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Abstract. Detecting cancerous lesions is a major clinical application in emission tomography. Previously, we
developed a method to design a shift-variant quadratic penalty function in penalized maximum-likelihood (PML)
image reconstruction to improve the lesion detectability. We used a multiview channelized Hotelling observer
(mvCHO) to assess the lesion detectability in three-dimensional images and validated the penalty design using
computer simulations. In this study, we evaluate the benefit of the proposed penalty function for lesion detection
using real patient data and artificial lesions. A high-count real patient dataset with no identifiable tumor inside the
field of view is used as the background data. A Na-22 point source is scanned in air at variable locations and the
point source data are superimposed onto the patient data as artificial lesions after being attenuated by the patient
body. Independent Poisson noise is introduced to the high-count sinograms to generate 200 pairs of lesion-
present and lesion-absent datasets, each mimicking a 5-min scan. Lesion detectability is assessed using a
mvCHO and a human observer two-alternative forced choice (2AFC) experiment. The results show improve-
ments in lesion detection by the proposed method compared with the conventional first-order quadratic penalty
function and a total variation (TV) edge-preserving penalty function. © 2014 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JMI.1.3.035501]
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1 Introduction
Statistical reconstruction methods based on the penalized maxi-
mum-likelihood (PML) principle have been developed to
improve image quality.1–4 A number of metrics have been used
to evaluate the quality of reconstructed PET images, such as spa-
tial resolution, noise variance, contrast-to-noise ratio (CNR),
and so on. Work has been done to design quadratic penalty func-
tions to achieve uniform resolution5–8 and to maximize the
CNR.9 Here, we focus on the task of lesion detection.

In previous work,10 we proposed a method to design a shift-
variant quadratic penalty function to improve lesion detectabil-
ity and validated it using computer simulations. In this paper, we
evaluate the benefit of the proposed penalty function for lesion
detection using real data. For the benefit of clarity, we include
some of the basic material that has already been previously pub-
lished. A standard methodology to evaluate lesion detectability
is the receiver operating characteristic curve that compares
the true-positive rate versus false-positive rate for human
observers.11,12 Since human observer studies can be time con-
suming, numerical observers based on the signal-detection
theory have been developed to reduce the cost.13 Another benefit
of using a numerical observer is that we can analytically com-
pute the observer performance, which is critical for this work.
One popular numerical observer for lesion detection in a two-
dimensional (2-D) image is the channelized Hotelling observer
(CHO).14,15 With a proper choice of channels, CHO has been
shown to have good correlation with human performance. To
evaluate the lesion detectability in three-dimensional 3-D

images, we used a multiview channelized Hotelling observer
(mvCHO) to measure detection performance in the 3-D images.
The mvCHO applies the conventional 2-D channels to each of
the three orthogonal views (transverse, coronal, and sagittal),
and then uses a Hotelling observer to combine the channel out-
puts into a test statistic. The mvCHO mimics the condition
where a human observer examines three orthogonal views to
detect a lesion.

We obtained high-count patient data using a GE DSTwhole-
body PET scanner at UC Davis Medical Center. The patient
image has no detectable lesion as verified by a radiologist
(RJH). To create artificial lesions, a Na-22 point source was
scanned in air at different locations and the data were superim-
posed onto the patient sinogram after compensating for the
photon attenuation of the patient body. Corrections for random
and scattered events are included in the reconstruction. We
compared the lesion detection performance between PML
reconstruction with the proposed penalty function, PML
reconstruction with the conventional first-order quadratic pen-
alty function, and PML reconstruction with an edge-preserving
total variation (TV) penalty for a signal-known-exactly and a
background-known-exactly (SKE/BKE) task.

This paper is organized as follows. In Sec. 2, we review the
theory of PML image reconstruction and the method to design a
shift-variant quadratic penalty function for lesion detection.
In Sec. 3, we describe the method for the evaluation study.
The results of the model observer study and human observer
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study are presented in Sec. 4. Finally, we draw conclusions
in Sec. 5.

