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ARTICLE

A user-friendly tool for cloud-based whole slide
image segmentation with examples from renal
histopathology
Brendon Lutnick 1, David Manthey 2, Jan U. Becker3, Brandon Ginley1, Katharina Moos3,

Jonathan E. Zuckerman4, Luis Rodrigues5, Alexander J. Gallan6, Laura Barisoni 7, Charles E. Alpers 8,

Xiaoxin X. Wang9, Komuraiah Myakala 9, Bryce A. Jones 10, Moshe Levi 9, Jeffrey B. Kopp 11,

Teruhiko Yoshida 11, Jarcy Zee 12, Seung Seok Han 13, Sanjay Jain14, Avi Z. Rosenberg 15,

Kuang Yu. Jen 16, Pinaki Sarder 1✉ & the Kidney Precision Medicine Project*

Abstract

Background Image-based machine learning tools hold great promise for clinical applications

in pathology research. However, the ideal end-users of these computational tools (e.g.,

pathologists and biological scientists) often lack the programming experience required for the

setup and use of these tools which often rely on the use of command line interfaces.

Methods We have developed Histo-Cloud, a tool for segmentation of whole slide images

(WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art

convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the

extraction of features from segmented regions for further analysis.

Results By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular

structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for

transfer learning, and effects of dataset variability. Finally, we demonstrate an application for

animal model research, analyzing glomerular features in three murine models.

Conclusions Histo-Cloud is open source, accessible over the internet, and adaptable for

segmentation of any histological structure regardless of stain.
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Plain language summary
Artificial intelligence (AI) is the abil-

ity of a computer to conduct complex

tasks that humans are capable of

performing. AI is useful in the field of

pathology, which involves analyzing

images of the microscopic structure

of different tissues. However, AI can

be difficult to set up and apply to the

task. One specific task, segmentation,

involves picking specific structures

out of tissue images and is a prime

candidate for automation with AI. In

our study, we have created a tool for

pathology image segmentation which

runs in the cloud (is accessible over

the web). We demonstrate the tool

by using it to segment various

structures from kidney tissue. Our

experiments show that the tool is

easy to use, accurate, and can esti-

mate the presence of one type of

scarring as reliably as human experts.
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Recent advances in machine learning techniques have led to
previously unachievable performance for image analysis
tasks. In particular, convolutional neural networks

(CNNs)1, a form of deep learning, have great potential for
impactful applications in the computational analysis of image
structures. Successful adoption of these tools to biomedical image
data promises a paradigm shift in both biological science and
healthcare2.

In the field of pathology, the practice of digitizing histological
slides has become common practice3, facilitating the application
of CNNs for analysis. Digitally scanned histology slides, known as
whole slide images (WSIs), are often gigapixels in size. Parsing
WSIs into biologically relevant sub-compartments (commonly
known as segmentation) is often an important first step for tissue
analysis and pathological examination4. Due to the size of WSIs
and the diversity of structures that can be present, downstream
machine learning tasks (such as slide classification) can also
benefit from segmentation, which can help limit the regions of
interest considered5.

CNNs have been successfully utilized by many research groups
for the segmentation of WSIs4–9. However, thus far tools to
segment WSIs have been complex to deploy and use, requiring
knowledge of the command line interface and computational
expertize10–12. The ideal user for these tools is the pathologist or
biological scientist, whose clinical workflow or research questions
could benefit from fast and accurate segmentation of relevant
structures2.

To address this gap, we have developed Histo-Cloud, a pow-
erful tool for the segmentation of WSIs and deployed it as a suite
of easy-to-use plugins using the Digital Slide Archive (DSA)13, an
open-source cloud-based WSI repository with a built-in slide
viewer. Histo-Cloud was designed with flexibility in mind and is
agnostic to tissue type or structure. Segmentation of new struc-
tures of interest is possible by retraining the CNN used for seg-
mentation, which can be conveniently performed within the
cloud interface.

Methods
Human data collection followed a protocol approved by the Insti-
tutional Review Board at University at Buffalo (STUDY00002731,
STUDY00003929, STUDY00004044, STUDY00004235, STUDY
00005089, and STUDY00005541) prior to commencement. Com-
putational image analysis is done in this study using retrospective
data qualified for a waiver of the consent process.

WSIs for GlomTrainSet, GlomTestSet 1, and GlomTestSet 4.
These datasets were used for the segmentation of glomeruli. This
dataset consists of both human and murine renal tissue WSIs
from various institutes as well as publicly available repositories,
using diverse stains and different scanners. The institutions
included the University of California at Davis (UC Davis), Johns
Hopkins University (JHU), Kidney Translational Research Center
(KTRC) at Washington University School of Medicine at St.
Louis (WUSTL), Seoul National University Hospital Human
Biobank (SNUHHB), Vanderbilt University Medical Center
(VUMC), University at Buffalo (UB), University Hospital
Cologne (UHC), and the publicly available Genotype-Tissue
Expression (GTEx) portal, a repository that hosts human
autopsy WSIs.

The GlomTrainSet consisted of 743 WSIs, 428 from humans
and 315 from murine tissues, containing a total of 61,734
manually verified glomerular annotations. GlomTestSet 1 con-
sisted of 100 holdout slides from the same data sources as
GlomTrainSet. This included 3816 glomeruli, 37.8 GB of
compressed image data, and a combined total of more than

0.24 trillion image pixels. GlomTestSet 4 contained an additional
1528 WSIs from the same sources that were used to study the
scalability and prediction time of the method.

