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Abstract 

Nuclear Magnetic Resonance Studies of Macroscopic Morphology and Dynamics 

by 

Geoffrey Alden Barrall 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor Alexander Pines, Chair 

Nuclear magnetic resonance techniques are traditionally used to study molecular 

level structure and dynamics with a noted exception in medically applied NMR imaging 

(MRI). In this work, new experimental methods and theory are presented relevant to the 

study of macroscopic morphology and dynamics using NMR field gradient techniques and 

solid state two-dimensional exchange NMR. The goal in this work is not to take some 

particular system and study it in great detail, rather it is to show the utility of a number of 

new and novel techniques using ideal systems primarily as a proof of principle. 

By taking advantage of the analogy between NMR imaging and diffraction, one 

may simplify the experiments necessary for characterizing the statistical properties of the 

sample morphology. For a sample composed of many small features, e.g. a porous 

medium, the NMR diffraction techniques take advantage of both the narrow spatial range 

and spatial isotropy of the sample's density autocorrelation function to obtain high 

resolution structural information in considerably less time than that required by 

conventional NMR imaging approaches. The time savings of the technique indicates that 

NMR diffraction is capable of finer spatial resolution than conventional NMR imaging 

techniques. 

Radio frequency NMR imaging with a coaxial resonator represents the first use of 

cylindrically symmetric field gradients in imaging. The apparatus as built has achieved 
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resolution at the micron level for water samples, and has the potential to be very useful in 

the imaging of circularly symmetric systems. 

The study of displacement probability densities in flow through a random porous 

medium has revealed the presence of features related to the interconnectedness of the void 

volumes. The pulsed gradient techniques used have proven successful at measuring flow 

properties for time and length scales considerably shorter than those studied by more 

conventional techniques. 

Results are presented for the study of particle reorientational dynamics by solid­

state two-dimensional exchange NMR. The experimental investigation of rotationally 

diffusing latex microspheres is presented as an example of the types of classical dynamics 

accessible by the technique. 
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Chapter 1 Introduction 

Nuclear magnetic resonance (NMR) techniques are generally associated with the 

study of molecular dynamics, molecular structure and chemical determination. This 

association is understandable as NMR has proven to be an invaluable tool in the 

investigation of these fields. This work, however, does not involve the study of molecular 

level structure and dynamics. On the contrary, the NMR techniques, experiments and 

theory presented here are directed at the investigation of macroscopic (i.e. much larger than 

the molecular level) morphology and dynamics. By this, I mean that the phenomena of 

interest are purely classical, although the origin of the NMR signal is most definitely 

quantum mechanical in nature1'2. 

The various chapters of this thesis are united under this theme, but the approach 

used in each case is rather different. In order to avoid confusion, the relevant theory for 

each chapter will be presented with that chapter, as this work will cover a large range, of 
I 

sometimes related and sometimes unrelated topics. The next three chapters are arranged in 

such a way that much of the theory discussed in the previous sections will be required in 

order to understand the theory of the following sections. This ordering is actually purely 

coincidental as the chapters are presented in the chronological order of my research in the 

different areas. 
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Chapter 2 NMR Diffraction 

2.1 Introduction 

Before proceeding with a description of what NMR Diffraction is and why one 

would want to do it, I will proceed to lay out the basic theory for NMR and NMR imaging 

as well as a few areas unrelated to NMR but relevant to the understanding of NMR · 

diffraction. For NMR Diffraction and the topics covered in the following two chapters, it 

is only necessary to consider the dynamics of spin-1/2 nuclei, as the nucleus from which 

the NMR signal originates is the hydrogen nucleus (protons) present in water. The basic · 

NMR theory presented here is in no way a complete description of the dynamics of spin-

1/2 nuclei, but it provides a basis for understanding NMR diffraction and a means of 

developing a coherent notation. The same may also be said for the NMR imaging theory 

presented. For a more complete description of spin dynamics as it relates to NMR 

imaging, I suggest the recently published NMR microimaging book by Callaghan3 as well 

as the text by Mansfield and Morris4 which concentrates more on the medical applications 

of imaging. 

2.2 Basic NMR Theory 

The dynamics of isolated spin-1/2 nuclei may be viewed classically, and for NMR 

field gradient experiments, this viewpoint is very often sufficient. In this case, we may 

treat the magnetization in a macroscopic sample as a classical magnetization vector, 

M = (Mx,My,Mz), as opposed to the quantum mechanical case where the same entity 

would be regarded as an ensemble of spin-1/2 states. 

The equation of motion for the classical magnetization vector is 

dM 
-=yMxB, 
dt 

2 

(2.1) 
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where we have equated the rate of change of angular momentum to the torque applied to the 

system. If B is the static magnetic field in the z direction, the solution of Eq. (2.1) 

corresponds to precession of the transverse magnetization about B0 at the Larmor 

frequency. Application of a radio frequency (rf) field perpendicular to B0 given by 

leads to 

~ x = m0 MY + m1 Mz sin( mrf t), 

~Y = m1Mz cos( mrf t)- m0Mx, 

dM . =:J: = -m1Mx sin( mrf t)- m1 MY cos( mrf t ). 

(2.2) 

(2.3) 

The vectors i,J and k are the unit vectors in the x, y and z directions, respectively, and 

m1 = YBt. For mrf = m0 and M(t = 0) = M0k the solution to Eq. (2.3) is 

Mx = M0 sin( m1t )sin( m0 t) 

My = M0 sin( m1t )cos( m0t) 

Mz = M0 cos( m1t) 

(2.4) 

In the frame of reference rotating about the static field at the frequency m0 (the rotating 

frame), the magnetization is effectively rotating about the rf field at the frequency m1• 

After the application of a pulse for which m1 = n/2, the laboratory frame magnetization is 

given by 

M( t) = M0{ cos( m0t )i +sin( m0t )}). (2.5) 
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This may be written in complex notation as 

M(t) = M0 exp(im0t ). (2.6) 

This precessing magnetization produces an alternating current in the excitation/receiver coil 

of the NMR probe. In general, we detect the signal with respect to a reference frequency 

m which is offset from the Larmor precession frequency by an amount !!.m, which ranges 

from zero to thousands of Hertz for the experiments presented in this work. Furthermore, 

the detectjon may be out of phase with the NMR signal by an amount l/J. The resulting 

complex NMR signal may be written 

S(t) = S0 exp(il/J + i!!.mt), (2.7) 

where S0 is the signal at time zero, which is an arbitrary quantity depending upon the 

electronics of the detection system and the total transverse magnetization of the sample. 

For the sake of simplicity, we will often ignore l/J and S0 as they will have little or no 

effect upon the basic meaning of the results. 

The nonequilibrium magnetization which has been rotated into the xy plane, 

experiences two relaxation processes which cause the magnetization to return to equilibrium 

and to dephase in the xy plane itself. In a strong static field, B0 , equilibrium is 

characterized by a state of polarization with the magnetization M0 aligned with B0 • The 

return to equilibrium is usually referred to as spin-lattice or T1 relaxation and, as the former 

name implies, involves the exchange of energy between the spin system and surrounding 

thermal reservoir or lattice. Spin-lattice relaxation is assumed to be a first order process 

and is described by the phenomenological equation 

4 
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dMz = _-(..:.....M.....::z_-_M.....:0~) 
dt T1 

(2.8) 

with the solution , 

(2.9) 

T1 is referred to as the spin-lattice relaxation time and is typically a few seconds for protons 

in water. 

The transverse relaxation or dephasing of·the magnetization in the xy plane is 

caused by the nuclear spins approaching thermal equilibrium among themselves and is 

referred to as spin-spin or T2 relaxation. Spin-spin relaxation can as well be described as a 

first order relaxation process given by 

with the solutions 

dMx- Mx -----, 
dt T2 

dMY =-My 
dt T2 

M,{t)=MAO)ex{- ;,} 

M,(t) = M,{O)exp(- ;, } 

(2.10a) 

(2.10b) 

(2.11a) 

(2.11b) 

T2 is referred to as the spin-spin relaxation time and is shorter than or equal to the spin-

lattice relaxation time. 
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Equations (2.3), (2.8), (2.10a) and (2.10b) may be combined to yield the Bloch 

equations5 which provide a complete description of the classical spin dynamics. 

We are primarily interested in relaxation effects which will in some way limit the 

types of NMR experiments we can perform, as opposed to utilizing relaxation information 

in an analysis of some molecular system. As we shall see, T2 relaxation often limits the 

achievable spatial resolution, and T1 relaxation limits the frequency of signal averaging. 

When we begin to study fluid dynamics, we shall see that T1 relaxation limits the time over 

which we may observe mass transport, since the T1 of our tap water is approximately 3 s. 

The removal of impurities such as oxygen from the tap water increase T1 to approximately 

10 s, but for the sake of convenience, we have decided to just use ordinary and easily 

available tap water. 

2.3 Magnetic Field Gradients and the Resulting NMR Signal 

A static magnetic field gradient which can be described by 

aBx aBx aBx 
ax iJy az 

- a BY a By a By 
G= (2.12) 

ax iJy az 
aBz aBz aBz 
ax iJy az 

provides the means of spatially resolving the spin magnetization in the sample. If the static 

field is much larger than the field gradient producing field, only variations in Bz need be 

considered, as any effects due to a small static field perpendicular to B0 will be averaged 

out. The field gradient tensor then is effectively reduced to a vector. 

(2.13) 
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Applying a magnetic field gradient in the presence of a large homogeneous static 

field produces a local Larmer precession frequency given by 

m(r) = yB0 + yG·r, 

where r = (x,y,z). 
(2.14) 

For a volume element dV located at point r with magnetization density p(r) (Assuming 

the magnetization density reflects the sample density of interest, the terms magnetization 

density and sample density will be used interchangeably), the complex signal arising in the 

presence of the field gradient is given by 

dS(r,t) = exp(iyG· rt)p(r)dV, (2.15) 

if the signal is acquired with respect to m0 or on resonance. The total signal arising from 

the entire sample is given by the integral over all of the individual signal elements in 

Eq. (2.15). 

S(t) = J p(r)exp(iyG·rt)dr, (2.16) 

where the integration proceeds over all space. From Eq. (2.16), we see that the signal is 
.. 

simply related to the density or image of the sample by a three-dimensional Fourier 

transform6 with respect to the conjugate variables ( yGt, r). 

For the sake of notational simplicity, we will make the substitution 

k= yGt, (2.17) 
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where k is referred to as the reciprocal space or k-space vec'tor, and restate the Fourier 

relationship between the signal and the sample density in terms of the k-space vector7• 

S(k) = J p(r)exp(ik · r)dr 

p(r) = -
1 

Js(k)exp(-ik· r)dk, 
2n 

(2.18a) 

(2.18b) 

where the integration proceeds from -oo to +oo for all of the components of r in 

Eq. (2.18a), whereas in Eq. (2.18b) the integration proceeds from -oo to +oo for all of 

the components of k. The leading term lj2n in Eq. (2.18b) has little relevance in the 

context of an actual imaging experiment and may be ignored with no loss of generality. 

In an actual NMR experiment, the data is acquired over a limited range in k and at 

discrete intervals, so Eq. (2.18a) and (2.18b) should be interpreted as discrete Fourier 

transforms for which there exists a simple relation between the range and resolution in both 

spaces. For example, the range and resolution of the conjugate pair ( x, kx) are related by 

resolution(x) = 8x = 
2

( )' 
range kx 

resolution(kx) = 8kx = 
2

n( r 
range x 

(2.19) 

The factor of 2n arises because kx is measured in radians per unit length. In the specific 

case of an experiment using an x gradient where N points are acquired in the time 

domain, 

2n 
8x=--. 

N8kx 

8 

(2.20) 

·" 



When performing an imaging experiment, the consequences of Eq. (2.20) are very 

important. If we choose too large a value for 8kx, i.e. we choose a range which is actually 

smaller than the spatial extent of the sample, the image will be severely distorted due to 

aliasing6. If on the other hand, we choo~e too small a value for 8kx, the image resolution 

will be inadequate for that particular experiment. 

2.4 Slice Selection in NMR Imaging 

The majority of the images which will be presented here are two-dimensional, but 

they are derived from three-dimensional samples. In order to avoid having to acquire the 

entire three-dimensional time domain data set, one may selectively excite a plane in. the 

sample using a frequency selective rf pulse3•8-11 in the p~esence of a static field gradient, 

where the selective pulse is composed of an on-resonance rf field modulated by a lower 

frequency envelope of finite duration. The resulting signal will represent only the 

magnetization from the selected plane or slice, hence the term slice selection. In the 

following discussion of frequency selective rf pulses, we will assume that the response of 

the magnetization is linear implying a frequency response equal to the Fourier transform of 

the applied rf. 

A delta function (in time) or "hard" pulse excites resonances at all frequencies, since 

a delta function is equally composed of all frequencies, whereas a pulse with a finite 

duration will excite a finite range of frequencies determined by the Fourier response of the 

pulse. A sine pulse as used in this work, Fig. (2.1), has an approximately square 

frequency response, so a well defined frequency range with a sharp cutoff is selected. 

Since the sine pulse is not centered about zero time in a real experimerlt, the magnetization 
' 

produced is not in phase. Application 'of a refocussing gradient of equal and opposite 

strength. to the slice selection gradient for a time equal to one half the duration of the rf 

pulse refocusses the dephased magnetization10• The refocussing is equivalent to doing a 

first order (frequency or spatially dependent) phase correction of the magnetization. 

9 



For large tilt angles the NMR response is not linear, so the excitation profile will 

deviate from that predicted by the Fourier transform of the rf pulse9•10. For our purposes, 

however, the pulses perform well, so we will maintain the assumption that the response is 

linear. 

(a) (b) 

FT ... 

l-2a-l 

-II-
lia 

Figure 2.1 Frequency response of a sine function. The time, frequency and amplitude scales are arbitrary. 

(a) A sine function, sin(2trat)/(2trat), plotted with respect to t. The width If a denotes the time 

between zero crossings. (b) Discrete fast Fourier transform of (a). The analytical Fourier transform of the 

sine function is a perfect hat or square function, without the high frequency oscillations at either edge. The 

oscillations are known as the Gibbs phenomenon. 

10 
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2.5 The Imaging Experiment 

An example of a two-dimensional NMR imaging pulse sequence is shown in 

Fig. (2.2). The selective rf pulse confines the region of interest to a slice in the yz plane 

within the rf coil. During the interval r, the read gradient pulse allows the acquisition of 

an echo, and simultaneously, a variable amount of phase equal to rGz r is encoded along 

the z direction. In order to acquire the signal necessary to generate the yz image of the 

slice, a series of N experiments (or excitations) are performed where Gz is incremented in 

steps 8Gz from (N/2)8Gz to -(Nj2-1)8Gz. 

A graphical representation of the acquired phase in k-space, Fig. (2.3), after the 

refocussing pulse provides a good picture of what is happening during the experiment. 

During the time r, a constant amount of phase -rGY r is encoded along the y direction, 

whereas a variable amount of phase is encoded along the z direction. This portion of the 

experiment is referred to as the phase encode period and is represented by the dashed lines 

rf 

frequency selective 90° pulse -+..,______ __ 
slice selection 

t 

-1 't 1-

Figure 2.2 Example of a two-dimensional NMR imaging pulse sequence. Slice selection along x allows 

the acquisition of a 2D image in a 2D experiment. The acquired data is the Fourier transform of a map of 

the magnetization density in the selected yz plane. 

11 



) 

in Fig. (2.3). During acquisition, the phase along y is constantly evolving and the signal 

is composed of the sum over the frequency contributions from all of the volume elements, 

Eq. (2.18a), hence the term frequency encoding. Two-dimensional Fourier transformation 

of the k-space data set yields an image of the magnetization density in the sample. 

If one looks at the imaging experiment from the point of view that a certain region 

of k-space needs to be sampled with some specified resolution in order to obtain an image 

with the appropriate range and resolution, it is obvious that any imaging scheme will work 

as long as k-space is appropriately sampled. For example, the reversal in direction of the 

k-space trajectory along ky in Fig. (2.3) may be accomplished by either using y gradients 

of opposite signs as in Fig. (2.2) (one for the phase encoding and one for frequency 

encoding) or using y phase encode and frequency encode gradients with the same sign 

-

e.;~=-··..,· ...,_· ·_.· ....... • • ·....,.._------+--------1·.-} yoGz 't 
~ ............ " ... .. .. ... .. ... ' 

..... -- - .. .. "' .. "' ....... : .. : ............ ... 

..... -----------_-_ -_ -:-: :;:~~-
- - - - - -_-.--::.,J>t~-

~ ------- ~ - ........ -::'~ 

-: ... ; ... ~" ... ,' ..... --- ,,, 
...... ~ ," ,",',' 

~-- , .·.·,· 
, , , 

~, ... , , , 

, , , , 

.. -

.. - ~ 

-

Figure 2.3 Traversal of k-space for the imaging experiment in Fig.(2.2). The phase encode period is 

represented by the dashed lines, whereas the frequency encode period is represented by solid lines. Data 

points are acquired at each •. 
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with a rf n-pulse between the two. Furthermore, the sampling of k-space need not be 

confined to sampling a Cartesian grid3•7•12•13, but no matter the sampling strategy, a means 

is required of transforming the acquired data from the time domain to the spatial domain. 

If only a one-dimensional experiment is performed (i.e. no Gz ), the acquired signal 

will be the Fourier transform of the projection of the sample density onto the y axis given 

by 

00 

Pz(Y) = J p(y,z)dz, (2.21) 

where the subscript z denotes a projection along the z axis, and the sample density is 

assumed to be two-dimensional. The integration is written as proceeding from -oo to oo, 

but in actuality one need only consider the integration over the spatial extent of the sample 

within the coil. In the absence of slice selection, the same experiment yields the projection 

of the three-dimensional sample density along both the x and z axes onto the y axis, 

which we shall denote Pxz(y). 

Under certain circumstances, the projection contains all of the information which is 

required of the experiment, and as will be shown later, in the presence of the appropriate 

symmetry, one may completely reconstruct the two or three-dimensional sample density 

from a single projection. 

2.6 Density Autocorrelation Functions and the Wiener-Khintchin Theorem 

A density image shows the spatial variation of the sample density p(r), whereas the 

density autocorrelation function, ct>( &-), of the same sample is a measure of how well the 

sample density comes back into registration with itself when displaced by &-. 

Alternatively, <I>(Ar), may be viewed as the density encountered Ar from some starting 
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point weighted by the density at the starting point averaged over all initial positions. Given 

p( r), 4>( &-) may be determined from the relation, 

4>(.1r) = J p(r)p(r+ .1r)dr 
ailspact (2.22) 

= (p(r)p(r + &-)). 

In this chapter, angular brackets ( ) denote an average over r taken within the sample 

volume. We will see in the next section what relevance 4>( &-) has to NMR diffraction. 

The autocorrelation theorem6 often referred to as the Wiener-Khintchin 

theorem 14,15 provides an alternative means of obtaining 4>(.1r) from p(r). If S(k) is the 

Fourier transform of p(r), then the autocorrelation function of p(r) given in Eq. (2.22) is 

the inverse Fourier transform of IS(k t. 

4>(.1r) = -
1 

Jls(kt exp(-ik·&-)dk. 
2n 

(2.23) 

The autocorrelation theorem is in fact a special case of the convolution theorem, for which a 

proof is given in Bracewell6• 

14 



2. 7 Motivation for NMR Diffraction 

The properties of many materials are governed by small-scale, morphological 

features, such as domain boundaries and pores, whose size and distribution are more 

significant than precise spatial location. Because material structural information resides at 

short length scales in small, signal-poor regions, applications of NMR imaging to materials 

have not had the spectacular success of medical applications. 

Using NMR imaging to characterize such materials is complicated by the fact that in 

order to image the entire sample and still resolve small features the image must have very 

fine resolution over a relatively large spatial range. Acquiring such an image is complicated 

by two important factors. In the first place, the signal must be acquired over a very large 

frequency range, since it is not possible to achieve a frequency resolution finer than that 

dictated by line broadening due to T2 relaxation and inhomogeneities in the static field. For 

hydrogen nuclei in water which have a long transverse relaxation time, the latter broadening 

'effect usually dominates due to susceptibility effects produced by the sample and the 

surrounding probe. As we see from the dependence of the signal to noise ratio on the 

bandwidth ~f the receiver16,l7, 

1 

s ( 1 J2 
N oc ll.f , (2.24) 

a large receiver bandwidth implies a low signal to noise ratio. Equation (2.24) is obvious 

since the noise power is independent of frequency and the integrated signal intensity from 

the sample is a constant. As the bandwidth is increased, more noise is acquired, but the 

same total amount of signal is still present from the sample. The second difficulty lies in 

the size of the dataset which must be acquired and the amount· of time necessary to acquire 

the data If the sample consists of objects which are 1000 times smaller than the sample 

itself (along one dimension), and if we assume that at least three points are needed along 
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each dimension to define a resolved object, then a two-dimensional image requires a dataset 

with at least 3000x3000 points. For a T1 relaxation time of 1 s, acquisitions should be 

taken 5 s apart in order to allow the magn~tization to return to equilibrium. At a 5 s 

repetition rate, the image described above would require over four hours to be acquired. 

For equal sized samples which contain smaller particles, the time required for the 

experiment becomes considerably larger. 

The optimal technique extracts the minimum amount of desired information from 

the sample without having to acquire the entire image. For the types of materials described 

above, one may be satisfied with the density auto-correlation function of the sample, since 

collective properties are often more succinctly described and more easily observed using 

such a statistical approach. As will be shown later, NMR Patterson functions (density 

autocorrelation functions) are analogous to the density autocorrelation functions of X-ray 

diffraction 18, except that nuclear rather than electronic density provides contrast, and 

resolution is determined by magnetic field gradient strength rather than X-ray wavelength. 

Two main benefits accrue. First, the number of data points required for a statistical 

description (e.g. the density autocorrelation function) is much smaller than for imaging. 

Although spatial resolution considerations are similar for both diffraction and imaging, the 

density of data points which determines the extent of the spatial "window" is quite 

different: as stated above, the image -must show the entire sample, but the Patterson 

function is often appreciable only over several small feature lengths. Hence the required 

number of points is reduced by approximately the number of features in the sample, which 

approaches astronomical values for microscopic features in a bulk sample. Further 

reductions are possible for the important class of spatially isotropic systems, where it will 

be shown that full statistical information is available for two and three-dimensional 

isotropic structures from a single one-dimensional projection. In addition, tighter signal 

filtering and more efficient signal averaging can be applied to increase sensitivity. 
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Second, with statistical characterization, experimental repeatability is possible even 

for re-arranging systems. For example, it is impossible to repeat imaging experiments for 

noise suppression or multi-dimensional purposes for particles undergoing Brownian 

motion, since the "image" is constantly changing. On the other hand, so long as the system 

statistics remain stationary from one scan to the next, and motion during each acquisition 

is negligible, repeatability of statistical measurements is entirely feasible. To date, an 

experimental example of this approach has not been demonstrated. 

2.8 Historical Background of NMR Diffraction 

During early development of nuclear magnetic resonance imaging (MRI) in the 

1970's, Mansfield and co-workers explored analogies between scattering amplitudes and 

NMR signals, and even considered determination of individual nuclear positions from 

NMR19-23 . Hence the potential of NMR for providing information on the statistics of 

biological and material microstructures, for static systems, was considered nearly two 

decades ago, although at the time it was set aside in favor of the more direct imaging 

approach 23. 

Structural studies based on mobility developed even earlier using gradient echo 

methods24•25, especially the pulsed-gradient spin echo (PGSE) experiment developed by 

Stejskal et al. 26•27 This method not only measures diffusion coefficients, but also provides 

information on microstructures in the host material when boundaries hinder normal 

diffusive transport. 

In 1983, Karger and Heink directly obtained the distribution P(&-,t) of 

displacements · M which occurred during a transport time t, by Fourier transforming the 

PGSE data as a function of magnetic field gradient strength 28 ; the PGSE experiment, 

position displacement distributions and q-space will be explored in greater detail in 

Chapter 4. Recently, Cory and Garroway29 demonstrated that for transport times so long 

that initial and final particle positions become uncorrelated, the distribution P( Ar, t) 
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approaches the fluid density autocorrelation function of the particle container (or an average 

of such functions when the system consists of an ensemble of such containers). They 

illustrated this principle for water in yeast cells, inferring the cell size of 5 Jlm directly from 

the displacement profile. They also realized that the data, regarded as a function of the 

gradient strength, is equivalent to that from a diffraction experiment, except that the 

diffraction "wavevector" is given by gradient pulse strength q = yGr instead of the 

momentum transfer ilk appearing in scattering theory30. Here r is the magnetogyric ratio 

of the observed nuclear species, G is the pulsed magnetic field gradient vector, and r is the 

duration of each of the pair of magnetic field gradient pulses used in a PGSE experiment. 

Callaghan et al. have developed this analogy further for porous systems31 , and have 

presented data showing an unusual increase of the signal amplitude with increasing 

gradient strength32-34, analogous to Debye-Scherrer rings in crystallography30. Invoking 

statistical isotropy for their system of 16 Jlm polystyrene beads immersed in water, they 

extended data taken along a single direction in q-space to a spherically symmetric three­

dimensional function. A three-dimensional Fourier transformation extracted the radial 

density autocorrelation distribution characteristic of the beads in the sample. These 

developments (which we shall refer to as diffusive diffraction to avoid confusion with the 

existing area of X-ray dynamic diffraction30) have been reviewed by Cotts35. 

Pulsed gradient methods in general are a powerful way of characterizing systems 

where diffusion is affected by internal structure. Nevertheless, whether diffractive aspects 

are considered or not, this technique becomes inapplicable when transport is too slow, fails 

to reflect structure, or is entirely absent. We now show that structural information related 

to diffractive principles is still available for stationary objects, based directly on density 

variation36•37. 
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2.9 Principles of NMR Diffraction 

From Eq. (2.23), it is immediately obVious that the density autocorrelation function 

is simply related to the time-domain NMR imaging signaL The modulus squared of the 

time-domain signal, jS(kt, is therefore a diffraction pattern of sorts defined by the 

magnetic field gradient strength. As Mansfield recognized, the nonlinear processing 

associated with squaring the signal modulus suppresses signal phase and makes image 

reconstruction impossible23• Eq. (2.23) shows, however, that the remaining amplitude 

modulated component extracts statistical information from the original imaging data in a 

manner analogous to conventional scattering experiments38. 

Determining <I>(L\r) from the two~dimensional imaging signal, S(k), using 

Eq. (2.23) is essentially an image processing step. One can just as easily determine 

<I>(L\r) from the two-dimensional image p(r) using Eq. (2.22). However, as was stated 

above, far fewer points need be acquired and a considerably smaller receiver bandwidth is 

necessary for the direct acquisition of IS(kt. Experimental examples of both NMR 

diffraction methods are presented below. 

2.10 Experimental Example of Two-Dimensional NMR Diffraction- Phase 

Sensitive Detection 

We will begin with an experimental example where the density autocorrelation 

function and the diffraction pattern, jS(kt, are determined from the phase sensitive time 

domain data, S(k). Two-dimensional results of this method are presented in Fig. (2.4). 

The two phantoms consist of 7 mm I.D. glass tubes into which are packed nylon 

monofilament fibers (fishing line) of diameter 0.56 mm and 0.33 mm. The tubes are filled 

with water to provide a proton NMR signal from the interstitial volume. 

Imaging data is taken on a Nalorac Cryogenics Quest 4400 spectrometer operating 

at a proton frequency of 185 MHz. The NMR probe contains a cylindrical gradient set 

which is capable of producing, with the amplifiers used, 0.65 T/m static field gradients in 
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all three dimensions (for protons this corresponds to a maximum frequency encoding 

strength of -28 kHzjmm). The gradient in the z direction is produced by a Maxwell 

paii39, and the gradients in the x andy directions are produced by quadrupolar coils40•41 . 

The employed spin-warp imaging sequence42, c. f. Fig. (2.2), utilizes a sine modulated rf 

pulse which selects a transverse slice fully confined to the interior of tile rf coil. For the 

experimental data presented here, a slice of 0.5 mm was selected using a 2 ms, eight­

lobed sine pulse. In terms of the sine pulse diagrammed in Fig. (2.1), a nine-lobed pulse 

has a duration of 8/ a. 

The unprocessed two-dimensional k-space data consists of complex numbers, has a 

rapid phase variation, and is not shown, but the derived density images of p(r) in 

Fig. (2.4a) and Fig. (2.4d), each 128 pixels on a side, confirm that the imaging signals 

S(k) for the phantoms were correctly acquired, and that diffusive and convective motions 

which produce image distortions are negligible. 

Figures (2.4b) and (2.4e) show IS(kt, the phase-suppressed imaging data, for 

each of the two filament sizes. These are the NMR II diffraction patterns II, defined in a k­

space of spatial freque~cies with a range of approximately ±8 cyclesjmm. The diffraction 

patterns show rings similar to those from powder X-ray diffraction patterns of granular 

structures, indicating an underlying regularity in the fiber separation30. 
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Figure 2.4 (A) Image, (B) diffraction pattern, and (C) Patterson function for 0.56 mm diameter fibers 

immersed in water in a 7 mm tube. The image shown in (A) is derived by Fourier transformation of NMR 

data, whose square modulus, the NMR "diffraction pattern", shown in (B) reflects packing statistics. 

