that spiked in order consistently multiple times during the Learning 

Experience phase would be strengthened if they favored the spiking order and weakened if 

they opposed it, with the strongest effect being on synapses between cells along the target 

trajectory. For all other cells, the random order spiking would lead to very small net synaptic 

changes (if at all).

The big picture of this “experiment” was constructing a Pre-sleep, Learning Experience, 

Post-sleep sequence, and for that we needed to introduce an explicit relationship between the 

synaptic changes that were calculated during the Learning Experience phase (based on Place 

Field model) and the actual synaptic weights of the CA3-CA1 network which simulated 

sleep (based on the network model of spiking CA1-CA3 neurons). To do that, we assigned 

each place field (and hence each awake spike train of the Place Field model) to a randomly 

selected pyramidal cell in the CA3 network (for a total of 81 pyramidal cells). Then, the 

synapses connecting the 81 cells that had place fields assigned were changed to simulate 

effect of learning, and the specific amount of change (in AMPA and NMDA synapses) was 

dictated by the Learning Experience phase. We considered the CA3-CA1 network with 

newly changed synapses our Post-sleep network, where the Pre-sleep network was given by 

the CA3-CA1 network synapses before the change was introduced.

Hence we simulated a virtual animal model with a Pre-sleep, Learning Experience, Post-

sleep paradigm where we could explicitly define the relation between awake learning and 

synaptic changes from Pre-sleep to Post-sleep. We then tested how spiking during CA3 

sharp waves was different in Pre-sleep vs Post-sleep, in particular for those cells that were 

given place fields associated with a target trajectory. Specifically, 7 cells with place fields 

along the target trajectory were selected to represent the memory spiking sequence. We 

found that during sharp waves the spiking sequence representing the target trajectory was 

reactivated more often in Post-sleep vs Pre-sleep (Fig. 6B). When we compared the gain in 

activation (i.e. activation in Post-sleep minus activation in Pre-sleep) of a sequence 

representing a target trajectory (very often experienced in the Learning phase) to a sequence 

representing any other random trajectory (each possibly experienced only a few times during 

a Learning Experience phase) we found that the target trajectory consistently showed a much 

larger increase in activation in the Post-sleep, compared to generic trajectories (Fig. 6C) 

(Malerba et al., 2017).

The simple model we presented in this section suggests a mechanism of how synaptic 

changes associated with repetitive sequences of cell spiking, as observed in hippocampal 

place cells during animal moving in a maze, can promote reactivation of the same spike 

sequences within sharp wave events during NREM sleep, as required for hippocampus-

dependent memory consolidation.
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3. Materials and Methods

3.1. Network model: equations and parameters

We model SWR activity in the hippocampus using a network of 240 basket cells and 1200 

pyramidal cells in CA3, 160 basket cells and 800 pyramidal cells in CA1. The ratio of 

excitatory to inhibitory neurons is known to be approximately 4 (Andersen et al., 2006) and 

since in our model we did not introduce any of the numerous hippocampal interneuron types 

but for basket cells, we apply that ratio to the pyramidal to basket cell network. This ratio 

also favored the ability of the network to support a background disorganized spiking regime, 

where excitatory and inhibitory currents were able to balance each other (Atallah & 

Scanziani, 2009). For each neuron, the equations are

C v̇ = − gL v − EL + gLΔexp
v − Vt

Δ − w + I(t)

τwẇ = a v − EL − w

v(t) = Vthr v(t + dt) = Vr, w(t + dt) = w(t) + b

I(t) = IDC + βηt + Isyn(t)

τ dηt = − ηtdt + dWt

CA1 cells parameters are reported in (Malerba, 2016); and CA3 cells parameters were as 

follows. Pyramidal cells parameters: C (pF) = 200; gL (nS) = 7; EL (mV) = −58; A = 2; b 

(pA) = 40; Δ (mV) = 2; τw (ms) = 120; Vt (mV) = −50; Vr (mV) = −46; Vthr (mV) = 0. 

Interneurons parameters: C (pF) = 200; gL (nS) = 10; EL (mV) = −70; A = 2; b (pA) = 10; Δ 

(mV) = 2; τw (ms) = 30; Vt (mV) = −50; Vr (mV) = −58; Vthr (mV) = 0.