The human renal tissues manifest disease pathology spanning
various stages of diabetic nephropathy; various classes of lupus
nephritis; renal transplant protocol biopsies, including time-zero,
protocol, and indication biopsy cases; human autopsy renal
tissues publicly available via GTEx with diversity in age, sex, and
race; and renal biopsies with pathologies that include membra-
nous nephropathy, thrombotic microangiopathy, pauci-immune
glomerulonephritis, focal segmental glomerulosclerosis (FSGS),
mesangiopathic glomerulonephritis, arteriolosclerosis, hyperten-
sion, IgA nephropathy, chronic tubulointerstitial nephritis, acute
tubular necrosis, Fabry disease, amyloid nephropathy, membra-
noproliferative glomerulonephritis, light chain cast nephropathy,
minimal change disease, post-infectious glomerulonephritis,
idiopathic nodular glomerulosclerosis, and anti-glomerular base-
ment membrane disease. The human data were collected in
accordance with protocols approved by Institutional Review
Board at the UC Davis, JHU, KTRC, WUSTL, SNUHHB, VUMC,
and UB. The SNUHHB data were shared under IRB number H-
1812-159-998.

Murine renal tissues included in GlomTrainSet and Glom-
TestSet 1 came from three different models. For the first model
wild-type, FVB/N mice were subjected to a combination of four
interventions that induce a post-adaptive form of FSGS. The
interventional process includes 0.9% saline drinking water,
angiotensin II infused via an osmotic pump, uni-nephrectomy,
and deoxycorticosterone delivered by implantation of a sub-
cutaneous pellet, summarized as the SAND model14,15. The
second model was a streptozotocin (STZ) diabetes murine model
that manifests nephropathy; a detailed description of this model is
discussed in our prior work16. The third model was a nephrin
knockdown (nephrin KD) murine model, was implemented using
a published protocol17, and shows mesangial hypercellularity
and sclerosis, glomerular basement membrane thickening, and
podocyte loss.

The tissues were sectioned at 2–5 µm thickness for staining and
imaging. The data consist of tissues stained with diverse
histological stains, including hematoxylin & eosin (H&E),
periodic acid-Schiff (PAS) with hematoxylin (PAS-H) counter-
stain, Silver, Trichrome, Verhoeff’s Van Gieson, Jones, and
Congo red. The slides were scanned using different brightfield
microscopy WSI scanners, including Aperio VERSA digital whole
slide scanner (Leica Biosystems, Buffalo Grove, IL), Nanozoomer
(Hamamatsu, Shizuoka, Japan), and MoticEasyScan Pro (Motic,
San Antonio, TX), at 40X resolution. The pixel resolution of the
images used was 0.13 to 0.25 µm.

WSIs for VessTrainSet, VessTestSet, and GlomTestSet 2. This
human dataset was used to test the adaptability of the model for
vessels. In total there were 939 annotated arteries, 6023 arterioles,
and 4507 glomeruli. VessTrainSet contained 226 renal tissue
WSIs. VessTestSet contained an additional 58 holdout slides.
Multiple stains per case were used. This dataset was manually
annotated for relevant structures to establish a ground-truth.

The renal tissue WSIs came from UHC via co-author J.U.B.
Diagnoses included thrombotic microangiopathy, hypertension-
associated nephropathy, and vasculitis. Tissues were sectioned at
2–3 µm thickness. Diverse histologic stains were used, including
H&E, PAS-H, Masson trichome, and Jones methenamine silver,
for staining the tissue to depict different pathobiological features.
A brightfield microscopy scanner Nanozoomer (Hamamatsu,
Shizuoka, Japan) was used for WSI scanning at 40X resolution.
The pixel resolution of the images used was 0.25 µm. Note that
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the VessTestSet dataset was used to construct the GlomTestSet 2
dataset to conduct the study discussed in Glomeruli segmentation
—scalability.

WSIs for IFTASet 1, IFTASet 2, IFTASet 3, IFTATestSet 2, and
GlomTestSet 3. These datasets were used for the segmentation of
IFTA. The human renal tissues for this part of the study came
from four institutions: the University of California, Davis; the
University of California, Los Angeles (UCLA); University of
Coimbra (Portugal); and University Hospital Cologne (UHC).

Tissues were obtained from renal allograft nephropathy with
no prior history of rejection. For this study, periodic acid-Schiff
(PAS)-stained renal tissue WSIs of renal allograft nephropathy
were used for training (IFTASet 1, n= 20; IFTASet 2, n= 48; and
IFTASet 3, n= 22). One slide was selected per case for each
institution. The WSIs per set were uniformly chosen from four
IFTA classes defined based on semiquantitative scores (ci/ct
scores: 0, 1, 2, and 3); ci/ct scoring is a method defined in Banff
2018 criteria18 for assessing IFTA in transplant biopsies. A
minimum of five slides per class were used for each set. The cases
were reviewed to ensure the following selection criteria were met:
(1) the amount of early or evolving IFTA with variable intermixed
edema was minimized, (2) no active inflammation, (3) no prior
history of rejection, and (4) cases were selected to represent the
full range of IFTA severity. All types of IFTA, including classic,
endocrinization, and thyroidization patterns, were included in the
analysis, without distinguishing between the types. IFTATestSet 2
was provided by UHC, and contained 17 WSIs. This dataset
followed similar case selection criteria as above with two slides
from class 0 and five slides each from the remaining three classes.

The human data were collected in accordance with protocols
approved by Institutional Review Boards at the UC Davis, UCLA,
University of Coimbra, and the University at Buffalo. Deidentified
images from UHC throughout this paper were used for
retrospective research, and such is permitted under German law
to conduct without IRB approval. The tissues were sectioned at
2–3 µm thickness and stained using PAS-H. Imaging was done
using different brightfield microscopy WSI scanners, including
Aperio CS virtual slide imaging system, Aperio AT2 (Leica
Biosystems, Buffalo Grove, IL), and Nanozoomer (Hamamatsu,
Shizuoka, Japan) at 40X resolution. Pixel resolution of the images
used was 0.25 µm. Note that the IFTATestSet 2 dataset was used
to construct the GlomTestSet 3 dataset to conduct the study
discussed in Glomeruli segmentation—scalability.