Fourier transformation of the diffraction pattern yields the Patterson function shown in (C). (D) Image, (E) 

diffraction pattern, (F) and Patterson function for 0.33 mm diameter fibers, to be compared directly with (A) 

to (C). 
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The Fourier transform of the diffraction data yields the density autocorrelation 

function of the volume filled by the water, since the water contributes the NMR signal. It 

is perhaps easier to envision the density autocorrelation function of the fibers (disks) as the 

interstitial voids are irregularly shaped. If we express the spatially varying water density 

p(r) as Po -17(r), where Po is the density of uniform water and 17(r) the density 

distribution of excluded water occupied by the fibers, the water and fiber Patterson 

functions are related by 

(p(r)p(r +&-))=([Po- T](r)][Po- 17(r + Ar)]) 

= ( 17(r)17(r+ &-))- 2po( 17(r)) + P5. 
(2.25) 

The last two terms in Eq. (2.25) are constants with respect to Ar, so the correlation 

functions for the fibers and the water filled regions are equal apart from a constant offset. 

Mansfield and Grannell22 have also discussed this point in terms of Babinet's principle43. 

The actual Patterson functions shown in Fig. (2.4c) and (2.4f), obtained by 

Fourier transforming the diffraction data of Fig. (2.4b) and (2.4e) respectively, are shown 

on the same scale as their respective images Fig. (2.4a) and (2.4d). The contraction of 

data toward the origin indicates that the fiber arrangement is ordered over a range much 

shorter than the image size, consistent with the random packing. The Patterson functions 

exhibit strong central peaks which are autocorrelations of each fiber with itself; as expected, 

the diameter of the base of the central peak in each case is approximately two fiber 

diameters. A low-signal region which indicates the excluded volume between fibers 

surrounds this peak, and further out, a ring appears which reflects the average separation of 

the centers of nearest neighbors. 

The symmetry and prominence of the nearest-neighbor rings demonstrate the 

isotropy and short-range order of the packing statistics. The rings occur at -0.7 and 

-0.45 mm respectively for the 0.56 and 0.33 mm fibers. The location of the nearest 
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Figure 2.5 Patterson functions for rotated samples. (A) and (B) correspond, respectively, to Fig. (2.4c) and 

(2.4t) having been obtained from samples rotated 45° from the latter. Although the small fiber data have 

few features that noticeably follow the rotation, the large fiber data have secondary peaks which do; the 

latter are attributed to accidental long-range order arising from finite sampling statistics. 

neighbor ring gives information about how close the fibers are spaced, but one is not 

necessarily able to get a good value for the fiber packing fraction. In order to determine a 

packing fraction from the location of the nearest neighbor rings, one must assume a model 

for the plac~ment of the fibers within the sample. 

To distinguish artifacts from correlations, we repeated the experiments after rotating 

each sample about the tube axis by approximately 45°; results shown in Fig. (2.5a) and 

(2.5b) may be compared with Fig. (2.4c) and (2.4f). The patterns' inversion symmetry 

about ~r = 0 follows from their being Fourier transforms of real data. Several features of 

the large-fiber figures rotate with the sample, notably the large diagonal background swath 

and two pairs of peaks just outside the nearest-neighbor ring. These features therefore 

represent true anisotropy and long-rarige order, appearing here because of the finite 

statistics of the relatively small number of fibers. This conclusion is borne out by the lack 

of similar rotated structures for the small fiber data of Fig. (2.5b) and (2.4f), which reflect 

the statistics of a larger population. On the other hand, the "squareness" of the nearest­

neighbor ring, the slightly diamond-shaped pattern of the central peak, and the cross-like 

bridges between these two structures remain fixed, and therefore must reflect processing 
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and/or noise artifacts. These latter features persist even when Gaussian apodization is 

applied to IS(k t, ruling out truncation effects as the origin of the artifacts. It is possible 

that these artifacts represent a correlation between the signal and the noise, however, this 

issue has not been fully investigated. In the next section, we see that these square features 

disappear when square law detection is used in conjunction with a spatial window 

considerably smaller than the total extent of the sample image. 

2.11 Experimental Example of Two-Dimensional NMR Diffraction- Direct 

Detection of the Diffraction Pattern 

The Patterson functions presented in the previous section do not contain any 

information which is not easily extracted from the images themselves. In fact, the 

determination of these Patterson functions is basically an image processing technique. The 

real benefits are accrued if the phase insensitive diffraction pattern is acquired directly 

without having to acquire the phase sensitive S(k). Since Patterson functions extend over 

a much smaller spatial/frequency range than the full image, a correspondingly lower 

sampling rate of IS(k t is required than for S(k), and noise can be reduced by tighter 

filtering before digitization (assuming the sample is composed of a large number Of small 
/ 

objects - I will always assume this to be the case from now on). 

In the presence of large static field gradients, the signal produced in the coil will 

contain high frequency components with respect to the reference frequency. In a normal 

imaging experiment, this signal is then mixed down (using the reference frequency), 

filtered at audio frequencies and converted to digital form using an analog to digital 

converter. In the previous section, this is exactly what was done. The diffraction patterns 

were then produced digitally by taking the modulus squared of the acquired datasets. In 

order to directly acquire the diffraction pattern, the magnitude squared of the NMR signal 

must be generated before detection and preferably before filtering. The squaring operation 

may be done either before the frequency down-conversion (accomplished by a quadrature 
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phase sensitive detector or QPD) or after. Since operations such as signal multiplication are 

relatively simple to do at audio frequencies (kHz), the squaring device is placed after the 

QPD and before the audio filter. 

A schematic of the squaring circuit is shown in Fig. (2.6). The basic function of 

the squaring circuit is rather simple, but some of the details of the circuit deserve 

explanation. The input signal voltage emerging from the QPD is composed of real and 

imaginary parts, Vr and Vi respectively, in the range ±1 V. The operational amplifiers at 

the input stage serve two purposes. The voltage is amplified by a factor of ten, since the 

analog multipliers (Analog Devices AD734) can tolerate an input voltage range of ±lOV. 

The relative amplification of the real and imaginary voltages is controlled by the 550Q 

5k.Q 

Figure 2.6 Analog squaring device used for the direct acquisition of the NMR diffraction pattern. The real 

and imaginary voltages are amplified by a factor of ten in the first stage after which the voltages are 

individually squared by the two analog multipliers (Analog Devices AD734). The resulting voltages are 

summed and attenuated by a factor of ten before proceeding to the audio filter. All operational amplifiers are 

Analog Devices AD507. 
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potentiometer located at the Vi input. Secondly, any DC offset may be removed by 

adjusting the 200Q potentiometer in the circuit connected to the positive terminal of each 

amplifier. With the resistance values shown, a DC offset in the input voltage of ±0. 75V 

may be eliminated. Removal of any DC offset is vital, as the squaring of the signal in the 

presence of an offset will produce an incorrect result which cannot be accounted for at a 

later stage. Mter the squaring operation, the voltages from both multipliers are added and 

decreased in amplitude by a factor of ten. The final attenuation of the signal assures that the 

audio filter will see maximum voltages of ±1 V. 

Figure (2.7) shows an image, obtained conventionally (without the square law 

device), of a 6 mm tube packed with 120 J.Lm _diameter monofilament fibers (buttonhole 

thread), resolved to 128 points per side. Figure (2.8) shows the NMR Patterson function 

of the same sample, derived from NMR diffraction data, Fig. (2.9), acquired using square 

law detection prior to filtering and digitization. The gradients used here are four times 

larger than those used for the image, so the Patterson function has a correspondingly higher 

resolution even though there are still 128 points on a side. In addition to reducing noise, 

the audio filter prevents aliasing and isolates the significant central 1. 7 mm portion of the 

Patterson function. The central fiber autocorrelation function in Fig. (2.8) is a cone with a 

slightly flared base. As expected, the -220 J.Lm base diameter is equal to two fiber 

diameters within experimental accuracy. The nearest-neighbor ring radius is -180 J.Lm 

which is considerably larger than the 120 J.Lm radius expected for a hexagonally close 

packed (hcp) system. The large value for the nearest neighbor ring indicates relatively 

loose packing of the fiber bundle. Portions of the next-nearest neighbor rings are also 

clearly visible, and a faint third ring is visible but nearly at the level of the noise. This 

greater detail is available because tighter filtering has greatly suppressed noise and artifacts. 

The Nalorac spectrometer uses a 12 bit digitizer which presents difficulties in 
~ 

acquiring all of the squared signal. The amplitude range of the signal far exceeds the range 

of 4096 intensity levels imposed by the digitizer, so in order to acquire the low intensity 
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rings in Fig. (2.9) which will give rise to the fine features in the Patterson function, the 

preamplifier gain must be set such that the signal near the origin ink-space saturates the 

digitizer (i.e. the signal is clipped at some amplitude determined by the dynamic range of 

the digitizer). The result is that much of the Patterson function representative of the overall 

sample geometry is lost, decreasing the baseline offset which would be present if all of the 

signal were acquired and processed. ·If the clipped signal is a delta function the baseline 

will be changed by a constant value, but if the central peak extends over a few points as is 

the case in Fig. (2.9), the baseline will be curved with the highest amplitude near zero 

frequency. As long as the saturation occurs over a relatively small range ink-space, there 

will be little distortion of the width of the central peak and the rings present in Fig. (2.8) as 

these are relatively low frequency features which are not affected by the digitizer saturation. 

Saturation effects such as this are also common in X-ray diffraction of powders where the 

same approach is often taken in analyzing the data30. 

27 



Figure 2.7 Cross sectional image of a 6 mm inner diameter tube containing 120 J..Uil diameter 

monofilament fibers immersed in water. All signal is derived from the water surrounding the fibers, so the 

fibers themselves are low signal dark regions. The fibers appear square, since they are resolved by no more 

than two points in each dimension. The image was acquired with 128 points in each dimension and a 

digital resolution of 60 J..Lm. 
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Figure 2.8 NMR Patterson function of 120 J.1Ul diameter fibers surrounded by water derived from the square 

law detected NMR diffraction pattern shown in Fig. (2.9). Two rings are clearly present surrounding the 

central peak, and a faint'third outer ring appears with an amplitude slightly higher than the noise. The 

image was acquired with 128 points in each dimension and a digital resolution of 17 J.1Ul from a 100 f..1.ID 

thick slice. An image of the same sample acquired with phase sensitive detection is shown in Fig. (2.7) 
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Figure 2.9 Square law detected NMR diffraction pattern of 120 J.1.IIl diameter fibers surrounded by water. 

The dataset is 128 points on a side with a total range of 58 mm-1• 
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There are a number of ways to avoid the saturation problem. 1) The easiest 

solution is to not square the signal, but then a high density of points must be sampled ink-

space. For a one-dimensional experiment this is not usually a problem as will be explained 

further in the next section, but for the acquisition of multidimensional diffraction patterns, it 

is desirable to acquire phase insensitive data. 2) We can also replace the 12 bit digitizer 
! 

with a 24 bit digitizer, but this would entail considerable expense and effort, as high-speed 

(-0.5 MHz) high-precision ( 16 to 24 bit) digitizers do not come cheaply, and replacing the 

digitizer would require considerable modification of the spectrometer software and 

replacement of hardware such as the signal averaging module. 3) One may put an analog 

device after the squaring circuit which greatly attenuates the signal at high amplitudes while 

attenuating the lower amplitude signal considerably less. A common device available for 

this purpose is a logarithmic amplifier depicted in Fig. (2.10). The square of the signal 

may be retrieved in post-acquisition processing where high precision is essentially free. 

This solution was not implemented for the work presented here, since life is just too short. 

2.12 Dimensionality 

In the previous examples of the NMR Patterson function, the imaging phantom was 

diode 

V out oc In( ~n) +constant 

Figure 2.10 Circuit diagram for a simple logarithmic amplifier. Integrated circuit logarithmic amplifiers 

are also available commercially. 
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constructed in such a way as to make 4>(Ar) effectively two-dimensional. If the sample 

were infinitely long along the cylinder axis, the density autocorrelation function along the 

tube axis would be a delta function, so no generality was lost in looking at a thin cylindrical 

slice. Looking closely at the Patterson function in Fig. (2.8), there appears to be an even 

higher degree of symmetry in that 4>(Ar) is roughly circularly symmetric. Therefore, a 

one-dimensional slice through 4>(Ar) passing through the origin is equivalent to any other 

slice, if we neglect nonuniformities due to noise and the small deviations from an isotropic 

distribution of fibers in the yz plane noticeable in Fig. (2. 7). Although images have not 

been presented to demonstrate the effect, 4>(dr) for an isotropic distribution of small 

particles (making 4>(dr) three-dimensional) displays spherical symmetry, hence a one­

dimensional slice is equivalent to any other. Given the high degree of symmetry in both 

cases, we now wish to know whether it is possible to extract 4>(dr) from experiments 

with a lower dimensionality than the full Patterson function. 

2.12.1 Cylindrical and Spherical Symmetry and the Hankel Transform 

The following discussion will be given in terms of the time domain or k-space 

signal and the corresponding image in xy space encountered in NMR imaging.· The 

results, however, are true in general and have been used in numerous other 

applications6•44•45• 

Consider a density distribution p(x,y) which possesses circular symmetry: 

p(x,y) = p(r), 

where r 2 = x2 + y2 
. 

(2.26) 

The Fourier transform of p(x,y), S(kx,ky ), will also possess circular symmetry. 

32 



s( kx,ky) = s( kr ), 

where k2 = k2 + k2 
r x y 

(2.27) 

In light of the symmetry of both functions, we may express the Fourier transform 

relationship between p(x,y) ·and s( kx,ky) in terms of the two sets of polar coordinates 

defined by x + iy = rexp(i8) and kx + iky = k, exp(iq> ). 

-oo-oo 

00 2tr 
= J J p(r)exp(ir kr cos( 8- cp ))r drd8 

0 0 

00 [2tr ] .~ [ p(r) [ exp(irk,cos6)d6 rdr 

00 

=2nfp(r)J0 (rkr)rdr. 
0 

(2.28) 

where 10 is the zeroth-order circular (or cylindrical) Bessel function. Doing the same for 

the inverse Fourier transform, we arrive at 

00 

S(kr) = 2tr f p(r)J0 (rkr )rdr 
0 
00 

p(r)=-
1 

fs(kr)l0 (rkr)krdkr. 
2n 

0 

(2.29) 

The transform in Eq. (2.29) is referred to as either a cylindrical Hankel or zeroth-order 

Fourier-Bessel transform. In this discussion, the product krr has units of tadians in 
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keeping with the previous definition of the k-space vector, Eq. (2.17), so the coefficients in 

front of the two integrals in Eq. (2.29) are not the same. Traditionally, the Hankel 

transform is defined with krr unitless6, making the coefficients in front of both integrals 

2n. No matter which units are used, the Hankel transform is its own inverse, as long as 

one keeps in mind the units of the spaces between which the transform is performed, so we 

will not make a distinction between forward and reverse Hankel transforms. 

As was mentioned earlier in connection with the one-dimensional imaging 

experiment, the Fourier transform of a slice through s( kx,ky ), e.g. S(kr) = S(kx,ky = 0), 
yields the projection of the density p(x,y) onto the y axis and is written 

00 

Py(x) = J p(x,y)dy 
-oo 

00 

= -1 
fs(kx,ky = o)exp(ikxx)dkx 

27r 
-oo 

00 

= -
1 

fs(kr)exp(ikrx)dkr. 
27r 

(2.30) 

Since we have assumed p( x, y) and s( kx, ky) to be circularly symmetric, we will obtain the 

same result by transforming any radial slice from the k-space data .. From Eq. (2.29) and 

(2.30) we see that the Hankel transform is equivalent to doing a Fourier transform followed 

by an inverse projection45 (by this I mean the operation, given that one exists, inverse to · 

the projection operation). Although our primary concern is the determination of p(r) from 

a single slice in k -space, it is instructive to further investigate the transformations associated 

with projections and inverse projections and how these relate to the Fourier and Hankel 

transforms. 

We begin by rewriting the projection transformation in polar coordinates for a 

circularly symmetric function as defined in Eq. (2.26). 
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.. 

oo· 

py(x) = J p(x,y)dy 

(2.31) 
00 

= 2J p(r)r dr 
..Jr2- x2 ' 

X 

where we have used the fact the~.t r 2 = x2 + l. The second integral in Eq. (2.31) is 

commonly referred to as the Abel transform6. One may further show that the Abel 

transfohn is invertable, where the inverse Abel transform is given by45 

00 

p(r) = _ _!_J .V 21 2 d [Py(x)]dx. 
n x -r dx -

(2.32) 

r 

Given.that there exists an analytic form for the inverse Abel transform, we can go 
I 

about doing the transformations in Eq. (2.29) as either Hankel transforms or combinations 

of Fourier and AbeVInverse Abel transforms. The relationships between slices and 

projections in the two two-dimensional conjugate spaces45 (real space and k-space in our 

case) are summarized in Fig (2.11). As we can see, froin a single slice in the time domain, 

one can generate the projection of the sample density as well as the equivalent of a slice 

through the sample density. 

For objects which display spherical symmetry, we follow a similar procedure as in 

Eq. (2.28) to determine the spherical Hankel transform given by 

(2.33) 

35 



·,. 

-, 

sk (kx) 
y 

•• Ia. 

..,.,..t------t@J----t .. ~ p(r) 

, .. 
· Figure 2.11 Transforms relating slices and projections in both domains to each other. The two-

' dimensional object represented is a solid disk in xy space centered at the origin. Abbreviations : (H)ankel, 

(A)bel, and (F)ourier transform. The Hankel transform takes a slice S(kr) from the k-space domain and 

produces a slice through the density distribution p(r), whereas a Fourier transform of S(kr) produces the 

projection Py(x). The double arrows imply a transform which is its own inverse, whereas the single 

arrows are for the Abel transform which is not its own inverse. 

where 

(2.34) 

In practice, the spherical Hankel transform is less computationally intensive as the 

evaluation of 1112 ( r kr) requires fewer operations than the evaluation of J 0 ( krr). Due to 

the large number of computations which must be performed in a brute force implementation 

of the Hankel and inverse Abel transforms, numerous algorithms have been developed for 

fast cylindrical Hankel46-53 and inverse Abel54-56 transforms. For the work presented 

here, the Hankel transform is integrated explicitly since only a few transforms need to be 

' performed at any given time; a 1024 point dataset requires approximately Is of CPU time 

(-10 s of real time on average) on a Silicon Graphics R4000 Iris Indigo Computer. 
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,2.12.2 Noise Effects in .Hankel Transforms 

In many applications the desired signal is acquired in the presence of either white or 

bandwidth limited noise, where white noise is characterized by a constant variance and 

noise power independent of frequency. For bandwidth limited noise, the noise power is 

confined to a finite frequency range. In NMR applications, the preamplifier contributes the 

major source of white noise. To eliminate aliasing of high frequency noise, the input signal 

is filtered (time averaged) at or slightly above the sampling frequency. As the noise power 

is not dependent on the frequency, Fourier transformation of noise produces noise with a 

constant variance within the spectral window defined by the filter. This is not the case, 

however, for the Hankel and inverse Abel transforms44•57. 

The noise generated by the inverse Abel transform of a noise dataset with variance 

d2 and bandwidth B is approximately57 

(2.35) 

for large values of 27CTB. Since the Fourier transform deals with noise equally, Eq. (2.35) 

also applies to the cylindrical Hankel Transform, where u 2 is then the noise variance of the 

dataset after the implied Fourier transformation and before the inverse Abel transform. 

Although Eq. (2.35) is not correct for small values of 2m-B, it serves as a guide for the 
' 

behavior of the noise variance of Hankel transformed data. It is very important to keep this 

effect in mind for NMR diffraction, since the data of interest appears near the origin where 

the noise variance is greatest. 

We have not found an analytical study of the effect on noise by the spherical Hankel 

transform, but the approximate dependence of the noise variance can be determined by 

numerical experiment. To do this a number of white noise data sets are generated and the 

spherical Hankel transform is applied to each dataset. An example of a noise data set and 
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its spherical Hankel transform are shown in Fig. (2.12). It is immediately apparent in Fig. 

(2.12b), that the noise variance is strongly dependent upon r. The magnitude squared of 

the noise datasets are then added together, producing the envelope, E(r), of the square of 

the transformed data, c.f. Fig. (2.13). As the envelope has the same dependence upon r 

as does the variance, ·a fit yields the radial dependence of the variance. In Fig. (2.13), the 

data is fit to 

(2.36) 

where a and b are the fitting parameters. The fit yields a value of 2.08 for b. As we 

might have expected from Eq. (2.35), the application of the inverse Abel transform two 

times yields a noise variance approximately inversely proportional to the radius squared. 
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Figure 2.12 (A) White noise trace, N(r), with constant variance. (B) Spherical Hankel transfmm of 

N(r), SH[ N(r)], truncated at 8% of the maximum (negative) amplitude. The nonlinear treatment of noise 

by the Hankel transform is readily apparent in (B). Radial values are given in points. 

39 



E(r) 

0 

0 10 20 30 40 50 60 

r 

Figure 2.13 E(r), circles, is the magnitude squared of the spherical Hankel transform sununed over 64 

noise traces each containing 128 points. E(r) is equivalent to the envelope of the magnitude squared of 

spherically Hankel transformed white noise and displays the same dependence upon r as the noise variance. 

The fit, black line, shows that the noise variance is approximately inversely proportional to the radius 

squared. For clarity, E(r) is truncated at 1% of maximum. Radial values are given in points. 

In the following applications of the cylindrical and spherical Hankel transforms of 

diffraction data, the noise is reduced by filtering and signal averaging but can never be 

completely eliminated. In some cases, the noise produces a noticeable zero frequency 

glitch. 

2.12.3 Application of the Cylindrical Hankel Transform to NMR 

Diffraction - Theory and Experiment 

The Hankel transform relations in Eq. (2.29) have great relevance to NMR imaging 

and diffraction. Given a circularly symmetric image or density autocorrelation function, 

one need only acquire a single ray ink-space in order to completely determine that function. 

In order for the transformation to proceed correctly, the object must possess true cylindrical 
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symmetry (neglecting noise contributions) and be centered in the frequency window, since 
\ 

asymmetry and misalignment produce noticeable artifacts in the resulting distribution 58. 

For the case of NMR diffraction, the situation is simplified in that the Patterson function is 

necessarily centered in the frequency window, and if the sample statistics are isotropic, the 

Patterson function is circularly symmetric. 

From Eq. (2.23) and (2.29), we can determine the transform relating the time 

domain diffraction data to a cylindrically symmetric Patterson function. 

00 

<I>(~r)=-1 f!s(krt lo(~rkr)krdkr 
. 2n 

0 (2.37) 
00 

!S(krt = 2n f <l>(~r)J0 (~rkr)~rd~r 
0 

The Fourier transform of the one-dimensional diffraction data yields the Abel transform of 

<I>(~r), c.f. Eq. (2.30). To distinguish between the slices and projections, we will refer to 

the unprojected density autocorrelation function as <I> 0 ( ~) and the projected distribution as 

<l> 1 (~r). By definition, <I>0 (~r) is the autoco~elation of the point density (pointwise 

autocorrelation density), whereas <1>1 ( ~r) may be viewed as the correlation of discrete 

strips or lines of density (stripwise autocorrelation density). 

As was noted before, the Patterson function in Fig. (2.8) displays approximate 

circular symmetry, so the same sample (120 J.Lm monofilaments) was used to demonstrate 

the utility of the cylindrical Hankel transform approach. By implementing the Hankel 

transform approach on the same sample, we will also be able to compare the full two­

dimensional autocorrelation distribution in Fig. (2.8) to the Hankel transform result. 

Figure (2.14) compares the Fourier and cylindrical Hankel transforms of one­

dimensional square law detected diffraction data to a slice from the two-dimensional 

Patterson function in Fig. (2.8). All three. density autocorrelation functions have a digital 
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resolution of 16.5 J..Lm. To ensure the isotropy of the data, the one-dimensional data was 

averaged over 64 equally spaced gradient directions, hence the superior signal to noise and 

smoothness of Fig. (2.14a), <1>1(Ar), and Fig. (2.14c), <1>0 (Ar), with respect to Fig. 

(2.14b). In Fig. (2.14c) peaks appear at 0, 160, 280 and 410 J..Lm; these numbers should 

be compared to those expected for two-dimensional hcp: 0, 120, 207 and 240 J..Lm. As the 

measured values are considerably larger than those for hcp, the porosity of the sample, the 

ratio of the void volume (water) and the total physical volume of the selected region, is 

necessarily larger than the porosity of a hcp system; 0.09. The larger porosity value agrees 

with the imperfect packing noticeable in Fig. (2.7). Previously, it was noted that a faint 

third ring appears in Fig. (2~8); the third ring or peak is clearly seen in Fig. (2.14c ). ' As 

expected, the stripwise autocorrelation distribution, Fig. (2.14a) has less pronounced 

nearest neighbor peaks than <1>0 (Ar) and has a monotonically decreasing baseline. In 

determining the location of the peaks, one should use Fig. (2.14c), since the baseline of the 

projected distribution makes the peaks appear at a smaller radial value. 
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Figure 2.14 (A) One-dimensional Fourier transform of square law detected diffraction data from the 120 fliD 

diameter fiber sample, averaged over 64 equally spaced gradient directions. The glitch at zero frequency is 

likely due to noise. (B) Slice taken from the two-dimensional autocorrelation distribution in Fig. (2.8). 

(C) Cylindrical Hankel transform of the same radial diffraction data as used to produce (A). Differences 

between (B) and (C) are primarily due to the circular averaging used to produce the radial diffraction data 

from which (C) is derived. Each dataset has a digital resolution of 16.5 fliD 
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For samples with a more homogeneous distribution of fibers, only a single slice 

from the diffraction data need be acquired, but we were unable to produce fiber samples 

with adequate isotropy. However, we were able to fabricate samples with a nearly 

isotropic distribution of small particles. 

2.12.4 Application of the Spherical Hankel Transform to NMR Diffraction 

- Theory and Experiment 

For samples which display spherically symmetric statistics, the density 

autocorrelation distribution is determined from a one-dimensional diffraction dataset by the 

spherical Hankel transform. 

(2.38) 
00 3 2 3J J (~rk) -IS(kr)l = (2n)2 ~(~r) 112-{f; r ~r2 d~r 
0 

A cylindrical Hankel transform of the diffraction data generates the Abel transform of the 

density autocorrelation distribution, and a Fourier transform generates the Abel transform 

of the Abel transform' of ~(~r).45 We will refer to the true density autocorrelation 

distribution as ~0 (~r), the Abel transform of ~0 (~r) as ~1 (~r), and the Abel transform 

of ~1 (~r) as ~2 (~r). As noted previously, ~0 (~r) is the density autocorrelation of 

discrete points in the sample or the pointwise correlation. ~1 ( ~r) represents a slice from 

the projection of ~0(~r) onto a two-dimensional plane and may be thought of as the 

density autocorrelation distribution· of discrete strips. ~2 ( ~r) is the projection of ~ 0 ( ~r) 

onto a single line and may be thought of the density autocorrelation distribution of discrete 

planes in the sample. 
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The sample consists of 140 f...Lm diameter polystyrene microspheres (Duke 

Scientific) packed into a 7 mm inner diameter glass tube which is filled with water. Air 

bubbles are avoided by slowly adding the particles to a water filled tube and allowing them 

to settle. Tubes prepared in this way consistently have a porosity of -0.38, whereas the 

smallest achievable porosity corresponding to a face centered cubic (fcc) configuration is 

0.26.59 

The diffraction data in this case was not acquired using square law detection, since 

little is gained by square law detection in a one-dimensional experiment. After acquisition, 

the square magnitude of the time domain data is filtered using a Gaussian convolution 

function given by 

G(M) = exp( ~2

} 
(2.39) 

where a 2 = 770pm. 

The Gaussian convolution is the computational equivalent to an audio filter following 

square law detection. Although the response of a Gaussian filter is not as flat as the 

commonly used electronic Hadamard filter, it serves the purpose of reducing the total noise 

power in the data set, and for reasons to be explained below, a Gaussian filter insures that 

the geometry of the sample appears spherically symmetric. 

Since we acquire the data without square law detection, we are able to acquire the 

entire echo amplitude. The density autocorrelation distribution will therefore show the 

autocorrelation of the bulk sample with the small fluctuations due to the spherical particles 

riding atop and located near the origin. Formally, we may separate the density distribution 

of the sample into two parts 

p(r) = pb(r) + p'(r). (2.40) 
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pb(r) has the same bulk geometry as p(r) but has an intensity equal to the average local 

intensity of p(r) within the sample volume. By average, we mean that the intensity is 

averaged over a larger area than the fluctuations created by the sample inhomogeneities. 