2 Theory

2.1 Penalized Maximum-Likelihood Image
Reconstruction

In emission tomography, the measured sinogram data y ∈ RM×1

can be modeled as a collection of independent Poisson random
variables with the expectation ȳ ∈ RM×1 related to the unknown
tracer distribution x ∈ RN×1 through an affine transformation

ȳ ≡ E½yjx� ¼ Pxþ r; (1)

where E½· j ·� denotes conditional expectation, P ∈ RM×N is the
detection probability matrix with the ði; jÞth element equal to
the probability of detecting an event from the j’th voxel at
the i’th projection element, and r ∈ RM×1 is the expectation
of the background events (scattered and random events) in
the data.

PML methods estimate the unknown image x by maximizing
a penalized-likelihood function,

x̂ðyÞ ¼ arg max
x≥0

½LðyjxÞ − βUðxÞ�; (2)

where the log-likelihood function LðyjxÞ is given by

LðyjxÞ ¼
XM
i¼1

ðyi log ½Pxþ r�i − ½Pxþ r�i − log yi!Þ. (3)

UðxÞ is a roughness penalty function and β is a parameter
that controls the degree of regularization.

We studied two kinds of penalty functions. The first kind is
the pairwise quadratic penalty

UðxÞ ¼ 1

2

XN
j¼1

X
l∈N j

γjlðxj − xlÞ2 ¼
1

2
x 0Rx; (4)

where R is a positive semi-definite matrix and ‘′’ denotes the
vector (or matrix) transpose. For the conventional first-order
quadratic penalty, the neighborhoodN j contains the six nearest
neighboring voxels in 3-D with all the weighting factor γjl being
one, whereas the proposed penalty design method uses a larger
neighborhood and seeks an optimal set of γjl ’s to improve lesion
detectability.

The second kind of penalty is an edge-preserving penalty
based on TV16 that is computed as

UðxÞ ¼
XN
j¼1

ψδ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l∈N j

ðxj − xlÞ2
s �

; (5)

where ψδð·Þ is the hyperbola function ψδðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ δ2

p
. When

jxj ≫ δ, the hyperbola function approximates the absolute value
function and can preserve edges. We used the first-order neigh-
borhood (six nearest voxels in 3-D) and set δ ¼ 0.01 (around
5% of the mean image intensity).

2.2 Penalty Design for Lesion Detection

Here, we briefly review the major steps of the penalty design
proposed in our previous work.10 The mvCHO that we used
applies 2-D frequency selective channels to each of the three
orthogonal (transverse, coronal, and sagittal) views of a 3-D
image and combines the channel output into a test statistic using
a Hotelling observer. The test statistic of the mvCHO can be
computed as

ηmvCHOðx̂Þ ¼ z 0U 0K−1ðUx̂þ nÞ; (6)

where z is the expected profile of the reconstructed lesion, i.e.,
z ¼ E½x̂jH1� − E½x̂jH0� (H0 is the null hypothesis representing
lesion absent and H1 is the alternative hypothesis representing
lesion present),U denotes a set of 2-D frequency-selective chan-
nels in three orthogonal views that mimic the human visual sys-
tem, n is the internal channel noise that models the uncertainty
in human detection process with mean zero and covariance
KN .

14 K is the covariance of the channel outputs and can be
computed as

K ¼ 1

2
UðΣx̂jH1

þ Σx̂jH0
ÞU 0 þ KN; (7)

where Σx̂jH1
and Σx̂jH0

are the covariance matrices of the
PML reconstruction x̂ under the hypotheses of H1 and H0,
respectively. Here, we assumed the covariance to be the same
for H1 and H0, since the presence of a small lesion has little
effect on the variance of PET data.