KPMP WSI dataset. This dataset was used to test the adaptability
of the model for IFTA. This part of the study used 26 renal tissue
biopsy whole slide images (WSIs) of 26 chronic kidney disease
(CKD) subjects from the Kidney Precision Medicine Project. The
selection of these slides followed the same criteria described in the
section above: WSIs for IFTASet 1, IFTASet 2, IFTASet 3,
IFTATestSet 2, and GlomTestSet 3. The recruitment sites were
Brigham & Women’s Hospital, Cleveland Clinic, Joslin Diabetes
Center/ Beth Israel Deaconess Medical Center, and the University
of Texas at Southwestern. The inclusion criteria for CKD subjects
for biopsy include subjects diagnosed with diabetic kidney disease
(type 1 or 2) and hypertensive kidney disease. For the former, the
subjects are included based on eGFR in the range of 30–59 mL/
min/1.73 m2 or eGFR ≥ 60 with urinary protein to creatinine
ratio (uPCR) >150 mg/g or urinary albumin to creatinine ratio
(uACR) >30 mg/g. For the latter, the subjects are included based
on eGFR in the range of 30–59 mL/min/1.73 m2 or eGFR ≥ 60
with uPCR in the range of 150–2000 mg/g or uACR in the range
of 30–2000 mg/g. The study is overseen by three independent
bodies, including a data safety monitoring board, a central

institutional review board (WUSTL), and an NIH-NIDDK con-
vened the external expert panel. More details about the rationale
and design of KPMP cases are available in a recent publication19.
The tissues were sectioned at 2–3 µm thickness, and the PAS-H
stained tissues were used for the study presented in this
work. Imaging was done using an Aperio GT450 brightfield
microscopy WSI scanner (Leica Biosystems, Buffalo Grove, IL) at
40X resolution. The pixel resolution of the images used was
0.25 µm.

WSIs for murine kidney tissue for the study discussed in
murine model analysis—utility. For this part of study three
murine model renal tissue WSIs were employed. These models
include an aging model, and two type 2 diabetic nephropathy
(T2DN) models (KKAy and Db/Db). We used eight mice (four
young and four old) WSIs for the aging model, 20 mice (ten
KKAy or disease and ten C57/BL6 or control) WSIs for the KKAy
model, and 14 mice (7 Db/Db or disease and 7 Db/m or wild-type
control) WSIs for the Db/Db model.

The aging studies were performed in 4-month-old and 21-
month-old C57/BL6 male mice obtained from the NIA aging
rodent colony20. For the KKAy model (see published
description21), male mice that develop spontaneous diabetes of
polygenic origin were used. For the Db/Db model, male mice with
a BKS background featuring a leptin receptor mutation were
used. These mice depict spontaneous/congenital diabetes due to
leptin signaling abnormalities22. Animal studies were performed
in accordance with protocols approved by the Institutional
Animal Care and Use Committee at the Georgetown University,
National Institutes of Health, JHU, and UB, are consistent with
federal guidelines and regulations, and are in accordance with
recommendations of the American Veterinary Medical Associa-
tion guidelines on euthanasia. Tissues were sectioned at 2–3 µm
thickness, and the PAS-H was used for staining. The slides were
scanned using different brightfield microscopy WSI scanners,
including Nanozoomer (Hamamatsu, Shizuoka, Japan) and
MoticEasyScan Pro (Motic, San Antonio, TX), at 40X resolution.
The pixel resolution of the images used was 0.25 µm.

Software. With the goal of developing a tool with class-leading
WSI segmentation accuracy as well as easy accessibility to com-
putational non-experts, we have integrated the popular semantic
segmentation network Deeplab V3+23 with the DSA13, an open-
source cloud-based histology management program. Specifically,
we have created a suite of easy-to-use plugins using HistomicsUI,
an application programming interface of the DSA for running
Python codes. These plugins efficiently run the DeepLab network
for native segmentation of WSIs, making testing new slides
accessible through the HistomicsUI graphical user interface (the
slide-viewing component of the DSA). Using the HistomicsUI
interface, users can interactively view the computational anno-
tations, and further refine such annotations for training new
models. The modified HistomicsTK-Deeplab codebase is available
via GitHub and also as a pre-built Docker image for easy
installation. This software is deployed in the cloud and is acces-
sible via the web, making it easily accessible to the community as
a plug-and-play tool (Fig. 1). The open-source plugins are
available to the digital pathology community for use and further
development.

Functionality. We have developed several plugin tools with
various functions. (1) The <Segment WSI> plugin (Fig. 1a) seg-
ments WSIs using a previously trained model. (2) The <Train-
Network> plugin can be used to train new models from a folder
of annotated WSIs (Fig. 1b). Histo-Cloud generates predictions as
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a series of image contours or sparse heatmaps which are written
to JavaScript Object Notation (JSON) format for display in His-
tomicsUI as annotation layers. The code is modular, with the
ability to handle multi-class segmentation, and includes the
option to tweak the network hyperparameters for advanced users.
We include the ability to ignore image regions (Supp. Fig. 5), this
is useful to exclude ambiguous image regions from the training
set, and may also be of interest for users who wish to only
annotate part of a large WSI. During training and testing, a
progress bar is shown so the user can gauge the time to

completion (Supp. Fig. 5). (3) Functionality was included for
conversion between JSON annotations and the XML format
(<IngestAperioXML> and <ExportAperioXML> plugins). The
XML format is used to display contours in Aperio ImageScope
(Leica, Buffalo Grove, IL) which is a popular WSI viewer. (4) The
<ExtractFeaturesFromAnnotations> plugin (see Fig. 1c) was built
for extraction of image and contour-based features from anno-
tated regions in the slides. The features are written into the slide
metadata (on DSA) in JSON format. For further data exploration,
features saved into the slide metadata can be plotted pairwise