For the experiment described above with Gaussian filtering, pb(r) is a spherical Gaussian. 

p'(r) arises from the fluctuations about the average value of pb(r) due to the presence of 
) 

the introduced heterogeneities. In terms of Eq. (2.40), the autocorrelation of p(r) is 

«1>0 (.8r) = (p(r)p(r+.8r)) 

= (pb (r)pb(r + .8r)) + (pb(r)p'(r + .8r)) (2.41) 

+(p'(r )pb (r + .8r)) + (p'(r )p'(r + .8r )) 

where the brackets represent integration over rand, in light of the spherical symmetry, a 

final integration·over the angular components of .8r. Since p'(r) has an average value of 

zero, the middle two terms in the sum of Eq. (2.41) vanish. We are left with the sum of 

the autocorrelation of the mean bulk sample and the autocorrelation of fluctuations in the 

s~ple density. 

(2.42) 

Taking successive Abel transforms of Eq. (2.42), we arrive at similar expressions for 

«1>1(.8r) and «1>2 (.8r). 

<1>1 ( dr) = ct>f ( dr) + <I>~ ( .8r) 

<1>2 (.8r) = «<>~ (.8r) +<I>~ (.8r) 

(2.43) 

(2.43) 

Note that Abel transformation is a linear operation, so 4>~(.8r) is the projection of «1>~(.8r), 

etc. 
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Since the data is processed with a Gaussian filter with a bandwidth considerably 

narrower than the sample geometry, the bulk autocorrelation function <I>g(~r) and its 

projections <I>t(~r) and <l>~(~r) are all almost perfect Gaussians, hence they represent 

autocorrelations of a spherically symmetric distribution, namely a spherical Gaussian. This 

is an important point, since in applying the Hankel transformation, we are as~uming 

spherical symmetry, whereas the sample is actually a cylindrical section. 

Figure (2.15) shows the experimentally obtained <l>~(~r), <~>a~r) and <l>~(~r) for 

the sampled described at the beginning of the section with a slice thickness of -7 mm and a 

digital resolution of 15.5 Jlm. As was shown in Fig. (2.14b), the projections of <l>~(~r), 
) 

namely <l>i(~r) and <l>~(~r), displaypeaks riding atop a monotonically decreasing 

baseline. This is not the baseline due to the bulk sample, <I>g(~r). Rather, it is a 

consequence of the projection operation. For the projections, the peaks appear to be at 

smaller values than do those in <l>~(~r), so in order to be able to pick off particle 

separations simply, one should use the unprojected density autocorrelation distribution. 

Figure (2.16a) shows <l>~(~r) over a smaller amplitude range, which reveals the presence 

of a total of five peaks at 0, 150, 270, 390, and 510 Jlm. For a fcc packing structure 

(porosity=0.26), peaks should appear at 0, 140, 240, 280, and 370 Jlm. Comparing the 

two sets of numbers, we may surmise that the particles are relatively well packed over short 

length scales, however, the close packing does not continue over much more than two 

particle diameters. This may be due to the particles grouping into small, well ordered 

domains which are randomly oriented with respect to one another. 

Unexpectedly, <l>~(~r) in Fig. (2.16a) does not go appreciably below zero between 

the peaks as might be expected for a density autocorrelation function derived from a density 

distribution with zero mean. For a thinner slice, shown in Fig. (2.16b), <l>~(~r) does go 

appreciably below zero. The discrepancy between the two distributions may be due to an 

inaccurate subtraction of the Gaussian baseline <1>g ( ~r) which is much larger than <I>~ ( ~r) 

for the 7 mm slice than for the 0.4 mm slice; data taken for a large number of slice 
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thicknesses indicate that the area of the magnitude of ct>~(Ar) decreases approximately 

linearly with respect to the slice thickness, whereas the area of ct>g(Ar) )is inversely 

proportional to the square of the slice thickness. In spite of the discrepancy, Fig. (2.16a) 

reveals a significant amount of information for a one dimensional experiment. 
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Figure 2.15 Comparison of the Fourier, cylindrical Hankel, and spherical Hankel transformed data, '~>;, 

'~>; and 'I>~ respectively, for a sample composed of 140 J.Ull microspheres. The amplitude scale is 
I 

arbitrary, and the digital resolution in each case is 15.5 IJ.ID. 
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Figure 2.16 Comparison of <I>~ for two slice thicknesses: (A) 7 mm and (B) 0.4 mm with a digital 

resolution of 15.5 JliD. The * symbols indicate the peaks at 150, 270, 390 and 510 J.1ID referred to in the 

text. The 510 J.1ID peak is not indicated in (B) since the noise level makes it impossible to determine the 

·existence of a peak at that location. Note that the range of the horizontal scale is larger than that in Fig. 

2.15. To better display the peaks, the vertical range in (A) and (B) is only one-quarter of the maximum 

amplitude. 
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2.13 Conclusions 

We have shown how direct diffraction and associated NMR Patterson functions can 

characterize the spatial statistics of small structures. Of course, it is always possible to 

extract statistical information from an image by digital processing, but there are compelling 

advantages for adopting the diffraction viewpoint (and square law detection), which fall 

under the headings of acquisition economy and, most generally, statistical regularity. 

Acquisition economy refers to the fact that fewer points are often required to specify 

the Patterson function of a sample compared to its image. Although ra~J-ge ink-space 

(maximum gradient level and duration) must be maintained for good spatial resolution for 

both diffraction and imaging, the density of data points ink-space determines the spatial 

range, and this is quite different in the two cases. This was shown in Figs. (2. 7) and 

(2.8), where the same number of data points were used to display the Patterson function 

with a resolution 4 times higher than the corresponding image. As discussed in Section 

2. 7, the statistical experiment reduces the number of points required by approximately the 

number of features in the sample length. If there are 100 features on a side, for example, 

obtaining a three dimensional Patterson function requires about a million times fewer points 

than for a comparably resolved image. This corresponds to a considerable time savings in 

multidimensional experiments. 

Statistical regularity refers to the fact that statistical descriptions of systems, such as 

the Patterson functions discussed here, often possess higher symmetry than the system 

itself. We have already mentioned above how statistical characterization permits repeated 

signal acquisition even for re-arranging systems because statistical data are time invariant 

but imaging data are not. A similar situation arises for orientation when features are 

distributed isotropically. The rotational symmetry of Fig. (2.4c), (2.4f), and (2.8) 

demonstrates such angular independence. In Section 2.12.3 and 2.12.4, we took 

advantage of the sample symmetry to reduce the dimensionality of the required experiment 

to one by using the cylindrical and spherical Hankel transforms respectively to process' 
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one-dimensional diffraction datasets. These temporal and orientational symmetries are two 

instances of statistical regularity, by which we mean symmetries possessed by system 

statistics but not by the system (or image) itself. In fact, the underlying mechanism behind 

acquisition economy is actually another statistical regularity, translational invariance: the 

rapid (phase) variations ink-space associated with macroscopic translations are absent from 

the correlation statistics. 

Finally, the fact that diffraction information resides in an intrinsically narrower 

bandwidth than data for comparably resolved images implies that NMR diffraction 

techniques will be able to achieve a finer spatial resolution than that which can be achieved 

in a reasonable time (an important consideration in the theoretical resolution of NMR 

imaging) by NMR imaging techniques. Theoretical work presented by Callaghan indicates 

that NMR imaging is able to resolve three-dimensional objects only as small as 10 Jlm on a 

side17. 
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Chapter 3 Radial RF Imaging Using a Coaxial 
Resonator 

3.1 Introduction 

NMR imaging conventionally employs magnetic field gradients which produce 

planes of constant field strength of either the static field B0 ,
3•60•61 or, as will be discussed 

in this chapter, the excitation field ~. 62 fu both cases, the field strength increases linearly 

along one direction of the Cartesian coordinate system (x,y,z) producing spatially 

dependent Larmor or nutation frequencies respectively. Such gradients are appropriate for 

medical imaging where the object being studied has no particular symmetry. However, for 

systems having cylindrical symmetry (e.g. the flow between counter-rotating cylinders or 

in a pipe) it may be possible to reduce the dimensionality of the experiment by producing 

magnetic field gradients of cylindrical symmetry, i.e. cylinders of constant field strength, 

for faster acquisition or improved signal to noise. This approach requires a different coil 

geometry from previous imaging methods3•4•39•63 , so a novel means of producing 

magnetic field gradients will need to be developed. 

In this chapter, we present a method for producing cylindrically symmetric rf 

magnetic field gradients and a means of interpreting the NMR results from such a 

system64. Although the work on this system did not proceed beyond the initial testing 

stages of the apparatus, we foresee that these results open up the possibility of efficiently 

investigating phenomena previously difficult or impossible to measure. 
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_) 

, 3.2 Radiofrequency NMR Imaging Theory - Constant Field Gradients 

Unlike the type of NMR imaging described in Chapter 2, radio frequency or 

rotating frame NMR imaging (rf imaging) employs a gradient in the excitation field as a 

means of obtaining a spatially resolved sample density distribution. In the following 

dis~ussion, we assume that the coil which generates the rf field gradient is also used to 

acquire the NMR signal, no appreciable T1 or T2 relaxation occurs in the course of the 

experiment, and the rf field is applied at the Larmor precession frequency (note that this 

also implies the absence of inhomogeneities in the static field). Also, we will take the 

standpoint of the reference frame rotating in phase with the excitation magnetic field, i.e. 

the rotating frame. 

Consider, for example, a coil and sample configuration such as that shown in 

Fig. (3.1). The ~ field directed along the coil axis increases approximately linearly 

between x = 0. 5R to 1. 2R, where R is the radius of the coil, and the region considered lies 

along the line which determines the central axis of the coil65 . We will define the x axis 

ziiB0 ,,.,-l 
y 

X 
Sarriple- - \ -------~---

x=O 

...,_ _____ _ 

Figure 3.1 Schematic of coil and sample configuration for a possible rf NMR imaging experiment. The 

excitation field is aligned with the x axis and is linearly increasing with respect toxin the region x = 0.5R 

to 1.2R. Note that the orientation of the x axis is from right to left. The arrowheads on the coil indicate 

the direction of the instantaneous current through the coil. 
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origin as the imaginary point where the excitation field goes through zero if one 

extrapolates from the linear region. This point lies at a distance of 1.4R from the coil 

center. If we define the positive direction as moving towards the center of the coil from 

x = 0, then the magnetic field strength as a function xis given by 

(3.1) 

where g1 = 0. 76 ~c/ R and ~c is the field at the center ofthe coil. When the on-resonance 

excitation field is applied, the magnetization within the region of linearity indicated above 

will nutate about the rf field at a frequency given by 

(3.2) 

In the rotating frame, the component of the magnetization in the plan~e transverse to 

the static magnetic field for a volume element dV located at Xo following a pulse of length 

r will be 

Mxy(t) oc sin( m1 (x0 ) r)p(x0 )dV, (3.3) 

where p( x0 ) is a projection of the sample density along the y and z axes. The NMR 

signal arising from the same volume element is· given by 

(3.4) 

The leading term m1(x0 ) appears as a consequence of reciprocity16,66. Simply stated, the 

voltage or current produced in a coil by a magnetic dipole is proportional to the magnetic 

field produced at the position of the dipole by a unit current in the coil. Therefore, the 
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NMR signal from a given point is weighted by the strength of the magnetic field produced 

by the resonator at that point, and since the magnetic field strength is proportional to m1, 

the signal is weighted by m1• Integrating over the entire sample volume and neglecting any 

proportionality constants outside the integral, we obtain the total NMR signal given by 

S(-r)= J m1(x)p(x)sin(m1(x)-r)dx. (3.5) 

v 

If m1(x) is given by Eq. (3.2), the signal becomes 

S( rg1 -r) = yg1 f xp(x )sin( ygl 'l" X )dx. (3.6) 
v 

It is now possible to obtain the density distribution by doing a sine transform with respect 

to the conjugate variables ( yg1 -r, x}. 

xp(x) oc f s(r&-r)sin(rgln)d(rgl-r). (3.7) 

v 

Although the sine transform does not directly yield the sample density distribution, p( x) 

may be obtained trivially from Eq. (3.7). 

The range and resolution of the experiment in both spaces may be determined by 

Eq. (2.19) and (2.20) replacing kx with r&-r. 

3.3 Radiofrequency NMR Imaging - Experimental Methods 

We will consider three basic approaches to rf imaging. As was the case for static 

field gradient imaging, the goal is to adequately sample the space determined by r& 'l". 

Unlike static field gradient imaging, it is impossible to sample the NMR signal while the 
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gradient is applied. However, as we will show in the third example, it is still possible to 

do a frequency encoding type experiment, cf. Section 2.5. 

The first method, Fig. (3.2a), is an inherently two-dimensional experiment. A rf 

pulse of constant duration -r is applied with a variable amplitude increasing from zero to the 

maximum value in equal increments. Of course, the first pulse does not produce any 

signal, but this is necessary in order to ensure the proper implementation of the sine 

transform. The second method, Fig. (3.2b), is also inherently a two-dimensional 

experiment, but instead of varying the amplitude of a pulse of constant duration, one 

applies constant amplitude pulses with a variable duration increasing from zero to the 

maximum value in equal increments. In both cases, one may either acquire only the first 

point in the resulting free induction decays (Fills), or acquire the entire FID. By acquiring 

the entire FID, one may perform a Fourier transform along the acquisition dimension to 

separate resonances due to different chemical species67-69 or to compensate for small 

inhomogeneities in the static field. Both experiments may also be turned into two­

dimensional imaging experiments by applying static field gradients in a manner similar to 

that described in Section 2.5, cf. Fig. (2.2). An example of a mixed rf and static field 

imaging experiment will be presented in Section 3.7. 

The third type of rf imaging experiment, Fig. (3.2c), unlike the other two, is a one­

dimensional experiment. Short, constant duration rf pulses are applied between which a 

single point is acquired. Nutation sequences such as this have been used previously in 

solid-state decoupling experiments70•71 and, by myself, to quickly determine the rf field 

homogeneity in NMR imaging probes. 

The first two experimental methods, Fig. (3.2a) and (3.2b), are phase encoding 

methods, whereas the nutation experiment is a frequency encoding experiment. 
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(b) 

r.f. 

(c) 
r.f. 
and 
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&t 

~.I_IJI.I. 
• acquired data 

Figure 3.2 Pulse sequences for three types of rf imaging experiments. In (a) constant duration gradient 

pulses of increasing amplitude are used. In (b) constant amplitude pulses of increasing duration are applied. 

In (c) we see the equivalent of acquisition during the application of the excitation field gradient. The signal 

represented~ (a) and (b) is the FID resulting from the individual excitation pulses and contains no imaging 

information by itself. The imaging information is contained in the amplitude modulation of the signal 

between excitations. In (c) the signal does contain imaging information and is equivalent to the time 
' 

domain signal in Eq. (3.5). 
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3.4 The Coaxial Resonator 

As mentioned above, the primary goal of this work is to develop a system which 

generates cylindrically symmetric gradients in the excitation field strength. There does not 

appear to be a way to do this for static field gradients unless a conductor is run through the 

central part of the sample. Inductive coupling of the gradient coil to the resonator and a 

dramatic lowering of the Q of the resonator circuit due to the presence of what is effectively 

a conductive sample rule out the use of static field gradients. However, cylindrically 

symmetric gradients in the excitation field are present in coaxial resonators. In an infinite · 

coaxial transmission line, Fig. (3.3), the magnetic field produced between the two 

conductors is given by72,73 

B = J1](z,t) 
cp 2nr ' 

(3.8) 

where (r,tp,z) define the cylindrical coordinate system aligned with the central conductor, 

I(z, t) is the current at a given distance z down the line at time t, and J1 is the permeability 

of the region between the two conductors. 

Inner 
Conductor 

Figure 3.3 Cross section of a coaxial transmission line. Generally the outer conductor is grounded and 

current travels down the internal conductor. The magnetic fields produced are confined to the insulating 

dielectric region and produce cylinders of constant field strength concentric with the inner conductor. 
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A coaxial resonator may be constructed using an open-ended (open circuit at both 

ends) half-wavelength,' A./2, section of coaxial transmission line, where A is the 

wavelength of the excitation rf field. For the field strengths we will be using, the half 
/ 

wavelength in free space of the resonant excitation field is approximately 80 em, which is 

inconveniently long. Of course, the introduction of insulating dielectrics between the two 

conductors will reduce the length of a A./2 line, but the segment will still be quite long. In 

addition, the rf field gradient is only close to cylindrically symmetric in the central (axial) 

portion of the resonator due to the sinusoidal dependence of the current in the axial 

direction. 

Transmission line theory 74•75 suggests a means of shortening the coaxial segment 

and achieving a nearly cylindrically symmetric rf field, while still maintaining the resonant 

characteristics of a half-wave line. The input impedance with respect to ground, Z8 , of a 

lossless transmission line segment of length l (in our case a coaxial line) with a terminating 

impedance of ZR is given by 

Z _ Z ZR cos(f3l) + iZ0 sin(f3l) 
s - 0 Z0 cos(f3l) + iZR sin(f3l) ' 

/3 = 2n 
A,' 

r 

(3.9) 

(3.10) 

where Ar is the rf wavelength in the material between the two conductors and is equal to 

the wavelength in free space divided by ..JE:. er is the ratio of the dielectric constant of 

the insulating material between the two conductors and the dielectric constant of free space. 

Z0 is the characteristic impedance of the transmission lin~, which for a coaxial line, 

Fig. (3.3), is given by 

(3.11) 
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Figure 3.4 A coaxial resonator may be constructed either (a) from a half-wave line or (b) by terminating 

both ends of a shorter line with the appropriate capacitance, CR" One of the terminating capacitors is made 

variable to allow for balancing of the end capacitance. CR may be determined from Eq. (3.13) given the 

resonator dimensions, the dielectric constant of the material between the coaxial conductors, and the 

frequency of the applied current. The match capacitor, CM, provides a means of matching the input 

impedance of the circuit to the characteristic impedance of the line connecting the amplifier to the resonator, 

50 Q. 

For an open line, ZR -7 oo, so the input impedance simplifies to 

Zs = -iZ0 cot(f3l). (3.12) 
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Now we may ask ourselves, if we only wish to keep the central section of the half-

wave line, what can we use to replace the two pieces which were cut off either end? Since 

the two pieces are each shorter than a quarter-wavelength, Eq. (3.12) implies that they 

have a negative imaginary impedance, i.e. they are equivalent to capacitors to ground. If 

we use a coaxial line of length 8, then the required capacitance at either end is 

1 ( n8) CR = cot.,.-, 
. 2n f Zo .ll.r 

(3.13) 

where f is the frequency of the excitation field. A diagram of the circuit is shown in 

Fig. (3.4). The matching capacitor, CM, is used to match the impedance of the resonant 

circuit near resonance to the impedance (in our case 50 Q) looking towards the input from 

resonant the circuit 76• 

3.5 NMR Imaging with a Coaxial Resonator 

For the coaxial resonator, we wish to express the rf imaging signal in terms of the· 

cylindrical coordinate system. From Eq. (3.5), 

00 J 

S(t) = J m1 (r)pq>z(r )sin( m1 (r )t )rdr, 
0-

(3.14) 

where p q>z ( r) is the average volume density taken over a cylinder of radius r and length L 

given by 

2n L/2 

pq>z(r) = -
1
- Jdcp Jdzp(r, cp,z). 

2nL 
0 -L/2 
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We will neglect proportionality constants appearing in front of the integral in the following 

signal equations. These constants are not essential in the following discussion, so no 

generality will be lost; we will not, however, neglect proportionality constants appearing 

inside functions within the integrals. 

Using the magnetic field strength indicated in Eq. (3.8), we arrive at the form of 

the radially dependent nutation frequency 

(3.16) 

where we are assuming that the current is a constant in the short section of coaxial line 

used. The gradient g1 in this case is the derivative of the excitation field with respect to lfr 

as. opposed to r. 

Rewriting Eq. (3.14) in terms of m1, Eq. (3.16), yields 

(3.17) 

We define the nutation spectrum of S(t) as the sine transform of the signal according to 

00 

CT(m1) = J S(t)sin(m1t)dt. 
0 

(3.18) 

Combining Eq. (3.17) and (3.18) provides a relationship between the average radial 

density and the nutation spectrum. 
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(3.19) 

Since the resolution of the nutation spectrum with respect to m1 is constant and 

Eq. (3.16) relating m1 to r is non-linear, the resolution of pC/Tl.(r) with respect to r will 

not be constant. The radially dependent resolution is 

dr r 2 

8r=--8m1 =-8m1 
dm1 Y81 (3.20) 

for r>> 8r, 

where 8m1 is the resolution of the nutation spectrum. For data obtained from N time-

domain points sampled with a dwell time 8-c, Fig. (3.2c), Eq. (3.20) becomes 

(3.21) 

Therefore, the technique is expected to yield density distributions with considerably better 

resolution at small radii than at large radii. 

The noise power and frequency are also a function of radius for pC/Tl.(r). Given 

wide-sense white noise in the nutation spectrum, we see from Eq. (3.19) that the noise 

variance for pC/Tl.(r) scales by 1/r2 and from Eq. (3.20) that the noise frequency scales by 

1/ r 2 
• These effects are clearly seen in the one-dimensional rf imaging data shown in the 

next section. ,, 
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3.6 Experimental Example of One-Dimensional NMR Imaging with a Coaxial 

Resonator 

A cutaway view of the coaxial resonator and a concentric cylinder phantom along 

with relevant dimensions are shown in Fig. (3.5). More detailed schematics of the 

resonator and concentric cylinder phantom are given in Appendix A.l. The terminating 

capacitors are soldered to the end plates, but they are only held to the outer conductor by a 

metal clamp (not shown). This design allows loading of the sample without having to 

unsolder the capacitors every time. With the sample loaded, the resonator has a measured 

Q of -200. Driving the loaded resonator with a 100 W rf amplifier produces a maximum 

nutation frequency of 42kHz at the inner 3.85 mm radius, which implies that the 

resonator carries a maximum current of 19.2 A according to Eq. (3.16). 

The phantom is composed of 94% plexiglass, er = 2.3, and 6% water, er = 80, so 

the wavelength of a 185 MHz signal is -61 em, and the characteristic impedance, 

Eq. (3.11), is 25 Q. Using these parameters, the dimensions of the resonator shown in 

Fig. (3.5) and Eq. (3.13), we find that each end of the resonator should be terminated by 

a capacitance of 147 pF. In practice, we found that a capacitance of 110 pF was 

suffici'ent. The discrepancy between the two values may be due to the presence of 

unaccounted for stray capacitance or an average relative dielectric constant different from 

the predicted value of er,ave = 7. 

The imaging experiments were performed using the same spectrometer as that 

described in Section 2.10 operating at 185 MHz. The nutation imaging sequence, 

Fig. (3.2c), employed 1024 10 j...LS rf pulses separated by a 90 j...LS delay to allow for data 

acquisition, probe ringdown, filter rise time and amplifier blanking. Great care is taken to 

ensure that the static field is spatially homogeneous in the sample region and the excitation 

pulses are applied on resonance. The time domain signal, S(t), is shown' in Fig. (3.6a), 

and the sine transform of this signal, the spectrum a{ m1), is shown in Fig. (3.6b ). The 
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average radial density p~(r) shown in Fig. (3.6c) is obtained from c:r(co1) using 

Eq. (3.16) and (3.19). 

Because Eq. (3.16) relating co1 to r is non-linear, the uniformly spaced points 

(constant resolution in co1) of c:r( co1) are mapped into the unevenly spaced points of 

p~(r); see Eq. (3.20) and (3.21). For display uniformity, Fig. (3.6c) actually shows 

p~(r) defined for evenly spaced points with amplitudes determined by cubic spline 

interpolation. The true digital resolution at the smallest inner radius, 3.85 mm, is 8.6 J..Lm. 

Based on the rise of p~(r) at this position, the achieved resolution is approximately 

100 J..Lm. Since the root-mean-square displacement due to self-diffusion of the water in the 

sample is -20 J..Lm over the course of the 102 ms experiment, diffusion accounts for some 

loss in resolution. In addition , the z dependence of co1 due to the finite wavelength of the 

applied field produces a barrel-shaped as opposed to a purely cylindrical field profile. 

Thus, a surface of constant co1 located at a radius r at the resonator center will constrict 

slightly inward to r -ll.r at the resonator ends, where 

-=1-cos- . ll.r ( n8) 
r Ar 

(3.22) 

8 is the length of the resonator, and A.r is the wavelength of the current in the resonator 

(i.e. the wavelength of the excitation radiation). At the 3.85 mm radius the value of ll.r is 

approximately 10 J..Lm, so the bulk of the 100 J..Lm spread in the signal is likely due to 

sample or conductor misalignment. In the next section, we will present results from a 

phantom which better tests the resolution of the apparatus. 

The nonuniformity of the noise variance of p~(r) is immediately apparent in 

Fig. (3.6c). As expected, the noise increases for smaller radial values and the noise 

frequency decreases. 
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Figure 3.5 Cutaway of coaxial resonator and concentric cylinder phantom. The plastic internal support is 

not shown. The resonator is 4.45 em long with a 0.625 em O.D. inner conductor and a 1.875 em I.D. 

outer conductor. The phantom consists of three 1 mm thick, 22 mm long, concentric cylinders of water 

with inner radii of 3.85, 5.85 and 7.85 mm supported by a plexiglass holder. Each end is shorted to the 

outer conductor (ground) by five -22 pF ATC low power chip capacitors. The lower endplate is also 

shorted to ground by a variable Voltronics capacitor used to balance the capacitance between the two ends. 
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Figure 3.6 One-dimensional rf imaging data for the sample in Fig. (3.5). (a) The ftrst 256 points of the 

time domain data, S(t), with the time axis labeled according to the total duration of the rf pulses, 10 JlS 

each, applied prior to each single point acquisition. (b) The frequency spectrum o-( m1) obtained from a 

sine transformation of S( t). The frequency scale corresponds to the nutation rate of the magnetization 

about the excitation fteld. (c) The average radial density distribution, p'l!<(r), plotted wi~ respect to the 

distance from the center of the inner coaxial conductor. 
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3.7 Experimental Example of Two-Dimensional NMR Imaging with a Coaxial 

Resonator - Investigation of Achievable Resolution 

The phantom and the experimental technique used in the last section do not allow a 

good test of the spatial resolution achievable by the coaxial resonator system. The 

concentric cy~inder phantom does not possess any features near the size of the digital 

resolution, and misalignment of the cylinders with respect to the inner conductor may 

produce large effects upon the apparent resolution. Two phantoms were constructed to 

address the former problem; see Fig. (3.7). The water in each case is confined between 

· two cylinders, where the outer cylinder has a constant inner diameter, whereas the inner 

cylinder is tiered with three steps (the top step is not counted, since the water does not go 

over the top). One phantom has -25 J..Lm steps and the other has -100 J..Lm steps. 

Schematics of the sample design are presented in Appendix A.2. To address the 

misalignment problem, we will employ static field gradient imaging along the axial 

direction in combination with radial rf imaging. Figure (3.8) shows the layout of the two­

dimensional imaging pulse sequence used. Note that the rf gradient is used in the phase 

encoding dimension. 

~ 0.8mm ~ 
25J..Lm- lOOJ..Lm--.J ~ 

' Figure 3.7 Cross sectional view of the circularly symmetric micro-phantom (not to scale). The water 

sample is placed in the -0.8 mm gap. Steps of 25 fJ.m and 100 fJ.ID provide a fine measure of the 

technique's resolution. The dashed line indicates the location of the central conductor. Machine shop 

schematics for the micro-phantom are given in Appendix A.2. 
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r.f. 

Figure 3.8 Basic layout of a two-dimensional imaging experiment with radial phase encoding by the rf 

gradient and axial frequency encoding by the static field gradient. 

The micro-phantom r~sonator requires terminating capacitances of -88 pF 

(compare to the 110 pF required for the concentric cylinder phantom). A reduction in the 

capacitance, Eq. (3.13), is expected due to an increase in the characteristic impedance of 

the coaxial line segment. The increase in the characteristic impedance, Eq. (3.11), arises 

from the decrease in the average relative dielectric constant of the phantom (less water, 

more plastic) and the decrease in the diameter of the central conductor. See schematics in 

Appendix A.2. 

Results for the 100 J.lm step phantom using water as a contrast agent, Fig. (3.9), 

clearly show the three steps, signifying resolution better than 100 J.lm. A number of 

artifacts appear in the image which are not completely understood. The lack of signal in the 

top left hand comer could be due to a trapped air bubble, although the gap is so small that 

any air bubble would be expected to fill the entire 0.8 mm width. The lower signal level 

adjacent to the lowest step and the spreading out of the signal to anomalously large radial 

values at the base are not understood. 

For the 25 J.lm phantom, Fig. (3.10), the steps are clearly seen, however, they 

appear distorted, with the distortion appearing as a low signal region extending radially 

outward from the comer of the step, but since the steps are clearly seen, we may conclude a 

resolution as good as 25 J.lm. 
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Figure 3.9 Contour plot of a two-dimensional image of the 100 J.lDl step phantom. Compare to 

Fig. (3.7). Contour levels appear at the 5% levels, beginning at the 20% level. 
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Figure 3.10 Contour plot of a two-dimensional image of the 25 J..Ull step phantom. Compare to 

Fig. (3.7). Contour levels appear at the 5% levels, beginning at the 20% level. 
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Further experiments were not done to investigate the image artifacts, so there is little 

information upon which to make an informed guess as to their origin. Some of the artifacts 

could be due to static field inhomogeneities, local susceptibility changes or perhaps 

paramagnetic impurities introduced in the machining process. The results do, however, 

indicate that the technique has the potential for very good resolution in the radial direction. 

