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A distinct class of pan-cancer susceptibility
genes revealed by an alternative
polyadenylation transcriptome-wide
association study

Hui Chen1,10, ZeyangWang 1,10, Lihai Gong 1, QixuanWang 1, Wenyan Chen1,
JiaWang2,XuelianMa1, RuofanDing1,XingLi1, XudongZou 1,MireyaPlass 3,4,5,
Cheng Lian6, Ting Ni 7, Gong-Hong Wei 6,8, Wei Li 9 , Lin Deng 2 &
Lei Li 1

Alternative polyadenylation plays an important role in cancer initiation and
progression; however, current transcriptome-wide association studies mostly
ignore alternative polyadenylation when identifying putative cancer suscept-
ibility genes. Here, we perform a pan-cancer 3′ untranslated region alternative
polyadenylation transcriptome-wide association analysis by integrating 55
well-powered (n > 50,000) genome-wide association studies datasets across
22 major cancer types with alternative polyadenylation quantification from
23,955 RNA sequencing samples across 7,574 individuals. We find that genetic
variants associated with alternative polyadenylation are co-localized with
28.57%of cancer loci and contribute a significant portion of cancer heritability.
We further identify 642 significant cancer susceptibility genes predicted to
modulate cancer risk via alternative polyadenylation, 62.46% of which have
been overlooked by traditional expression- and splicing- studies. As proof of
principle validation, we show that alternative alleles facilitate 3′ untranslated
region lengthening of CRLS1 gene leading to increased protein abundance and
promoted proliferation of breast cancer cells. Together, our study highlights
the significant role of alternative polyadenylation in discovering new cancer
susceptibility genes and provides a strong foundational framework for
enhancing our understanding of the etiology underlying human cancers.

Genome-wide association studies (GWAS) have identified hundreds of
single-nucleotide polymorphisms (SNPs) associated with increased
risk ofmajor human cancers1,2, including breast3, prostate4, colorectal5,
and ovarian cancer6. In prostate cancer, for example, a highly heritable
diseasewith 58% risk due to genetic factors, over 140 risk variants have
been identified, explaining approximately one-third of familial risk for
the disease7. Improving our understanding of inherited cancer-risk
associated SNPs could provide new opportunities to elucidate the

mechanisms of tumorigenesis. However, more than 90% of these
variants are mapped to noncoding regions in the human genome8,
posing a significant challenge for their functional interpretation in
regard to disease development, progression, and response to therapy.

Molecular quantitative trait locus (xQTL) analysis is a crucial step
towards better understanding the effects of noncoding genetic var-
iants on genes, pathways, and mechanisms of action, serving as an
essential intermediate link between genotype and disease
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phenotype9–11. Many molecular phenotypes derived from RNA
sequencing (RNA-seq), such as gene expression and alternative spli-
cing, have been used to discover disease-risk genes in population-scale
xQTL studies10,12,13. Those genetic variants showing strong associations
with the aforementioned molecular phenotypes are referred to as
expression QTL (eQTL) or splicing QTL (sQTL). Such xQTLs can be
highly informative; however, the effects of the numerous disease-
associated noncoding variants remain unexplained9,14.

Alternative polyadenylation (APA) has emerged as a new para-
digmof post-transcriptional regulation for humangenes15–17. That is, by
employing different poly(A) sites, genes can either shorten or extend
3′ untranslated regions (UTRs) containing cis-regulatory elements,
such as binding sites for microRNAs or RNA-binding proteins (RBPs)18.
APA can affect target gene translation, as well as localization and
protein–protein interactions of its gene product, independent of
mRNA expression level or splicing15,19. Consequently, the diverse
landscape of polyadenylation can significantly impact both normal
development and disease progression20,21. In particular, individual
genetic variants associated with APA have been linked to several can-
cers. For example, rs78378222 in the 3′UTRofTP53 alters the canonical
polyadenylation signal from AATAAA to AATACA; this impairs 3′-end
processing of TP53 mRNA, altering susceptibility to multiple cancers,
including cutaneous basal cell carcinoma, prostate cancer, glioma, and
colorectal adenoma22. In our previous study, we described the first
atlas of genetic variants associated with APA (3′aQTL)23, which high-
lighted that approximately 16.1% of GWAS loci colocalized with 3′
aQTL. Yet, this study did not include cancer GWAS loci, and therefore,
the prevalence and functions of SNPs associated with APA for major
human cancer types remain largely unknown.

In this study, we performed the first large-scale and systematic
analysis assessing APA-mediated genetic effects on 22 cancer types in
49 human tissues from Genotype-Tissue Expression (GTEx) project24

and 18 tumor tissues fromThe Cancer GenomeAtlas (TCGA)25 (Fig. 1a).
APA transcriptome-wide association studies (TWAS) and identified642
cancer susceptibility genes predicted to modulate cancer risk via APA,
62.46% of which are independent of gene expression and splicing.
Furthermore, through a combination of genetic association analyses
and experimental approaches, we validated APA-mediated risk genes
linked to breast cancer, demonstrating that the alternative alleles of
the 3′aQTL variant regulated 3′UTR usage of CRLS1 leading to elevated
protein abundance and thereby increasing the risk of breast cancer.
Lastly, we have constructed a publicly available database with a user-
friendly hub (http://bioinfo.szbl.ac.cn/TCGD/index.php) for use by the
research community.

Results
Atlas of well-powered cancer GWAS summary statistics across
22 cancer types
To comprehensively characterize the genetic effects of APA on human
cancers, we employed our Dapars v2.0 algorithm23,26 to identify
dynamic 3′UTR APA events from a large dataset of 23,955 genotype-
matched RNA-seq samples obtained from 49 human tissues in the
GTEx project and 18 tumor tissues in the TCGA dataset. We further
used Matrix eQTL27 to identify common genetic variants associated
with differential usage of 3′UTR in each tissue or cancer type (see
Materials andMethods) (Fig. 1a).We first compiled a large collectionof
438 GWAS summary statistics from manually curated published stu-
dies and public cohorts, including the National Human Genome
Research Institute–European Bioinformatics Institute (NHGRI–EBI)
GWAS Catalog (release 2021/01)28, the UK Biobank release 2 cohort
(UKB2; release 2018/03)29, the Japanese Encyclopedia of Genetic
associations byRiken (JENGER)30, and the FinnGen consortium (release
2021/05)31. After quality control and removing potential confounding
factors such as duplicate patients, summary statistics from 55 rea-
sonably powered GWASs (N > 50,000) across 22 cancer types were

retained for our analysis (Figs. 1b, S1–S3, and Supplementary Data 1).
The median sample size across these studies was 194,153 individuals.
We then extracted all lead SNPs, which represent the most significant
cancer risk variants within a 1Mb range. Our observation revealed that
these lead SNPs tend to exhibit large effect sizes (P = 1.07 × 10−39,
Wilcoxon rank-sum test, Fig. 1c), while their minor allele frequency
(MAF) is evenly distributed (Fig. S4a) in comparison to the entire
genome. We further performed functional annotations to determine
the positional distribution of lead SNPs. 95.66% of GWAS lead SNPs
were in noncoding regions, with 14.78% of them located in 3′UTR and
downstream regions (20 kb, Fig. 1d), where lead SNPs in 3′UTR regions
showed a strong enrichment against the entire genome (fold-enrich-
ment = 1.62, P = 1.88 × 10−3, Fig. 1e). For example, the prostate cancer
lead SNP rs4245739 was identified in the 3′UTR MDM432 (Fig. S4b),
which encodes a regulator of p53, and breast cancer lead SNP
rs1386230 was also located in the 3′UTR of FGF1033 (Fig. S4b), which
encodes the fibroblast growth factor 10. The lead SNPs within 3′UTR
regions have effect sizes comparable to those in other genomic
regions (P =0.114, Wilcoxon rank-sum test, Fig. S4c, d).