Training Options

d

c

a b

200μm

400μm400μm0μm0μm

Fig. 1 The user interface of the segmentation tool (available via the web). a The left <Segment WSI > column shows the controls for the segmentation
plugin: <IO> is required arguments and <WSI Analysis> contains optional parameters. WSI stands for whole slide image and IO stands for Input/Output.
The right column shows the WSI viewer controls and annotations created by the plugin. The green annotations are computationally predicted and are
easily editable by the user. Slides are analyzed by clicking the <Submit> button in the top left corner. b The options from the <Train Segmentation
Network> plugin. Under the <IO> section, a user can specify a directory full of annotated WSIs to use for network training with the <Training Data Folder>
option, and where to save the trained model with the <Output Model Name> option. The <Training layers> option gives users the ability to choose which
annotation layers should be used for training and multi-class segmentation models can be trained. To speed up the training process, a previously trained
segmentation model can be used for transfer learning by specifying the <Input Model File>. Hyperparameters for training the network is automatically set
to defaults that work well but can be modified using the options in the <WSI Training Parameters> section. c shows the <Extract Features> plugin which
can be used to extract image and morphology features from annotated objects. These features are written to the slide metadata and can be plotted from
within the online interface via the <Metadata Plot> tab (on the right). d shows the welcome screen of the online interface athena.ccr.buffalo.edu.
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using a scatterplot tool available in HistomicsUI (Fig. 1c) for a
single slide or across a folder of WSIs. Features can also be saved
in spreadsheet format for local download and further analysis.

Computational model. We used the official implementation of
the Deeplab V3+ segmentation network23, modified to work
natively on WSIs. This implementation was accomplished by
adapting the way the network ingests data and extracting patches
from WSIs as needed during training using the large_image
Python library24. A similar method (HistoFetch) is described
more extensively in a recently published preprint25, which shows
on-the-fly patch extraction speeds and overall training time for
unsupervised tasks. The HistoFetch method was adapted in this
work to perform a supervised segmentation task by creating
additional patch selection criteria intended to proactively balance
uneven class distributions during patch extraction. Note that
during development the code was migrated to use large_image24

for reading WSI data rather than the openslide26 library, as the
former supports a larger number of slide formats. To convert the
ground-truth annotations to masks for semantic segmentation,
the HistomicsUI JSON annotations are converted into the Aperio
ImageScope XML format, and the XML_to_mask conversion
code from the original H-AI-L study7 was reused for generating
ground-truth masks. This code follows the way openslide and
large_image read WSI patches via specifying the location and
scale of the patches. The min and max indices of each contour
annotation are written into the metadata of the XML, allowing for
faster reference of which contours are in the image region
requested.

A flowchart providing an overview of this training input
pipeline is presented in Supp. Fig. 1. A similar pipeline is used
during prediction (segmentation of slides), but patches are
extracted deterministically from an overlapping grid pattern
(excluding non-tissue regions) to ensure full tissue segmentation.
The training and testing perform fast color thresholding of the
tissue region which is saved as a portable network graphics (PNG)
mask for reference (to avoid repeated operations). This process
ensures the network does not train on non-tissue regions, and
thus speeds the prediction process. During the development, we
found that occasionally providing the network with background
(non-tissue) patches helped generalize the batch normalization
parameters during training. We, therefore, implemented a
parameter that defines the probability of selection of patches
that may include the background region. Default of 0.1 was found
to work well in generalizing the batch normalization layers.

Iterative learning and annotation ingestion. In a previous study,
we showed that the human-in-the-loop annotation strategy sig-
nificantly reduces the annotation burden when developing a tis-
sue segmentation model7. This strategy uses a model trained on a
limited dataset to run inference on new slides, which are cor-
rected by an annotator. We find that the correction of compu-
tational annotations is faster than fully annotating newly added
data, reducing the amount of effort required to build a robust
training set. Additionally, this strategy allows the annotator to
constantly interact with the system, monitoring its performance,
and selecting slides where the model struggles the most for
incorporation into the training set.

Human-in-the-loop annotation is possible using Histo-cloud
through alternating use of the training and testing plugins.
Practically, we expect that most users will start an annotation
project from scratch and have made using pretrained ImageNet
weights the default behavior of the training plugin. However, if a
user would like to import data annotated in another system or
format, we have included the <IngestAperioXML> plugin (which

is described in the Functionality section above). This plugin is
capable of ingestion of data annotations in the Aperio XML
format and could be used to incorporate additional externally
annotated data.

If an advanced user wishes to convert previously annotated
data into the XML format for ingestion into the system, we direct
them to the mask_to_xml script: https://github.com/SarderLab/
Histo-cloud/blob/main/histomicstk/deeplab/utils/mask_to_xml.
py This script was developed for the conversion of rasterized
annotations into the XML format and is used internally by
Histo-Cloud for a display of network predictions in HistomicsUI.
For advanced users who wish to upload and manage XML
annotations from the command line interface, we have
also included scripts which satisfy these requirements in the
source code: https://github.com/SarderLab/Histo-cloud/tree/
main/batch_upload_xmls_to_girder_client.

Training and testing. Training of models was done on a server
equipped with two Intel Xeon Silver 4114 (10 core) processors,
with 64 GB RAM and dual Nvidia Quadro RTX 5000 graphical
processing units (GPU) with 16 GB of video random access
memory (VRAM). These resources allowed training with a batch
size of 12 using image patches of size 512 × 512 pixels. A batch
size of 12 is the minimum recommended for training the batch
normalization parameters in the DeepLab implementation
document. The Athena server (open for public use) has only one
GPU with 8 GB of VRAM. We have therefore disabled training of
the batch normalization parameters by default in the training
plugin (which can be enabled in the advanced parameter section)
and have set a default batch size of 2. All trained networks used a
base learning rate of 1e−3 with polynomial decay using the
momentum optimizer (momentum value= 0.9).