3.8 Conclusions 

The findings presented here demonstrate the feasibility of high resolution, radial, 

spatial encoding using a coaxial resonator in conjunction with rf nutation encoding. By 

taking advantage of the cylindrical symmetry of the system, coaxial resonator imaging is 

likely to prove useful in the study of Taylor-:-Couette and other circularly symmetric flows, 

and the improved resolution at small radii should be useful for imaging boundary layer 

flow effects. In a broader sense, the work addresses the idea of designing the NMR 

apparatus around the experiment being performed as opposed to the more common 

approach of modifying the system to fit the more traditional NMR apparatus. 
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Chapter 4 Fluid Flow in Porous Media 

4.1 Introduction 

The mechanics of fluid flow in porous media is of great importance in 

understanding oil recovery, chemical separation, heterogeneous catalysis, ground water 

flow and a number of other systems. Classical methods to study flow in these systems 

generally focus on the long-time, long-distance behavior of the flow. Comprehensive 

reviews of such methods may be found in the books by Bear 77 , Dullien 78 and 

Greenkom79• A few noted exceptions to the long-time long-distance perspective include 

the investigation of two-dimensional micromodels by Lenormand80 and the real time 

studies of longitudinal and lateral dispersion by Han, et. al.81 

A large number of nuclear magnetic resonance (NMR) techniques have also been 

employed in the investigation of fluid flow in porous media including straightforward 

imaging techniques to monitor the movement of fluid in previously unsaturated media82
-
85 

and in multiphase (e.g. oil and water) systems83•86•87, spatial mapping of velocity88-90, 

measurement of the transverse displacement probability density for flowing systems91, and 

measurement of fluid displacement due to self diffusion32-34•92• 

In this chapter, we discuss the application to fluid flow in porous media of a 

modificat~on of the NMR pulsed gradient spin echo (PGSE) experiment known as the 

multiple stepped pulsed gradient spin echo technique (MSPGSE). Using MSPGSE, we 

can generate a series of time resolved fluid displacement distributions in a two-dimensional 

experiment. The spatial resolution (where by spatial we refer to the displacement 

dimension) of the technique is on the order of microns, and the flow may be studied for 

time scales on the order of milliseconds to seconds. With such space and time resolution, 

we are able to directly observe the evolution. of the fluid before random processes have 

destroyed information about the sample microstructure. Longitudinal (parallel to the flow 

direction) displacement distributions as well as joint longitudinal-transverse (radial) 
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displacement correlations of water flow through a packed column of disordered 

m6nodisperse polymer microspheres reveal interesting features associated with stagnation 

in the interparticle volume and the pore structure itself. Although we have not had the 

opportunity to adequately explore the connection between these results and theoretical 

predictions, we are convinced that these techniques will be able to provide new and 

important experimental data useful in understanding the microscopic properties of fluid 

flow in porous media. 
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4.2 The PGSE Experiment and Position-Displacement Correlations 

Unlike NMR imaging experiments which encode a phase dependent upon spatial 

location, pulsed gradient spin echo (POSE) experiments encode a phase dependent upon 

relative spatial displacement27•28. The most common use of POSE type experiments is in 

the measurement of molecular diffusion in a variety of systems, a subject which is 

reviewed in detail by Karger93 and Stilbs94. In the following study, we intend to apply a 

modification of the POSE or stepped POSE technique to the measurement of coherent 

flow, so we will not go into detail about the various means of measuring diffusion using 

the technique. 

Consider the stepped POSE sequence in Fig. (4.1). During the initial gradient 

pulse, a spin or fluid particle located at x0 acquires a phase of rGx r x0 , the sign of which 

is reversed after a time T/2 by the rf n-pulse located midway between the two gradient 

pulses. After another delay of T/2, the second gradient pulse imparts a phase of rGx Tx1 

on the spin, where x1 is the new particle position at the time the second gradient is applied. 

The total accumulated phase for the spins under consideration is then rGx t' L\x, where 

rf 

-1 't 1- -1 't 1-· 

1----- T ----
acquire 

Signal \ 
0 

I ~ ... t 

phase 

Figure 4.1 PGSE sequence utilizing x encode gradients. The timeT is cons~dered to be much greater than 

the gradient duration -r. Furthermore, motion in the x direction is assumed to be negligible with respect to 

the displacement resolution during the application of the pulsed gradients. 
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·•. 

Ax= x1 - x0 . The signal arising from all of the particles initialiy located near x0 which 

have moved a net distance of approximately Ax is then 

(4.1) 

where p(x) is the magnetization or sample density and P(Ax,x0 ;T) is the conditional 

probability that a particle initially located at position x0 will undergo a net displacement in 

the x direction of magnitude Ax in time T. Averaging over all initial positions in the 

sample and all possible displacements, we obtain the total integrated signal intensity given 

by 

00 

S(rGxr,T)= J P(Ax;T)exp(iJ(TxrAx)dAx, (4.2) 

where 

P(Ax;T) = J p(x0 )P(Ax,x0 ;T)dx0 . (4.3) 

v 

P(Ax;T) is referred to as either the displacement probability density/distribution or 

averaged propagator28 and, as is apparent from Eq. (4.2), can be obtained from the 

Fourier transformation of the echo amplitudes obtained by the pulsed gradient experiment, 

where the gradient strength is incremented in equal steps to provide the traversal of q-space; 

in analogy to the concept ofk-space presented in Chapter 2, we define the quantity 

(4.4) 
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The Fourier relationship between the signal and the displacement probability density can 

then be rewritten as 

00 

S(qx;T) =I P(ax;T)exp(iqx ax)dax, (4.5a) 

00 

P(ax;T) =I S(qx;T)exp(-iqx ax)dqx' (4.5b) 

-oo 

where we have purposefully neglected to include any proportionality constants appearing in 

front of the integrals. Using the stepped POSE experiment, we are therefore able to 

directly extract information about mass transport in the system of interest. 

The experiment may be extended to more than one spatial dimension by including 

another pair of pulsed gradients varied independently of the other pairs. In this way, one 

may acquire the entire three-dimensional displacement probability density. The general 

form for Eq. (4.5a) and (4.5b) is given by 

S(q;T)= I P(L\.r;T)exp(iq·L\r)d&-, 

P(&-;T) =I S(q;T)exp(-iq ·dr)dq, 

(4.6a) 

(4.6b) 

where the integrations proceed over all space or q-space for the necessary number of 

dimensions (up to three in each case). 

Another modification entails combining the basic POSE sequence with a one, two, 

or three dimensional imaging sequence to obtain position-displacement correlations in what 

is sometimes referred to as dynamic NMR microscopy95-97; an example pulse sequence is 

shown in Fig. (4.2). The point of such an experiment is of course to obtain a spatially 
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resolved mapping of the displacement probability density, where the form of the time 

domain signal is given by 

S(k,q;T) = J p(r)exp(ik · r) J P(.!lr,r;T)exp(iq · &-)drdM. (4.7) 

For the specific case. shown in Fig. (4.2) r = (y,z) and ilr = Ll.x with the corresponding k 

and q-space variables. 

In the instance that the imaging and displacement dimensions coincide, one must 

insure that negligible motion occurs during the course of the k-space evolution. Frydman 

et al.36•98 have also presented a means of obtaining position-displacement correlations 

directly from the pulsed gradient spin echo shape using a mixed dimensional approach. 

4.3 The MSPGSE Experiment 

In order to acquire a one-dimensional displacement distribution for a single flow 

rf 

1--T-1
1 

Figure 4.2 Position-displacement correlation sequence. Displacement phase encoding is applied along x, 

imaging phase encoding is done along the y direction and imaging frequency encoding is done during 

acquisition along the z direction. No slice selection is explicitly shown during the excitation pulse, but 

generally one would perform slice-selection of a yz plane. 
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time, one must perform what is effectively a two-dimensional experiment, since the stepped 

POSE experiment provides phase encoding but not frequency encoding. This means that a 

three-dimensional experiment is required to acquire a time resolved set of displacement 

distributions in order to characterize the displacement history. 

Since it is not clear if it is possible to acquire a single displacement distribution in a 

one-dimensional experiment, we will investigate a means of acquiring a single point in q­

space for a number of evolution times in a one-dimensional experiment. The possibility of 

repeatedly forming POSE signals (i.e. constant q value but increasing D has been 

discussed by Sotak and Li99, who used a related strategy to obtain a pulsed gradient echo 

train to measure diffusion. Here we discuss stepping the amplitudes of all of the gradient 
' 

pulses synchronously, as indicated in Fig. (4.3), so that the variation of multiple echo 

peaks as a function of pulsed gradient amplitude may be used to determine a series of time-

resolved displacement distributions in a single two-dimensional experiment. 

~ 1t 1t 1t 1t 2 

rf 
't 

Gx 

* 
* 

Signal 
repeat 

T 

Figure 4.3 Multiple Stepped Pulsed Gradient Spin Echo (MSPGSE) sequence. The region in brackets may 

be repeated a number of times in order to acqqire signal for a number of flow times T. Signal acquisition 

occurs at*· 
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Consider the MSPGSE pulse sequence in Fig. (4.3). The sequence begins with a 

slice selective excitation pulse (slice selection not shown), followed immediately by an 

encoding gradient (1) of duration r, so a particle located at x0 acquires a phase rGx rx0 . 

Since there are an even number of rf n-pulses separating the gradient pulses, gradient (2) 

has the opposite sign of gradient (1), thus imparting a phase given by -rGx !' x1, where x1 

is the position of the particle during the application of gradient (2) - assuming motion is 

negligible during the application of the gradient. The net phase acquired by the particle of 

interest at this point is given by -rGx !' Ax1 where Ax1 = (x1 - x0 ). If we terminate the 

sequence before gradient (3) and acquire signal for the appropriate range of gradient 

amplitudes, we will generate the one-dimensional q-space signal for a single time T, cf. 

Eq. (4.5a). The trick at this point is to apply gradient (3) after gradient (2) to completely 

negate the phase imposed by gradient (2), so the net phase accumulation after gradient (3) 

is rGx rx0 • If complete cancellation is achieved, it is as if gradients (2) and (3) are not 

present. We are now free to repeat the series of rf n-pulses followed by the application of 

a gradient identical to gradient (2), acquire the signal, and then reset the phase to rG X!' Xo 

using a gradient identical to gradient (3). The resulting two-dimensional data set has the 

form 

00 

S(qx;mT) = J P(Ax;mT)exp(iqx Ax )dAx, (4.8) 

where the quantity mT signifies that a series of m time resolved displacement distributions 

with flow time mT are acquired. 

As shown, Fig. (4.3), the MSPGSE sequence contains two rf n-pulses between 

acquisitions as opposed to the single n-pulse shown in the POSE sequence, Fig. (4.1). 

The use of more than one n-pulse between acquisitions is recommended in order to 

minimize dephasing caused by the particles moving through inhomogeneities in the static 
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field caused by local internal gradients 100 and poor shimming. For longer flow times, 

more than two rf n-pulses per acquisition ~ay be inserted. Although the sequence as 

shown contains an even number of n-pulses, one may also use an odd number; this 

requires that the sign of gradients (1) and (2) be reversed for the sample acquisitions where 

m is odd. Because the fluid may move appreciably between subsequent n-pulses, rf 

homogeneity compensation should be performed within each n-pulse 101 , rather than 

between them102-104. 

In practice, approximately eight points are acquired surrounding the echo maximum 

in the presence of the gradient (2). Careful centering of the echo insures that the echo 

maximum is acquired. We have also found that the even number n-pulse version of 

MSPGSE is inferior to the odd number n-pulse version. If the gradients are not perfectly 

balanced a small amount of phase will build-up and the echoes will move outside of the 

assigned acquisition window if one uses the even number n-pulse version. When using 

the odd number n-pulse version, however, the unwanted phase will be canceled on 

alternate acquisitions, resulting in no appreciable movement of the echo within the 

acquisition window. 

As with the PGSE experiment, another displacement dimension may be added by 

applying another set of gradients independently of the first. In the case of a combination of 

x andy gradients, the multiple flow time q-space signal is given by 

00 

s(qx,qy;mT) =I P(Ax.~y;mT)exp(iqxA.x)exp(iqy~y)dA.xtMy, (4.9) 
\ 

with the inverse q-space Fourier transform of the signal yielding 

00 

P(Ax.~y;mT) = I s(qx,qy,mT)exp(-iqxAx)exp(-iqy ~y)dqx dqy (4.10) 

-oo 

82 



An example of this type of experiment is presented in Section 4.8. 

4.4. Some Aspects of Fluid Flow in Porous Media 

Before proceeding with the NMR results for fluid flow in porous media, we will 

present some of the basic principles used in describing such· flow. The material presented 

here is very important for understanding the NMR results, but should not be considered a 

comprehensive summary of the field. 

4.4.1 Stochastic Model of Dispersion 

In its simplest interpretation, dispersion refers to the fact that some fluid may move 

farther than other fluid in a flowing system. For laminar pipe flow the fluid in the center of 

the pipe will move considerably farther than the fluid at the edges (see Secq.on 4.6), hence 

pipe flow produces dispersion of the fluid. In the absence of diffusion, the dispersion in 

the pipe flow system is entirely due to the radial velocity gradient which is present due to 

viscous drag with the pipe walls. Of course, for sufficiently slow flow or for long flow 

times, molecular diffusion will contribute a substantial amount to the dispersion of the 

fluid. 

For laminar fluid flow in porous media, there exists an additional mechanism for 

dispersion, tortuosity. Consider the drawing of a porous medium in Fig. (4.4). Two 

fluid elements, A and B, start at nearly the same location. The one which begins at A takes 

a relatively straight route along the general direction of the flow (left to right) and ends up at 

location A'. The fluid element starting at B takes a more tortuous route ending at point B' 

at the same time that the other element is at A'. Both fluid elements have moved nearly the 

same total distance, but they are displaced from one another both in the direction of the 
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Figure 4.4 An example of the effect of tortuosity in a porous medium. Flow direction is from left to 

right. 

flow and in the direction transverse to the average flow direction. An accumulation of such 

events can lead to a significant amount of dispersion 

A common quantitative description of dispersion for laminar viscous flow in porous 

media assumes a stochastic model. The individual fluid elements undergo random 

fluctuations in both transverse and longitudinal displacements. If we consider a dot of 

tagged fluid inserted in to flow stream, it will spread out or disperse, with the variance of 

its concentration profile in the longitudinal or x direction given by79 

(4.11) 

where Dr is referred to as the longitudinal dispersion coefficient, the bar denotes an 

average over all possible displacements, and v x is the average longitudinal velocity of the 

fluid. The term in the numerator is the variance, which may be written as cr;. The 

longitudinal displacement distribution is then given by 
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P (tu·T)ocexp( (tu-vxT)
2

J 
L ' 4D T ' 

L 

(4.12) 

which is a Gaussian distribution centered at vxT. 

The transverse dispersion coefficient, Dr, is related to the variance in transverse 

displacements by 

Al D-­
r- 2T' 

and, as in the longitudinal case, the transverse displacement distribution is Gaussian: 

Pr(Ay;T) oc exp(- Al J. 
4DrT 

(4.13) 

(4.14) 

One may equally well consider any other direction perpendicular to the x direction for the 

transverse dispersion. 

So, in this stochastic model which naturally assumes flow through a large number 

of pores (long distance) over a period of time sufficient to traverse said pores (long time), 

the two-dimensional longitudinal-transverse displacement distribution is a two-dimensional 

Gaussian given by the product of Eq. (4.12) and (4.14). 

4.4.2 Evidence for Deviations from the Stochastic Dispersion Model for 

Relatively Short Flow Times 

For short times and short displacements, Carbonell et al. 105 determined that for a 

three-dimensional porous system, the longitudinal dispersion coefficient will have the form 

of Eq. (4.11) if the following,condition is satisfied: 
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(4.15) 

where Dm is the molecular diffusion coefficient of the tracer, t is the time of flow after 

injection of a tracer into the porous medium, and z13 is a characteristic length associated 

with the pore spaces in the system. In other words, the longitudinal variance of the 

displacement distribution will increase linearly with time if Eq. ( 4.15) is satisfied. 

Consider the following specific experiment. An ionic tracer compound is inserted 

at one end of a column packed with single sized, spherical particles while an effluent is 

simultaneously pumped through the column. The concentration of the tracer is then 

measured by a platinum conductivity probe at a ftxed axial position as a function of time. If 

the detector is located a distance L from the injection point, the particles have diameter d, 

the column has a porosity given by q>, the fluid velocity in the longitudinal direction is v x• 

and the tracer has a molecular diffusion coefficient in the effluent given by Dm, then 

Eq. (4.15) may be rewritten for the described apparatus as81 

where 

L 1-q> 
---->>1 
dPe qJ ' 

Pe = vxd(_!P_J. 
Dm 1- qJ 

(4.16) 

(4.17) 
/ 

Pe is referred to as the Peclet number and is a measure of the relative magnitude of 

convective and diffusive transport. For such an experiment, the characteristic length z
13 

is 

given by 

(4.18) 



For a porous medium not composed of uniform spherical particles, the characteristic length 

will have a different form. 

Han et al.81 have performed experiments as described in the previous paragraph for 

a large range of Peclet numbers and a number of values of L, and have concluded that 

Eq. (4.16) is too restrictive. Their results indicate that one can expect constant longitudinal 

dispersion coefficients if 

~1 -cp~0.3. 
dPe cp 

(4.19) 

In Section 4.9, we will present results which indicate that Eq. (4.19) is perhaps too 

restrictive .. 

4.4.3 The Peclet and Reynolds Numbers 

The longitudinal Peclet number in the form shown in Eq. (4.17) is attributed to 

Whitaker106. We may rewrite Eq. (4.17) as the ratio of the time rD required for diffusive 

transport across a pore to the time rc required for convective (coherent) transport across 

the pore as follows: 

(4.20) 

In this form , the Peclet number has obvious meaning. When diffusive transport 

dominates, the Peclet number is small; when convective transport dominates, the Peclet 

number is large. 
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Another unitless quantity indicative of the nature of the fluid motion is the Reynolds 

number, Re, which quantifies the relative strength of inertial and viscous forces in viscous 

flow. For viscous fluid flow in a porous medium we may define Re by 

(4.21) 

where v is the kinematic viscosity of the fluid. For Reynolds numbers of approximately 

10 or above, the fluid flow is not laminar77. For small Reynolds numbers, the fluid flow 

is laminar and may be considered to be composed of discrete, unbroken streamlines. 

4.5 Fluid Flow Apparatus 

All pulsed gradient experiments are performed on a Nalorac Cryogenics Quest 4400 

spectrometer operating at a proton frequency of 185 MHz. The NMR probe consists of a 

cylindrical gradient set and is capable of producing, with the amplifiers used, 0.65 T/m 

static field gradients in all three dimensions. At maximum power, the rise time of the 

gradients is approximately 100 ~s, which is substantially shorter than the·1 ms gradient 

pulses used in the experiments reported here. 

\. 
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Figure 4.5 Schematic of the fluid flow apparatus showing a cross section through the superconducting 

magnet and NMR probe. Direction of flow is indicated by arrows on the left and right. 
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A schematic of the fluid flow system is shown in Fig. (4.5), and detailed drawings 

of the sample holder assembly are given in Appendix B. Water is pumped from the 

reservoir using a Rainin Rabbit-Plus™ peristaltic pump with 10 rollers capable of flow 

rates from 0.0005 to 41.0 mlfmin at pressures up to 75 psi. The water is then run 

through a 10 Jlm filter followed by a length of Tygon tubing used to minimize the 

pulsation caused by the peristaltic pump. A rough estimate of the flow rate is given by the 

flow meter (rotameter), which also indicates the degree of pulsation caused by the pump; 

the pressure buildup in the line is monitored by the pressure meter inserted before the 

rotameter. Tygon tubing directs the fluid to the sample column which is inserted in the 

probe with its long axis perpendicular to the static magnetic field. After exiting the sample, 

the water is then directed back to the fluid reservoir to be recirculated. 

The 6.35 mm inner diameter, 50 mm long sample column contains a porous 

medium composed of either 140 or 300 Jlm polystyrene microspheres produced by Duke 

Scientific. The particles are prevented from exiting the column by the placement of medium 

coarseness ( -40-60 Jlm hole size) sintered glass frits. In addition to securing the particles, 

the glass frits distribute the inflow and outflow, thus reducing end-effects caused by the 

short length of the column and the small input orifice. 

The column is prepared by having the particles settle into the water filled cylinder 

with one of the end pieces (plungers) already screwed in. The holder is then inserted into 

the probe and the other end is screwed down. By using right handed threads on one end 

and left handed threads on the other, the plungers may be tightened down by rotating the 

sample cylinder. Samples prepared in this way are free of bubbles and consistently have a 

mean porosity between -0.37 and 0.42. Porosity is measured by removing the 

microspheres at the end of a series of experiments, finding their volume using their weight 

and the density of polystyrene, subtracting the particle volume from the total volume and 

then dividing by the total volume of the sample. 
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In the initial stages of the work, problems were encountered with algae growing in 

the system and depositing on the inlet glass frit. The deposition created an obstruction to 

flow, which led to excessive pressures, eventually causing Tygon connections to 

disconnect and release water into the bore of the magnet. To avoid algae growth, a small 

quantity of bleach was introduced to the water. In addition, the apparatus was periodically 

dismantled and carefully cleaned. Other possible impurities were removed by running the 

sample water through a wound 10 J..Lm filter. Interestingly' a wound cloth filter which was 

used originally introduced small fibers into the system, creating an obstruction at the glass 

frit. From this point forward, we used wound polycarbonate filters which did not produce 

the same problem. 

4.6 Longitudinal Displacement Distributions of Laminar Fluid Flow in a Pipe 

As a initial test of the system, we applied the MSPGSE technique to fluid flow in an 

empty pipe. Of course it is also possible to observe the molecular self-diffusion of the 

water, but the time scales for appreciable diffusive motion are much longer than those 

anticipated in the porous media experiments. 

The velocity profile of a viscous fluid undergoing steady, incompressible, laminar 

flow in a cylindrical pipe of radius a, Fig. (4.6), is given by107 

v(r)= v-(~-::} 
a 2 dp 

where v =---
max 4vdx 

(4.22) 

The kinematic viscosity of the fluid is v and dpjdx is the change in the hydrostatic 

pressure along the axis of the pipe. 
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( ' i () vx = Ymu (at center) 

'vx = 0 (at wall) 

Figure 4.6 Parabolic distribution of axial velocity in pipe flow. Flow direction is from left to right with 

interior arrows indicating relative velocity. 

The task now at hand is to use the relation between, the velocity and the radial value 

in Eq. (4.22) to determine the axial displacement probability density. Since the velocity is 

assumed to be constant in time, the displacement distribution is proportional to the velocity 

, distribution or spectrum, so we will first determine the functional form of the velocity 

distribution. The area under the velocity distribution over a range of velocities 

(4.23) 

is equal to the area under the sample radial density distribution over the corresponding 

radial range 

!J..r = r2 - r1. (4.24) 

The previous statement implies that 

P(v)!J..v = p(r)!J..r, (4.25) 

where P(v) is the velocity distribution in units of mass per unit velocity, and p(r) is the 

radial sample density in units of mass per unit length. For a sample of length L with a 

uniform density, p(r) is given by 

92 



L/2 2n 

p(r) = J J Po rdqJdz 
-L/2 0 

=2nLrp0 , 

(4.26) 

where Po is the density of the fluid (mass per unit volume). Since the sample is limited to a 

cylinder of radius a : 

r>a 

r~a 

Substituting Eq. (4.26) into Eq. (4.25), we have that 

dr 
P(v) = -2nLrp0-, 

dv 

(4.27) 

(4.28) 

where we have gone to the limit of infinitesimal intervals. The minus sign arises from the 

definitions of the two intervals in Eq. (4.23) and (4.24). Evaluating the derivative and 

substituting into Eq. (4.28) yields 

(4.29) 

The corresponding displacement probability density is given by 

(4.30) 

Normalizing Eq. (4.30) to one yields the less constant ridden expression 
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(4.31) 

From all of this, we conclude that P(&x;T) for laminar pipe flow in the absence of 

diffusion is a hat function (rectangle) with amplitude ( vmaxTf
1 

for displacements from zero 

to vmaxT and amplitude zero everywhere else. One may similarly derive the expected 

displacement distributions for any flow for which the velocity is related to rand v(r) is 

invertible. Seymour et al.108 have used this approach to obtain the velocity distributions 

for power law and Bingham fluids109 in addition to the Newtonian case presented here. 

An experimental example of P(&x; T) for laminar pipe flow is shown m 

Fig. (4.7). Slice selection of a 2 mm thick slice in the middle of the column perpendicular 

to the flow direction ensures that the flow has stabilized before entering the region in which 

the displacement distributions are measured. For the displacement times shown, the 

r 

-0.5 0 0.5 1 1.5 2 

Llx (mm) 

Figure 4.7 Experimentally obtained displacement distributions for laminar fluid flqw in a pipe. 

Distributions shown at 97.6 ms intervals. For clarity, the baseline of each distribution is zeroed below a 

given threshold. 
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selected fluid does not move far enough to exit the resonant coil. The data shown are one­

half of the distributions acquired using a MSPGSE sequence with n-pulses placed 

approximately every 8 ms, and an initial encode gradient (gradient (1) in Fig. (4.3)) of 

1.0 ms. The displacement times are at 97.6 ms intervals, the average velocity vmax/2 is 

0. 9 5 mmj s, and the digital displacement resolution is 26.1 !..liD. The rounding of the 

comers for each distribution is due to both molecular self-diffusion between constant 

velocity streamlines and along streamlines. These results agree very well with the expected 

rectangular distributions described above. 

4. 7 Longitudinal Displacement Distributions of Laminar Fluid Flow in a Porous 

Medium 

Using the MSPGSE sequence and the apparatus described in Section 4.5, 

longitudinal displacement distributions were acquired for a number of average flow 

velocities and times, and for both 140 !..liD and 300 !..liD diameter particles. In each case a 

slice of -2 mm thickness is selected perpendicular to the direction of flow, 64 echo peaks 

are acquired for each displacement distribution, the digital resolution in Ax is 26.1 !..liD, 

and the porosity of the sample is -0.38. 

Figure (4.8) shows displacement distributions for the 140 l..lm particles with a 

volume flow rate of 3.68 mljmin and a mean flow rate of 5.23 mmjs. The flow time for 

the first distribution is 16.25 ms and the flow times for the following distributions follow 

in steps of 16.25 ms. One immediately notices that the short time distributions are 

distinctly not Gaussian in nature. As the flow develops, peaks with a periodicity of 

-125 l..lm appear, with later distributions exhibiting up to three noticeable peaks. The 

separation of the peaks is close to the expected average separation of void spaces in the 

sample. In addition to the bumps, the short time distributions are more heavily weighted to 

short displacements with a long tail extending to larger displacements. For longer flow 

times, the distributions approach the expected long time Gaussian form. 
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Figure (4.9) shows displacement distributions for the 300 flm particles with a 

volume flow rate of 4.07 mlfmin and a mean flow rate of 5.56 mmfs. The flow time for 

the first distribution is 16.25 ms and the flow times for the following distributions follow 

in steps of 16.25 ms. The same features which appear for the 140 flm particles appear for 

the 300 flm particles, but they are more pronounced for the larger particles. The periodic 

. structure in this case occurs at -300 flm intervals. One also notices a very distinct peak at 

zero displacement apparently due to stagnating fluid. This peak disappears for longer flow 

times. The non-zero density apparent at negative displacements is actually aliasing of the 

longer time displacement distributions. Aliasing may cause some distortion in the last two 

distributions, but not in the shorter time data. 
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Figure 4.8 Displacement distributions for 140 J.1lll particles separated by 16.25 ms each. Volume flow 

rate= 3.68 mlfmin, mean longitudinal flow rate= 5.23 mmfs, porosity = 0.38, Pe = 180, Re = 0.45. 

The dashed line indicates the presence of a structure with a -125 J.1lll periodicity. 
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Figure 4.9 Displacement distributions for 300 J.liD particles separated by 16.25 ms each. Volume flow 

rate= 4.07 mlfmin, mean longitudinal flow rate= 5.56 mmfs, porosity = 0.38, Pe = 409, Re = 1.02. 

The dashed line indicates the presence of a structure with a -300 J.liD periodicity. 