The coefficients establishing noise size were β = 80 for pyramidal cells, β = 90 for 

interneurons. DC inputs (IDC in the equations) were selected from Gaussian distributions 

with mean 24 (pA) and standard deviation 30% of the mean for pyramidal cells in CA3, 

mean 130 (pA) and standard deviation 30% of the mean for CA3 interneurons, mean 40 

(pA) and standard deviation 10% of the mean for CA1 pyramidal cells and mean 180 (pA) 

and standard deviation 10% of the mean for CA1 interneurons.

Synaptic currents were modeled with double exponential functions, for every cell n = t we 

had Isyn (t) = ∑ j = 1
160 g j ns j n(t) vn − Ei + ∑ j = 1

800 g j ns j n(t) vn − Ee , where Ei = −80 
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mV and Ee = 0 mV, and s j n(t) = ∑tk
F eH t − tk

τD
− eH t − tk

τR
, where tk are all the spikes of 

pre-synaptic cell j.

In this equation, F is a normalization coefficient, set so that every spike in the double 

exponential within parentheses peaks at one, and H (·)is the Heaviside function, ensuring 

that the effect of each presynaptic spike affects the post-synaptic current only after the spike 

has happened. The time scales of rise and decay (in ms) used in the model were as follows 

(Bartos, 2002; Cutsuridis et al., 2010; Malerba, 2016; Taxidis, 2012). For AMPA 

connections from pyramidal cells to pyramidal cells: τR = 0.5, τD = 3.5. For AMPA 

connections from pyramidal cells to interneurons: τR = 0.5, τD = 3. For GABAA connections 

from interneurons to interneurons: τR = 0.3, τD = 2. For GABAA connections from 

interneurons to pyramidal cells: τR = 0.3, τD = 3.5.

3.2. Network model: connectivity

The CA3 network was organized as a one-dimensional network. For connections from a 

CA3 pyramidal cell to the other CA3 pyramidal cells, we first considered a radius (of about 

one third of the network) around the presynaptic cell, and the probability of connection from 

the presynaptic cell to any cell within such radius was higher for cells with indices nearby 

the presynaptic cell and reduced progressively with cell index distance (Li, 1994). 

Specifically, we used a cosine function to shape the probability within the radius, and 

parameterized how fast with index distance the probability had to decay by using a 

monotonic scaling of the cosine phase: if x was the index distance within the network, y = 

arctan(kx)/arctan(k) imposed the decay probability p (y) = Pcos(4y), where P was the peak 

probability and k = 2 was a parameter controlling the decay of connection probability with 

distance within the radius. An analogous structure underlied the probability of CA3 

pyramidal cells to connect to inhibitory interneuron in CA3 and for Schaffer Collaterals to 

connect a CA3 pyramidal cell to CA1 pyramidal cells (Li, 1994). To balance the relationship 

between feed-forward excitation from pyramidal cells to interneurons and feedback 

inhibition from interneurons to pyramidal cells, probability of connection from a presynaptic 

basket cell to a cell within a radius (about 1/3 of the network size) was constant at 0.7, for 

GABAA connections to both CA3 pyramidal cells and interneurons. Within CA1 

connectivity was all-to-all, with the caveat that synaptic weights which were sampled at or 

below zero caused a removal of a given synapse. As a result, most synapses between CA1 

pyramidal cells were absent, consistently with experimental findings (Deuchars & Thomson, 

1996). To introduce heterogeneity among synaptic connections, synaptic weights for all 

synapse types were sampled from Gaussian distributions with variance (σ) given by a 

percent of the mean (μ). Parameters used in the simulations were (we use the notation Py3 

and Py1 to denote pyramidal cells in CA3 and CA1, respectively and analogously Int3/Int1 

for interneurons). Py3 → Py3: μ = 34, σ = 40%μ; Int3 → Int3: μ = 54, σ = 40%μ; Py3 → 
Int3: μ = 77, σ = 40%μ; Int3 → Py3: μ = 55, σ = 40%μ; Py3 → Py1: μ = 34, σ = 10%μ; 

Py3 → Int1: μ = 320, σ = 10%μ;Int1 → Int1: μ = 3.75, σ = 1%μ; Py1 → Int1: μ = 6.7, σ = 

1%μ; Int1 → Py1: μ = 8.3, σ = 1%μ; Py1 → Py1: μ = 0.67, σ = 1%μ. It is to note that the 

mean (μ) declared was normalized by the total number of cells before the variance to the 

mean was introduced in the distribution. Since the CA3 and CA1 networks are of different 
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sizes, a direct comparison of the parameter values or their magnitude across regions would 

not account for the effective values used in the simulations.