To elucidate the extent of shared genetic architecture across
different cancer types, we employed linkage disequilibrium score
regression (LDSC)34 to calculate heritability estimates from cancer
GWAS summary statistics. Our analysis revealed that heritability
estimates vary significantly across various cancer types. Specifically,
lymphoma exhibited the lowest average heritability score
(h2 = 0.0017) with a 95% confidence interval (CI): 0.0004–0.0030,
while breast cancer has the highest average heritability score
(h2 = 0.17), with 95%CI: 0.1637–0.1835 (Supplementary Data 2). These
estimations align well with findings from previous individual
studies5,35. To further explore the relationships between different
cancer types, we conducted pairwise genetic correlation (rg) analysis.
Our result indicated that 22.09% of cancer pairs exhibited a sig-
nificant correlation (Bonferroni-corrected threshold of P = 0.05).
Interestingly, we observed that biologically related cancers tended to
cluster together, exemplified by the clustering of basal cell carci-
noma with melanoma, and breast with Female genital organs (Fig.
S5). We further compared the genetic correlation within- and
between- cancer types and found significantly higher genetic corre-
lations within than between cancer types (average |rg| = 0.83 and |rg| =
0.58 respectively, P = 0.0004,Wilcoxon′s test, Fig. S6a). Additionally,
we explored the genetic correlation between different populations
for each cancer type. Our findings revealed only weak genetic dif-
ferences betweenwithin-European andwithin-Asian samples (P = 0.5,
Wilcoxon rank-sum test, Figs. S6b, 1f, g). Taken together, these data
underscore the importance of exploring genetic variants in 3′UTR
and downstream regions, which constitute 14.78% of cancer GWAS
SNPs, in the context of cancer risk. Moreover, our findings demon-
strate that genetic factors contribute to the risk of certain cancer
types while also exhibiting some degree of shared genetic compo-
nents between biologically related cancers.

3′aQTL explains a significant proportion of cancer heritability
To assess the role of APA regulatory variants in human cancer and to
evaluate the enrichment of 3′aQTLs within cancer GWAS loci, we
applied a functional genome-wide association study (fgwas)36 and
observed 3′aQTLs are enriched within 35.88% of significant
tissue–cancer pairs (Supplementary Data 3). When further compared
with eQTLs, we found that 3′aQTLs had a large effect than eQTLs for
18.82% of tissue–cancer pairs, which include multiple relevant
tissue–cancer pairs, such as the whole blood for prostate cancer (3′
aQTLs Enrichment = 1.68, 95%CI: 0.66–2.54, Fig. 2a) and adipose sub-
cuaneous tissue for breast cancer (3′aQTLs Enrichment = 2.16, 95%CI:
1.07–2.87, Fig. 2b). Quantile–quantile plots (QQ-Plots) of GWAS P
values for xQTLs and genome-wide SNPs further validate these results
(Fig. 2c, d).
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To further examine the proportion of 3′aQTLs associated with
cancer heritability, we performed a partitioned heritability analysis
using stratified (S)- LD score regression (LDSC)37,38.We observed that 3′
aQTLs can contribute a median of 14.11% of heritability, compared to
18.96% for sQTLs and 33.07% for eQTLs (Fig. 2e, f). Expanding our
S-LDSC analysis revealed that 3′aQTLs in whole blood and adipose
tissues are enriched for associations with multiple cancer types,
including cancers of the breast,male genital organs, prostate, skin, and

as well as basal cell carcinoma (Fig. 2g). Taken together, our findings
strongly suggest that a significant proportion of cancer heritability
could be attributed to 3′aQTLs.

3′aQTLs colocalize with cancer GWAS risk loci and are largely
independent of gene expression and splicing QTLs
To systematically investigate whether cancer GWAS risk loci share the
same causal variant with 3′aQTLs, we performed colocalization analysis
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using coloc39 (Supplementary Data 4). Our analysis revealed that 34
cancer GWAS traits across 17 cancer types colocalized with at least one
type of molecular QTLs (Fig. 3a). Specially, we identified 766 eQTLs, 560
sQTLs, and 250 3′aQTLs that colocalized with cancer GWAS risk loci
(Fig. 3b). In agreement with previous study40, a large proportion of
colocalization events was observed in long-noncoding RNAs across
several cancer types, includingcolorectal cancerand lymphoma(Fig. 3b).

We then analyzed the proportion of cancer GWAS loci co-
localized with these molecular QTLs and found that 3′aQTLs, eQTLs,
and sQTLs co-localized with amedian of 28.57%, 44.74%, and 35.36% of
GWAS risk loci, respectively (Fig. 3c–e). Further analysis of the 3′aQTL-
colocalized genes (3′aGenes) relative to eQTL and sQTL colocalized
genes (eGenes and sGenes, respectively) revealed that, on average,
53.1% 3′aGenes were not associated with matched eQTLs or sQTLs
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among the analyzed tissue–cancer pairs (Fig. 3f). For example, we
identified 3′aQTLs in the caspase 8 (CASP8) gene that strongly colo-
calized with GWAS risk loci across multiple cancers, including skin
cancer (PP4 =0.961), breast cancer (PP4 =0.973), and basal cell carci-
noma (PP4 = 0.915), but not with eQTLs nor sQTLs. Pathway analysis
further revealed that 3′aGenes were enriched in several distinct path-
ways including protein localization to the mitochondrion, which con-
tributes to the regulation of malignant transformation and tumor
progression41. In contrast, eGenes and sGenes were enriched in path-
ways related to DNA damage repair, chromatin organization, and DNA
demethylation processes, implying these genes may bemore involved
in processes related to maintaining genomic stability and regulating
chromatin structure (Fig. 3g). Thus, our data suggest that 3′aQTLs
colocalize with cancer GWAS risk loci, as observed in TCGA datasets
(Fig. S7–10), and a large proportion of these 3′aQTLs occur indepen-
dently of eQTLs and sQTLs.

To further explore whether 3′aQTLs were also enriched at causal
cancer risk loci, we performed fine-mapping on colocalized 3′aQTLs
and compared them with cancer GWAS risk loci within a 95% credible
set. Our analysis demonstrated that GWAS credible set variants that
were also 3′aQTL had a significantly higher posterior inclusion prob-
ability than those not shared with 3′aQTL (Mann–Whitney, P = 2.22 ×
10−3; Fig. 3h). Furthermore, we observed that including 3′aQTLs
strongly increased the genetic resolution of cancer GWAS credible
sets, resulting in the identification of 53 risk loci with ≤5 putative causal
variants compared to only 33 risk loci when 3′aQTLs are not con-
sidered (Fig. 3i). Furthermore, the sequence structure characteristics
of colocalized 3′aGenes exhibited distinctions when compared to
eGenes and sGenes. While 3′aGenes shared comparable 5′UTRs with
eGenes and sGenes, they exhibited relatively shorter coding regions
when compared with eGenes (P = 1.75 × 10−2) and sGenes (P = 1.87 ×
10−3, Fig. S11) and much longer 3′UTR lengths when compared with
eGenes (P = 2.47 × 10−15) and sGenes (P = 8.82 × 10−25, Fig. S11). Notably,
a significantly higher prevalence of adenylate-uridylate-rich (AU-rich)
elements proximal to poly(A) sites was observed in colocalized 3′
aGenes in comparison to both eGenes (P = 6.43 × 10−9) and sGenes
(P = 3.04 × 10−9), suggesting that 3′aGenes harbor an increased number
of potentially regulatory elements and have higher possibility of
enhanced post-transcriptional regulation (Fig. S12). Taken together,
these results suggest that the identified 3′aQTLs likely contain cancer
causal risk variants. Furthermore, our findings indicate that 3′aGenes
are largely distinct from eGenes and sGenes acrossmany cancer types.