98 



The periodic features evident in both Fig. (4.8) and Fig. (4.9) are most probably 

due to relatively slow motion in the large void spaces between the particles as compared to 

faster motion in the regions connecting these voids. This implies a system model 

composed of discrete voids connected by narrow, fast flow channels. Similar features 

have also been observed in POSE measurements of displacement distributions for diffusive 

motion, for which the same physical model of the porous medium is invoked33•34. For 

diffusive motion in such a system, in the long time limit the displacement distribution 

approaches the density autocorrelation function of the sample29. These POSE experiments 

are generally referred to as dynamic NMR diffraction. Unlike dynamic NMR diffraction, 

where the equilibrium or long time displacement distribution displays features indicative of 

inter-pore spacing, the features present in coherent flow through porous media are only 

present for short time displacements and disappear in the long time limit when the 

displacement distribution has reached an equilibrium form, i.e. a Gaussian distribution with 

a linearly increasing variance and mean displacement. The features are not due to any sort 

of recirculation in the void spaces, since the small Reynolds numbers in each case insure 

the flow is entirely laminar. 

Displacement distributions using the same 300 ~m sample as used for Fig. (4.9) 

were also acquired at slower flow rates in order to determine the dependence of the periodic 

structures and the "tail" on the mean flow rate. Slow flow experiments were also done on 

the 140 ~m sample and for more flow rates than are shown here; the data shown here is 

only for the fastest and slowest flow rates used for the 300 ~m sample. Two comparisons 

are shown in Fig. (4.10) with all of the relevant parameters given in the figure caption. In 

both Fig. ( 4.1 Oa) and ( 4.10b ), the periodic structure mentioned previously is far more 

pronounced in the faster flow data. Longitudinal diffusion alone cannot account for these 

differences, since the root-mean-square displacement due to molecular diffusion which is 

expected to take place in the time difference between the slow and fast distributions is 
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-18 IJ.m for Fig. (4.10a) and -31 IJ.m for Fig. (4.10b). Obviously another mechanism is 

at work. 

The likely mechanism for the dramatic difference between the fast and slow flow 

rate data is diffusion between streamlines; see Fig. (4.11). If there is a large amount of 
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Figure 4.10 Comparison of longitudinal displacement distributions at two different flow rates, 1.17 and 

5.56 mmfs. (a) Mean displacement of -0.19 mm. Faster flow - Pe = 409, flow time= 32.5 ms. 

Slower flow- Pe = 86, flow time= 162.5 ms. (b) Mean displacement of -0.55 mm. Faster flow- Pe = 

409, flow time= 97.5 ms. Slower flow- Pe = 86, flow time= 487.5 ms. Resolution in each case is 

26 !liD. 
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Transverse 
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Fig 4.11 Diffusion between adjacent streamlines in a void space. Outer streamlines are assumed to be 

nearer to the boundaries of the void space and are therefore slower than the streamlines near the center of the 

flow. For laminar flow, the streamlines are stable and continuous. 

shear, inter-streamline diffusion will cause considerable mixing and make the displacement 

distributions more Gaussian by producing less differentiation between discrete streamlines. 

This explanation agrees well with the previous explanation for the periodic structures in 

Fig. (4.8) and (4.9); slow streamlines go quickly through the narrow channels and slow 

down in the large void spaces, whereas the fastest streamlines go through unimpeded, 

producing the long displacement tail. Any mixing between streamlines should reduce the 

periodic structure as well as shorten the-"tail". The tail is definitely shorter for the slower 

flow data in Fig. (4.10). 
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4.8 Longitudinal-Transverse Displacement Correlations of Laminar Fluid Flow 

in a Porous Medium 

To gain a more complete picture of the transport in the system, MSPGSE 

experiments were performed to correlate longitudinal displacements with displacements 

orthogonal to the flow direction using the multi-dimensional pulse sequence described in 

Section 4.3. 

The displacement distribution referred to in Eq. (4.10), P(Ax,.t:ly;mT), is actually 

a projection along the L\z axis of the full three dimensional displacement distribution 

P(Ax,.t:ly,L\z;mT). In light of the obvious cylindrical symmetry of P(Ax,.t:ly,L\z;mT) 

about the .t:lx axis, we may also obtain a slice through the axis of symmetry of 

P(Ax,.t:ly,L\z;mT) by applying an inverse Abel transform to P(Ax,.t:ly;mT) along the .t:ly 

axis (see Section 2.6) with the resulting displacement distribution given by P(Ax,.t:lr;mT). 

In practice, a Hankel transform in q-space along qY is used as opposed to an inverse Abel 

transform along .t:ly. In the following section, examples of both P(Ax,.t:ly;mT) and 

P(Ax,.t:lr;mT) for the 140 ~m sample described in Section 4.7 will be presented. Similar 

experiments were also conducted with the 300 ~m sample, but the results do not reveal 

any significant features not present in the 140 ~m data. 

Figure ( 4.12) shows a series of six displacement distributions correlating x and y 

displacements for the 140 ~sample. As one might expect, fluid which has moved only a 

short longitudinal distance does not move appreciably in the transverse direction: As the 

fluid progresses farther along the direction of the average flow, the transverse dispersion 

increases until reaching a maximum. For fluid which has undergone appreciable 
' 

longitudinal displacement, the transverse dispersion decreases from its maximm:p.. Due to 

the nature of the contour plots, it is difficult to discern any structure corresponding to the 

periodic peaks displayed in the longitudinal displacement distributions, Fig. (4.8). 

The central .t:ly = 0 dataset from each of the two-dimensional plots in Fig. (4.12) is 

shown in Fig. (4.13). The structure with 125 ~m periodicity is much more pronounced 
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than the equivalent structure in Fig. (4.8) with the 97.5 ms dataset displaying four 

discernible peaks including the zero displacement peak. Mixed time and displacement 

domain data (meaning a plot with independent variable axes qx and .!ly) for the 65 ms 

displacement time indicate that the periodic feature is only present out to .!ly = 25 ~m and 

has a constant periodicity of -125 ~m. For all of the flow times, the zero displacement 

stagnation peak is very prominent. The narrow width of this peak as shown in 

Fig. (4.12), however, indicates that only a small percentage of the fluid is actually 

stagnant. Displacement distributions acquired with much longer flow times (not shown) 

have shown that the peak at zero displacement is below the level of the noise after about 

0.25 s of flow at -5 mmfs, so the stagnation peak is not due to fluid which is completely 

immobile. 

The plots of P(Ax,Llr;mT) in Fig. (4.14) show considerably more detail than do 

those of P(Ax,.!ly;mT) in Fig. (4.12); this is to be expected, since the process of 

projection has a tendency to smooth out details. The Llr = 0 datasets shown in Fig. (4.15) 

differ from those in Fig. (4.13) primarily in the height of the stagnation peak. In addition, 
I 

they are considerably more noisy, due to the unequal treatment of noise by the inverse Abel 

transform (see Section 2.12.2, in particular Eq. (2.35)). 

The periodic structures in Fig. (4.14) appear to extend into the transverse direction 

for nearly the entire width of the distributions, a phenomenon not present in Fig. (4.12). 

Line plots of the longitudinal displacement for increasing transverse displacements, 

Fig. (4.16), better illustrate the radial extent of the periodic features. From the inverse 

Fourier transform (along the Ax dimension) of the 65 ms displacement distribution in Fig. 

(4.14), Fig. (4.16), we find that the spacing of the features becomes smaller for increasing 

transverse displacement with the period equal to 143 ~m at Llr = 24 ~m, 125 ~m at 

Lly = 49 ~,and 100 ~mat .!ly = 73 ~m. For larger transverse displacements, the signal 

to noise ratio of the time domain data does not allow an accurate estimate of the feature 

periodicity in the longitudinal displacement direction. 
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It is difficult to draw ru:tY meaningful conclusions from the results discussed above, 

since we do not have a theoretical model with which to predict the distributions presented. 

The very presence of certain features such as the pronounced stagnation peak and the 

behavior of the periodic structures are very interesting in and of themselves, since we have 

not found any model in the literature which predicts these features. 
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Figure 4.12 P(Ax,L\y;mT) for mT =(a) 16.25 ms, (b) 32.5 ms, (c) 48.75 ms, (d) 65 ms, (e) 81.25 ms, 

and (f) 97.5 ms. Mean longitudinal flow rate= 5.25 mmjs, porosity= 0.38, Pe = 180, Ax resolution= 

26.1 J.Uil and !:J.y resolution = 24.45 J.Uil. The Ax and L\y axes are scaled equally. Contours at 5% 

intervals with the lowest contour at 10%. All distributions are normalized to a maximum height of one. 
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Figure 4.13 P(Ax.~y = O;mT) for the flow times indicated in the legend. Mean longitudinal flow rate= 

5.25 mmfs, porosity= 0.38, Pe = 180 and Llx resolution= 26.1 Jlffi. The total area of each distribution 

is normalized to the same value. 
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Figure 4.14 P(Ax,M;mT) for mT = (a) 16.25 ms, (b) 32.5 ms, (c) 48.75 ms, (d) 65 ms, (e) 81.25 ms, 

and (f) 97.5 ms. Mean longitudinal flow rate= 5.25 mmfs, porosity = 0.38, Pe = 180, Ax resolution = 

26.1 ~ and ~y resolution = 24.45 ~· The Ax and ~y axes are scaled equally. Contours at 5% 

_intervals with the lowest contour at 10%, All distributions are normalized to a maximum height of one. 
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Figure 4.15 P(tu,!J.r = O;mT) for the flow times indicated in the legend. Mean longitudinal flow rate= 

5.25 mmfs, porosity= 0.38, Pe = 180 and tu resolution= 26.1 J.I.Dl. The total area of each distribution 

is normalized to the same value. 
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Figure 4.16 P(Ax,L\r;mT = 65 ms) for the values of L\r indicated in the legend. Mean longitudinal flow 

rate = 5.25 mmfs, porosity= 0.38, Pe = 180 and Ax resolution= 26.1 J.llll. 
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4.9 Experimental Measurement of Non-Linear, Longitudinal Variance Evolution 

As was mentioned Section 4.4.2, the variance of the longitudinal displacement 

distribution is expected to evolve non-linearly in time unless the condition ofEq. (4.19) is 

satisfied. In this section we present preliminary results of the time evolution of the 

longitudinal displacement distribution variance, a;, for a 140 Jlm sample at a single flow 

rate. A more complete study with different particle sizes and flow rates is planned. 

In order to apply the condition of Eq. (4.19) to the displacement experiments it is 

necessary to determine how to measure L. Han et al.81 measured the concentration of a 

tracer compound as a function of the flow time, T, at discrete points along the length of a 

packed column. The time T = 0 corresponds to the injection of the tracer into one end of 

the column, and L is the distance from the injection point of the tracer to the measurement 

probe. From the resulting time dependence of the concentration a longitudinal dispersion 

coefficient may then be determined79. If the dispersion coefficient depends. upon the 

position L, the system is assumed to not have reached equilibrium. The point in the 

column at which the flow has reached equilibrium determines the value of the constant on 

the right hand side of Eq. (4.19). This minimum flow distance we will refer to as 4 

where the subscript t refers to the transition between non-equilibrium and equilibrium flow 

We will measure the evolution of u; as determined from longitudinal displacement 

distributions such as those in Fig. (4.8) and (4.9) to locate the time Tt when the evolution 

becomes linear, i.e. equilibrium has been reached. If we take the maximum displacement 

of the distribution which corresponds to the beginning of linearity (from this point forward 

this distribution will be referred to as Pe{..1.x; Tt) or the transition distribution with Tt 

referred to as the transition flow time) as Lr, we will then be assured of choosing a value of 

4 which will produce a condition at least as restrictive as the one measured reported by 

Han et al.81 . Perhaps a more reasonable choice in our case for'4 is the mean displacement 

of Pr(..1.x;Tr), however, the use of the mean displacement will not allow a good 

comparison with the restriction imposed by Eq. (4.19). 
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Figure 4.17 Variance of the longitudinal displacement distribution as a function of time. A linear fit to the 

variance for times greater than and including 0.04 s is shown to guide the eye. For times below 

approximately 0.04 s, the variance noticeably deviates from the linear assumption. Relevant parameters: 

particle diameter (d)= 140 J.UD, porosity ( <p) = 0.4, mean longitudinal flow rate ( vx) = 4.36 mmfs, Peclet 

number(Pe) = 162.7. 

The variance of the longitudinal displacement distribution P( Ax; T) is defined as 

00 

f (Ax)2 
P(Ax;T)dAx 

a; (T) = _.:;-oo'--00----

J P(Ax;T)dAx 

(4.32) 

Using Eq. (4.32), the variance as a function of flow time was determined for a sample 

containing 140 J..Lm particles with a porosity of -0.4 at an average flow rate of 

4.36 mmfs. The results shown in Fig. (4.17) indicate that T1 = 0.04 s for this system. 

Some of the displacement distributions used to compute the variances of 

Fig. (4.17) are shown in Fig. (4.18). The displacement distribution at T=0.04 s has a 
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mean displacement of 1881J.m and a maximum displacement of approximately 517Jlm 

(the point near the leading edge of the distribution with an amplitude 5% of the maximum). 

If we choose the maximum displacement value, Axmax, as 4 we have the restriction for 

equilibrium flow given by 

Axmax 1- q> ~ 0.034. 
dPe cp 

On the other hand, if the mean displacement, Ax is used we have the restriction 

Ax 1- cp ~ 0.012. 
dPe cp 

(4.33) 

(4.34) 

Clearly, the condition imposed by Eq. (4.33) is far less restrictive than that proposed by 

Han et al.81 , Eq. (4.19). It is possible that in their system, end effects or the invasive 

nature of the conductivity probe contributed to a much larger value for 4, however, at this 

time there is no means of verifying these assumptions. Before making any final 

conclusions as to the validity of Eq. (4.33) for our system, more measurements need to be 

done over a large range of Peclet numbers and particle sizes. 
( 
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Figure 4.18 Some of the longitudinal displacement distributions used to determined the variance values in 

Fig. (4.17). 
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Unexpectedly, the periodic feature described previously is clearly present well after 

Tt' so it is not necessary for the displacement distribution to be Gaussian in the region of 

linearly increasing variance. 

4.10 Conclusions 

The ability of NMR pulsed gradient techniques to non-invasively probe short time 

flow phenomena in porous media provides a unique opportunity to efficiently study non­

equilibrium fluid dynamics in these systems. Both the longitudinal and joint longitudinal 

transverse displacement distributions presented here reveal interesting features which reflect 

the microstructure of the porous medium. These observations have been primarily 

qualitative, but future results from this technique mayo provide a means of determining the 

validity of fluid flow models in the short time and length scale limit. In the one quantitative 

comparison of these results to another joint theoretical/experimental study, we noted a 

disagreement between our results and those of another group81 . In light of this 

discrepancy, further progress should be made to determine the advantages of the techniques 

presented here to those more commonly applied to the study of fluid flow in porous media. 
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Chapter 5 Two-Dimensional Exchange NMR Studies of 
Particle Reorientational Dynamics 

5.1 Introduction 

Up to this point, all of the techniques developed have employed some sort of 

gradient in the strength of the static or excitation magnetic field in order to achieve spatial 

encoding. These techniques are useful for investigating morphology and translational 

motion, but they are not ideal or in some cases appropriate for the investigation of the 

reorientational dynamics of small particles. We are particularly interested in measuring 

particle reorientation as this could prove to be an indirect measure of local vorticity in 

turbulent flow and also would be valuable in studying particle dynamics in systems with 

a high particulate concentration. One particularly interesting area is the study of particle 

reorientation in the flow of suspensions. The effects of particle reorientation in these 

systems has been studied extensively110-112, but the actual reorientational dynamics of the· 

suspended particles has not been experimentally investigated in depth. 

In an inital study, we wish to first look at a simple system, which is well 

understood. This is generally a good philosophy to adhere to when one is developing a 

new technique. The simplest system which displays some sort of easily understood 

reorientational dynamics consists of a colloidal suspension of latex spheres which, if 

small enough, will reorient due to Brownian motion with correlation times on the order of 

milliseconds. In addition, the equations of motion for the rotational diffusion of spherical 

particles at low concentration have an analytical solution113•114. To date, dynamic light 

scattering (DLS) and depolarized dynamic light scattering (DDLS) have been the most 

widely used experimental techniques to study the dynamics of colloidal suspensions, and 

have provided a wealth of information about the translational and rotational diffusion of 

suspended particles and macromolecules115-117. The technique, however, suffers from a 

number of drawbacks. The solution must be free of any impurities which may cause 
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unwanted scattering, solutions which are opaque to the light source are not accessible, 

and in order to observe rotational diffusion, the scatterer must be optically 

anisotropic115•116 or have some physical anisotropy. Further complications arise in the 

study of dense systems which produce large amounts of multi~le scattering. 

Before proceeding with the background theory necessary to understand the 

experiments performed, we will consider the line of reasoning used to develop the 

experiment. The details necessary to explain the line of reasoning will be developed later 

in this chapter. What we first need is some sort of NMR interaction which has a 

dependence upon the relative orientation of the static magnetic field. NMR abounds with 

such interactions including the chemical shift anisotropy (CSA), quadrupolar, and dipolar 

interactions. For a variety of reasons., we chose to utilize the CSA interaction of the 13C 

nucleus as our orientation probe. This makes sense, as latex spheres of uniform size are 

easy to make, and they cont:ain a lot of carbon. There is the little difficulty that they do 

not contain very much 13C (approximately 1% of naturally occuring carbon is 13C), but 

one can always make samples enriched in I3C. The experiment could also have been 

performed using the quadrupole interaction of deuterium 118. We chose, however, not to 

use deuterium as the synthesis of labelled microspheres would have proven to be too 

difficult. 

We will also need an experiment which will yield information about the particle 

reorientation which we can use in some reasonable way." Two-dimensional exchange 

NMR spectroscopy has been used by many groups to study the reorientational dynamics 

of large and small molecules in the solid or near solid state for time scales from 

milliseconds to seconds119-121. The techninque offers a number of advantages to DLS. 

Chemical selectivity allows the measurement of dynamics in the presence of impurities, 

the sample need not be optically clear, and solutions of very high concentration may be 

easily studied. In fact, solutions of high concentration are preferred due to the low 

sensitivity of the NMR technique. 
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5.2 Theory- Chemical Shift Anisotropy, Two-Dimensional Exchange NMR and 

Rotational Diffusion 

5.2.1 Introduction 

Previous explanations of the nature of the magnetzation in NMR have been 

approached from the classical viewpoint. This was possible since we only had to deal 

with the dephasing of the magnetization of spin-half nuclei in the presence of a magnetic 

field gradient of either the static or excitation field. We could treat all of the nuclei as 

classical dipoles precessing about the static magnetic field at the Larmer frequency. 

Although one must use quantum mechanics to prove the existence of a nuclear spin 1, 

once that is done, one can usually treat imaging experiments in a purely classical way. In 

describing the Hamiltonian for an immobile nucleus possessing a chemical shift 

anisotropy, we must adopt a quantum mechanical description. I will refrain from going 

into too much detail in explaining the basic principles necessary for a quantum 

mechanical treatment of the many Hamiltonian's encountered in NMR, but it is necessary 

to go over some of the ideas in order to avoid any confusion in interpreting the results 

derived here, i.e. notational differences, sign conventions, etc. 

The conventions used here agree with those used by Haeberlen122 and Rose123 . 

For a more detailed description of the following theoretical development, I highly 

recommend these two books. One will probably notice that Section 4.2.3 follows 

Haeberlen's work very closely. 

5.2.2 Rotations, Eu~er Angles and Tensors 

In order to succinctly describe the orientation of CSA tensors and particles in 

solution, a standard way of representing orientation must be developed. In NMR and 

many other fields, the Euler angle representation of orientation is perhaps the most 

commonly used system. Depending upon whi~h text you read, the conventions will vary 
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in both the order of rotations, the sign of the rotation and the axis about which any 

particular orientation occurs. Furthermore, some conventions represent reorientation as 

the rotation of a physical object from one system to another, whereas others choose to 

represent the process as the rotation of the coordinate system itself. At least for ,myself, 

the conventions used by Rose 123 (the former) make the most sense. 

Using the three Euler angle rotations, we may represent any arbitrary rotatio~ in 

three-dimensional space. Figure 5.1 shows the sequence of'rotations used to perform an 
arbitrary rotation of one coordinate system to another. Consider a tensor of rank l with 

elements given by 'I'Im in the (X, Y,Z) coordinate sytstem. In the rotated frame of 

reference (x",y",z") the interaction has matrix elements Rim given by 

I 

Rim= Lv~m(a,,B, r)'I'In' (5.1) 
n=-I 

z 

(a,~,y) 
(X, Y ,Z) ---_..(x ",y ",z '') 

Figure 5.1 Definition of the Euler angle triplet. All rotations are right-handed about the specified axis. 

The first rotation by a is about the Z axis, the second rotation by f3 is about the intermediate axis y ', and the 

final rotation by yis about the z" axis. This set of rotations takes the (X,Y,Z) coordinate system into the 

(x",y",z") coordinate system. 
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where the term V~(a,/3, y) denotes a Wigner rotation matrix element. The rotation 

matrix elements may be written in terms of the reduced Wigner rotation matrix elements, 

d:W, (/3). 

v~( a,f3, r) = exp( -ima)d:W, (f3)exp( -iny) (5.2) 

A list of the reduced Wigner rotation matrix elements of rank 2 is given in Table (5.1). 

We are only concerned here with zero and second rank matrix elements as these are the 

only terms which will be of interest in the derivation of the CSA Hamiltonian. The zero 

rank rotation matrix is a scalar with a value equal to one. 

The Wigner rotation matrix elements are not normalized to one, however, they are 

orthogonal. The orthogonality relation over the unit sphere is expressed in the form 

(5.3) 

m 

n 2 1 0 -1 -2 

2 
(l+ cos/3)

2 
1+ cos/3 . f3 #. 2/3 1-cos/3 . f3 (1-cosf3)2 

2 
sm sm sm 

4 8 2 4 

1 1 +cosf3 . f3 cos2 f3- 1- cos/3 
-#sin2/3 

1 + cos/3 
-cos2 f3 1-cos/3 . f3 sm 

2 
sm 

2 2 2 

0 If sin2 f3 If sin2f3 
3cos2 f3 -1 

-{fsin2f3 If. 2/3 sm 
2 8 

-1 1-cos/3 . f3 l+cos/3 
cos2 f3 #sin2/3 cos2 f3- 1- cos/3 l+cosf:J . f3 

2 
sm 

2 2 2 
sm 

-2 (1- cos/3)2 
1-cos/3 . f3 #. 2/3 1+ cos/3 . f3 (1+cosf3)

2 

2 
sm sm sm 

4 8 2 4 

Table 5.1 Reduced Wigner rotation matrix elements of rank l = 2 , d1nn (/3). A means of generating all 

possible matrix elements is given in Rose123 . 
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where Q = ( a,f3, r)' the differential dQ = sin(f3)da d/3 dy' and the integration proceeds 

from 0 to 2n for a and y, and from 0 to n for {3. The 8mn terms are the Dirac delta 

function which is zero for m "# n and one for m = n. 

5.2.3 Chemical Shift Anisotropy 

The chemical shift (CS) interaction refers to the magnetic coupling between the 

orbital angular momentum of the electrons and the nuclear spin angular momentum 124. 

The magnetic field produced by the orbital angular momentum of the electrons 

effectively changes the local field of the nucleus producing a shift in the resonant 

frequency, hence the name chemical shift. 

The CS Hamiltonian in the laboratory system, LS, which is defined by the 

orientation of the static magnetic field may be written in the the form 

H = yl· cr ·B0 cs ' 
(5.4) 

where I is the angular momentum operator, B0 is the static magnetic field, and cr is the 

second rank CS or CSA tensor for a given nuclear site. It perhaps has more meaning if 

we note that -CT · B0 is the magnetic field induced by the nearby electrons at the nucleus. 

For our purposes, Eq. (5.4) is not immediately useful and may be rewritten as 

3 

Hcs = r L O"af3Tf3a. 

a,{J=l 

(5.5) 

The terms Tf3a are elements of the dyadic product of the angular monentum vector and 

the static field vector. CT af3 is an element of the second rank reducible chemical shift 

tensor, CT, which is diagonal in the chemical shift principal axis system, PAScs· The 

diagonal elements are referred to as O"xx, O"YY' and O"zz, where by convention 
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(5.6) 

In order to more conveniently manipulate the chemical shift Hamiltonian, it is 

desirable to rewite Eq. (5.5) in terms of irreducible spherical tensor operators 123 . In 

doing so, we arrive at the relation 

l 

Hcs = Y ll(-1t Rz,-m Tzm (5.7) 
I m=-1 

where the terms Rzm come from CJ a/3 and the terms Tzm from Tpa. As CJ is a symmetric . 
second rank cartesian tensor, only terms with l = 0, 2 will be nonzero. The components 

Rzm in P AScs are given by 

1 = 
Poo = 3 Tr CJ = CJ, 

Pzo = {3( CJzz- CJ) = {3 8, Y2 Y2 (5.8) 

Pz±2 = ~ ( (JYY- (Jxx) = ~ 718, 

where CJ is the isotropic chemical shift, 8 is the chemical shift anisotropy, and 71 is the 

assymetry parameter. We may relate the terms R1m in the laboratory system, LS, to the 

terms Pzm in PAScs by rotating PAScs into the LS using Eq. (5.1). 

I 

Rzm = L1J~m(n)Pzn, (5.9) 
n=-1 

where we now use Q as the relative orientation of PAScs with respect to the LS. 
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where 

The irreducible tensor elements, Tzm, with l = 0,2 are given by 

Too =loBo, 

T2o = {2/oBo, l3 
1 

T2±1 = -fi /±1Bo, 

T2±2 =0, 

Io = Iz, 

/+1 =-~ (Ix + i/y ), 

/_1 = ~(Ix -ily)· 

(5.10) 

(5.11) 

Substituting Eq. (5.9) as well as the expressions for Tzm into Eq. (5. 7), we arrive 

at the expression 

(5.12) 

where we have ignored the terms containing /±1, since these terms will average out _in the 

presence of a large static magnetic field aligned along the z axis of the LS. 

If we absorb the term yB0 into the CSA parameters (this is done to avoid having 

to write yB0 every time), we may write the frequency of the observed CSA interaction as 

(5.13a) 

(5.13b) 
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Depending upon the specifics of the calculation one may choose to use either Eq. (5.13a) 

or Eq. (5.13b). 

5.2.4 NMR Signal from Static Isotropic Samples 

The complex time domain signal from a single isolated spin possessing a CSA 

and oriented by Q with respect to the static magnetic field is exp[ i( m cs - m0 ) t], where 

m0 is the reference frequency. We will ignore from this point forward the reference 

frequency and generally assume that it is set somewhere close to the isotropic chemical 

shift. For a sample composed of an isotropic distribution of such nuclei, the signal is 

given by a sum over the unit sphere. 

(5.14) 

From this point forward we will neglect the subscript cs for the frequency, since we will 

be dealing only with signal arising from a nucleus possessing a CSA. Note that 

Eq. (5.14) completely ignores all relaxation mechanisms, but introducing such quantities 

into the argument would hopelessly confuse the issue. The frequency domain signal, 

S( m), is given by the Fourier transform of F( t) with respect to the conjugate variables 

(m,t). 

00 

S(m) = J F(t)exp(im~)dt (5.15) 
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Figure 5.2 Simulation of a Be powder pattern for an axially symmetric eSA interaction demonstrated for 

Be in a cyano group. The angle {3 refers to the relative orientation of the carbon-nitrogen bond with the 

static magnetic field. Various physical orientations of the cyano group are related to a resulting NMR 

frequency. Note that the frequency axis is linear, whereas the orientation axis is not. 

Often one is not able to acquire the time domain signal for both positive and negative 

times, so the integration may proceed from 0 to oo. In a one-dimensional experiment, it 

is sufficient to acquire only the positive time data. An example of a spectrum for an 

axially symmetric CSA interaction is shown in Fig. (5.2). 
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5.2.5 A Word about Probability Densities 

In the following sections, joint and conditional probability densities will be used 

extensively. Consider a function that represents the probability that an object with a 

- -
given initial orientation n0 with respect to some reference frame will reorient to n 1 in a 

given amount of time t. We call such a probability density a conditional probability 

density, as it is conditional upon the object having an initial orientation given by n0 at 

time t = 0. Symbolically we will represent this probability density as P(n1,tl n0 ,0). 

Now suppose that we have a large collection of these objects with a distribution of initial 

orientations with the probability that there is an object at no given by w( no)' where 

w( n0 ) is normalized such that the integral over all possible orientations is unity. For the 

case of an isotropic distribution of initial orientations, w(no) = 1/8n2
• Knowing 

w( no)' we now may ask what the probability is that an object will undergo a 

reorientation from no to nl in time t with no a priori knowledge of the object's initial 

orientation. Such a probability density is referred to as a joint probability density. In this 

case, the joint reorientational probability density is given by w( n0 )P(n1,tj n0,0) and is 

assumed to be normalized to unity. 