All models use the Xception 65 network backbone23, with
DeepLab parameters atrous_rates = 6, 12, and 18, output_stride=
16, and decoder_output_stride = 4 for both training and
prediction. The glomerulus model was trained for 400,000 steps
and was initialized using the ImageNet model. The vessel
segmentation models were trained for 100,000 steps, and the
IFTA segmentation models were trained for 50,000 steps using the
ImageNet model as a starting point for transfer learning. Details
on the trained models are outlined in Table 1.

As part of the input pipeline, WSI patches can be extracted
efficiently at downsampled resolutions. The patch downsample
rate is user-specified, and multiple downsample rates can be
specified during training, which are randomly cycled for patch
extraction. For training, downsample rates of 1, 2, 3, and 4 with
respect to the native slide resolution were used, a randomly
selected downsample rate from the list was used for each
extracted training patch. For prediction, a downsample rate of 2
was used for all experiments, we found this choice was a good
compromise between prediction speed and accuracy. We believe
that the multi-resolution training strategy helped the network to
generalize. We found the glomerulus model works equally well in
both 40X and 20X WSIs (both using a prediction downsample of
2). Further, the vessel segmentation model was trained using 40X
WSIs, and successfully applied to the 20X GTEx WSIs for testing.

Using a large patch size for prediction increased segmentation
performance, giving the network a larger field of view and
reducing-edge artifacts. For practical purposes, we settled on a
default patch size of 2000 × 2000 pixels. For prediction, it was
found that using a stride of 1000 pixels gave sufficient overlap
between extracted patches. During prediction, the indices of the
extracted patches are tracked, and the resulting bitmap prediction
is used to populate a full WSI mask using the similar method as
discussed in the original H-AI-L study7. To reduce the number of
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artifacts at the edge of the predicted patches, a parameter to
remove the border of the predictions was included. Practically
this parameter was set to remove 100 pixels from the border of
each prediction.

To improve speed and to keep the memory requirements of
code implementation low, network predictions are not up-
sampled. Instead, the coordinates of the extracted contours or
heatmap indices are up-sampled prior to JSON creation. Using
DeepLab parameters, namely, output_stride = 16 and decoder_-
output_stride = 4, result in a prediction bitmap that is 25% of the
size of the input resolution. With a default downsample of 2 used
for prediction, the resultant WSI mask is one-eighth of the size of
the pixel resolution of the original WSI. We found that 32 GB of
RAM is enough to successfully segment even very large slides.

When experimenting with the network logits for the generation
of the ROC plots (Fig. 4a, b), we converted the code to stitch the
patch predictions together by averaging the logits of overlapping
patches.

Statistical analysis. Intraclass correlation coefficient measure
(ICC)27,28 was used for the study shown in Fig. 4c, and corre-
sponding r with null hypothesis r= 0 vs alternative r > 0 was used
to measure significance. The ICC values were calculated using
two-way random effects, absolute agreement, and single rater/
measurement.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
To demonstrate Histo-Cloud’s performance characteristics and
segmentation potential, a variety of segmentation tasks from renal
biopsy WSIs were tested. For each task, performance was eval-
uated on holdout WSIs and independent test slides selected from
datasets never used for training. A description of the datasets used
for the studies below, including sources, disease pathology, tissue
thickness, staining, and image acquisition is available in the

Methods section and is summarized in Table 1. A list of abbre-
viations is listed in Supp. Table 1.

Histo-cloud. Using the simple cloud-based interface, users can
upload WSIs and train a segmentation network using their own
annotations (see Fig. 1b). Users can iteratively apply Histo-
Cloud’s training and prediction plugins in an active learning
framework, to build up powerful segmentation models with
reduced effort7. The segmentations produced by Histo-Cloud are
converted to contours or heatmaps for direct display on the WSIs.
When developing new segmentation models, the slide-viewing
environment of this tool enables rapid qualitative evaluation of
algorithm progress by displaying the network predictions
(Fig. 1a).

Going beyond segmentation, an included modular plugin
extracts features from segmented WSI tissue regions. These
features are written into the metadata of uploaded slides and can
be exported in spreadsheet form for further analysis. We have
included a plotting tool in the user interface of the online slide
viewer for quick exploration of these extracted features, Fig. 1c.

The source code can be run traditionally via the command line,
but we expect the majority of users will utilize the intuitive
HistomicsUI-based cloud interface (Fig. 1d). The source code is
available on GitHub at https://github.com/SarderLab/Histo-cloud
and packaged as a pre-built Docker image29 https://hub.docker.
com/r/sarderlab/histo-cloud. This data sharing allows for easy
deployment on a remote server for use as well as further
development by the community over the web. Additionally, a
publicly available instance of Histo-Cloud is available for the
community at: athena.ccr.buffalo.edu. All the models described
are available in the <Collections> section in the <Segmentation
models> folder on athena.ccr.buffalo.edu or at https://bit.ly/
3ejZhab. Documentation for using this tool is available at https://
bit.ly/3nNMpfH. A video overview of Histo-Cloud is available at
https://bit.ly/3r5GrZr.

Glomerular segmentation—scalability. To assess the computa-
tional scalability of Histo-Cloud during training, a network model
for glomeruli segmentation (glomerulus model) was trained using
a very large dataset of renal tissue WSIs, containing 743 WSIs

Table 1 Data used and models trained.