APA transcriptome-wide association analysis reveals novel can-
cer susceptibility genes
To systematically identify and prioritize candidate APA genes asso-
ciated with human cancers, we performed a multi-tissues 3′UTR APA
transcriptome-wide association study (3′aTWAS) using the data from
49 GTEx tissues and 18 TCGA tumor tissues. The goal of this analysis
was to estimate the association between genetically predicted APA
usage and cancer risk, utilizing transcriptome panels with our curated
cancer GWAS summary statistics42. For each tissue, we employed
FUSION42 to estimate the heritability of 3′UTR APA usage explained by
cis-SNPs located in the 3′UTR of each transcript using linear mixed-
linear models (Top1, BLUP, LASSO, and Elastic Net). To ensure
robustness, cross-validation was used to select the best-fitted model
with optimal prediction accuracy for each gene. This analysis resulted
in 110,501 tissue-specific prediction models (Fig. S13), encompassing
25,934 APA events. To evaluate the prediction accuracy, we calculated
the correlation between predicted and observed 3′UTR usage and
further normalized by heritability. In line with previous TWAS
studies42,43, the average in-sample prediction accuracy is 68.52%, indi-
cating thatmost of the signal in genetically predicted 3′UTRAPA usage
level is capturedby thefittedmodels (Fig. S14).Moreover,weobserved
a high correlation between the number of 3′aTWAS predictive models

and the sample sizes of the GTEx reference panels (Spearman corre-
lation R = 0.83, P = 1.46 × 10–13).

We applied our prediction model to cancer GWAS summary sta-
tistics and identified 642 APA-linked susceptibility events (FDR <0.05,
Fig. 4a, b and Supplementary Data 5), 62.46% of which were over-
looked by conventional gene and splicing TWAS analyses (Fig. 4b).
Based on the prediction model from the relevant tissues and cancer
types, we still identified 276 APA events (Fig. S15). Additionally, there
are 47 genes that were identified both in the colocalization and 3′
aTWAS analyses (Supplementary Data 6) and seven genes that were
consistently identified in 3′aTWAS analyses for both GTEx and TCGA
datasets (Supplementary Data 7). Interestingly, our 3′aTWAS identified
multiple known cancer risk genes, such as small G protein signaling
modulator 3 (SGSM3)44, which is significantly associated with breast
cancer in breast mammary tissue (P3’aTWAS = 2.6 × 10−18, PeTWAS = 0.47,
PsTWAS = 0.40). This finding suggests that 3′UTR APA usage of SGSM3,
rather than the expression or the splicing of the SGSM3 gene,mediates
breast cancer risk.

We then analyzed the identified genes across cancer types and
found that breast and prostate cancers have the greatest number of
significant APA-linked susceptibility genes (Fig. 4b), which may be due
to the high heritability of these two cancer types (Fig. S16b and Sup-
plementary Data 2) and not attributed to sample size differences (Fig.
S16a). Moreover, many of these genes are shared across multiple
cancer types (Fig. 4c), such as the pan-cancer 3′aTWAS gene sorting
nexin 17 (SNX17), which plays a role in signaling-receptor and phos-
phatidylinositol binding, and is associated with breast and lung
cancer45. Similarly, the 3′aTWAS gene spermatogenesis-associated 33
(SPATA33), which encodes amammaliangermlinemitophagy receptor,
is simultaneously related to the risk ofmelanoma, basal cell carcinoma,
and skin cancer. Three APA genes common to breast and skin cancer
were also identified, including the known tumor suppressor gene
CASP8, a central mediator of the extrinsic apoptosis and necroptosis
pathways46 (Fig. 4c).

To further assess the functional roles of putative APA-linked
cancer susceptibility genes, we determined the effect of gene
silencing on proliferation in cancer-relevant cell lines based on data
fromCRISPR-Cas9 gene essentiality screens47 (Fig. 4e, f and Fig. S17).
We utilized the CERES score to represent the gene essential levels,
which corrects for the computational effects of copy number and
depletion of gene-targeting guide RNAs. A lower CERES score indi-
cates a high degree of gene essentiality in each cell line. Our results
revealed that 27 APA-linked genes identified in the potentially rele-
vant tissues demonstrated evidence for essential roles in cancer cell
proliferation (CERES score<–0.5). Remarkably, eight genes exhib-
ited similar or even higher levels of essentiality compared to the
well-known oncogene MYC48 (Supplementary Data 8), including
PHF5A, EIF2S2 in basal cell carcinoma, RPS23, DYNC1I2, POLR3C and
RPAIN in breast cancer, UTP4 in skin cancer, PHF5A in cancer of
female genital organs and CACTIN in cancer of male genital organs.
Moreover, we observed that the mean CERES scores of 3′aTWAS
genes were significantly lower than the non-3′aTWAS genes (P = 9.8 ×
10−10, Wilcoxon signed-rank test, Fig. 4d). Additionally, the mean
CERES scores of 3′aTWAS genes were also significantly lower than
eTWAS genes (P = 6.28 × 10−5) and sTWAS genes (P = 6.91 × 10−4, Fig.
S18). This indicates that APA-linked susceptibility genes tend to have
a greater impact on cancer cell proliferation. To further validate our
findings, we examined another larger-scale drop-out data deep RNAi
interrogation of viability effects in cancer (DRIVE)49, and identified
six 3′aTWAS genes that were also essential. These genes included
BPTF, PHF5A, and SPG7 in cancer of female genital organs, as well as
FGF10, NFIX, and SCAP in breast cancer. Collectively, our APA
transcriptome-wide association analysis successfully identified
numerous known and novel susceptibility genes with functional
implications in multiple cancer types.
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CRLS1 is a novel APA-mediated breast cancer susceptibility gene
Our colocalization and 3′aTWAS results identified multiple novel APA-
linked cancer-susceptibility genes. Among these candidates, we
focused on cardiolipin synthase 1 (CRLS1) for further experimental
validation due to its identification in both colocalization and 3′aTWAS
analysis from GTEx and TCGA data (Figs. 5a and S19a). Furthermore,
CRLS1 showed conditionally independent at the associated breast

cancer loci (Fig. 5b), implying that APA-mediated risk variants sub-
stantially explain the GWAS signal within this genomic region. To
functionally assess the role of alternative alleles of 3′aQTL in tumor
cellular phenotypes, we first observed a higher expression of the long
3′UTR isoforms with alternative alleles of 3′aQTL (rs2235816 G >A)
(Figs. 5c, d and S19b, c). We validated this observation experimentally
by performing 3′ rapid amplification of complementary DNA ends
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Fig. 4 | APA Transcriptome-wide association study (TWAS) results. aManhattan
plot of 3′aTWAS nominating the pan-cancer susceptibility genes. Significant 3′
aTWAS associations at false-discovery rate (FDR) < 0.05 were shown. Colored
points represent different cancer types. b Bar plots showing the number of sig-
nificant genes detected by 3′aTWAS, with FDR <0.05, for different cancers in the
multiple tissues. Venn plot shows the intersection of significant cancer genes
identifiedby 3′aTWAS (FDR<0.05)with genes identifiedby expression and splicing
TWAS. c Heatmap showing the 3′aTWAS genes shared across different cancer
types. The color represents the log-transformed P-values for 3′aTWAS results.
d Comparison of the mean CERES score across significant 3′aTWAS genes versus
null distribution (randomly sampled in insignificant eTWAS, sTWAS, and 3′aTWAS
genes). P-value was calculated from the Wilcoxon signed-rank test (two-sided),
n = 720. Effect of cancer-susceptibility-associated APA-linked genes on cell