The detection performance can be measured by the SNR of
ηðx̂Þ, which is given by

SNR2½ηðx̂Þ� ¼ ðE½ηðx̂ÞjH1� − E½ηðx̂ÞjH0�Þ2
ðvar½ηðx̂ÞjH1� þ var½ηðx̂ÞjH0�Þ∕2

¼ z 0U 0K−1Uz: (8)

Using theoretical approximations that have been previously
derived,17 the signal-to-noise ratio (SNR) of the mvCHO can be
rapidly calculated using the fast Fourier transform

SNR2
mvCHO ≈

�X
i

Ũk;iλiξi
λi þ βμi

�
K−1

�X
i

Ũk;iλiξi
λi þ βμi

�
; (9)

K ≈ Ũ diag

�
λi

ðλi þ βμiÞ2
�
Ũ 0 þ KN; (10)

where Ũ are the Fourier coefficients of the channels, fξigNi¼1 is
the Fourier transform of the expected lesion profile, fλigNi¼1 and
fμigNi¼1 are the Fourier coefficients of the column vector of the
Fisher information matrix F ¼ P 0diag½1∕ȳ�P and penalty matrix
R corresponding to the voxel at the center of the lesion. In the
above equations, ½αj� denotes a column vector with the j’th
element being αj and diag½αj� denotes a diagonal matrix with
the ðj; jÞ’th element being αj. The j’th column vector of the
Fisher information matrix can be computed by first forward pro-
jecting the j’th unit vector ej using the system matrix P to obtain
Pej, then following with a weighted back projection to get
P 0diag½1∕ȳ�ðPejÞ. Rearranging the j’th column vector as a 3-
D image and taking its 3-D Fourier transform result in fλigNi¼1.
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By decomposing the quadratic penalty function into pairwise
penalties as given in Eq. (4), the column vector of the penalty
matrix R corresponding to the voxel j at the center of the lesion
can be viewed as a weighted sum of basic penalty kernels

Rej ¼
X
l∈N j

γjlbjl; (11)

where bjl is a vector and can be viewed as an image which only
has nonzero values at pixels j, l, and the symmetric pixel of l
with respect to pixel j. For example, the first-order penalty only
contains the horizontal and vertical kernels

bhorizontal ¼
2
4 0 0 0

−1 2 −1
0 0 0

3
5; bvertical ¼

2
40 −1 0

0 2 0

0 −1 0

3
5: (12)

Taking the Fourier transform of the pairwise penalty kernel
bjl, we can express μi as a function of γjl:

μji ¼
X
l

γjlμ
l
i; (13)

where μli is the frequency response of the l’th pairwise penalty
with basis kernel bjl. Note that μi in Eq. (9) becomes μji and can
vary from voxel to voxel, and SNR2

mvCHO in Eq. (9) becomes a
function of γjl. For a given dataset, we can estimate the weight-
ing factors γjl to maximize the lesion detectability at voxel j

fγ̂jlg ¼ arg max
γjl≥0

SNR2
mvCHO (14)

and repeat this procedure for all voxels. The final penalty func-
tion is computed as

x 0Rx ¼
XN
j¼1

X
l∈N j

γ̂jl þ γ̂lj
2

ðxj − xlÞ2 (15)

to ensure that R is symmetric.
Equation (14) can be evaluated using a MATLAB® function

“fmincon” and a detailed pseudocode outlining the penalty
design procedure can be found in the previous work.10 It is
worth noting that while the estimated γ̂jl depends on the value
of β, the product βγ̂jl and the maximum value of SNRmvCHO are
independent of the value of β. Therefore, without loss of gen-
erality, we always set β to one in the penalty design.

3 Method
To generate lesion present and lesion absent images with known
ground truth, we obtained high-count, lesion-free patient data as
the normal background. The high-count data were obtained
from a 60-min dynamic PET scan of a 64-year-old female
patient with a 5-mCi FDG injection. The scan was performed
on a GE DST whole-body scanner in the fully 3-D mode and
covered the heart, breasts, and part of the lungs and liver. We
summed the last 45-min PET data to create a high-count sino-
gram with 800 million events. The reconstructed patient image
was verified by a radiologist (RJH) to be free of lesion and can
be used as the normal background. To create lesion-present sino-
gram data, we scanned a 22Na point source at 27 positions on a
3 × 3 × 3 grid using a reference block shown in Fig. 1. The sino-
grams of the point source data were first attenuated by the

patient attenuation factors obtained from the patient’s CT
scan, and then added to the patient sinogram as artificial lesions.
After excluding 7-point source locations that were either outside
the patient body or at implausible positions, we had 20 artificial
lesions in total. Figure 2 shows one sample reconstruction with
an artificial lesion inside the liver. To simulate a typical 5-min
scan, independent Poisson noise was introduced to the high-
count sinograms to generate noisy data sets each with 90 million
expected total number of events. Two hundred pairs of noisy
data sets with and without lesion were generated for the observer
studies.