5.2.6 Two-Dimensional Exchange NMR Spectroscopy 

The standard assumptions for this type of experiment concerning the nature of the 

NMR interaction and the evolution of the nuclear spin magnetization, will be made, 

namely: the NMR interaction will consist only of the chemical shift anisotropy of a spin­

half nucleus such as 13C, complete dipolar decoupling of l3C and IH nuclei is achieved 

during evolution and acquisition, all CSA parameters are constant in time, all rf pulses 

· are "hard", i.e. they will be assumed to be delta functions in time, there is no spin 

diffusion, and spin-lattice relaxation is independent of the orientation of the CSA tensor. 
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Evolution Mixing Detection 

Figure 5.3 Basic layout of a two-dimensional NMR exchange experiment125 . Magnetization produced by 

the first pulse evolves with a frequency related to the initial orientation of the interaction. Evolution of the 

magnetization ceases during the mixing period to resume during the detection period. During the 

detection period the magnetization evolves at frequencies determined by the final orientaion of the 

interaction. The mixing period is assumed to be much longer than both the evolution and detection 

periods. 

The basic form of the two-dimensional NMR spectroscopy experiment125 is given 

in Fig. (5.3). Mter the initial excitation of the I3C magnetization, each spin evolves for a 

time t1 at the frequency dictated by its initial PAS orientation, 

(5.16) 

The initial orientation .0.1 will be referred as PASl, Fig. (5.4). Mter the evolution 

period, a second pulse stores one component of the magnetization parallel to B0 for a 

mixing time tm, during which time physical reorientation may occur, thus changing the 

relative orientation of the PAS to the LS. The third pulse returns the spin magnetization 

to the transverse plane for detection. During detection, each spin will evolve at a 

frequency determined by the new orientation .0.2 , P AS2. 
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(5.17) 

The resulting two-dimensional time domain signal represents an ensemble 

average of the spin isochromats over all possible initial and final orientations weighted 

by the joint probability density for the reorientation from P{\S1 to PAS2: 

F(t1, t2 ) = ( exp[im( Q1) t1 ]exp[im( Q2 )t2 ]) 

= J dnl J dnz w(n~,o)P(nz,tmln1 ,0) 
xexp[im(n1 )t1 ]exp[im( Q2 )t2 ]. 

(5.18) 

where P(n2 ,tmln1,0) is the conditional probability density that a CSA tensor with an 

initial PAS orientation Q1 will reorient to a final PAS at Q2 in a time tm. In this case, 

w( Q1, 0) represents the probability that the CSA tensor is oriented at Q1 at time t = 0, 

and as we are dealing with isotropic samples, this term is a constant, 1/8n2
• Two­

dimensional Fourier transformation of the time domain signal yields the frequency 

spectrum 

S( m1, Wz; tm) = J dQ1 J dQ2 8 [ m( Q1) - m 1] 8[ m( Q2)- m2] 

xw(n1,0)P(nz,tml nl,o ). 

(5.19) 

Note that in Eq. (5.19) 8 is the Dirac delta function not the anisotropy parameter. 

Equation (5.19) is of particular interest, as it will provide the means to extract 

information about reorientational dynamics directly from the frequency domain NMR 

signal. 
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PASl PAS2 
I 

Figure 5.4 Rotations relating the principal axis sytems (PASI and PAS2) of the CSA tensor during mixing 

and detection to the laboratory system (LS). 

Depending upon the nature of the reorientational process, one will need to 

consider different functional forms for the joint reorientational probability density. In 

this study, we assume that the particles undergo isotropic rotational diffusion for which 

the basic theory is presented in the next section. We also desire some means of extracting 

quantitative information about the isotropic rotational diffusion constant, from which one 

may determine the size of the latex microspheres in solution. In analogy to DLS where 

such information is often extracted from the time-correlation function of the scattered 

light, we will develop equations describing the time-correlation function of the NMR 

frequency and also a means of extracting the NMR frequency time-correlation function 

directly from the two-dimensional exchange spectrum. 

5.2. 7 Isotropic Rotational Diffusion 

The equation of motion for an isolated rigid particle undergoing rotational 

Brownian diffusion is given by 
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aw(n,t) (- ) 
dt +(L·D·L)W Q,t =0, (5.20) 

where w( Q,t) is the probability density for the particle (i.e. its principle axis system) to 

have orientation Q at time t, L is the infinitesimal rotation operator, and D is the 

rotational diffusion tensor. The formal solution to Eq. (5.20) is 114 

(5.21) 

where w{fl1,0) is the probability that the particle is initially oriented at the angle Q1, ' 

and P(n2,tlfl1,0) is the conditional probability that if the particle was initially at Q1, 

then it will have the orientation Q2 at time t. For the case of isotropic rotational 

diffusion, it has been shown thatll3, 114 

w(fll,O)P(flz,tlfl1,0) = 8~2 ![2
;;2

1 
exp(-z(l + 1)Drt) 

'l=l 

I I 

x L L1)~(nlr 1J~(n2)]. 
m=-I n=-I 

(5.22) 

Dr is the isotropic rotational diffusion constant in Hz. 

At infinite dilution, Dr has a particularly simple form 126: 

' (5.23) 

where k8 is the Boltzmann constant, Tis the temperature, vis the kinematic viscosity of 

the suspending fluid, and a is the hydrodynamic radius of the colloidal particle. For 
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finite dilution and short observation times the diffusion coefficient varies with the 

relative volume fraction, l/J, of the colloidal particles127 

Dr = D~ ( 1 - cr l/J). (5.24) 

The coefficient cr is dependent upon the nature of the interaction between the particles 

and the suspending fluid and has the value 0.63 for the case of hard spheres with stick 

hydrodynamic boundary conditions127. In the following discussions of rotational 

diffusion, we will use the corrected form of the rotational diffusion coefficient, 

Eq. (5.24). 

5.2.8 Time-Correlation Functions 

The diffusion statistics can be fully described by the normalized orientational 

time-correlation functions given by128 : 

(5.25) 

The ( ) 's denote integration over all possible initial and final orientations weighted by 

the joint reorientational probability density, w(fi1,0)P{fi2 ,tlfi1,0). The orientational 

time-correlation functions play a central role in DLS, and as we will show in the next 

section, they also play an important role in interpreting two-dimensional exchange 

spectra. From the orthogonality of the Wigner rotation matrices, Eq. (5.3), and using the 

joint reorientational probability density in Eq. (5.22), we find 

(5.26) 

130 



. where the subscript ird signifies that the reorientational process is isotropic rotational 

diffusion. In the two-dimensional exchange NMR experiment we will be particularly 

interested in the time-correlation functions with l = 2. 

(5.27) 

For time-correlation functions of this type, it is convenient to define a correlation time 

given by 

1 
'r =--. c 6Dr· (5.28) 

Theoretical evidence predicts non-exponential beha:Vior for C2,m(t). in colloidal 

suspensions of finite dilution, but it is unlikely this behavior will be seen for volume 

fractions below 0.1. l29 

. 
5.2.9 Time-Correlation Functions in Two-Dimensional Exchange NMR for 

the Rotational Diffusion of a Spherical Top 

The objective in this section is to develop a method to extract the time-correlation 

function and, therefore, information about the rotational diffusion constant for a 

spherically symmetric diffusor directly from the two-dimensional ~.xchange spectrum. 

First, we rewrite the frequency of the CSA interaction, Eq. (5.13a) with 

a = 0 and 8 = 1 in terms of the Wigner rotation matrices. 
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(5.29) 

Although it is not necessary to set the isotropic chemical shift to zero, we have decided to 

do so in the actual calculations of the NMR frequency time-correlation function. The 

case where a is not set to zero will be discussed later in this section where we will 

investigate the consequences of overlapping CSA powder patterns arising from 

chemi~ally distinct sites. Because co( Q) is real, we may express the NMR frequency 

time-correlation function in terms of the time-correlation functions discussed in the 

previous section. 

(co( .Ql) co( .Q2)) = (co( .Ql) co( .Q2 r) 
=(1)6o(n~)1)6o(n2)*) 

+v'f7J( 1)5o( .Ql )[ 1)~o(n2 r + 1)~2o(n2 r]) 
+ ~2 

([ 1)~o( .Ql) + 1):2o( .Ql) ][ 1)io( .Q2 r + v:zo( .Q2 r]) 

(5.30) 

Using Eq. (5.22) and the relation derived in Eq. (5.26), we arrive at the desired 

expression for the normalized isotropic rotational diffusion time-correlation function of 

the CSA frequency, which we shall denote ·c~s(tm). 

(5.31) 
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This is identical to the time-correlation function found in Eq. (5.27) except the 

normalization is given by (1+ T72 /3)/5 as opposed to lf5. In the case of an axially 

symmetric CSA interaction ( T7 = 0), the normalization factors in Eqs. (5.31) and (5.27) 

are identical. 

In deriving Eq. (5.31), we did not need to consider the relative orientation of the 

CSA interaction within the diffusing particles. Due to the symmetry of the motion, one 

may in fact view the situation as merely the isotropic rotational diffusion of a collection 

of CSA tensors. We shall see in the next section that this viewpoint is not correct when 

the diffuser is non-spherical. 

There exists one more crucial step to developing a method to determine c~s · 
' 

directly from the experimentally obtained two-dimensional exchange spectrum. Using a 

modification of the expression for the frequency domain NMR signal given in Eq. (5.19) 

where we have replaced m( Q2 ) by its complex conjugate, one may easily show that 

J dm1J dm2 S(m1,m2 ;tm)m1m2 = J dQ1J dQ2 w(fi1) 

(5.32) 

xP(fi2 ,tml Q1,0 )m(fi1 )m(fi2 )*, 

where we have assumed that the exchange spectrum is normalized to one. 

(5.33) 

From Eq. (5.31) and Eq. (5.32) 

(5.34) 
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This result for the case of 11 = 0, where Cfs(tm) = C2,0(tm), was previously reported by 

Schmidt-Rohr and Spiess119•130. In Eqs. (5.32) and (5.34), we are assuming that the 

weighted integral of the spectrum is carried out from -(1 + 17 )/2 to 1 for both m1 and 

Oh, in a frequency space which is scaled such that 8 = 1 and a= 0. In order to do this, 

of course, it is necessary to know all three CSA parameters. 

We now have a relatively direct method of extracting isotropic rotational 

diffusion information from the two-dimensional exchange NMR experiment. In fact, the 

exchange experiment is actually simpler to interpret than the DDLS experiment as the 

light-scattering time-correlation functions also contain an exponential decay arising from 

translational diffusion 128• 

Although we are primarily concerned with measuring time-correlation functions 

in a system with an isolated chemical shift where it is possible to zero the isotropic 

frequency by changing the reference frequency, many potentially interesting systems 

contain multiple sites with overlapping CSA powder patterns. In this case, it is not 

generally possible to choose a single reference frequency which simultaneously sets all of 

the isotropic frequencies to zero. We then have an NMR spectrum which consists of a 

sum over the spectra produced by each site 

nsites 

s(m1,m2;tm) = L ci si(m1,m2;tm), (5.35) 
i=1 

where nsites is the number of chemically distinct sites being observed, and ci is the 

relative population of the ith site. Using Eq. (5.32) and the distributive property of 

integration, 
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f dm1 f dm2 s( (1)1' (1)2 ;tm )m1 (1)2 

nsites 

= L ci f dm1 f dm2 si ( (1)1. (1)2; tm )ml (1)2 (5.36) 
i=l 

= I,ci(mi(n~)mi(n2f). 
i=l 

We now must compute the time-correlation function for NMR frequencies of the form 

(5.37) 

where this time we have included the isotropic chemical shift and anisotropy parameters. 

For any of the given sites we find that the isotropic rotational diffusion NMR frequency 

time-correlation function is 

(5.38) 

The frequency weighted integral over the NMR spectrum is then 

(5.39) 

The limits of the integration in this case should be set so that all of the relevant powder 

patterns are included in the integration region. 

Although Eq. (5.39) is more complicated than the expression for a single CSA 

interaction with zero isotropic shift, Eq. (5.31), if one knows all of the relevant CSA 
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parameters, the determination of the rotational diffusion constant is relatively simple. In 

the event that one does not know the CSA parameters, one may determine the rotational 

diffusion constant by treating the two terms containing the CSA parameters as adjustable 

parameters in a fit of the experimental data. 

The treatment presented here will also be useful for a quantitative analysis of 2H 

NMR spectra, where the powder patterns of two NMR transitions overlap. Since the 

powder patterns have the same center of gravity, ai can be chosen to be zero. In 
I 

addition, the magnitude of 8 is the same for both patterns. For the quadrupolar 

interaction of deuterons bonded to aliphatic carbons, 77 = 0. Therefore, the frequency­

weighted integral over the 2H NMR "2D spectrum, Eq. (5.39), simplifies to 

5.2.10 Time-Correlation Functions in Two-Dimensional Exchange NMR for 

the Rotational Diffusion of a Symmetric Top 

Although we intend in this study to investigate the rotational diffusion of 

spherical particles, it is important to understand the form of the correlation function if the 

particles are not spherical. In fact, the development of this work was prompted by the 

appearance of multiple correlation times in the experimental data which will be presented 

later. Consider, for example, a rod-like particle whose reorientation about the axis of 

symmetry is rapid with respect to the mixing time, but whose reorientation perpendicular 

to the axis of symmetry is slow. An axially symmetric CSA interaction parallel to the 

symmetry axis of the rod will show relatively little frequency exchange for the given 

mixing time. On the other hand, considerable frequency exchange will occur if the CSA 

tensor is perpendicular to the symmetry axis of the rod. It is therefore necessary to 

discuss the orientation of the CSA tensor not only in terms of how the particles are 

moving, but also in terms of the relative orientation of the CSA tensor and the particle. 
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Dj_ 

Figure 5.5 Relation between the two rotational diffusion coefficients of a symmetric top to the geometry of 

a prolate ellipsoid. The diffusion coefficient ~1 refers to diffusion about the axis of symmetry, whereas 

D J.. refers to diffusion perpendicular to the axis of symmetry. 

The diffusion tensor for a symmetric top may be represented by two diffusion 

constants, ~1 and DJ.., in the reference frame, PASdiff, which diagonalizes the diffusion 

tensor. ~1 describes the diffusion about the axis of symmetry, whereas D J.. describes the 

diffusion perpendicular to the symmetry axis as shown in Fig. (5.5). As with isotropic 

rotational diffusion, one may obtain an analytical soluti,on of Eq. (5.20) for a symmetric 

top. In this case, the joint reorientational probability density is given by113•114 

wd!ff(nt,o )Pd!ff( fiz,tl nl,o) 

= ~ ![21
+/ exp[-l(l +l)DJ..t-m2 (~1 -DJ..)t] 

8n L=l 8n 
l l 

XL Lv~(nlr v~(nz)]. 
m=-l n=-l 
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Depending upon one's definition of the Euler angles, the m2 contained in the exponential 

will either be the first or the second subscript of the Wigner rotation matrix elements. As 

stated before, we have chosen to adopt the convention used by Rose123 . 

Unlike the case of the spherical top, where the diffusion tensor is diagonal in any 

PAS, for the symmetric top the diffusion tensor is only diagonal in P ASdiff . Therefore, 

we must first rotate the PAS of the chemical shift interaction during the encode period, 

PASlcs• into the PAS which diagonalizes the diffusion tensor during the same period, 

PASldiff· As we observe the CSA frequency in the LS, we must perform another rotation 

of PASldiff to LS. We will denote the first rotation from PASlcs to PASldiff by the triplet 

Q', and the rotation from PAS ldiff to the LS by Q1, the initial orientation of the diffuser. 

The total rotation from PAS lcs to the LS will be denoted Oi'. During the acquisition 

period we repeat the process substituting l's for 2's in the previous explanation. See 

LS 

Figure 5.6 Rotations relating the PAS of the CSA tensor, the PAS in which the diffusion tensor of the 

symmetric top is diagonaL and the LS. Note that PAS lcs and PAS2cs remain fixed with respect to the PAS 

of the diffusor. 
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Fig. (5.6). From Eq. (5.29), the NMR frequency as a function of Q' and Q1 is given by 

2 

m( .Ql,fi') = ~1J~·o(fil )[ 1J5n-( n') + }6 ( 1J~n'(fi') + 1J:2n'(n'))]. 
n =-2 

(5.41) 

Determination of the time-correlation function requires specifying the orientation 

ensemble average of the CSA tensor in the particles. In general, we must take into 

account the probability at t = 0, Wcs(il',O), that PASlcs has orientation Q' with respect 

to PASldiff, and the conditional probability density, Pcs(n',tmlil',O), thatPAS2cs is then 

at the same relative orientation at time tm. For the case of an isotropic distribution of 

CSA tensors rigidly embedded in the particles, 

wcs( Q',o) = ~' 87r 
pes( Q',tml Q',O) = 1. 

Combining Eq. (5.40), (5.41) and (5.42) we arrive at 

( co(nl,n')m(n2,n'f) 

( 
1 

)
2 f -f . -f -= 87r2 dQI dQ2 dD.' 

2 

X ~ 1J~·o( Ql )[ 1J5n'(.fi') + }6 ( 1J~n'( Q') + 1J:2n'( Q'))] 
n =-2 

~ 2 (- )*[ 2 (-')* 1] ( 2 (-')* 2 (-')*)] X ~1Jn"O Q2 1)0n" Q + ..[6 1J2n" Q +1J_2n" Q 
n =-2 

oo I 

XL L1J~(nl r 1J~(n2 )exp[-l(l + 1)DJ.t- m2 (~1- DJ.)t]. 
1=0 m,n=-1 

After carrying out the integrations we obtain 
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(GO(ill,il')GO(!l2,{l')*) 

=- -+- 2exp[-6D.lt-4(~1 -D.l)t] 1 ( 1 1]

2 J( 
5 5 15 

(5.44) 

+2exp[-6D.lt- (~1 - D.l)t] + exp[-6D.lt]). 

) 

One obtains a similar triexponential expression for the depolarized light scattering time-

correlation function in DDLS 128. 

The equation for the NMR exchange spectrum originally presented in Eq. (5.19) 

may be restated as an ensemble average similar to that used in the definition of the time-

correlation function above. 

s(GOl,G02;tm) =I dill I dtl2 I dil' o[ GO(ill,il')- G01 ]o[ GO(n2,n'f- G02 J 
x·w cs( U',O)Pcs(U',tml Q',o)wd!ff(fi1 ,o)P diff(fi2,tml fi1,0) 

(5.45) 

Using this form for the two-dimensional exchange spectrum, it is simple to show (see 

Eq. (5.32) and (5.34)) that the frequency weighted integral of the two-dimensional NMR 

spectrum is equal to the NMR frequency time-correlation function given in Eq. (5.44). 

The diffusion coefficients derived from the NMR frequency time-correlation 

function may be used to determine the major and minor semi-axes of revolution of an 

ellipsoid, a and b respectively, using13l,l32 

~ _ 3kT 2a-b2G(a,b) 
1

- 327rTJ (a2 -b2)b2 ' 

. _ 3kT (2a 2 -b2 )G(a,b)-2a 
D.i- 4 4 , 

327rTJ a -b 
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where 

(5.47a) 

for a > b (prolate ellipsoid), and 

(5.47b) 

for a< b (oblate ellipsoid). Although the two diffusion coefficients in Eq. (5.46a) and 

(5.46b) are indetenninate at a= b, they tend towards the value for the isotropic rotational 

diffusion coefficient given in Eq. (5.23) as a -7 b. 
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5.3 Simulation of Two-Dimensional Exchange NMR Spectra for the Case of 

Isotropic Rotational Diffusion 

Up to this point we have focused on extracting time-correlation functions from 

the two-dimensional exchange spectrum with the assumption that the motional process is 

rotational diffusion. Even if the particle reorientation is not described by rotational 

diffusion, the frequency weighted integral of the exchange spectrum may still yield a 

monotonically decreasing function which may be fit with a sum of decaying 

exponentials. Unlike the time-correlation function, two-dimensional exchange spectra 

can show features which are characteristic of anisotropic motions, discrete jumps, 

coherent rotation, etc 118- 121 ~ In order to gain more insight into the actual dynamics which 

we are observing, we need to develop a method of simulating two-dimensional exchange 

spectra based upon the rotational diffusion model. Simulations will allow us to 

determine if the process looks like rotational diffusion and to check for experimental 

artifacts. 

The task of simulating two-dimensional exchange spectra using Eq. (5.19) 

appears very formidable. One must integrate over six separate angles over the interval 

(0,2n) for four of the angles and (O,n) for the other two. Such a simulation would 

prove very difficult to solve in any reasonable amount of time. A simpler equation which 

takes into account redundant integrations has been derived previously by Wefing et. 

al. 120•121 In the simplification, Wefing approaches the problem from the point of view of 
t 

a fixed chemical shift PAS where the ~S appears to reorient from LS 1 to LS2. The 

relative orientation of the two laboratory syste!lls is z' = ( a',f3'), and the orientation of 

LS 1 with respect to the PAS is z1 = ( a1, {31). In the case of isotropic rotational diffusion 

and non-zero assymetry parameter (17 :f:. 0), Eq. (5.19) reduces to 
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where 

~2 ~2 

s( m1, m2;tm) = f df3' sin(/3') rg(f3',tm) f da1 
0 0 

tr/2 

x J d/31 sin(/31) 8[ m( a1 ,{31)- md 
0 

2rr 

x J da' 8[ m( a' ,{3', a1 ,{31)- m2 ], 
0 

(5.48) 

(5.49) 

may be determined using Eq. (5.41). rg is referred to as either the jump or reorientation 

angle distribution. 

As an example, Fig. (5.7) shows two-dimensional exchange spectra with non-zero 

asymmetry parameter for a number of correlation times with a fixed mixing time. The 

simulations were performed with steps of nf64 radians with each simulation requiring 

approximately 43· s of CPU time on a Silicon Graphics Indigo computer running a MIPS 

R4000 CPU. At zero mixing time, the spectrum should lie entirely along the diagonal 

from the bottom left hand corner to the top right hand corner. 

We have chosen to perform the simulation in the frequency domain as opposed to 

the time domain to reduce the number of numerical operations Each angle is 

independently sampled using equally spaced intervals which are chosen to produce 

acceptable gridding artifacts after the convolution of the spectrum with a two-

dimensional Gaussian line broadening function chosen to simulate the dipolar line 

broadening inherent in the experiment. CSA parameters are scaled in such a way that the 
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computed angle dependent frequency corresponds to the appropriate matrix index of the 

spectrum, thus avoiding the need to rescale the NMR frequency at each point of the 

sampled grid of orientations. Instead, the resulting frequency is converted to an integer 

and the appropriate weighting is added to the spectrum elements indicated by the 

computed frequencies. Wefing has pointed out that simulation in the time domain is_a 

better approximation to the real signal120, but the difference between the two methods is 

not important when one only wishes to use the simulation as a qualitative comparison to 

the experimental data. We have performed both time domain and frequency domain 

simulations and found no noticeable qualitative difference after the convolution of the 

spectrum with a Gaussian apodization function. In addition, NMR frequency time­

correlation values derived from the simulated spectra using Eq. (5.34) agree with the 

correlation times used in the simulation. 

Simulation of equivalent sites undergoing isotropic rotational diffusion with 

different correlation times involves almost no extra computation. It is sufficient to 

compute a reorientation angle distribution for each site independently and then add the 

distributions together weighted by the respective fractional population of each site. The 

resulting reorientation angle distribution may then be used in the simulation in the same 

way as the single correlation time reorientation angle distribution is used. As the 

calculation time of the reorientation angle distribution is much smaller than the total time 

required for the simulation, this method is more efficient than simulating the exchange 

spectrum separately for each correlation time and then adding the spectra. Examples of 

this sort of simulation will be presented later in this paper in association with the 

experimental results. 
) 
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(a) 

Figure 5.7 Simulated Be two-dimensional exchange spectra with cr = 6.2 ppm, o = 90 ppm, and 11= 0.45. 

Frequency axes extend from -106 ppm to 80 ppm. Some features present in the spectra are due to an 

inadequate sampling of orientations. Spectra are n01malized to a maximum height of one. 
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5.4 Experimental Example - Isotropic Rotational Diffusion of Latex Spheres in 

Suspension 

5.4.1 Sample Considerations 

Latex microspheres are often used as prototypical spherical colloidal particles in 

DLS studies of rotational diffusion. Monodisperse latex microspheres are relatively easy 

to produce using emulsion polymerization reactions, have a density near that of water 

and, therefore, remain in suspension for long periods of time without the need for 

agitation of the sample. Furthermore, crystalline latex microspheres have been produced 

with an intrinsic optical anisotropy115 which is useful if one wishes to measure the 

rotational diffusion of spherical particles using DDLS. 

The requirements for an acceptable colloidal suspension to be studied using two­

dimensional exchange NMR differ somewhat from those in DDLS. As is the case for 

optical techniques, the particles should be monodisperse, relatively easy to synthesize 

and neutrally buoyant in the suspending fluid. If the 13C CSA interaction is to be used as 

the orientational probe, the particles should be relatively easy to enrich in 13C at a site 

which is, preferably, not directly bonded to hydrogen; an absence of directly bonded 

protons considerably reduces the necessary decoupling power during the evolution and 

acquisition periods. Since spin-lattice relaxation times of I3C nuclei in solid polymers are 

on the order of 1 s and the inhomogenous linewidths are on the order of 100 ppm, 

measurable correlation times range from 5 ms to 1 s. At room temperature with water as 

the suspending fluid, these correlation times require the particles have a radius between 

170 and 1000 nm. 

In order to avoid excessive background signal, the suspending solvent should be 

free of 13C nuclei, so common organic solvents are not appropraite. In light of its ease 

of use and availability, water is used as the suspending fluid in this study. Alternative 
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solvents such as 13C depleted organic solvents and silanes may be preferable for 

specialized applications. 

The results reported here are for a colloidal suspension of PMMA inicrospheres 

enriched to approximately 20% 13C at the carbonyl site with a target radius of 300 nm. 

The method of synthesis for small batches of the particles is presented in detail below. 

5.4.2 Preparation of methyl 13C-(carbonyl)-methacrylate 

Methacrylic acid enriched to 100% 13C at the carboxylic acid group is synthesized 

by the low temperature carboxylation of isopropenyl magnesium bromide with barium 

carbonate-I3C.133 The acid is then isolated as the sodium salt and dried at ll0°C under 

high vacuum. Esterification of the salt proceeds with trimethylphosphate on a vacuum 

manifold system in the presence of hydroquinone to inhibit polymerization. The 

resulting methyl 13C-(carbonyl)-methacrylate is isolated by low temperature distillation. 

The final yield with respect to the barium carbonate-13C reactant is between 75% and 

80%. Both the yield and sample purity obtained by this synthes~s are higher than a 

previously reported reaction sequence via acetone cyanohydrine (from acetone and 

potassium cyanide-13C).134 

5.4.3 Preparation of 13C-(carbonyl)-poly(methyl methacrylate) Microspheres 

To conserve the enriched reactant, 300 nm radius I3C-(carbonyl)-poly(methyl 

methacrylate) (PMMA) latex microspheres are synthesized in a two-step semicontinuous 

emulsion polymerization. 

In the first step, seed particles of unlabeled MMA with a radius of 125 nm are 

synthesized in a 1 L reaction vessel in the presence of nitrogen to avoid the reaction of 

oxygen with the monomer. For the synthesis 200 ml of H20, 25.0 ml of a 0.5% solution 

of polyethyl ether (AD33®, Atochem, France) to act as an emulsifier, 20 ml of a 1.57% 

solution of (NH4)2S20 8 to act as an initiator, and 15.0 g unenriched MMA are initally 
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placed in the reactor. After a nucleation time of 2 hat 20 °C, a pre-emulsion composed 

of 177 g MMA, 50 ml of a 1.0% solution of AD33®, and 200 ~1 of H20 is pumped into 

the main reactor at a rate of 3.6 mljmin. Simultaneously, 25 ml of a 1.57% solution of 
\, 

the initiator (NH4hS20 8 is added at a rate of 0.21 mlfmin. The reaction temperature is 

stabilized at 72°C with a stirring speed of 250 rpm. After the addition is complete, the 

temperature is raised to 85 °C for 5 h in order to obtain high conversion and to dissociate 

the remainder of the initiator. The final solids content is 27.3% by weight. 

In the second step, the labeled MMA is polymerized onto the surface of the latex 

125 nm seed particles in a 50 ml reactor. The synthesis of 300 nm particles is very 

difficult because the MMA has a tendency to spontaneously nucleate during the addition 

of the monomer. To avoid the formation of new particles in this step of the synthesis, the 

addition rate is slowed down, and the concentration of emulsifier is reduced to suppress 

unwanted nucleation in micelles formed by the emulsifier. It should be noted that a 

certain amount of emulsifier is necessary for the stabilization of the emulsion, so the 

emulsifier cannot be completely removed. 

For the reaction, 462 mg of the seed latex and 13.4 g of H20 are added to the 

main reactor. A pre-emulsion composed of 917 mg of the enriched MMA, 983 mg of a 

1% solution of AD33®, 1.68 g of a 1.57% solution of (NH4)2S20 8, and 1.54 g of H20 is 

added over a period of 4 h with a 5 ml syringe. The temperature in the 50 ml reactor is 

stabilized at 72 °C during the addition and is then raised to 85 °C for 26 h after the 

addition to ensure completion of the polymerization. The final solids content of the 

colloidal suspension is -10% by weight. 

5.4.4 Size Characterization of the Latex Microspheres 

The size of the latex microspheres was investigated by both dynamic light 

scattering techniques and by scanning electron microscopy (SEM). 