proliferation of e breast cancer (n = 45) and f prostate cancer-related (n = 8) cell
lines.MYC is a known essential gene set as positive control based on experimental
data from DepMap. CERES score to represent the gene essential levels, which
corrects for the computational effects of copy number and depletion of gene-
targeting guide RNAs. Red dashes denote the median CERES cutoff value of <–0.5,
which indicates an essential role in cell proliferation. The significance of cell pro-
liferation was tested for each gene based on the count of CERES values < –0.5 in a
total of respective relevant cells using the Binomial test. **P <0.01; *** P <0.001;
**** P <0.0001; ns not significant. The center lines within the box plot (of d–f)
signify the median values, while the boxes in each plot represent the first and third
quartiles; the whiskers extend to the 1.5 times the IQR and the outliers are shown as
separate dots.
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(RACE) inMCF-7 breast cancer cells (Fig. 5e). To further investigate the
contribution of APA in regulating CRLS1 protein abundance, we per-
formed luciferase reporter assays and inserted the shorter 3′UTR and
the longer 3′UTR with a mutated proximal polyadenylation signal into
a dual-luciferase reporter system. The reporter containing the longer
3′UTR exhibited significantly higher luciferase activity than the con-
struct containing the short 3′UTR (Fig. 5f). These data imply that the

extended 3′UTR promotes elevated protein levels of CRLS1. Further-
more, we assessed the impact of different alleles of 3′aQTL on protein
abundance using luciferase reporter assays with the reporter gene
containing the 3′UTR region. Notably, the reporter containing alter-
native alleles significantly increased the luciferase signals compared to
the reference alleles (Fig. 5g). We identified that rs2235816 resides
within the binding motif of CSTF2 (cleavage stimulation factor 2)50,51, a
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MCF-7 cells (n = 3; P =0.023). h Proliferation of MCF-7 cells treated with the indi-
cated siRNAs (n = 3; P =0.0028). i Colony formation assay for MCF-7 cells treated
with the indicated siRNAs. Left panel: Colonies were formed in 12-well plates and
imaged on day 8 after siRNA treatment. Images are representative results from
three independent experiments. Right panel: Quantification of colony numbers
from the left panel (n = 3; P =0.016). j Cell proliferation of shRNA-mediated
knockdown cells was analyzed on days 1, 3, 5, and 7 (n = 3). k Schematic depicts
alternative alleles of 3′UTR variants mediated 3′UTR lengthening promotes cancer
progression. For panels e–j, the data shown are the mean ± s.d. from three inde-
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known APA regulator that potentially modulates the biological effect
of rs2235816 (Fig. S20)52. These findings suggest that alternative alleles
of 3′aQTL, which mediated APA changes, could contribute to the
upregulation of CRLS1 protein abundance.

Next, we investigated the phenotypic consequences of CRLS1
dysregulation to mimic the APA-mediated protein changes. We first
silenced CRLS1 expression using small-interfering (si)RNAs and ana-
lyzed its effects on cell proliferation. Knockdown ofCRLS1 significantly
inhibits cell proliferation and decreases the colony formation com-
pared to the non-targeting control (Figs. 5h, i and S21a). We also
depleted CRLS1 with two short hairpin RNAs and observed reduced
proliferation (Figs. 5j and S21b). These experimental results are in line
with our 3′aTWAS analysis result, which suggested that the usage of
long 3′UTR of CRLS1 increases breast cancer risk (Z-score = 6.10 in
breast mammary tissue). We also selected three other top-ranked
putative breast cancer APA-linked susceptibility genes-autocrine
motility factor receptor (AMFR), RPA-interacting protein (RPAIN),
autophagy related 10 (ATG10) (Fig. S22a–c) and observed consistent
results that alterations in alternative 3′UTR of these genes could affect
protein abundance (Fig. S22d–f) and cellular proliferation (Fig.
S22g–l). Taken together, our findings identified several susceptibility
APA genes and supported the conclusion that alternative alleles of 3′
aQTL influence APA patterns of CRLS1, resulting in longer 3′UTR usage
and elevated protein levels. Consequently, these changes may con-
tribute to an increased risk of breast cancer (Fig. 5k).

Known and novel cancer susceptibility APA genes form coher-
ent functional pathways
To investigate whether our identified APA-linked susceptibility genes
were connected to known cancer genes via the same network or
pathway, we accessed its presence in publicly available cancer-related
gene sets from the literatures53,54, the Discovery of Oncogenes and
tumoR suppressor genes using Genetic and Epigenetic features
(DORGE)55, the Cancer Gene Census (CGC)56 and the Molecular Sig-
natures Database (MSigDB)57. Notably, we identified 60 genes with
well-established role in cancer biology, such as for breast cancer
(BAZ3A, DNAJA1, SMU1, CDK12, KANSL1, SLC4A7, L3MBTL3, MRTFA, NF1,
VEZT, SIN3A, AKAP9, TAF1B, NFIX, MEPCE, CHD3, CASP8, TRIOBP), for
basal cell carcinoma (EIF2S2, VMP1), for cervical (PAX8, CDK12, ERBB2,
PNISR), for colorectal (SMARCD1, ARFGEF2, LTBP2, CNOT9, PREX1), for
female genital organs (SRSF3, TKT, SH3PXD2A, VPS37B, HRAS,
DNAJB12), for lung cancer (POLR1A, TBC1D2B), for lymphoma cancer
(POLR1A), for male genital organs (KANSL1, USP36, CRKL), for ovarian
cancer (KANSL1), for prostate cancer (SEC62, CCND3, SOD2, AXL,
RPRD1, ZBTB7B, NUCKS1, POLR1A, WTAP, TAF1B, FLT3LG, BCL2L12,
SMAD2, POGZ, RPS19, KANSL1, NCOA4, ZBTB16, CTBP2, EIF3E, GATA2,
SETDB1, IGMBP2, RAPGEF3) and skin cancer (ZBTB7B, ANKRD11,
KANSL1, RPRD2, CASP8, SMARCD1).

Further, we used STRING58 to measure protein–protein inter-
action (PPI) network connectivity between the products of genes
identified in our study and known cancer-susceptibility proteins.
Our results show that members of the 3′aTWAS-prioritized PPI net-
work exhibited significant enrichment for key biological pathways
(Fig. 6). These pathways included the intracellular protein transport
(P = 1.13 × 10−2), a critical process involved in metabolic reprogram-
ming during cancer progression and adaptation to new
environment59. Furthermore, our analysis revealed strong enrich-
ment of APA-linked susceptibility genes in pathways associated with
apoptosis and necrosis, such as the execution phase of apoptosis
(P = 8.75 × 10−4) and TRAIL signaling (P = 6.07 × 10−4), which are
essential to tumorigenesis60. These results indicate that the novel
candidate genes identified in our study are broadly involved in gene
networks crucial for cancer growth. Importantly, our results
demonstrate that our novel cancer-susceptibility genes form
coherent functional pathways with known cancer genes like TP53

and BRCA1/2, suggesting that many of these novel genes are likely to
have a functional role in cancer risk.