4. Discussion

Coordinated activity between hippocampal and cortical regions is believed to be critical for 

recent memories consolidation, and any sufficient damage to the hippocampus leads to 

permanent inability to form new long-term memories of facts and events. Hippocampal 

sharp-wave ripples are essential sleep graphoelements (characteristic events found in the 

ongoing electrical activity, for example as measured in LFPs or EEGs) responsible for 

mapping new memories from hippocampus to the permanent storage in the neocortex. It 

remains largely unknown what are specific intrinsic and synaptic mechanisms behind the 

dynamics of sharp-wave ripples in CA3 and CA1, and how their interaction can lead to 

layered mechanisms controlling the reactivation of sequences of pyramidal cells spikes 

(encoding memories) during sleep.

In this new study, using biophysical models of hippocampal CA1-CA3 network, we found 

that reactivation in CA3 requires fine tuning of excitatory and inhibitory synapses, which 

both contribute to promoting and refining spiking activity across SWR complexes. In CA1, 

the strong inhibitory local activity behind the ripple generation sets the pace of reactivation 

and only leaves a narrow window of opportunity to few pyramidal cells to spike during each 

ripple event. Hence, excitatory pathways from CA3 to CA1 are primarily effective at 

specifically shaping sequence reactivation in CA1. Data shows that reactivation is only 

effective for memory consolidation when happening during SWR complex, which had led to 

the hypothesis that SWRs could be crucial for recruiting synaptic plasticity between 

hippocampus and cortex (Atherton et al., 2015; Battaglia et al., 2004; Buzsaki, 2015; Euston 

et al., 2007; Hoffman & McNaughton, 2002; Kudrimoti et al., 1999; Sutherland & 

McNaughton, 2000) . Our model predicts that CA1 activity can exert a form of dynamic 

gating over the CA3 sharp waves, which have the potential to trigger a ripple but only with 

some probability. In this scenario, the special role of SWR complex, as the events in which 

hippocampal replay happens and is broadcasted to the cortex, gains one more possible 

reason for its importance: CA1 ripples could selectively discard weak CA3 activity unless it 

was promoted (and hence made stronger) by incoming cortical or thalamic input.

We emphasize how simple manipulations of synaptic connections which can represent 

awake learning (such as in the “virtual rat” model)already show that there is a complex 

interaction between the emergent population dynamics in CA3-CA1, which makes the SWR 

events happen, and gating function of CA1, which selects sequences to replay. As a 

consequence, learning cannot just be performed by arbitrarily choosing a few synapses to 

strengthen and a few to weaken, but it has to be orchestrated in agreement with the structure 

of synaptic weights already present in the network (and possibly using neuromodulators 

(Atherton et al., 2015). This implies that in the hippocampus, encoding and awake learning 

should happen in coordination with the reactivation in the previous sleep night, so that they 

can influence reactivation in the following sleep episode. This is consistent with recent data 

showing that the population of cells that are active during awake encoding and those that are 

active in the previous sleep are different in firing rate (Grosmark & Buzsaki, 2016).
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We focused on how learning in CA3 can affect its ability to pattern complete during sharp 

waves, as our previous analysis showed that selective input to CA1 cells is effective at 

inducing CA1 replay during ripple (Malerba, 2016). Cutsuridis and Hasselmo (2011) have 

introduced a model of CA1-medial septum activity capable of learning (during theta 

activity) and reactivation (during ripples), where the crucial learning that enables memory 

replay during ripples is focused at the projections of entorhinal cortex and CA3 onto CA1 

pyramidal cells, which results in a selective amount of combined entorhinal and CA3 input 

reaching each CA1 cell in the model during a ripple. It is possible that to obtain reactivation 

in the whole CA3-CA1 network, resulting in CA1 pyramidal cell sequences, selective 

plasticity between CA3 and CA1 pyramidal cells would also be required in our model. 

Furthermore, reactivation during SWRs is known to possibly happen in a reversed manner, 

where the trajectory is replayed from end to beginning. This is seen in quiet wake, often 

after receiving reward (Roumis & Frank, 2015). It is possible that to achieve reverse replay 

in our CA3 network we would need to explore a role for selective inhibitory synaptic 

weights and/or contribution of the cortical input, in addition to strengthening the excitatory 

connections (Chenkov et al., 2017).