148 



Figure 5.8 Scanning electron micrograph of the PMMA microspheres coated with approximately 25 nm of 

gold. Measurements from this image indicate particle radii of 320 ± 40 nm and 180 ± 40 nm. These values 

take into account the 25 nm layer of gold on the surface of the particles. The error arises from the 80 nm 

wide indistinct outline of the particles in the image. Radius measurments were made from the central point 

of the indistinct outline using the image analysis program NIH Image 1.52. 

DLS, being the customary method for size characterization, was used initially. 

Measurements performed on an Autosizer 4700 (Malvern) indicated a particle radius of 

approximately 313 nm with a polydispersity of 10%. There was no indication of particles 

with a substantially different size. Rotational diffusion measurements made using two­

dimensional exchange NMR did not agree with this result as will be shown below. 

To resolve the discrepancy, SEM measurements were made using a Microscope 

Stereoscan (Cambridge Instruments) with an acceleration voltage of 8 kV. One droplet of 

the latex was diluted with 2 ml of water, applied to an aluminum support, freeze dried, 

and gold coated using an Auto Sputter Coater (Bio-Rad, Polaron Division). Particle sizes 

determined from the SEM micrograph in Fig. (5.8) indicate the presence of particles with 

two distinct radii, 320 ± 40 nm and 180 ± 40 nm. The uncertainty reflects blurring of the 
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microsphere edges in the picture. It appears that a second nucleation at a relatively early 

stage in the reaction has taken place. This would imply that the larger particles contain a 

125 nm radius unenriched core, whereas the smaller particles are composed entirely of 

enriched PMMA. 

5.4.5 Two-Dimensional Exchange NMR Experiment 

Figure (5.9) shows the pulse sequence used in the two-dimensional exchange 

experiment. The initial 13C magnetization is created through cross polarization with 1H 

nuclei, and evolves for a time t1• During the evolution period, a decoupling field is 

applied in order to quench the dipolar interaction between the 13C and 1H nuclei. Mter 

the evolution period, a n/2 -pulse stores one component of the 13C magnetization along 

the direction of the static field. Neglecting spin-lattice relaxation, the stored 

magnetization does not evolve during the mixing period. The second 13C nj2 -pulse 

returns the stored magnetization to the plane perpendicular to the static field for detection 

accompanied by decoupling. In order to ensure that the signal at t2 = 0 is acquired, a n­

pulse is performed to create a spin echo. The addition of the spin echo makes it 

unnecessary to apply a first order phase correction along t2 , so we are only required to 

apply a zero order phase correction to the resulting two-dimensional exchange spectrum. 

The experiment is repeated with increasing values of t1 until a sufficient number of t1 

points have been acquired. In order obtain a pure phase absorption spectrum we utilize 

the States method 135. 

The t1 = 0 slice in each two-dimensional exchange experiment was analyzed in 

order to determin_e the CSA parameters of the carbonyl carbon in the PMMA sample. 

These parameters are necessary in the determination of the NMR frequency time­

correlation function. Calculations yielded a value of 90 ppm for 8 and 0.45 for TJ. 

Values for the isotropic shift varied between some experiments depending upon the 

reference frequency. These values of the isotropic shift were taken into account 
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1HJ~I CP I decouple ..... I __ __. decouple 

CP .. 1t 

Figure 5.9 NMR pulse sequence for the two-dimensional NMR exchange experiment. 1H excitation pulse 

9 J..LS, crosspolarization contact time 1.5 ms, and acquisition time of 2.1 ms for a spectral window of 

15kHz. The spectrometer used in this study is not capable of changing the rf power on a given channel 

during the course of the sequence, so the large duty cycle decoupling pulses limit the nutation frequency to 

27kHz. 

individually in the calculation of each point of the time-correlation function. All 

experiments were performed on a 300 MHz home-built homodyne spectrometer 136 with 

a Tecmag pulse programmer run by a Macintosh llfx computer. As configured, the 

system achieved a 27kHz IH nutation frequency. The rf power level provided acceptable 

decoupling of the I3C-1H dipolar interaction in addition to pulse times short enough to 

·make 'it unnecessary to perform a first order phase correction along the encode 

dimension, t1 • 

The PMMA- 13C latex microspheres studied were produced with an expected 

mean radius of 300 nm, density of 1.19 g/mm3, and 10% solids content by weight with 

respect to the water solution. At the size and density of the latex microspheres, it is 

expected that the particles will completely settle out of a room temperature water 

suspension in approximately two to three days. As the experiment takes approximately 

151 



r 

12 hours to complete, a significant amount of settling is expected to occur. We corrected 

for this problem by fabricating a sample holder which could be slowly rotated while the 

NMR probe is in the magnet. The sample holder ~onsists of a KelF tube with a pulley 

cap supported on KelF/teflon bearings. A belt and pulley system connects the sample 

holder to an electric motor driven at ca. 0.05 Hz. Sample reorientation at this rate is at 

least 100 times slower than the reorientation of the latex spheres due to rotational 

diffusion, so we expect there to be no detectable effect upon' the two-dimensional 

exchange spectrum. Settling of the sample, however, is effectively eliminated at this 

rotation rate. 

5.4.6 Experimental Results - Two-Dimensional Exchange NMR of 

Rotationally Diffusing Latex Microspheres 

Two-dimensional NMR exchange experiments were performed for a number of 

mixing times chosen to adequately sample the decay of the NMR frequency time­

correlation function. Figure (5.10), a plot of the natural logarithm of the time-correlation 

function versus the mixing time, shows the presence of at least two exponentially 

decaying components corresponding to distinct correlation times. A biexponential 
'-

function, 

(5.50) 

shown as a solid line in Fig. (5.10) fits the data well. The adjustable parameters used in 

the fitting process are as follows: A takes into account effects of line broadening due to 

13C-1H dipolar coupling, p1 is the fraction of signal contributed by particles with a 

rotational diffusion correlation time -r1, and -r2 is the correlation time for the other sized 

particles. The following values yield the best fit: 
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't'1 = 6.4 ± 1.5ms 

-r2 = 41.8 ± 2ms 

p1 = 0.49±0.015 

A= 0.85 ± 0.04 

(5.51) 

The reported errors reflect the uncertainty in determining the proper limits of integration 

for the extraction of the time-correlation function from the exchange spectrum. 

Assuming a temperature of 300 K and a viscosity of 1.0 x 10-2 Poise, the two 

correlation times correspond to the radii 180 ± 13 nm and 338 ± 5 nm. These values 

0 20 40 60 80 100 120 

tm (ms) 

Figure 5.10 Plot of the natural logarithm of the time-correlation function vs mixing time derived from two­

dimensional NMR exchange experiments. The data are fit to a four parameter biexponential function. The 

parameters account for two particle diameters, relative signal contribution of each particle size, and line 

broadening due to 13CJ H dipolar couplings. The form of the fitting function is given in the text. Vertical 

error bars represent possible error in determining the CSA parameters. Due to the finite time involved in 

signal acquisition and evolution during t1, an error of ±1 ms in time exists for each point. 
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agree very well with those determined by scanning electron microscopy, and the presence 

of two particle sizes is attributed to spontaneous nucleation during the second step of the 

polymerization reaction. The relative number of small to large particles is calculated to 

be 6:1 assuming the smaller particles are composed entirely of the 20% enriched PMMA 

and the larger particles contain a core of unenriched PMMA. 

Due to the finite duration of the acquisition and encode times (-2.1 ms), each 

point in Fig. (5.10) has an uncertainty of±1 ms. This uncertainty is substantial compared 

to the shorter correlation time, so it is surprising that the particle size determined from 

this correlation time agrees so well with the SEM data. On the other hand, the 

uncertainty is substantially shorter than the longer correlelation time, so we would expect 

the NMR data to provide a reasonably accurate estimate of the larger particle size. 

The data were also fit to the symmetric top model, which yielded values of 

~1 =30Hz and D1. = 2.6Hz. Assuming the particles to be prolate ellipsoids, 

Eq. (5.46a), (5.46b) and (5.47a) indicate a major semi-axis of 740 nm and a minor semi­

axis of 104 nm. These values definitely do not agree with either of the apparent particle 

sizes in the SEM)picture, Fig. (5.8). Furthermore, the two diffusion coefficients do not 

agree with the model of a prolate ellipsoid;Eq. (5.47b). 

Figure (5.11) shows a comparison of some of the experimentally obtained 

exchange spectra with simulations using the two measured correlation times in 

Eq. (5.51). The simulations are line broadened in the time domain u~ing a 2kHz 

Gaussian apodization function, and the experimental data has been line broadened by 

1 kHz to reduce the effect of noise in the plot. All of the datasets have been normalized 

with respect to the volume under the spectrum, so a comparison of the contour levels 

between experiment and simulation is justified. Qualitatively, the simulations agree very 

well with the experimental data. 
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Simulation 

-5 0 
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(d) 

5 

(e) 

{f) 

tm=lOOms 

Figure 5.11 Experimentally obtained two-dimensional exchange spectra and their corresponding 

simulations. The simulations assume two correlation times, 6.4 ms and 41.8 ms, with equal weighting. All 

spectra are normalized with respect to the integral over the entire spectrum, and are plotted from -8 kHz to 

6kHz along both frequency axes. The 10 ms mixing time experimental spectrum is slightly shifted to 

positive frequency with respect to the other spectra due to a difference iri the shim currents used during that 

experiment, but for the sake of uniformity (d) is plotted in the same frequency range as the other spectra. 

Contour levels represent steps of 10% with respect to the maximum amplitude in (f). 
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5.5 Conclusions 

The results presented here show that two-dimensional exchange NMR provides a 

means of investigating the reorientational dynamics of particles for correlation times 

ranging from milliseconds to seconds. In fact, while DLS measurements indicate a single 

particle size in the sample prepared for these experiments, the NMR exchange 

experiments correctly indicate the presence of two distinct particle sizes determined by 

SEM. 

For the colloidal suspension used in this study, it was necessary to signal average 

for approximately 12 h for each two-dimensional exchange spectrum in order to obtain 

spectra with a sufficiently high signal to noise ratio (SIN) to clearly show all spectral 

features. However, a considerably lower SIN is tolerable when the only purpose of the 

experiment is to obtain values of the time-correlation function. The length of the 

experiment may then be reduced by as much as a factor of ten, allowing the 

determination of a single point of the time-correlation function in approximately one 

hour. For a more concentrated sample, the length of the experiment may again be 

reduced. An increase ·in the particle concentration by a factor of four allows the 

acquisition of a two-dimensional exchange spectrum with SIN comparable to the spectra 

presented in this work in 45 min, and a single point in the time-correlation function can 

be acquired in as little as 5 min. 

The improved performance of two-dimensional exchange NMR for concentrated 

samples makes it ideally suited for studying reorientational processes in sediments, 

slurries , pastes, or any other system with high particle concentrations. The technique 

also promises to be useful in studying particle dynamics in turbulent, non-Newtonian, 

and solid particle flow. Given sufficient signal, NMR exchange experiments may be 

combined with imaging techniques to correlate reorientational dynamics with spatial 

maps or translational motion. Stimulated echo exchange experiments 137 which do not 
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require the acquisition of the entire two-dimensional time domain data set may be 

especially useful in this case. 

The orientational probe used in this work, the CSA of the 13C nucleus, is suitable 

for measuring reorientational processes with correlation times ranging from milliseconds 

to one or two seconds. Using deuterium as a probe allows the investigation of time 

scales approximately one order of magnitude shorter118•121 . For shorter times, two­

dimensional exchange pulsed EPR may prove useful. 
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Appendix A Coaxial Resonator Schematics 

The following sections contain schematics for both of the coaxial resonator imaging 

probe heads described in Chapter 3. These are only some of the schematics originally 

given to the machine shop, and do not contain drawings for all aspects of the probe, but 

they do provide guidelines for the production of a coaxial resonator probe head. The two 

resonators and phantoms are constructed in such a way that they are both easily 

interchangeable with the same probe body (not shown). The resonator effectively takes the 

place of the normal coil and sample in a NMR probe suitable for use in a super-wide bore 

superconducting magnet. Variable capacitors indicated in Fig. (3.4) should be located 

below the platform which supports the coaxial resonator. The gradient coil holders were 

never utilized for the production of static field gradients, but they did serve as a means of 

supporting the resonator. 

In most of the drawings the object possesses circular symmetry, so the views 

presented are cross sectional and from the top or the bottom. Assembly drawings are 

generally just cross-sectional views of all or part of the resonator and phantom. I have 

decided not to number these figures as they are never specifically referred to in the text: 

The program which was used to produce the drawings, Claris CAD v. 2.03, does 

not transfer drawings well to other programs. In this case the drawings were transferred 

from Claris CAD to Microsoft Word. For this reason. in some of the drawings, some 

circles which should appear to be concentric are not, and some lines which should be 

joined are not. As a good rule of thumb in interpreting the drawings, everything is centered 

about the center of the object unless explicitly stated to the contrary. 
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A.l "Concentric Cylinder" Resonator and Phantom 

The following schematics represent the resonator and phantom used in Section 3.6. 

The clamps and outer conductor shown are also used in the construction of the micro-

phantom of Section 3.7 . 

Clamp 
material : aluminum 
#required : 2 
scale 1:2 
screw : brass or aluminum 

·'• 

029/32" 

01 1/16" 

/ 
Hinged Joint -­
specifications to be 
determined during 
machining 

1/4" 

]]! 
II~ 
I I 1/4" 
I I 

\Holes thru for 2-56. 
One side clear, other I side tapped. 

j_ r' r--------.1---=-o---, 

1/8' L .984" J 
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Outer Conductor 
Material : copper 
# required : 1 
scale 1:2 

1.500" 

03/4" 

07/8" 

I 
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I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Sample Cup 
Material : plexiglass 
# required : 1 
scale 1:2 15/16" 

--y---- --

1.250" 

' 1/16" 

I 

0.697" 
0.75o·· 

0.875" 
-

l~ .0265' 

~.rr-- . 197" or 5mm 

.039" or 1mm 

.039" 

(press fit with 
cylinders A,B) 

0.382" 

Inner and outer cylinder may need to 
be made separately and glued 
onto the base of the sample cup. 
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Cylinder Holder 
Material : plexiglass 
# required : 1 
scale 1:2 

.039" or 1 mm (press fit cylinders A,B) 

1/16" 

_L r++----, 

1mm or .. 039~ ~ 

6 holes= 1/32" diameter. 
For syringe (fill port) 

~ 
1/16" 
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0.382" 

0.303" 

0.250" 



Cylinder A 
Material : plexiglass 
# required : 1 
scale 1:2 

111 

, 

I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I 

: 
I 

I I 
I I 
I I 

0.618" 

0.539" 
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Cylinder B 
Material : plexiglass 
# required : 1 
scale 1:2 

1" 

L 
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I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

0.46011 

0.382 11 



Inner Conductor 
material: copper 
no required: 1 
scale: 1:2 

1 hole tapped for 
6-32 
centered 1/4" deep 

1 hole tapped for 
6-32 
centered 1 /4" deep 
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.250" 

I 
I I 
LJ 

1 3/4" 

.303" 



Capacitor plates 
material: copper 
no required: 2 
scale: 1:2 

1 hole centered 
thru clear for 6/32 

counter sink top 
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2 holes thru to hold 1/16" pegs 
to fit into Gradient Holder 

.750" 

1/16" 



Gradient Coil Holder 1 
Material; Glass reinforced phenolic 
Number Required : 1 
scale 1:1 

2 holesthru 1/16" 
diameter 
.28" from center 

1 Hole 01.150" 
3/16" deep. 

2 holes thru for 8-32 
.967" from center 

_L~ _c::: :;:::::::::!:1 f f ============:::::::::=::::=: :::=;::::lj I : ~ 
1ffi" 1~" 
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Gradient Coil Holder 2 
Material; Glass reinforced phenolic 
Number Required : 1 
scale 1:1 

2 holes through 
1/16" diameter 
.28" from center 

1 Hole 01.150" 
3/16" deep. 

02.184" 

1 Hole .4" dia 
thru. 

1 hole thru 
.4" dia 
.6" from 
vertical 

_!._1 ......r:::: ~I l l ==+===========+===;::::::::;::;:::Jf I : ~ 
1ffi" 1M" 
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Gradient Top Bracket 
Material : Glass reinforced phenolic 
Number required : 2 
scale 1:1 

I I 

I I 

I I 

I I 
I I 
I I 

3 holes thru. 
for 8-32 

I I 

I I 

I I 

I I 

I I 

I I 
I I 
I I 

169 

I 

:+ 
I 

.392" 

1.374" 

.625" 

.200" 



Gradient Bottom Bracket 
Material : Glass reinforced phenolic 
Number required: 2 
scale 1:1 

I I 

I I 

I I 
I I 
I I 

3 holes thru. 
forS-32 

I I 

~· 
I I .250" 

I I t 
I I 
I I 
I I 
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1.374" 

.200" 

I 
I 
I 

Hr 

.625" 



Gradient Holder and Bracket Assembled 
scale 1:2 

I I I I I r 
I I 
I I I II I 
I I 

I I I I I I 
I I 
I I 
I I 
I I 

!-=+-+-
I I 
I I 
I I 
I I 

I I I I I I 
I I : : 

I I I II I 
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Probe Head Assembled 
(rotated 90°) 
Scale 1:2 

-

1--

- -
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A.2 "Micro-Phantom" Resonator and Phantom 

The following schematics represent the resonator and phantom used in Section 3.7. 

Parts of the assembly which are shared with the concentric cylinder phantom and resonator 

are not shown (i.e. outer conductor, capacitor clamp, z-gradients, etc.). The phantom with 

25 ~m steps is not shown. 

Capacitor Plates 
Material: Copper 
# required : 2 
scale 1:2 

.0625" 

L 
--...--- 'I -~s;;:---z-.:r---.. 

~ 

Counter sunk hole for screw into 
inner conductor 
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2 thru holes, 0.28" from 
center, to accept 1/16" 
brass pegs in gradient holder 

0.750" 



Cylinder Cap 
Material: Plexiglass 
#required : 1 
scale 1:2 

Two holes approx .024" diameter to 
fit .020" diameter 
syringe needle (needle provided) 

circular ridge used for locating · 
cap between inner and outer 

.cylinder 
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0.7500" 

0.2400" 

0.1780" 

0.1250" 



Inner Conductor 
Material: Copper 
#required : 1 
scale 1:2 

0.1250" 

--r--------r""""""'""""" 

1.6250". 

, 

I I 
I .1 
I I 
J_l 

1 hole tapped for ??? 
1/4" deep 
(use an appropriate 
screw size approx. 
1/16" diameter) 

I I t 
-L-------~ll I 

I I .1250" 

-L-L t 
~0.1562" 
~ 
1 hole tapped for ??? 
1/4" deep 
(use an appropriate 
screw size approx. 
1/16" diameter) 
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Outer Cylinder 
Material: Plexiglass 
# required : 1 
scale 1:2 

1.2500" 

176 

An easy press fit with 
copper cylinder provided 

0.7500" 

0.2200" 

0.2400" 

0.2000" 



.i 

Inner Cylinder (0.004 .. Steps) 
Material: Plexiglass 
# required : 1 
scale 1:2 

The step sizes are critical. The steps should be as 
square as possible under the circumstances. 

OD of cylinder from top to 0.5625" is 0.178" 
OD from 0.3750" to 0.750" is .186" 
OD from 0.5625" to 0.9375" is .194" · 

~~-0265' 

.5625" 

.93~~r .. ~ 
.1250" 

3/8" T; 
.0625" 

0.2200" 

0.2000" 

0.1780" to .194" 

0.1563" 

0.1250" 

An easy press fit over inner conductor 
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Assembly Drawing 

I I 
I I 
I I ,_, 

I 

,-, 
I I 

I I I I I I 
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Appendix B Sample Holder for Fluid Flow in Porous 
Media Experiments 

The following section contains schematics for the fluid flow apparatus referred to in 

Chapter 4. I have decided not to number these figures as they are never specifically 

referred to in the text. 

The program which was used to produce the drawings, Claris CAD v. 2.03, does 

not transfer drawings well to other programs. In this case the drawings were transferre~ 

from Claris CAD to Microsoft Word. For this reason, in some of the drawings, some 

circles which should appear to be concentric are not, and some lines which should be 

joined are not. As a good rule of thumb in interpreting the drawings, everything is centered 

about the center of the object unless explicitly stated to the contrary. 
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Sample Tube 
Material: polycarbonate (Lexan) 
Side View and end view 
quantity: 1 
scale: 1:2 

2 . 875" 

' 

I I 

I I 

180 

Thread inside to fit with 
plunger thread. One end 
should be normal thread 
and the other should be 
reverse thread. Only 
thread 0.25" . 

03/8" 

01/4" 



" . 

.. 

Plunger 
material: polycarbonate (Lexan) 
side views and end view 
quantity: 4 
scale: 1:2 

Thread 0.375" starting 
from 3/8" diameter . 
0.0. here should be a 
little larger than 

.248"H 
0.248" in order to get 
a tight fit with the 
sample tube. Thread 
two with normal thread 
and the others with 
reverse thread. 

1/16" 

0.185" 
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03/8" 

0.248" 

01/16" 

. 01/8" 

.093" 
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Washer 
material: copper or brass 
side view and end view 
quantity: 4 
scale: 1:2 

o----- 01/8" 

~01/4" 

This will be soldered on to the inlet tube such that the edge 
of the washer is approximately 0.6" from the threaded end of the 
tube. (see assembly) 

If no standard washer exists which will do the job then you may 
need to make a washer. 
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Inlet tube 
material: copper or brass 
side views and end view 
quantity: 4 
scale: 1:2 

Solder on a tygon hose adapter 
for 3/8" 10 tygon tubing. 

Mill a hole 0.0625" across 
with height 0.125" through 
one side. Center hole 0.43" 
from end of tube. 

Thread last 0.25" on the 
outside with 6-32. To get 
snug fit with appropriate 
nut 

Solder end for a water 
tight seal. 

01/16" 4 
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4" 

01/8" 



/ 

Assembly Drawing 
side view 
scale: 1:2 

A brass nut will screw 
on to the 6-32 thread 
at the end of each 
inlet tube. Each nut will 
compress an o-ring 
against the plastic 
plunger to insure a 
water proofseal. 

r-- .600" -.j 

---------------

An o-ring will go here 
around the tube. Another 
will go on the other side. 
The seal will be produced 
by tightening down a cap 
nut on the end of the tube. 
Hopefully the hole in the 
tube is set so that it is 
aligned with the hole in the 
plunger. 

Insert glass frits into these 
depressions. Should be a tight 
fit to prevent loss of 1 OO!J.m 
particles. 

---------------
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Appendix C Source Code for Rotational Diffusion 
Simulations 

The following sections contain the source code and parameter file used in the 

simulation of two~dimensional exchange spectra for particles undergoing isotropic 

rotational diffusion. All source code is written in C and should be portable between 

different UNIX systems. Some modifications will be necessary to have the simulation run 

on a non-UNIX system or computer. Not included are the complex number and memory 

allocation libraries which may be found in Numerical Recipes in C. 138 In addition, the 

header files "complex.h", "memalloc.h" and "csaexchsubs.h" are not included, but these 

files may be written using the information> contained here. 

C.l Main Program and Internal Subroutines 

The following is a complete listing of the main source file "csaexch.c" used for the 

simulation of the two-dimensional exchange spectra in Chapter 5. The program uses the 

parameter file "csaexch.par" for all of the necessary input parameters. See Section B.3. 

Output consists of both the Gaussian line broadened pure-absorption spectrum and non-line 

broadened spectrum. One may choose to output the data as either a binary floating point 

Esingle precision) file or as tab delimited text. The commenting in this file Is rather 

complete and should provide sufficient guidance for modification of the code. 

#include "./complex.h" 
#include "./memalloc.h" 
#include "./csaexchsubs.h" 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#define Pi (3.141592654) 

!********************************************************************** 
Simulates CSA 2d exchange spectrum for a site undergoing rotational 

diffusion/ Spectrum simulated in the frequency domain. Does this for 
multiple correlation times. Only works for one set of CSA par,ameters. 
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This version is the self-contained version and requires the subroutine 
files complex.c, memalloc.c and csaexchsubs.c. complex.c contains the 
Numerical Recipes complex number subroutines. memalloc.c contains the 
Numerical Recipes memory allocation subroutines. 
**********************************************************************! 
main() 
{ 

FILE *par; 
char str[100] [100] ,spec_file[100] ,speclb_file[100] ,CT_file[100]; 

void Cll (); 
double gCSA(), hCSA(); 
double *ST,*CT,*CTsq; 
double **Cll_dist,*Cll_dist_holder,Cll_sum; 
dcomplex **spectrum; 
double **spectrumReal; 
double sigma,delta,eta; 
double sbl,sbl_holder,omegal,omega2,delta_omega; 
int istr,ii,i,j,k,l; 
!*** b2 is actually a difference of b for pasl and pas2 ***/ 
double bl,blmin,blmax,blinc,b2,b2min,b2max,b2inc; 
double al,almin,almax,alinc,a2,a2min,a2max,a2inc; 
double population[SO],tm[SO],Dr[SO],swl,sw2,lbl,lb2,normalization; 
int alnpts,a2npts,blnpts,b2npts; 
int wlnpts,w2npts,Lmax[50],output_type,exchange,output; 
int nCorrTimes; 

time_t Tbefore,Tafter; 

istr=O; 
!*** input parameters ***/ 
par=fopen("csaexch.par","r"); 
fscanf(par, "%s %lf %lf %lf",str[++istr],&sigma,&delta,&eta); 
fscanf(par,"%s %lf %lf %d",str[++istr],&almin,&almax,&alnpts); 
fscanf(par,"%s %lf %lf %d",str[++istr],&a2min,&a2max,&a2npts); 
fscanf(par, "%s %lf %lf %d",str[++istr],&blmin,&blmax,&blnpts); 
fscanf(par, "%s %lf %lf %d",str[++istr],&b2min,&b2max,&b2npts); 
fs6anf(par,"%s %lf %d %lf %lf %d 

%lf",str[++istr],&swl,&wlnpts,&lbl,&sw2,&w2npts,&lb2); 
fscanf(par, "%s %s",st~[++istr],spec_file); 

·fscanf(par, "%s %s",str[++istr],speclb_file); 
fscanf(par, "%s %d",str[++istr],&output_type); 
fscanf(par, "%s %lf",str[++istr],&normalization); 
fscanf(par, "%s %d",str[++istr],&output); 
fscanf(par, "%s %d",str[++istr],&nCorrTimes); 
for(i=l;i<=nCorrTimes;i++) 

fscanf(par, "%s %lf %lf %lf 
%d",str[++istr],&population[i],&tm[i],&Dr[i],&Lmax[i]); 

fclose(par); 
!*** check parameter input ***/ 

ii=O; 
if (output==l) 

{ 

printf("%s %lf %lf %lf\n",str[++ii],sigma,delta,eta); 
printf("%s %lf %lf %d\n",str[++ii],almin,almax,alnpts); 
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printf("%s %lf %lf %d\n",str[++ii],a2min,a2max,a2npts); 
printf("%s %lf %lf %d\n",str[++ii] ,b1min,b1max,b1npts); 
printf("%s %lf %lf %d\n",str[++iiLb2min,b2max,b2npts); 
printf("%s %lf %d %lf %lf %d 

%lf\n",str[++ii],sw1,w1npts,lb1,sw2,w2npts,lb2); 
printf("%s %s\n",str[++ii],spec_file); 
printf("%s %s\n",str[++ii],speclb_file); 
printf ( "%s %d\n", str [ ++ii ], output_type) ; 
printf("%s %lf\n",str[++ii],normalization); 
printf("%s %d\n",str[++ii],output); 
printf("%s %d\n",str[++ii],nCorrTimes); 
for(i=1;i<=nCorrTimes;i++) 
printf("%s %lf %lf %lf 

%d\n", str [++ii ], population [ i], tm[ i], Dr.[ i], Lmax[ i]); 
} 

/*** get marginal distributions C11 ***/ 
C11_dist=dmatrix(1,nCorrTimes,O,b2npts-1); 
C11_dist_holder=dvector(O,b2npts-1); 
for(i=1;i<=nCorrTimes;i++) 

{ 

C11(C11_dist_holder,b2min,b2max,b2npts,tm[i],Dr[i],Lmax[i],output); 
C11_sum = 0.00; 

} 

for(j=O;j<=b2npts-l;j++) 
{ 

} 

C11_dist[i] [j] = population[i]*C11_dist_holder[j]; 
C11_sum +=C11_dist[i] [j]*b2max/(double)b2npts; 

if (output==1) 
printf ("Area under Cll_dist [%d] = %lf\n", i, Cll_sum); 

!** these output statements are for debugging use **/ 
wr_explld_ascii_general(C11_dist[1],0,b2npts-

1,"/usr/people/geoff/pro/sims/c1l_l"); 
if (nCorrTimes>=2) 

wr_expl1d_ascii_general(C1l_dist[2],0,b2npts-
1, "/usr/people/geoff/pro/sims/c11_2"); 