Discussion
Dysregulation of APA has been frequently observed in human primary
cancer61 and cancer cell lines62, suggesting its potential involvement in
cancer pathogenesis. Although germline genetic variants in the 3′UTR
region have been linked to transcriptome diversity and various human
diseases23, the regulatory mechanisms underlying specific APA events
and functional genetic variants associated with cancer susceptibility
genes have remained largely elusive. In this study, we conducted the
first comprehensive investigation to understand how APA-mediated
genetic variations contribute to human cancer risk. We demonstrate
that 95.66% of GWAS lead SNPs are noncoding, and 14.78% were
located in 3′UTR and downstream 20 kb regions. Furthermore, our
findings provide additional evidence that functional common genetic
variants linked to alternative 3′UTR usage can contribute to the cancer
risk and may play a substantial role in cancer initiation. Interestingly,
this mechanism implicates APA-mediated GWAS risk loci that are not
conventionally associated with dysregulated gene expression or spli-
cing. Through the application of 3′aTWAS to our well-powered GWAS
summary statistics, we identified 642 APA-linked susceptibility genes
across multiple tissues. Remarkably, a substantial portion of these
genes (62.46%) were previously overlooked in traditional expression
and splicing studies, thereby expanding the repertoire of cancer risk
loci annotated with potentially new regulatory mechanisms. To vali-
date the predicted effects of 3′aQTLs on 3′UTR usage, we experimen-
tally validated the genetic regulation of CRLS1 in breast cancer. We
demonstrated that the cancer-associated noncoding variant impacts 3′
UTR usage, resulting in altered protein abundance which ultimately
contributes to cell proliferation. Further analysis revealed the enrich-
ment of 3′aTWAS-identified genes in known cancer pathways and
essential gene sets, further substantiating their biological relevance.

In particular, our investigations revealed a 3′aTWAS association
for CRLS1 in breast cancer, a finding that was validated through
experimental evidence. The 3′ RACE result demonstrated a significant
difference in APA usage between the two alleles of rs2235816. The
alteration in 3′UTR usage may result from the 3′aQTL disrupting the
binding sites of RNA-binding proteins such as CSTF2 (Fig. S20). This
would be in agreement with a previous report that demonstrated
increased use of distal PAS upon CSTF2 depletion52. The luciferase
assay demonstrated a significant difference in translation efficiency
between the two alleles of rs2235816. This may be due to CRLS1 pro-
teins are predominantly regulated by translation of the long 3′UTR
isoform, which contains binding sites for the translation regulator. We
found that the longer 3′UTR isoforms provided more frequent RBP
binding sites (Fig. S23a, b), indicating it wasmore likely to be regulated
by certain translational regulatory RBPs. We indeed observed the
U-rich motif for CPEB263 on CRLS1 3′UTR region, which has been
demonstrated that could increase the protein abundance64. The
observations that longer 3′UTR isoforms could generate higher pro-
tein levels have also been found in several other studies64–66. For
example, the long 3′UTR isoform of Uncoupling protein 1 (UCP1)
contributes only 5–10% of the total UCP1 mRNA level, but its deletion
reduced UCP1 expression by 50–60%. Cytoplasmic polyadenylation
element- binding protein 2 (CPEB2) binds to the long 3′UTR isoform of
the UCP1, which increases translation efficiency and protein abun-
dance of UCP164. Together our data suggest that the allele-specific
activity of risk SNPs play a significant role in elucidating the functional
impact of alternative alleles of 3′aQTL in mediating changes in 3′UTR
usage, leading to elevated protein abundance that exerts a pivotal
influence on cancer proliferation.

However, we acknowledge several caveats and suggest future
research directions. First, while we focused on common germline
variants in this study, the contribution of rare variants to cancer
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susceptibility remains unknown and warrants further investigation.
Second, our current study primarily focused on the overall risk for
each cancer type, potentially overlooking cell-type-associated cancer
susceptibility genes. Future investigations should consider molecular
subtypes within cancers, such as breast cancer, to gain a more com-
prehensive understanding of the genetic landscape. Finally, we believe
that our findings warrant the integration of other transcriptome-wide
association study-like methods to explore regulatory mechanisms for
susceptibility genes by incorporating information on cis-regulatory
elements, such as RNA-binding proteins (RBPs) and microRNA.

In summary, our study presents multiple promising gene candi-
dates for subsequent experimental follow-up, with a focus on investi-
gating the molecular mechanisms underlying cancer progression and
development. Further exploration of these genes holds great potential
for providing new mechanistic insights into the pathology and
genetics of various cancers. We have made the results and data of this
study publicly available through our resource (http://bioinfo.szbl.ac.

cn/TCGD/index.php), which serves as an important asset for the
research community to interpret the function of cancer risk loci in a
wide variety of human cancers. Moreover, in-depth studies of APA-
linked genes identified in our study will undoubtedly shed more light
on the biological regulation and disease etiology of human cancers.

Methods
Collection and quality control of cancer GWAS summary
statistics
We collected and integrated cancer GWAS summary statistics across
22 cancer types from four different sources: (1) GWAS summary sta-
tistics reported in the literature3–6,67,68; (2) UK Biobank GWAS29; (3)
FinnGen31 and (4) JENGER30. We removed the studies with less than
50,000 individuals and with potentially duplicated patients or con-
trols. We also performed the quality control analysis of the remaining
cancer GWAS summary statistics data. We first calculate the lambda
value to estimate the P-values inflations. Then, we evaluate the quality
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by examining the distribution of observed P values with the expected
distribution using QQ-plot. Later P–Z plot was used to examine the
normality of the distribution of Z-scores (Figs. S2 and S3). As a result,
55 well-powered cancer GWASs were used in this study. To harmonize
the cancerGWAS summary statisticsdue todifferent genomeversions,
CrossMap69 was used to convert the GWAS coordinates to the human
genome assembly hg19/GRCh37.

Annotation and characterization of lead SNPs and estimated
standardized effect sizes
Lead SNP refers to the statistically most significant variant for cancer
risk loci. Briefly, we first performed double clumping by PLINK
(v.1.90)70, which reports independent significant SNPs with P-value < 5
× 10−8 and are independent at r2 < 0.6. We further performed second
clumping based on these independent significant SNPs, and lead SNPs
are defined if they are independent of each other at r2 < 0.1. Circos
(v.0.69–9)71 was used to visualize the distribution of lead SNPs for each
cancer GWAS.

Further, the distribution of functional consequences of the lead
SNPs, which were annotated with dbSNP147 databases (avsnp 147,
build hg19) using ANNOVAR72, was compared with all SNPs in the
genome. The flag “–neargene 20000” was used to define the terms
“upstream” and “downstream” as regions located 20 kilobases away
from the transcription start site or transcription end site. To test
whether the lead SNPs from a specific functional category is enriched,
we compared lead SNPs against all SNPs within the whole genome.
Fold enrichment(E) is calculated from the proportion of SNPs with a
certain annotation divided by the proportion of SNPs with the same
annotation in the background. We performed two-sided Fisher′s exact
test for each category of annotations to test if the fold enrichment is
higher than expected.