Tasks Structures
segmented

Models
trained

Initialization for
transfer learning

Training WSIs Holdout
test WSIs

Independent test WSIs Training steps

Data and models

Glomeruli
segmentation

Glomeruli Glomerulus
model

ImageNet 743 100 58 (GlomTestSet 2) 400,000
17 (GlomTestSet 3)

Vessel
segmentation

Glomeruli,
Arterioles,
Arteries

Random model 226 58 Qualitative assessment of
publicly available GTEx
tissue WSIs from
multiple organs

100,000
GTEx model
Glomerulus model
ImageNet

IFTA
segmentation

IFTA,
Glomeruli

Institution 1 ImageNet 12 29 17 (IFTATestSet 2) 50,000
Institution 2 ImageNet 24
Institution 3 ImageNet 12
Combined 1/3rd ImageNet 16
Combined full ImageNet 48

26 (KPMPTestSet)
Murine model
feature analysis

Glomeruli Used Glomerulus model for segmentation 4 old, 4 young 0
10 KKAy T2DN, 10 C57
control
7 Db/Db T2DN, 7 Db/M
control

Different segmentation tasks, corresponding trained models, segmented structures, an initial model used for transfer learning, whole slide images (WSIs) used for training, hold-out testing, independent
testing, and training steps. We note that GlomTestSet 2 is the same as the vessel segmentation holdout dataset (58 WSIs). GlomTestSet 3 is also the same as IFTATestSet 2 (17 WSIs).
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(GlomTrainSet). In total GlomTrainSet contained 1.8 trillion
image pixels. Network performance was evaluated on a holdout
set of 100 additional human renal tissue WSIs (GlomTestSet 1).
The computationally generated segmentation was robust when
compared with manual annotations for glomeruli and generated
the following statistics: F-score= 0.97, Matthews correlation
coefficient (MCC)= 0.97, Cohen’s kappa= 0.97, intersection
over union (IoU)= 0.94, sensitivity= 0.95, specificity= 1.0,
precision= 0.99, and accuracy= 1.0. This model also performed
robustly on two independent test WSI datasets (GlomTestSet 2
and 3) originating from an institution not included in the training
dataset with ground-truth established by a separate annotator
(MCC= 0.83 and 0.90 on GlomTestSets 2 and 3, respectively)
(Fig. 2a). Figure 2c shows examples of glomerulus segmentation

performance for a diverse set of glomerular pathologic changes
and histochemical stains.

We have found the performance of Histo-Cloud continually
improves while achieving high specificity when deployed in a
human-in-the-loop setting, using the method described in our
previous work H-AI-L7. This process allows experts to iteratively
correct the network predictions on holdout WSIs before incorpor-
ating them into the training set, and the subsequent training
reduces future annotation burden7. This process is facilitated due to
the ability of our system to view predictions interactively on the
WSIs via the web interface, which is helpful to determine WSIs
where the trained model struggles. We used this strategy to train the
glomerulus model iteratively and obtained a decreasing number of
incorrect segmentations with increasing iterations.
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Fig. 2 Glomeruli segmentation results—scalability study. a The segmentation performance of glomerulus model for glomeruli detection. Matthews
correlation coefficients were calculated for three renal tissue whole slide image (WSI) datasets, as specified in subsection Glomeruli segmentation—
scalability under the section Results. GlomTestSet 1 contained 100 WSIs holdout from the training set GlomTrainSet, GlomTestSet 2 had 58 WSIs, and
GlomTestSet 3 had 17 WSIs. Both GlomTestSet 2 and GlomTestSet 3 were from an institution independent of the institutions from where the training
dataset GlomTrainSet was formed for training the glomerulus model. Further, glomerular boundaries in GlomTestSet 2 and GlomTestSet 3 were annotated
by an independent annotator who was not involved in annotating glomeruli in GlomTrainSet. Each dot represents a WSI. Box plot elements: The plot starts
with the median as the centerline. Each successive level outward contains half of the remaining data. Namely, the first two sections out from the centerline
contain 50% of the data. After that, the next two sections contain 25% of the data. This continues until we are at the outlier level. Each level out is shaded
lighter. We used around 5–8 outliers in each tail. b shows the prediction time in minutes as a function of the WSI size in pixels for glomeruli predictions on
1528 WSIs in GlomTestSet 4. The color and size of the points represent the size of the automatically extracted tissue region of the slide (the analyzed
region) in pixels. The proposed glomerular segmentation model scales roughly linearly in time for increasing WSI size. Each dot represents a WSI. c A
batch of randomly selected glomeruli with the computationally segmented boundaries from the 100 holdout WSIs in GlomTestSet 1. This selection is
intended to highlight the diversity of pathology and staining of the holdout dataset. The scale bar is 50 µm.
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As part of the scalability study, the segmentation speed was
assessed. Prediction time as a function of WSI size was tracked on
a set of 1528 WSIs (median time= 4.7 min, median size= 1.9
Gigapixels) from a set that have similar diversity as in
GlomTrainSet, we refer to this set as GlomTestSet 4. Histo-
Cloud uses hardware acceleration on the host server to speed
processing and can segment a large histology section in as little as
1 min. The segmentation time depends (approximately linearly)
on the size of the tissue section; Fig. 2b quantifies segmentation
speed as a function of image pixels on WSIs from GlomTestSet 4.
The algorithm performs fast thresholding of the tissue region
within the slide to reduce the computational burden for slides
with large non-tissue areas. There is a slight programmatical
overhead when opening, caching, and streaming data from larger
slides, this appears as a gentle upslope of points of the same color
in Fig. 2b.

Vessel segmentation—adaptability. To evaluate the adaptability
of Histo-Cloud for segmenting multiple structures from WSIs, we
retrained the glomerulus model to segment glomeruli, arterioles,
and arteries. The training set is referred to as VessTrainSet, and
the test set is VessTestSet.