!*** 
Modify sigma, delta and eta values so that all frequencies will be 

mapped to the range 
1 to w1npts and w2npts. This way one can calculate a frequency, 
truncate it, and then 
use it as the array index for adding its sb1*C11 values to the freq 
domain histogram 
***I 

delta_omega = 2.00*sw1/(double)wlnpts; 
if (output==1) printf("new sigma, delta and omega values -->\n"); 
sigma = (double) (w1npts/2) - sigma/delta_omega + 1.00; 
delta = -delta/delta_omega; 
eta = -eta; 
if (output==1) printf ( "sigma=%lf delta=%lf 

eta=%lf\n",sigma,delta,eta); 

/*** initialize matrices for 'spectrum ***I 
spectrum=dcmatrix(1,w1npts,1,w2npts); 
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spectrumReal=drnatrix(l,wlnpts,l,w2npts); 
for (i=l;i<=wlnpts;i++) 

for(j=l;j<=w2npts;j++) 
{ 
spectrum[i] [j]=DComplex(O.OO,O.OO); 
spectrumReal[i] [j] = 0.00; 
} 

/*** initialize angle values and increments ***/ 
!*** this is for debugging use and may be removed ***/ 

bl=blmin; 
b2=b2min; 
al=almin; 
a2=a2min; 
blinc=(blmax-blmin)/(double)blnpts; 
b2inc=(b2max-b2min)/(double)b2npts; 
alinc=(almax-almin)/(double)alnpts; 
a2inc=(a2max-a2min)/(double)a2npts; 
if (output==l) 

printf("alinc=%f\tblinc=%f\ta2inc=%f\tb2inc~%f\n",alinc,blinc,a2inc 

, b2inc); 

!*** initialize cosine table ***/ 
if (output==l) printf("Making Cosine table\n"); 
CT=dvector(-2*(a2npts+alnpts),2*(a2npts+alnpts)); 
CTsq=dvector(-2*(a2npts+alnpts),2*(a2npts+alnpts)); 
for(i=-2*(a2npts+alnpts);i<=2*(a2npts+alnpts);i++) 

{ 

} 

CT[i]=cos(a2inc*(double) (i)); 
CTsq[i]=CT[i]*CT[i]; 

) 

/*** initialize sine table to compute sin(bl) ***/ 
if (output==l) printf("Making Sine table\n"); 
ST=dvector(O,blnpts-1); 
for(i=O;i<=blnpts-l;i++) 

{ 

ST[i]=sin(blinc*(double) (i)); 
} 

if (output==l) printf("Completed Sine table\n"); 

!*** 
Compute 2d exchange spectrum in the frequency domain 
***I 

!*** 
note on indices 
i is for b2 
j is for al 
k is for bl 
1 is for a2 

should integrate over the following ranges: 
al 0 to Pi/2 
bl 0 to Pi/2 
a2 0 to 2Pi 
b2 0 TO Pi/2 

***I 
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/** next two statements used for an output of the real 
time elapsed for each i iteration **/ 
Tbefore=O; 
Tafter=O; 
for(i=O;i<=b2npts-1;i++) 

{ 

} 

sb1_holder=O.OO; 
if (output==1) printf("%d) b2 = %f ",i,b2min + ((double)i)*b2inc); 
Tbefore=time(O); 
if (nCorrTimes>1) 
for(ii=1;ii<=nCorrTimes;ii++) 

sb1_holder+=C11_dist[ii] [i]; 
else 
sb1_holder=C11_dist[1] [i]; 
for(j=O;j<=a1npts-1;j++) 
{ 

for(k=O;k<=b1npts-1;k++) 
{ 

} 

omega1=gCSA(CT,CTsq,j,k,sigma,delta,eta)+O.S; 
sb1=ST[k]*sb1_holder; 
for(l=O;l<=a2npts-1;1++) 
{ 

} 

omega2=(hCSA(CT,CTsq,l,i,j,k,sigma,delta,eta))+O.S; 
spectrum[(int)omega1] [(int)omega2] .r+=sb1; 

} 

Tafter=time(O); 
if (output==1) printf(" in %d seconds\n",Tafter-Tbefore); 

!*** symmetrize about the w1=w2 diagonal ***/ 
DCsymmetrize_diag_2d(spectrum,w1npts,w2npts,1); 

!*** output non-line broadened data to spec_file ***/ 
for(i=1;i<=w1npts;i++) 

for(j=1;j<=w2npts;j++) 
spectrumReal[i] [j] = spectrum[i] [j] .r; 

Dnormalize_2d(spectrumReal,w1npts,w2npts,normalization); 

if ((output_type==O) I I (output_type==2)) 
wr_fld2dD(spectrumReal,w1npts,w2npts,spec_file); 

if ((output_type==1) I I (output_type==2)) 
wr_expl2d_ascii(spectrumReal,w1npts,w2npts,spec_file); 

!*** about units - assumes lb units are the inverse of the dwell units 
***I 

DGaussian_Broadening_Freq_2d(spectrumReal,w1npts,w2npts;1.00/(2.00*sw1), 
1.00/(2.00*sw2),lb1,lb2); 

!*** output data to speclb file ***/ 
Dnormalize_2d(spectrumReal,w1npts,w2npts,normalization); 
if ( (output_type==O) II (output_type==2)) -

wr_fld2dD(spectrumReal,w1npts,w2npts,speclb_file); 
if ((output_type==1) I I (output_type==2)) 

wr_expl2d_ascii(spectrurnReal,w1npts,w2npts,speclb_file); 

189 



!*** free matrices and vectors ***/ 
free_dcmatrix(spectrum,1,w1npts,1); 
free_dmatrix(spectrurnReal,1,w1npts,1); 
free_dmatrix(C11_dist,1,nCorrTimes,O); 
free_dvector(C11_dist_holder,O); 
free_dvector(CT,1); 
free_dvector(CTsq,1); 

} 

!*** 
Compute the angle dependent nmr frequency for a s.ingly rotated. 

CSA. ' 
***I 
double gCSA(CT,CTsq,i,j,sigma,delta,eta) 

double *CT,*CTsq; 

{ 

int i,j; J 

double sigma,delta,eta; 

double gtemp; 

gtemp =sigma+ delta*((3.0*CTsq[j]-1.00) - eta*(l.OO-CTsq[j])*\ 
CT[2*i])/2.00; 

return gtemp; 
} 

!*** 
Compute the angle dependent nmr frequency for a doubly rotated 

CSA. 

Convention-- Uses eq (56) in Wefing, JCP, vol 89, no 3, p 1219-1233. 

a1 is alphaprime difference 
b1 is betaprime difference 
a2 is alpha1 - LS 1 
b2 is be tal - LS 1 
***! 
!** 

i is al --> a2 
j is b1 --> b2 
k is a2 --> a1 
1 is b2 --> b1 

***! 
double hCSA(CT,CTsq,i,j,k,l,sigma,delta,eta) 

double *CT,*CTsq; 
double sigma,delta,eta; 
int i,j,k,l; 

{ 

double htemp; 

htemp=sigma + delta*(0.75*(1.00-CTsq[j])*(1.00-CTsq[l])*CT[2*i] -\ 
3.00*sqrt((1.00-CTsq[j])*(1.00-

CTsq[l]))*CT[j]*CT[l]*CT[i]+\ 
0.25*(3.00*CTsq[j]-1.00)*(3.00*CTsq[l]-1.00)\ 
-0.5*eta*\ 

190 



" 

return htemp; 
} 

(\ 
(1.00-CTsq[j])*\ 
(\ 
0.25*(1.00+CT[l])*(1.00+CT[l])*CT[2*(i+k)] +\ 
0.25*(1.00-CT[l])*(1.00-CT[l])*CT[2*(i-k)]\ 
)+\ 

2.00*sqrt((1.00-CTsq[j])*(1.00-CTsq[l]))*CT[j]*\ 
( \ 
0.5*(1.00+CT[l])*CT[i+2*k]-\ 
0.5*(1.00-CT[l])*CT[i-2*k]\ 
)+\ 

0.5*(3.00*CTsq[j]-1.00)*(1.00-CTsq[l])*CT[2*k]\ 
) \ 

) ; 

!*** 
Compute the marginal distribution C(g)lll (same as garnma(g) lll) 

***I 
void C11(C1l_dist,b2min,b2max,b2npts,tm,Dr,Lmax,output) 

double *Cll_dist; 

{ 

double b2min,b2max,tm,Dr; 
int b2npts,Lmax,output; 

double Legendre(),psi,ltemp,C11Temp,prevCll_dist; 
double b2,b2inc; 
int i,l,m; 

b2inc=(b2max-b2min)/(double)b2npts; 
b2=b2min; 
for(i=O;i<=b2npts-1;i++) 

{ 
C11_dist[i]=O.OO; 
for(l=O;l<=Lmax;l++) 
{ 

prevCll_dist = C11_dist[i]; 
ltemp=(double)l; 
psi=(2.00*ltemp+l.OO)*exp(-ltemp*(ltemp+l.OO)*Dr*tm); 
C11Temp=0.5*sin(b2)*psi*(Legendre(cos(b2),l)+Legendre(cos(Pi-

b2) '1)); 
Cll_dist[i]+=C11Temp; 

} 

b2+=b2inc; 
} 

} 

!*** 
Compute Legendre polynomials of order 1. May crap out at large 

values of 1 (15-20). 
***I 
double Legendre(x,l) 

double x; 
int l; 

{ 

double Legendre_temp[100]; 
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} 

int m; 

Legendre_temp[O]=l.OO; 
if (1==0) return Legendre_temp[O]; 
Legendre_temp[l}=x; 
if (1==1) return Legendre_temp[l]; 
for (m=2;m<=1;m++) 

Legendre_temp[m]=((2.00*(doub1e)m-l.OO)*x*Legendre_temp[m-1]-\ 
((doub1e)m-1.00)*Legendre_temp[m-2])/(double)m; 

return Legendre_temp[1]; 
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C.2 External Subroutines 

The following subroutines are used by csaexch but are not specific to that program. 

They have been collected from my subroutine libraries in order to build a self-contained 

version of the source code for the simulation. The basic function of each subroutine is 

contained in the comments. 

#include "./complex.h" 
#include "./memalloc.h" 
#include "./csaexchsubs.h" 
#include <stdio.h> 
#include <math.h> 
#define Pi (3.141592654) 
#define SWAP(a,b) tempr=(a); (a)=(b); (b)=tempr 

!** some subroutines used by csaexch.c **/ 

!*********************** I/0 SUBROUTINES ***********************/ 

!*** Write a 1d ascii data file for explorer ***/ 
/*** Array from nmin to nmax ***/ 
void wr_explld_ascii_general(a,nmin,nmax,filenm) 

double *a; 
int nmin,nmax; 
char filenm[]; 

{ 

FILE *outfile_h,*outfile_d; 
char header_file[64],data_file[64]; 
int i,j; 

strcpy(header_file,filenm); 
strcpy(data_file,filenm); 
strcat(header_file,".dim"); 
strcat(data_file, ".asc"); 

!* Write the header file for the uniform 1D vector *I 
outfile_h = fopen(header_file,"w"); 
fprintf(outfile_h,"%d\n",abs(nmax-nmin+l)); 
fclose(outfile_h); 

outfile_d = fopen (data_file, "w"); 
!* Write the data file in ascii format */ 

for(i=nmin;i<=nmax;i++) 
fprintf(outfile_d, "%f\n" ,a[i]); 

fclose(outfile_d); 
} 
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/*** 
write an avs binary data file (single precision floating point) and 

field using a double precision input 
***I 
void wr_fld2dD(ain 1 nrow 1 ncol 1 filenm) 

double **ain; 
int nrow 1 ncol; 
char filenm[]; 

{ 

float **a; 
FILE *outfile_h 1 *outfile_d; 
char header_file[64] 1 data_file[64]; 
int ndim=2 1 nspace=2 1 veclen=l 1 i 1 j; 

a= matrix(1 1 nrow 1 1 1 ncol); 
DintoF_2d(a 1 ain 1 nrow 1 ncol); 
strcpy(header_file 1 filenm); 
strcpy(data_file~filenm); 

strcat(header_filel 11 .fld 11
); 

strcat (data_file 1 
11 .d 11

); 

/* Write the header file for the uniform 2D matrix */ 
outfile_h = fopen(header_file 1

11 W11
); 

fprintf (outfile_h 1 
11 # AVS field file\n 11

); 

fprintf (outfile_h 1 
11 ndim = %d\n 11

1 ndim); 
fprintf (outfile_h 1 

11 diml = %d\n II 1 ncol); 
fprintf (outfile_h 1 

11 dim2 = %d\n 11
1 nrow); 

fprintf(outfile_h 1
11 nspace = %d\n 11

1 nspace); 
fprintf(outfile_h 1

11 Veclen = %d\n 11
1 Veclen); 

fprintf(outfile_hl 11 data = float\n 11
); 

fprintf(outfile_h 1 "field = uniform\n"); 
fprintf(outfile_h 1 "variable 1 file=%s filetype=binary\n"ldata_file); 
fclose(outfile_h); 

outfile_d = fopen(data_file 1 "W"); 
!* Write the data file in floating point binary format */ 

for(i=l;i<=nrow;i++) 
for(j=l;j<=ncol;j++) 
{ 

fwrite((char *) (&a[i] [j]) 1 sizeof(float) 1 l 1 outfile_d); 

} 

} 

fclose(outfile_d); 
free_matrix(a 1 l 1 nrow 1 l); 

!*** Write a 2d ascii data file for explorer - tab delimited text ***/ 
voi9_wr_expl2d_ascii(a 1 nrow 1 ncol 1 filenm) 

double **a; 
int nrow 1 ncol; 
char filenm[]; 

{ 

FILE ·*outfile_h~*outfile_d; 
char header_file[64) 1 data_file[64]; 
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int i,j; 

strcpy(header_file,filenm); 
strcpy(data_file,filenm); 
strcat (header_file, ".dim"); 
strcat(data_file,".asc"); 

/* Write the header file for the uniform 2D matrix */ 
outfile_h = fopen(header_file,"w"); 
fprintf(outfile_h,"%d\t%d\n",ncol,nrow); 
fclose(outfile_h); 

outfile_d = fopen (data_file, "w"); 
!* Write the data file in ascii format */ 

for(i=1;i<=nrow;i++) 

} 

{ 

} 

for(j=1;j<=ncol;j++) 
{ 

fprintf(outfile_d,"%f\t",a[i] [j]); 
} 
fprintf(outfile_d,"\n"); 

fclose(outfile_d); 

!******************** FFT and LINE BROADENING SUBROUTINES 
********************/ 

!*** 
DGaussian_Broadening_Freq_2D - takes a real spectrum, does an IFFT 

with swapping, performs a 2d gaussian apodization centered about (npx/2 
+ 1,npy/2 + 1), unswaps the data, and does a FFT back in to the 
frequency domain. 
***I 

void DGaussian_Broadening_Freq_2d(a,npx,npy,dwx,dwy,lbx,lby) 
double **a; 

{ 

int npx,npy; 
double dwx,dwy,lbx,lby; 

int i,j; 
dcomplex **atemp,holder; 
double xO, yO; 
atemp = dcmatrix(1,npx,1,npy); 
for(i=1;i<=npx;i++) 

for(j=1;j<=npy;j++) 
{ 
a temp [ i] [ j ] . r a [ i] [ j ] ; 
atemp[i] [j] .i = 0.00; 
} 

dcfft2d(-1,atemp,npx,npy); 

xO = ((double)npx/2.00)+1.00; 
yO= ((double)npy/2.00)+1.00; 
DCGaussian_Broadening_2d(atemp,npx,npy,dwx,dwy,lbx,lby,xO,y0); 
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} 

DCswap2d(atemp,npx,npy); 
dcfft2dns(l,atemp,npx,npy); 
DCintoD_2d(atemp,a,npx,npy, 'r'); 
free_dcmatrix(atemp,l,npx,l); 

!*** performs a gaussian multiplication on a 2d double precision matrix 
Origin at point (xO,yO) where (1,1) is the first row-column point 

***! 
void DCGaussian_Broadening_2d(a,npx,npy,dwx,dwy,lbx,lby,xO,y0) 

dcomplex **a; 

{ 

} 

int npx,npy; 
double dwy,dwx,lbx,lby,xO,yO; 

int i,j; 
double tx,ty,dtemp; 

for(i=l;i<=npx;i++) 
for(j=l;j<=npy;j++) 

{ 
tx = ((double) (i) - xO)*dwx; 
ty = ((double) (j) - yO)*dwy; 
dtemp = exp((-tx*tx*lbx*lbx- ty*ty*lby*lby)/2.00); 
a[i] [j] .r *= dtemp; 
a[i] [j] .i *= dtemp; 
} 

!*** noraml 2d fft of complex matrix ***/ 
void dcfft2d(ii,a,npx,npy) 
dcomplex **a; 
int ii,npx,npy; 
{ 

int i,j,k,ndim; 
double *atemp; 
unsigned long *nn; 

nn = ulvector(l,2); 
nn[l] = npx; 
nn[2] = npy; 
ndim=2; 
atemp = dvector(l,2*npx*npy); 
for(i=l;i<=npx;i++) 

for(j=l;j<=npy;j++) 
{ 
atemp[2*(i-l)*npy + 2*j-l]=a[i] [j] .r; 
atemp[2*(i-l)*npy + 2*j]=a[i] [j] .i; 
} 

!** n-dimensional numerical recipes fft **/ 

fourn(atemp,nn,ndim,ii); 

for(i=l;i<=npx;i++) 
for(j=l;j<=npy;j++) 

{ 
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.. 

a[i] [j] = DComplex(atemp[2*(i-1)*npy + 2*j-1],atemp[2*(i-1)*npy + 
2*j l) ; 

} 

} 
DCswap2d(a,npx,npy); 
free_dvector(atemp,1); 
free_ulvector(nn,1); 

!*** norarnl 2d fft of complex matrix -- no quadrant swap***/ 
void dcfft2dns(ii,a,npx,npy) 
dcomplex **a; 
int ii,npx,npy; 
{ 

int i,j,k,ndim; 
double *atemp; 
unsigned long *nn; 

nn = ulvector(1,2); 
nn[1] = npx; 
nn[2] = npy; 
n'dim=2; 
atemp = dvector(1,2*npx*npy); 
for(i=1;i<=npx;i++) 

for(j=1;j<=npy;j++) 
{ 
atemp[2*(i-1)*npy + 2*j-1]=a[i] [j] .r; 
atemp[2*(i-1)*npy + 2*j]=a[i] [j].i; 
} 

/** n-dimensional numerical recipes fft **/ 

fourn(atemp,nn,ndim,ii); 

for(i=1;i<=npx;i++) 
for(j=1;j<=npy;j++) 

{ 
a[i] [j] = DComplex(atemp[2*(i-1)*npy + 2*j-1],atemp[2*(i-1)*npy + 

2 *j l) ; 
} 

free_dvector(atemp,1); 
free_ulvector(nn,1); 

/*********************************************************************** 
** 

void fourn() - numerical recipes n-dimensional complex fft 

Replaces data by its ndim-dimensional discrete fourier transform, 
if isign is input as 1. Inverse FFT is isign is -1. 
************************************************************************ 
*I 
void fourn(datain,nn,ndim,isign) 
double *datain; 
unsigned long *nn; 
int ndim,isign; 
{ 

int idim; 
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unsigned long i1,i2,i3,i2rev,i3rev,ip1,ip2,ip3,ifp1,ifp2; 
unsigned long ibit,k1,k2,n,nprev,nrern,ntot; 
double ternpi,ternpr; 
double theta,wi,wpi,wpr,wr,wternp; 

for(ntot=1,idirn=1;idirn<=ndirn;idirn++) 
ntot *= nn[idirn]; 

nprev=1; 
for(idirn=ndirn;idirn>=1;idirn--) 

{ 
n = nn [ idirn] ; 
nrern = ntot/{n*nprev); 
ip1=nprev << 1; 
ip2=ip1*n; 
ip3=ip2*nrern; 
i2rev=1; 
for(i2=1;i2<=ip2;i2+=ip1) 
{ 

} 

if ( i2 < i2rev) 
{ 

} 

for(i1=i2;i1<=i2+ip1-2;i1+=2) 
{ 

} 

for(i3=i1;i3<=ip3;i3+=ip2) 
{ 

} 

i3rev=i2rev+i3-i2; 
SWAP(datain[i3],datain[i3rev]); 
SWAP(datain[i3+1],datain[i3rev+1]); 

ibit=ip2>>1; 
while(ibit>=ip1&&i2rev>ibit) 

{ 

} 

i2rev -= ibit; 
ibit >>=1; 

i2rev +=ibit; 

ifp1=ip1; 
while(ifp1<ip2) 
{ 

ifp2=ifp1<<1; 
theta=isign*6.28318530717959/(ifp2/ip1); 
wternp=sin(O.S*theta); 
wpr=-2.0*wternp*wternp; 
wpi=sin(theta); 
wr=1.0; 
wi=O.O; 
for(i3=1;i3<=ifp1;i3+=ip1) 

{ 

for(i1=i3;i1<=i3+ip1-2;i1+=2) 
{ 

for(i2=i1;i2<=ip3;i2+=ifp2) 
{ 

k1=i2; 
k2=k1+ifp1; 
ternpr=wr*datain[k2]-wi*datain[k2+1]; 
ternpi=wr*datain[k2+1]+wi*datain[k2]; 
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} 
} 

} 
} 

datain[k2]=datain[k1]-tempr; 
datain[k2+1]=datain[k1+1]-tempi; 
datain[k1] += tempr; 
datain[k1+1] += tempi; 

wr=(wtemp=wr)*wpr-wi*wpi+wr; 
wi=wi*wpr+wtemp*wpi+wi; 

} 

ifp1=ifp2; 
} 

nprev *= n; 

\ 

!** quadrant swapping routine for use with fft routines **/ 
void DCswap2d(a,npx,npy) 

} 

dcomplex **a; 
int npx,npy; 

int i,j,npx2,npy2; 
dcomplex holder; 

npx2=(int) (npx/2); 
npy2=(int) (npy/2); 
for(i=1;i<=npx2;i++) 

for(j=1;j<=npy2;j++) 
{ 
holder= a[i) [j]; 
a[i] [j] = a[i+npx2] [j+npy2]; 
a[i+npx2] [j+npy2] = holder; 
holder = a[i+npx2] [j]; 
a[i+npx2] [j] a[i] [j+npy2]; 
a[i] [j+npy2] = holder; 
} 

!******************** MATRIX MANIPULATION SUBROUTINES 
********************! 

!********************************************************************* 
DCsymmetrize_diag_2d(a,npx,npy,direction) -

Symmetrizes a double matrix about the diagaonal. If direction is 0 
then the anti-diagonal is used (1,n), (2,n-1) etc ... If direction is 1 
then the true diagonal is used (1,1,), (2,2) etc .. . 
*********************************************************************! 
void DCsymmetrize_diag_2d(a,npX,npy,direction) 

dcomplex **a; 

{ 
int npx,npy,direction; 

int i,j; 

if (direction==O) 
dcrot90_sq(a,npx,npy); 
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} 

for(i=l;i<=npx;i++) 
for(j=i;j<=npy;j++) 

{ 
if (i==j) 

a [ i ] [ j ] = DCaqd (a [ i l [ j l 1 a [ i l [ j l ) ; 
else 

{ 

} 
} 

a [ i ] [ j ] = DC add (a [ i ] [ j ] 1 a [ j ] [ i] ) ; 
a[j] [i] = a[i] [j]; 

if (direction==O) 
dcrot90_sq(a 1 npX 1 npy); 

!* 
Returns a 90 degree rotation of a .. For square matrices. 

*I 
void dcrot90_sq(a 1 npx 1 npy) 

dcomplex **a; 

{ 

} 

int npx 1 npy; 

int i 1 j; 
dcomplex **a_holder; 

a_holder = dcmatrix(l 1 npx 1 1 1 npy); 
for(i=l;i<=npx;i++) 

for(j=l;j<=npy;j++) 
a_holder[i] [j] = a[i] [j]; 

free_dcmatrix(a 1 l 1 npx 1 1); 
a= dcmatrix(l 1 npy 1 1 1 npx); 
for(i=l;i<=npx;i++) 

for(j=l;j<=npy;j++) 
a[npy-j+l] [i] = a_holder[i] [j]; 

free_dcmatrix(a_holderlllnpx~l); 

!*** normalize a 2d double precision matrix to a maximum value of norm. 
***! 
void Dnormalize_2d(a 1 npx 1 npy 1 norm) 

double **a; 

{ 

int npX 1 npy; 
double norm; 

int i 1 j; 
double max; 

max=O.OO; 
for(i=l;i<=npx;i++) 

for(j=l;j<=npy;j++) 
{ 
if (fabs(a[i] [j])>=max) max=fabs(a[i] [j]); 
} 

for(i=l;i<=npx;i++) 
for(j=l;j<=npy;j++) 

{ 
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} 

a ( i] ( j ] =a ( i] ( j ] *norm/max; 
} 

/** Change a double precision 2d matrix to a single precision floating 
point matrix. **/ 
void DintoF_2d(ar,ad,npx,npy) 

double **ad; 

{ 

} 

float **ar; 

int i,j; 

for(i=l;i<=npx;i++) 
for(j=l;j<=npy;j++) 

ar(i] (j]=(float)ad(i] (j]; 

!*** 
put real or imaginary part of a 2d dcomplex matrix into 
a double precision floating point matrix. 

***! 
void DCintoD_2d(adc,ad,npx,npy,real_imag) 

dcomplex **adc; 

{ 

} 

double **ad; 
int npx,npy; 
char real_imag; 

int k,l; 

if (real_imag=='i') 
{ 

} 

for(k=l;k<=npx;k++) 
for(l=l;l<=npy;l++) 

{ 

ad ( k] ( 1] =adc ( k] ( 1] . i ; 

else if (real_imag=='r') 
{ 

for(k=l;k<=npx;k++) 
for(l=l;l<=npy;l++) 

{ 

ad[k] (l]~adc[k] [1] .r; 

else if (real_imag=='m') 
{ 

for(k=l;k<=npx;k++) 
for(l=l;l<=npy;l++) 

{ 

ad[k] [l]=DCabs(adc[k] [1]); 

} 
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C.3 Sample Parameter File 

This parameter file is that used by "csaexch". "csaexch" reads each line as a string 

up until the first whitespace. Each number or string separated by whitespaces after the first 

whitespace is then read into the appropriate variable in the simulation. Each line gives the 

simulation the following information: 

I) CSA parameters a, 8 and 1J with a and 8 in units of Hertz. 

2-5) Limits of integration over the angle variables in Eq. (5.48). al and b 1 

correspond to a1 and {31, and a2 and b2 correspond to a' and {J' in Eq. (5.48). The last 

number in each line is the number of points sampled in the corresponding integration 

interval. For equal sampling by angle, alnpts, blnpts and b2npts should be the same with 

a2npts four times greater. 

6) Spectral width in Hertz (frequency range is 2*sw), number of points and amount 

of Gaussian line-broadening in Hertz for both frequency dimensions. All of these numbers 

should appear on the same line. 

7) Name of the spectrum file which contains the non-Gaussian line broadened 

spectrum. 

8) Name of the spectrum ftle which contains the Gaussian line broadened spectrum. 

9) For a binary single-precision floating point file output should be 0. For ASCII 

tab-delimited text, output should be I. To get both, set output equal to 2. The binary ftle 

will be output as the file name plus the extension ".d". The ASCII file will have the 

extension ".asc". 

IO) The maximum amplitude point in the spectrum will have the value of 

normalization. To do a volume normalization, another program must be run on the 

spectrum file. 

II) If output is 0, the program will output no information to the computer monitor 

or standard output. With output equal to I, the program will display its progress to the 
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standard output When running the simulation in the background, one should set output 

equal to 0. 

12) Number of correlation times to be represented by the spectrum. For the 

simulation of two particle sizes, nCorrTimes should be 2. 

13.i) Relative population, mixing time Ctm in seconds), rotational diffusion 

coefficient (Dr in Hertz), and summation limit of Eq. (5.49) for each site i. For smaller 

values of Drtm, Lmax should be made larger. The simulation program will output a 

warning if the sum given by Eq. (5.49) does not converge sufficiently. 

1)sigma,delta,eta= -468.8 -6796.9 0.448 
2)a1min,a1max,a1npts(O,Pi/2)= 0 1.5707963 32 
3)a2min,a2max,a2npts(0,2Pi)= 0 6.2831853 128 
4)b1min,b1max,b1npts(O,Pi/2)= 0 1.5707963 32 
5)b2min,b2max,b2npts(O,Pi/2)= 0 1.5707963 32 
6)sw1,w1npts,lb1,sw2,w2npts,lb2= 15000 128 2000 15000 

128 2000 
7)spec_file= ./spec1b 
8)speclb_file= ./speclb1b 
9)output:Oavs,1ascii,2both= 0 
10)normalization= 1 
11)output(1/0)= 1 
12)nCorrTimes= 2 
13.1)population,tm,Dr,Lmax= 0.5 0.011 40 100 
13.2)population,tm,Dr,Lmax= 0.5 0.011 2 100 
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