To enable comparison of effect size across different studies,
regardless of the direction of effect, we converted P-values into
Z-statistics (two-sided) and expressed the standardized effect size (β)
as a function of MAF and sample size, as described previously73, using
the following equation:

β=
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1� pÞðn+ z2Þ
p ,s:e:m=

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1� pÞðn + z2Þ
p , ð1Þ

where p is MAF, and n is the total sample size. We used the MAF of an
ancestry-matched reference panel. s.e.m is the standard error of
the mean.

Fine mapping of GWAS loci
The fine-mapping analysis was performed on our curated cancer
GWAS summary statisticswith ancestry-matched-LD informationusing
a recent toolkit74 integrating three fine-mapping methods of PAINTOR
(v.3.0)75, CAVIARBF (v.0.2.1)76, and FINEMAP (v.1.3.1)77. We only allow
each causal block contains only one causal variant, and we used the
recommended parameters for these tools. These fine-mapping tools
provide the posterior inclusion probability (PIP) of each variant being
the causal one within a specific model. Subsequently, we identified
credible sets comprising variantswith cumulative PIP values exceeding
a threshold 0.95.

SNP heritability estimation and genetic correlation
We estimated the SNP heritability(h2

g), which represents the propor-
tion of phenotypic variance that can be attributed to common SNPs of
each cancer based on both genotyped and imputed SNPs using LDSC
(v1.0.1)34. Briefly, we first convert cancer GWAS summary statistics to
the.sumstats format using “munge_sumstat.py”. LDSC used HapMap3
SNPs with the option “--merge-alleles w_hm3.snplist”, where
w_hm3.snplist is the list of SNPs and alleles to ensure the alleles in our
summary statistics files match those in the data used to estimate LD

scores. We excluded the SNPs of disproportionately large effect (i.e
c2 > 80) compared to the rest of the genomewith the flag “--chisq-max
80” as recommended78. We then calculate the heritability using the
formatted cancer.sumstats files with pre-calculated ancestry-matched
reference LD scores, which were obtained from https://alkesgroup.
broadinstitute.org/LDSCORE/. Furthermore, genetic correlation(rg)
between pairwise cancers was estimated with the 1000 Genomes
Project reference panel using LDSC (v1.0.1). The rg estimated by LDSC
is an unbiased estimate andmay exceed [-1,1] when standard errors are
large, and the genetic correlation between studies is high. Genetic
correlations for which the P-value survived the correction for multiple
testing, with Bonferroni-corrected P <0.05, were considered
significant.

Enrichment of molecular QTLs within GWAS risk loci
We used fgwas (v.0.3.6)36 to assess the enrichment of molecular QTLs
withinGWAS risk loci. Briefly,GWAS lociwereannotated as3′aQTLs (or
sQTLs, eQTLs) in a binary manner. We considered all molecular QTLs
that were significant (FDR < 5%). fgwas then constructed a hierarchical
Bayesian model to estimate the enrichment effects of different mole-
cular annotations within GWAS loci. Additionally, the
quantile–quantile plots (Q-Q plots) were used to visualize the P-values
of cancer GWAS SNPs.

We further applied stratified LD score regression (v1.0.1)37,38 to
cancer GWAS results to assess the enrichment of heritability attribu-
table to 3′aQTLs, sQTLs, and eQTLs within GWAS risk loci. Briefly, we
included the functional categories in the “baseline-LD model” with 53
other functional categories37. We then created binary annotations for
3′aQTLs, sQTLs, and eQTLs, respectively, that is, we assigned an
annotation value of 1 to themost significant 3′aQTL and a value of 0 to
the remaining SNPs. We computed the LD scores of the SNPs using
genotype data from individuals of European ancestry from the 1000
Genome Project (phase 3) with a window size of 1 cM. The heritability
enrichment of a category was calculated as the proportion of herit-
ability explained by the category divided by the proportion of SNPs in
the category.

Quantification of APA levels using DaPars2
Weutilized our previously developedDaPars2 software23,26, to calculate
the poly(A) site-usage index (PDUI) value through a joint analysis of
multiple samples employing a two-normal mixture model. The proce-
dure involved several steps: Firstly,weextracted a3′UTRannotation for
each gene using the “DaPars_Extract_Anno.py” script within DaPars2.
Subsequently, the sequencing depth for each sample was calculated
using the “samtools flagstat” command. Finally, the PDUI value of each
transcript across the samples was computed using DaPars2.

3′aQTL mapping and fine-mapping
We performed comprehensive 3′aQTL mapping across 49 human tis-
sues from GTEx project and 18 tumor tissues from TCGA. Within each
tissue, we transformed the PDUI values for each 3′UTR APA into
quantiles of the standard normal distribution. To effectively address
potential hidden batch effect and other unobserved covariates, our
association analyses incorporated covariates. For GTEx data, these
encompassed factors like the WGS sequencing platform, WGS library
construction protocol and donor sex. Similarly, TCGA data analyses
included covariates containing age, gender, and AJCC stage. Further-
more, we integrated the top 5 genotype principal components and
PEER factors as essential components of the covariate set. The selec-
tion of PEER79 factorswas guided by established criteria from the GTEx
consortium24: 15 PEER factors for tissue sample sizes <150, 30 PEER
factors for sample sizes ranging from 150 to 250, and 35 PEER factors
for sample sizes exceeding 250.

In each tissue, 3′aQTLs were identified via linear regression,
employing Matrix eQTL27, while accounting for aforementioned
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covariates. Our analysis specifically focused on variants within a 1Mb
of the 3′UTR region, and minor allele frequencies ≥0.01 within the
analyzed tissue. For the compilation of significant variant-APA pairs,
we considered pairs with a false-discovery rate (FDR) below 0.05 as
significant, and these were designated as 3′aQTL.

We further used a fine-mapping approach to identify candidate
causal variants that underlie cis-aQTL loci. We identified 95% credible
set variants usingCAVIAR76 (v.2.2) software and allowing for two causal
variant with flag “-c 2”. LD information between SNP pairs was gener-
ated using PLINK (v1.90)70.

Colocalization tests
To determine whether the association of cancer GWAS SNP is medi-
ated through the regulation of molecular QTL, we performed coloca-
lization analysis using the coloc R package (v.4.0.4)80 with default
priors. For each cancer GWAS trait, we first identified the lead SNP,
simply characterized by a SNP with P-value < 5 × 10−8, and positioned
more than 1Mb away from other variants exhibiting higher statistical
significance. Subsequently, for each lead SNP, we compiled the list of
all features (gene/intron cluster/transcript) located within 1Mb radius
for colocalization analysis. Utilizing the coloc method, we calculated
five distinct posterior probabilities (PPs): PP0, signifying a null model
of no association; PP1, representing exclusive genetic association at
the GWAS SNP; PP2, denoting sole genetic association at the 3′aQTL;
PP3, indicating concurrent association at both the GWAS SNP and 3′
aQTL, albeit with differing causal variants; PP4, reflecting association
at both the GWAS SNP and 3′aQTL, underpinned by a shared causal
variant. To pinpoint instances of colocalization, transcripts were
designated as colocalization events if PP4 ≥0.75 and PP4/(PP4 +
PP3) ≥0.9, following the our prescribed criteria23. These identified
colocalization events were then visually represented. LocusZoom
(v.1.4)81 was used for region visualization plots, and PLINK (v.1.90)70

was used for calculating LDs between identified causal SNP and other
SNPs. For each colocalized gene, we defined the gene biotypes from
human reference genome from NCBI (https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.39/) and GENCODE v26 GTF. The “protein-
coding genes” group included any genes with the “protein_coding”
biotype in the GTF file. While the “lncRNA genes” group included
any genes with a long noncoding gene biotype (“lncRNA”, “pro-
cessed_transcript”, “ense_intronic”, “sense_overlapping”, “antisense”,
“macro_lncRNA”, “bidirectional_promoter_lncRNA”, “3prime_o-
verlapping_ncRNA”) in GTF file.