Transfer learning is a machine learning technique where a
model developed for one purpose is retrained for another
purpose30. Using the glomerulus model as the starting point for
transfer learning, MCC of 0.91, 0.66, and 0.84 were obtained for
segmenting glomeruli, arterioles, and arteries, respectively. The
MCC metric was computed based on a pixel-wise agreement
between computational segmentation and manual ground-truth.
To study the effect of transfer learning on segmentation
performance, we trained another model by randomly initializing
the network parameters (random model); performance decreased
to MCC of 0.55, 0.22, and 0.54, respectively, in segmenting the
compartments.

We further explored the possibility of improving the
computational performance without access to a model trained
from a large segmented dataset. Toward this goal, we used the
Genotype-Tissue Expression dataset (GTEx)31, which contains
15,989 H&E stained WSIs from 40 different tissue types, to pre-
train a segmentation model to detect the tissue type. This was
accomplished without any human annotation, by thresholding
the tissue region of each slide and training a model to classify the
tissue type of each slide. The goal was to create a model for
transfer learning which had been exposed to diverse tissue
morphologies, and therefore had learned filters useful for
more fine-grained segmentation tasks. While transfer learning
using the resulting model (GTEx model) did improve the
segmentation performance of glomeruli, arteries, and arterioles
(MCC= 0.77, 0.44, and 0.62, respectively) over random initi-
alization, performance was below that achieved using the
glomerulus model.

Finally, we trained a fourth model, transfer learning with a
model pretrained on the ImageNet32 dataset, this same model was
originally used to train the glomerulus model. Surprisingly, this
model (ImageNet model) achieved the segmentation performance
comparable to the glomerulus model (MCC= 0.91, 0.66, and
0.86, respectively). A more detailed comparison of these results is
shown in Fig. 3a, with randomly selected holdout predictions
from VessTestSet in Fig. 3b. To explore the performance of the
ImageNet model on an independent test set, we segmented GTEx
WSIs from different organs, examples are shown in Fig. 3c.

Interstitial fibrosis and tubular atrophy (IFTA) segmentation
—adaptability. To further evaluate the adaptability of Histo-
Cloud, the effect of dataset variability on the segmentation of

IFTA was studied in a distributed setting; namely, our web-based
setup (in cloud). IFTA is morphological changes in the
renal cortex reflecting “chronic” injury with resultant scar for-
mation and is an important indicator to predict renal disease
prognosis9.

To generate a ground-truth, three pathologists provided WSIs
from their institutions and manually annotated IFTA. Past
studies have shown significant disagreement among pathologists
in manually annotating IFTA9. To minimize such disagreement,
the pathologists used the definition of IFTA based on Banff 2018
criteria18, and also collaborated via our web-based tool in a
distributed setup for IFTA annotation. Further, the inclusion
criteria of cases (discussed in the Methods—WSIs from IFTASet
1, IFTASet 2, IFTASet 3, IFTATestSet 2, and GlomTestSet
3 section) minimized the variability of the annotation process.

A holdout dataset was randomly selected by pooling one-third
of the slides from each institution (n= 29). We refer to this set as
IFTATestSet 1. Another dataset from a fourth institution
(IFTATestSet 2, n= 17) was used for independent testing. A
pathologist from this fourth institution manually annotated IFTA
in IFTATestSet 2 to generate the ground-truth.

We trained five models for IFTA segmentation using the
pathologist-provided ground-truth: the first three models were
trained using slides from a single institution—IFTASet 1
(12 slides), IFTASet 2 (24 slides), and IFTASet 3 (12 slides).
We refer to these as Institution 1, 2, and 3 models respectively.
The fourth model used the combined training data from all the
three sets (48 slides), referred to as Combined full. A final model
used 1/3rd of this combined set (16 WSIs), ensuring the amount
of training data was comparable to the first three models. This
model is referred to as Combined 1/3rd.

To better assess the performance of the trained models, we
output the network logits (predictions prior to using the argmax
function) which were used to construct ROC plots for each
model. This process allowed us to display IFTA predictions as
heatmaps in HistomicsUI (Fig. 4d). Interestingly on IFTATestSet
1 training with 1/3rd of the combined dataset (Combined 1/3rd
model) yielded better IFTA segmentation (AUC= 0.93) than
training with a single institution dataset alone (Fig. 4a) (AUC=
0.78, 0.76, and 0.91 for models Institutions 1, 2, and 3,
respectively). When we tested the Combined full model, the
performance improved to AUC= 0.95. The same trend was
observed when segmenting IFTA in the independent test set
IFTATestSet 2 (Fig. 4b), with AUC= 0.68, 0.75, and 0.83 for
models Institution 1, 2, and 3, respectively, AUC= 0.86 for
Combined 1/3rd model, and AUC= 0.88 for Combined full
model.

The IFTA segmentation models were trained to simultaneously
segment IFTA and glomeruli. We observed the same performance
trend for glomerulus segmentation via the IFTA models in both
IFTATestSet 1 and 2; these results are available in Supp. Fig. 2.
The ROC plots (generated by thresholding the network logits) for
all the glomeruli, artery, and arteriole segmentations conducted in
this work are shown in Supp. Fig. 5.