While the complete picture of the continuous process of memory formation, consolidation 

and reconsolidation is still far from complete, it is clear that the mechanism does not start 

and end within the hippocampal formation, and hence this work is only addressing part of 

the story. Theoretical and computational models capable of connecting awake states and 

sleep states, and multiple structures such as cortex and hippocampus are going to be crucial 

in shaping hypotheses that concretely suggest how synaptic plasticity, neuromodulation and 

the coordination of brain rhythms can effectively enable the continuous learning and re-

learning process across days and nights.
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Fig. 1. 
Ripples in CA1 are inhibitory transients. (A) Considering a small network of basket cells, 

with current input (representing CA3 sharp-wave activation) reaching the interneurons 

simultaneously. Note that the input arrives at time 1 and persists for 50 ms (time duration 

shown in the plots). The bar plots show that the population spikes organize in brief pulses, 

with inter-pulse intervals depending on the time scale of synaptic inhibition between the 

cells (τ) and the strength of synaptic connections (α). Note that activity quickly settles for an 

intermediate non-oscillatory firing rate. If this activity was a persistent oscillation, all peaks 

and trough would be the same height across time. (B) In the CA1 network of pyramidal cells 

and basket cells the transient behavior of CA1 ripples is shown when comparing CA3 inputs 

of different duration. Shown are multiple local field potentials and their average for a range 

of different CA3 inputs. Note how the amplitude of high-frequency oscillations in the 

average trace quickly decays regardless of input duration. Black dots identify the time points 

in which ripple detection marks the end of the ripple in the average trace (Malerba, 2016).
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Fig. 2. 
Sharp-Wave Ripple complexes in CA3-CA1 are a combination of two fundamentally 

different dynamics. (A) Model of CA3-CA1 network activity, where CA3 pyramidal cells 

project to both CA1 pyramidal and basket cells. Note that spontaneous and stochastic 

emergence of localized sharp waves in cA3 triggers locally organized ripples. The local field 

potential traces are sampled from two different locations (groups of pyramidal cells) in the 

network, to show that not all locations identify a ripple simultaneously (consistent with 

experimental data). (B and C) shows that sharp wave and ripples have fundamentally 

different dynamics: (1) during sharp waves (SPW) the fraction of excitatory and inhibitory 

cells spiking in balanced, and both populations spike only few spikes during the events; 

while (2) during ripples (RPL) the interneuron population dominates the event, with more 

cells and more spikes per ripples as compared to excitatory cells.
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Fig. 3. 
CA3 connectivity shapes SPW and RPL activity. (A) A schematic drawing representing CA3 

pyramidal cells and CA1 pyramidal Cells connections and how we quantify their incoming 

synaptic input. For CA3 cells, the total synaptic weight coming from all other CA3 

pyramidal cells is summed to compute SAMPA. Note that connectivity in CA3 determines the 

plateau shape of the convergence function over the CA3 population (Materials and 

Methods). For CA1 pyramidal cells, the total synaptic weights for AMPA synapses coming 

from CA3 cells (the Schaffer Collaterals) are summed to compute SSch. In this section, we 

scaled both inputs to probe possible changes in size and locations of SPW and RPL using a 

scaling parameter k, which controls the degree of convergence in the network. The standard 

network has k = 2. (B) Analysis of CA3 behavior across connection profiles. Left: AMPA 

input on CA3 Pyr Cells, as sum of incoming excitatory synaptic weights from other CA3 

pyramidal cells. Lines mark average across 20 simulations. Input is shown for different 

values of parameter k, where higher values of k lower the overall amount of input. Right: 

AMPA input from CA3 pyramidal cells on CA1 pyramidal cells (sum of all incoming 

synaptic weights from Schaffer collateral, see (A)). Lines mark average across 20 

simulations. (C) Distribution of SPW locations for different k. Histograms of different colors 

mark locations of SPWs across all CA3 pyramidal cells. Values of parameter k that lower the 

height of input plateau generate a wide distribution of locations. Conversely, values of k 
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which induce higher inputs condition the SPWs to stay mostly in one central location. (D) 

Distribution of RPL locations for different connection profiles. Note that RPL locations are 

highly dependent on SPW locations. RPL distributions get less focal as the input plateau 

gets lower.
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Fig. 4. 
Nonlinear threshold in the mapping of CA3 sharp waves on CA1 ripple activity. The amount 

of excitatory firing in CA3 and its synchrony are different for SPWs capable of inducing a 