The noisy data were independently reconstructed by the
PML reconstruction with the first-order quadratic penalty func-
tion, the proposed penalty function, and the TVedge-preserving
penalty function. All three reconstruction algorithms used the
same distance-driven projector.18 Patient attenuation factors
were incorporated in the forward model in all reconstructions.
Random and scattered sinograms were estimated using the
manufacturer provided software and were included in the
reconstruction. All images were reconstructed using a
192 × 192 × 47 image array with 3.65 × 3.65 × 3.27 mm3 vox-
els. We implemented a MAP-EM algorithm with 300 iterations
to reconstruct the image using the quadratic penalties.19 For the
TV penalty, a preconditioned conjugate gradient algorithm with
100 iterations was used for faster convergence. One iteration in
either algorithm takes about 1 min.

To measure the lesion detection performance, we used the
mvCHO with three difference-of-Gaussian channels.20 The
internal noise was modeled as independent Gaussian noise
with zero mean and covariance KN ¼ 10−4.5I, where I is the
identity matrix.21 We used the theoretical expression of the
mvCHO SNR in Eq. (9) to find the optimal β value for
the first-order quadratic penalty function. To find the optimal
penalty that provides the highest SNR for the lesion detection,
we first computed the optimum weighting factor γ̂jl based on
Eq. (14) for the 20 lesion locations and then assigned the
value of γjl to other voxels using the nearest neighbor interpo-
lation. For the case when the lesion location is unknown, one
will need to compute the optimum weighting factors on a
finer grid.22 We chose a large neighborhood N j that included
the 92 nearest voxels. Because of symmetry, only 46 indepen-
dent γjl need to be determined at each location. The computation
took about 10 min for each location using one 2.0GHz Intel
CPU. With the estimated γ̂jl, we can form the column vector
of the penalty matrix R corresponding to the voxel at the center

Fig. 1 Point source placed on a coarse grid on top of a reference
block.
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of lesion. Figure 3 showed the estimated γ̂jl image for the lesion
location shown in Fig. 2. We also computed the Monte Carlo
SNR using the mean and the covariance of the channel outputs
obtained from the 200 pair reconstructed images using different
penalty functions.23 The Monte Carlo results were compared
with the theoretical predictions.

A human observer (LY) performed a two-alternative forces
choice (2AFC) experiment to verify the numerical observer
results. At each time, a pair of reconstructed images, with and
without a tumor, was presented to the human observer and the
observer was asked to select the image with a tumor. For every
lesion location and reconstruction algorithm combination, the
observer read 200 pair reconstructed images. The 200 image
pairs were divided into two groups each with 100 samples.
We use the first 10 image pairs in each group for training, and
the remaining 90 image pairs for testing. The resulting percent
correct in the 2AFC test was converted into the SNR by24

SNR ¼ 2erf−1ð2PC − 1Þ: (16)

We performed McNemar’s test on the human observer 2AFC
results to evaluate the statistical significance of the difference
between the proposed penalty function and the first-order quad-
ratic penalty function and the TVedge-preserving penalty fucn-
tion.25 Each 2AFC experiment was considered as a Bernoulli
experiment with two possible outcomes (0 for incorrect choice
and 1 for correct choice). The outcomes of a pair of 2AFC
experiments between any two methods can be sorted into
four categories as shown in Table 1. From the observed value
of N1 to N4, we computed the p-value of McNemar’s test.