APA TWAS for cancer GWAS
We employed FUSION42 to conduct TWAS for APA, with a primary
focus on individuals of European ancestry. Our approach commenced
with the implementation of a mixed-linear model to estimate the
heritability of the 3′UTR region. This estimation employed SNPs with
MAF >0.01, situated within a 1Mb of the 3′UTR of each gene, within a
reference panel comprising cohorts featuring matched RNA-seq and
genotype data. To ensure robust covariate adjustment, well-
established factors used in QTL mapping section were incorporated
to determine residualized PDUI values. Subsequently, only transcripts
exhibiting significant heritability estimates (cis-h2) below a Bonferroni-
corrected P-value threshold of 0.05 were retained for subsequent
analysis (Fig. S13a). From the array of methodologies available within
the FUSION framework, four different models were chosen for weight
calculation: best linear unbiased predictor (BLUP), elastic-net regres-
sion (Elastic Net), lasso regression (LASSO), and single best eQTL
(Top1). A cross-validation approach was employed to select the model
demonstrating the optimal 3a′TWAS prediction accuracy for each
gene. We then applied 3′aTWAS predictionmodels to GWAS summary
statistics, employing an FDR threshold of 0.05. For comparative ana-
lysis, we also conducted TWAS for gene expression and splicing using

the sameGWAS summary statistics. The expression and splicing TWAS
models of GTEx were obtained from PredictDB82.

Joint conditional probability analysis
We performed joint and conditional analyses using FUSION, which
used an iterative process that progressively includes predictors into
the model until no significant associations were observed. These ana-
lyses were carried out using the default locus window size of
100,000base pairs. Briefly, we conducted testing for 3′aTWAS sig-
nificant associations (FDR <0.05) to evaluate the independence of
associations within their respective 1-Mb window. The analysis was
performed on all candidate hit regions using the “FUSION.post_pro-
cess.R” script, allowing us to disentangle signals within regions con-
taining multiple significant genes and generate conditional output
plots. This analysis assesses the probability of multiple associations
occurring simultaneously (jointly) and helps distinguish between
genes associated independently (marginal) from those dependent on
surrounding loci (conditional).

Annotation of 3′aTWAS-identified genes in cancer-relevant gene
databases
To identify the overlap between our 3′aTWAS-identified genes and
known cancer-related genes, we collected cancer-related gene sets
from the Molecular Signatures Database (MSigDB)57, DORGE55, and
CGC genes56 from the COSMIC website (https://cancer.sanger.ac.uk/
census). Putative cancer-related genes were identified by annotating
with specific key phrases, such as “breast cancer” and “prostate
cancer”.

Effects of CRISPR–Cas9 gene silencing on proliferation in
cancer-relevant cells
Gene-dependency levels for 17,386 genes based on CRISPR-Cas9
essentiality screen datasets, including “CRISPR_gene_effect.csv” as
determined by the CERES computational method and “sam-
ple_info.csv”, were downloaded from the Dependency Map (DepMap)
portal(https://depmap.org/portal/download/all/) public 22Q247. A
cutoff CERES value < −0.5 was used to determine essentiality. For each
gene, we calculated the significance on cell proliferation based on the
count of CERES values < −0.5 in the total count of relevant cancer cells,
using the Binomial test. Additionally, the project deep RNAi inter-
rogation of viability effects in cancer (DRIVE)49 was leveraged to
ascertain the essentiality of genes. For each gene, we obtained the
redundant siRNA activity (RSA) score and applied a threshold of -3 to
determine its classification as essential or non-essential.

Dual-luciferase reporter construction
Renilla luciferase in psiCHECK-2 Vector (Promega, cat#: C8021) was
used as a primary reporter gene. The firefly reporter cassette served as
an intra-plasmid transfection normalization reporter83. To investigate
the role of 3′aQTLs in regulating their target genes, the 3′UTR con-
taining reference and alternative variants of CRLS1 was cloned down-
streamof theRenilla luciferase translational stop codonof psiCHECK-2
Vector, respectively. To investigate the role of poly(A) site usage in
regulating target genes, the short 3′UTR and long 3′UTR with mutated
proximal PAS sequence of CRLS1, AMFR, ATG10, RPAIN was cloned
downstream of the Renilla luciferase translational stop codon of
psiCHECK-2 Vector, respectively.

Rapid amplification of cDNA ends (RACE)
MCF-7 cell lines obtained from the Cell Resource Center of Shanghai
Institutes for Biological Sciences (Chinese AcademyScience, Shanghai,
China) were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Gibco, cat #: C11995500BT), containing 10% fetal bovine serum (FBS;
Gibco, cat #: C10010500BT), 100-IU/mL penicillin, and 100-μg/mL
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streptomycin (Gibco, cat #: 15140-122). Cells were cultured at 37 °C in a
5% CO2 atmospherewith 100% humidity. To beginwith, the previously
described luciferase psiCHECK-2 vector (constructed by Tsingke bio-
tech and confirmed by sequencing) were transfected into cells using
Lipofectamine 3000 Transfection Reagent (Invitrogen, cat#:
L3000015). After 48h, cells were harvested for RNA extraction. Total
RNA was extracted using TRIzol reagent (Sigma, cat#: T9424)
according to the manufacturer’s instruction. Next, the full length of 3′
UTR was identified and amplified from the total RNA using the
GoScript™ Reverse Transcriptase (Promega, cat#: A5001) with oligo
dT18-XbaKpnBam primer following the manufacturer’s protocol.
Finally, 3′RACEwascarriedout using the check-luc forwardprimer and
XbaKpnBam reverse primer to distinguish exogenous RNA from
endogenous RNA. RACE-PCR products were separated on a 1% agarose
gels. Bands were excised and the extracted using TIANgel mini pur-
ification kit (Tiangen, cat#: DP209) were cloned into PCE2 vector by
5min TOPO-Blunt Cloning Kit (Vazyme, cat#: C602) for Sanger
sequencing84. The primers used for 3′ RACE are listed in Supplemen-
tary Data 9.

Dual-luciferase reporter assay
MCF-7 cells were seeded in 1 day prior to transfection. The previously
described luciferase psiCHECK-2 vector were transfected into cells.
Forty-eight hours post-transfection, firefly and renilla luciferase activ-
ities were measured by Dual-Luciferase Assay System (Promega,
#E1980) on a BioTek Synergy H1 plate reader with full waveband. Each
assay was measured in three independent replicates.

Gene knockdown with siRNA and quantitative RT-PCR
When MCF-7 cells reached 60–80% confluency, they were transfected
with NTC siRNA or a pool of three different gene-specific siRNAs
(Supplementary 9; RiboBio), using Lipofectamine RNAiMAX Reagent
(Invitrogen, cat #: 13778150), at a final concentration of 50 nM,
according to the manufacturer′s protocol. The medium was replaced
after 12 h, and cells were harvested 48 h after transfection.