CA1 ripple (left) and those who fail (right). Looking on the pyramidal cells population 

spiking, all SPWs are characterized by an amount of pyramidal cells spiking during the 

event (SPW size) and the peak size of the probability of spiking (SPW synchrony). SPWs 

with more synchronized spiking will show higher peaks in CA3 spiking probability. For 

each SPW event in CA3, its size and synchrony are plot against each other. SPWs are 

separated in different groups depending on whether they triggered a corresponding RPL 

event in CA1 (successful SPW, left) or a RPL event was not found within 50 ms of the SPW 

peak (failed SPW, right). Note that failed SPWs and successful SPW occupy different 

regions in the size/synchrony plane, indicating that CA1 RPLs are triggered by a dynamic 

threshold over CA3 activity, depending on size and synchrony of the excitatory input.
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Fig. 5. 
Differential role of synaptic inputs and intrinsic excitability in promoting reactivation during 

SWR. (A) Relationship between activation scores during ripples and input for pairs of CA3 

pyramidal cells. Left plot: drawing and formulae introduce the synaptic AMPA and GABA 

inputs considered (SAMPA and SGABA) for any cell pair labeled (A, B). These estimates 

quantify the amount of excitatory and inhibitory input that cells A and B have in common. 

Right plot: R-activation of CA3-CA3 cell pairs is related to strength of synaptic inputs and 

intrinsic excitability. The bar plot shows on the x –coordinate the average R-activation score 

of CA3-CA3 cell pairs belonging to the same score group (±5%) and on the y-coordinate the 

level of each different input (SAMPA, SGABA or Intrinsic Excitability for cell A and for 

cell B) for cell pairs within that score group. Error bars mark the standard error of the mean. 

Before grouping cell pairs by their activation scores, each input was z-scored to enable 

comparisons of their respective trends. Therefore, a negative y-coordinate does not reflect a 

negative input, but an input below the average across the whole network. (B) Relationship 

between cell pair R-activation scores and inputs for pairs of CA1 pyramidal cells. Left plot: 

drawing and formulae introduce the synaptic inputs considered. For cell pair (A, B) in CA1, 

excitatory AMPA input from Schaffer collateral alone is labeled SSch, while the role of the 

excitability of presynaptic cells in CA3 is considered in defining the complementary 

excitatory synaptic input SPre. Inhibitory synaptic input SGABA is found analogously to the 
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one for CA3-CA3 cell pairs (in panel A). Right plot: cell pair activation scores of CA1-CA1 

cell pairs is related to strength of excitatory synaptic inputs, but not inhibitory synaptic 

inputs or intrinsic excitability. The bar plot shows on the x –coordinate the average 

activation score of CA1-CA1 cell pairs belonging to the same score group (±5%) and on the 

y-coordinate the level (z-scored) of each different input (SSch, SPre, SGABA or Intrinsic 

Excitability for cell A and for cell B) for cell pairs within that score group. Error bars mark 

the standard error of the mean.
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Fig. 6. 
Learning-driven synaptic changes reflect in increased sequence activation in CA3 sharp 

waves. (A) A representation of the main question: we compare how changes in post vs pre 

sleep activity are influenced by the awake learning experience in between. The Learning 

Experience shows an enclosure (view from above) with 8 relevant locations (red diamonds) 

and a trajectory connecting 3 of them (in yellow arrows). The tiling of symmetrical place 

fields over the 2D enclosure is represented by blue circles, and one example of the shape of 

a place field is shown to emphasize that the spiking probability is highest near the center of 

the place field. The spiking of place cells induced by Poisson process with the fixed place 

fields is then unique per every different trajectory, and has some statistical variance among 

multiple runs of the same trajectory. We use the awake spikes to compute the effect of STDP 

on the synapses connecting the place cells, and assign those synaptic changes to connected 

cells in CA3. Then we can compare the Pre-sleep and Post-sleep spiking in the CA3 

biophysical network.B. Cells which mark learned trajectories reactivate more often (in 

correct order) during post-sleep compared to pre-sleep. The x-axis shows sequences of cells 

within the trajectory of increasing lengths, bars show in percent of all ripples in which the 

sequences reactivated in the correct order. (C) For each simulation (n = 14) we compare the 

Pre-sleep and Post-sleep activation of different trajectories. The red bar shows the Trajectory 

Score Gain for the learned trajectory (i.e. how the activation during post-sleep increased as 

compared to pre-sleep), and the gray bar shows mean and standard error of the Score Gain 
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for the other 336 trajectories tested, which were not learned but were possibly visited during 

the learning experience (Malerba et al., 2017). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.)
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