4 Results
We picked three representative lesion locations [Figs. 4(a) to
4(c)] and plotted the SNR values for different reconstruction
algorithms as a function of β. We compared the Monte Carlo
SNR of the mvCHO with the theoretical predications for the
first-order quadratic penalty and proposed penalty functions
in Figs. 4(d) to 4(f). Note that the SNR of the proposed penalty
function is independent of the β value; hence, we only show the
Monte Carlo result at β ¼ 1. In general, the Monte Carlo results
match the theoretical predictions very well and both show
improvements of the proposed penalty function over the first-
order penalty. Furthermore, we observed that the optimal β
value of the first-order quadratic penalty function to achieve
the maximum SNR varied for different lesion locations,
which meant multiple reconstructions with different β values
would be necessary when using the first-order quadratic penalty

Fig. 3 The estimate γ̂j l image for the lesion location shown in Fig. 2. The three-dimensional (3-D) penalty
kernel only has nonzero values in a 5 × 5 × 5 region. All five transverse slices of the penalty kernel are
shown and voxel j is the center white voxel.

 

 

 

 

 

 

(c)(b)(a)

Fig. 2 Three orthogonal slices of the sample reconstruction with a superimposed lesion in the liver as
shown in the center of the yellow circle: (a) transverse slice, (b) sagittal slice, (c) coronal slice.

Table 1 Four categories of the two-alternative forced choice (2AFC)
experiment outcomes.

Penalty A Penalty B Number of cases

Correct Correct N1

Wrong Wrong N2

Correct Wrong N3

Wrong Correct N4
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function to achieve the optimal lesion detection. With the pro-
posed optimized penalty function, we can obtain the highest
detection performance at all locations using one set of regulari-
zation parameters. We also plotted the Monte Carlo SNR of
PML reconstruction using the edge-preserving TV penalty in
Figs. 4(d) to 4(f). Comparing the peak SNR achieved by the
TV penalty with that by the proposed penalty, we did not
find any improvement for lesion detectability by using the
edge-preserving penalty over the quadratic penalties, which is
consistent with previous studies.26,27 We note that while we

plotted the SNR of different penalty functions on a common
β axis, it is only fair to compare the peak SNR achieved by
each penalty function because the β value has a different
scale for each penalty function.

The SNR of the human observer as a function of β at three
sample locations is shown in Figs. 4(g) to 4(i). The human per-
formances follow the same trends as those of the theoretical pre-
diction and Monte Carlo reconstructions.

In Fig. 5, we compared the human observer results of the
proposed penalty with that of the first-order quadratic penalty

(c)(b)(a)
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Fig. 4 Comparison of the lesion detectability at three representative locations. Top row (a–c): recon-
structed images showing a lesion at the center of each yellow circle. Middle row (d–f): plot of
mvCHO SNR’s as a function of β. The theoretical prediction for the first-order quadratic penalty is
shown by the solid blue lines and the theoretical prediction for the proposed penalty is shown by the
dashed red lines. The Monte Carlo results of the first-order quadratic penalty are marked by “×”s
and those of the proposed penalty by “o”s. The Monte Carlo results of the TV edge-preserving penalty
are marked by black “⋆”s. The error bars indicate plus and minus one standard deviation. Bottom row (g–
i): plot of human observer SNR as a function of β with comparison to theoretical predictions (lines). The
human observer results of the first-order quadratic penalty are marked by “×”s; those of the proposed
penalty by “o”s; and those of the TV penalty by “⋆”s.
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and the edge-preserving TV penalty each under their respective
optimal β value predicted by the mvCHO for the 20 locations.
The resulting values of N1 − N4 for the McNemar’s test are
shown in Table 2 with the p-values given in the last row of
Table 2. The results show that the proposed penalty function
achieved the highest SNR for lesion detection at almost all
tumor locations.

5 Conclusion
We have evaluated the detection performance of our proposed
penalty design method using real-patient data with artificially
inserted lesions. Numerical observer and human observer results
show that the proposed penalty outperforms the first-order quad-
ratic penalty function and the edge-preserving TV penalty func-
tion for the specific SKE–BKE lesion detection task, system
configuration, and reconstruction paradigm used in this work.
In the future, we will apply the proposed method to real clinical
datasets.
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