Total RNA was extracted using the Quick-RNA™ Miniprep Kit
(cat#: R1055; Zymo Research), and cDNA was generated using the
Hifair® III 1st Strand cDNA Synthesis Super Mix for qPCR (gDNA
digester plus) kit (Yeasen, cat #: 11141ES60). Quantitative PCR was
performed using the Hieff® qPCR SYBR Green Master Mix (Yeasen, cat
#: 11203ES08) on a CFX96 machine (BIO-RAD, Hercules, CA, USA).
Primersused for qPCRare listed in SupplementaryData 9. Experiments
measuring expression of each gene were repeated at least three times,
with GAPDH used as the internal reference for expression.

Cell proliferation assay
Cell proliferation assayswere performedusing theCellTiter-Glo 2.0 Kit
(Promega, cat #: 92243). Briefly, MCF-7 cells were transfected with
siRNA for 16–20h. A total of 5000 cells fromeach treatmentwere then
re-plated into 96-well plates in quadruplicates. After 72 h, the medium
was replaced with 200μL of a 1:1 mixture of DMEM and CellTiter-Glo
2.0 reagent. The cells were lysed on an orbital shaker at 300 rpm for
2min at room temperature. The plates were equilibrated for 10min,
and the luminescent signal, reported as relative light units (RLU),
proportional to the amount of ATP, wasmeasured at the full waveband
with a BioTek Synergy H1 plate reader. Results were calculated by
GraphPad Prism v.8.0.1 (GraphPad, San Diego, CA, USA).

Cell colony formation assay
MCF-7 cells were transfected with siRNA for 16–20h, and 2000 cells
were then re-plated into 12-well plates in triplicates for each gene.
When single clones contained more than 50 cells, the colonies were
fixed with 4% paraformaldehyde for 20min and stained with 0.1%
crystal violet (Sangon Biotech, cat #: A600331-0025) for 20min at
room temperature. After washing with water, the plate was air dried

before imaging. Colony counting was performed using ImageJ 1.53r
(National Institutes of Health, Bethesda, MD, USA).

Generation of stable knockdown cell line using lentivirus
delivered shRNA
Two set of shRNAs against each gene was used to cloned into pLKO.1-
puro vector (Supplementary Data 9). shRNA-expressing lentivirus was
produced with the third-generation packaging system in human
embryonic kidney (HEK) 293T cells (Cell Resource Center of Shanghai
Institutes for Biological Sciences). Briefly, 70–80% confluent 293T cells
in 6-well plate were transiently cotransfected with 5μg of lentiviral
transfer vector, 1.67μg of pVSVG (envelope plasmid), 1.67 μg of pRSV-
Rev (packaging plasmid) and 1.67μg of pMDLg/pRRE (packaging
plasmid) with PEI according to the manufacturer′s instructions. Med-
ium was replaced 24 h after transfection with DMEM containing 10%
FBS and 0.1% penicillin and streptomycin, and virus supernatant was
collected every 24 h for up to 2 d. Supernatant containing viral parti-
cles was filtered through a 0.45-μm filter unit and stored at −70 °C in
aliquots or used directly for cell infection. For lentivirus infection,
target cells were seeded in a 6-well plate or a 10-cmdish 16–18 h before
infection and were grown to 70–80% confluency upon transduction.
Culture medium was removed, and cells were incubated with virus
supernatant alongwith 8μg/ml polybrene. After overnight incubation,
the virus-containing medium was replaced with a fresh medium. Pur-
omycin was applied to kill non-infected cells 36 to 48 h after infection.
After two days of selection, when non-infected control cells were all
dead, surviving cells were split and maintained with the same con-
centration of puromycin. After 3 d, cells were collected for RNA and
tested by RT-qPCR to confirm the successful shRNA knockdown effi-
ciency of target genes.

Cell viability and proliferation assays for shRNA-mediated
knockdown
Cells were trypsinized, resuspended at 1 × 104 cells/ml, and seeded in
96-well plates, with eachwell containing 100μl mediumof 1 × 103 cells.
Cell viability and proliferation were determined using CCK8 assays
(Yeasen, cat#: 40203ES76) at designated time points bymeasuring the
absorbance at 450nm, following the manufacturer′s instructions.
Values were obtained from four replicate wells for each treatment and
time point. Results are representative of three independent
experiments.

Analysis of PPI network and pathway enrichment
We selected the pan-cancer identified 3′aTWAS genes and CGC genes,
filtering for those that encode for HLA genes within MHC regions.
Functional pathway enrichment analysis for non-HLA 3′aTWAS genes
was performed using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID, v.2021)85. Furthermore, we calculated
the interconnectivity of these non-HLA3′aTWASgeneswithCGCgenes
based on physical PPIs using STRING (v.12.0)86 with default para-
meters, confidence score cutoff is 0.4, and maximum additional
interactors of 5. To visualize the PPI network, enriched diseases, and
pathways associated with 3′aTWAS genes, we utilized Cytoscape
(v.3.9.1)87.

A comprehensive data portal to host cancer susceptibility genes
We constructed the Cancer GWAS Database (TCGD) (http://bioinfo.
szbl.ac.cn/TCGD/index.php) as a comprehensive data portal for cancer
susceptibility gene exploration, allowing users to browse, search, and
visualize crucial information. TCGD has included 55 cancer GWAS
summary statistics across 22 cancer types, which are provided for
researchers and users to investigate the role of APA in human cancer.
The users can explore cancer GWAS summary statistics in the “Browse
GWAS” module by selecting cancer/neoplasm type, population type,
published year, and total sample size. Meanwhile, all the columns in
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this summary table can be searchable and sorted based on the demand
of customers. In addition, they can list each GWAS with the Q-Q plot,
Manhattan plot, risk loci and SNP heritability, and other detailed
information. The multi-tissue TWAS data is also organized in a tabular
format. The users can browse and search their genes (e.g., IRF5) or
information (e.g., 3′aQTL) for the multi-tissue TWAS. Then, clicking on
a gene name provides access to browsing and searching the single-
tissue TWAS.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw whole transcriptome and genome sequencing data from the
Genotype-Tissue Expression (GTEx) project are available via the data-
base of Genotypes and Phenotypes (dbGaP) under the accession
number: phs000424.v8.p224. All processed GTEx data are available via
the GTEx portal (http://gtexportal.org/). Publicly RNA-seq and geno-
type data from The Cancer Genome Atlas (TCGA) from the Genomic
Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/).
Expression data profiles were obtained from the Xena 2 (https://tcga.
xenahubs.net). PDUI data profiles were obtained from the TC3A
(http://tc3a.org). GWAS summary statistics are fromNHGRI–EBI GWAS
catalog (https://www.ebi.ac.uk/gwas/), UK Biobank GWAS (http://
www.nealelab.is/uk-biobank/), Finn Gen (https://www.finngen.fi/en)
and JENGER(http://jenger.riken.jp). The details, including accession
numbers, of GWAS summary statistics used in this study, are listed in
Supplementary Data 1. 1000 Genomes Project Reference for LDSC,
https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_
plinkfiles.tgz; 1000 Genomes Project Reference with regression
weights for LDSC, https://data.broadinstitute.org/alkesgroup/
LDSCORE/1000G_Phase3_weights_hm3_no_MHC.tgz. All significant 3′
aTWAS genes in cancer are available in Supplementary Data 5. The
expression and splicing TWAS models for GTEx v8 are publicly avail-
able at PredictDB (https://predictdb.org/). Source data are provided
with this paper.

Code availability
The custom source codes to perform the data analysis relevant to this
paper are available, under the MIT license, on Zenodo with the access
code https://doi.org/10.5281/zenodo.8223680 and Github https://
github.com/lilab-bioinfo/CancerAPA.
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