To demonstrate the robustness in another independent cohort
and compare the trained model to a visual manual estimation of
IFTA done in the clinical setting, we used an additional 26 PAS-
stained chronic kidney disease renal biopsy cases from the Kidney
Precision Medicine Project (KPMP)33 consortium. We refer to
this set as KPMPTestSet. Three KPMP pathologists, provided a
percent IFTA score to the nearest 10 percent for each slide
following Banff 2018 definitions18. This scoring was done via
visual estimation, without any annotation on the slides. The five
IFTA segmentation models discussed above were used to segment
IFTA boundaries in the KPMPTestSet, percent IFTA was
estimated as segmented IFTA area over total renal cortex area,
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Fig. 3 Vessel segmentation results—transfer learning study. a Segmentation performance as a function of network initialization (measured as Matthews
correlation coefficient [MCC]) for the VessTestSet (58 holdout WSIs). The ground-truth annotations of structures were generated for segmenting three
classes: glomeruli, arterioles, and arteries. The colors represent different transfer learning sources for parameter initialization. Namely, the glomerulus
model is the model originally used for glomerular segmentation results in Fig. 2, offering MCC= 0.91, 0.66, and 0.84 for segmenting glomeruli, arteriole,
and arteries, respectively. The random model does not use transfer learning for parameter initialization, offeringMCC= 0.55, 0.22, and 0.54 in segmenting
the three respective compartments. GTEx (genotype-tissue expression) model is a model originally trained to identify the diverse tissue types from the
publicly available GTEx tissue WSI dataset (15,989 WSIs with 40 different tissue types), offering MCC= 0.77, 0.44, and 0.62 for the segmenting three
respective compartments after transfer learning. ImageNet model uses a model pretrained on the ImageNet dataset, offeringMCC= 0.91, 0.66, and 0.86 in
segmenting the three respective compartments. Each dot in the box plot represents a WSI. Box plot elements: The plot starts with the median as the
centerline. Each successive level outward contains half of the remaining data. Namely, the first two sections out from the centerline contain 50% of the
data. After that, the next two sections contain 25% of the data. This continues until we are at the outlier level. Each level out is shaded lighter. We used
around 5–8 outliers in each tail. b shows randomly selected crops of WSIs from the holdout set (VessTestSet) with computational segmentations by the
model trained based on the ImageNet model as the starting point. The scale bar is 150 µm. c shows randomly selected crops of various types of tissues
from GTEx WSIs, computationally segmented using the model trained based on the ImageNet model. Despite being trained only on kidney tissues, the
trained model is able to segment arteries and arterioles in diverse tissue types. We also note that the GTEx slides are autopsy tissues scanned at 20X, and
the training set for this study VessTrainSet was scanned at 40X, and did not contain autopsy tissue WSIs. The scale bar is 300 µm.
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and the resulting computationally estimated scores were corre-
lated with the manual visual estimation. Figure 4c shows a
confusion matrix describing intraclass correlation coefficients
(p value < 0.05) between pathologists and the computer for the
Combined full model. We found that the correlation measures
among pathologists and the computer models were excellent as
per the convention provided by ref. 34, and thus is comparable.
Supp. Fig. 4 shows a full comparison of the five IFTA
segmentation models and each KPMP pathologist, the raw data
for this calculation is available in Supp. Table 2. Figure 4d depicts
examples of qualitative IFTA segmentation performance.

Murine model analysis—utility. Finally, we show the utility of
Histo-Cloud in a basic research application, analyzing digital
image features extracted from computationally segmented glo-
meruli (via the Glomerulus model) from three murine models. A
description of the models used is available in Methods—WSI
from murine kidney tissue.

WSI from each model contained multiple sections obtained
from one murine, with an average of 90–200 glomeruli
per section. For the current analysis, we extracted 315 engineered
image features from each segmented glomerulus. Feature
definitions and quantification methods are discussed in our prior
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Fig. 4 Interstitial fibrosis and tubular atrophy (IFTA) segmentation results—multi-institute study. a Receiver operating characteristic (ROC) plots
showing the segmentation performance of five trained IFTA models on 29 holdout whole slide images (WSIs), IFTATestSet 1. Models—Institution 1,
Institution 2, and Institution 3 were trained using datasets from three different institutions (with 12, 24, and 12 WSIs respectively). The Combined full
model was trained by pooling these three datasets (48 WSIs). The Combined 1/3rd model used 1/3rd of the pooled training set, randomly selected (16
WSIs). This last model yielded better IFTA segmentation performance than the first three models, highlighting the importance of dataset diversity. The
combined full model offered slightly better performance than the Combined 1/3rd model. b shows the performance of the five models on the independent
test dataset IFTATestSet 2 with 17 WSIs. This dataset originated from an independent institution than those used in [a] and was annotated by an
independent annotator. We observed the same performance trend as in [a]. c shows the pairwise Intraclass correlation coefficients (ICC) (p value < 0.05)
for percent IFTA scored visually by three additional annotators and estimated based on computational segmentation using the Combined full model
(computer) for the 26WSIs in KPMPTestSet. The kidney precision medicine project (KPMP) cohort acted as another independent test set which was never
seen by our trained model. d shows computational IFTA predictions using the Combined full model on the holdout WSIs IFTATestSet 1. The left shows the
traditional contour predictions, the right shows the corresponding heatmap predictions developed specifically for structures with poorly defined
boundaries.
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work5, a description is also available in Supp. Data 7. The features
were selected to reflect active, present, and physical manifesta-
tions of kidney pathophysiology. We used an unsupervised
uniform manifold approximation and projection (UMAP)35 to
learn a two-dimensional manifold in the feature space (perform-
ing dimensionality reduction). Each glomerulus was plotted (with
label) in this space to visualize the separability between classes
(control vs disease) in each murine model (Fig. 5). To quantify
this separability, we trained a K-nearest neighbor (KNN)36

classifier using the UMAP features with fivefold cross-validation
and computed the optimal Cohen’s kappa achieved over multiple
K for each murine model (Fig. 5d). Overall, we found the aging,
KKAy, and Db/Db diabetes models to have good unsupervised
class separability (Fig. 5a–c). We also applied Seurat37 software to
analyze the image feature data and to characterize differential
feature abundance. The distribution of the top feature separating
control from disease, and the most representative glomeruli
image patches depicting differences between these two classes are
shown in Fig. 5.

Discussion
In this work, we contribute three elements to the digital pathology
community to advance tissue analysis: an online tool, the source

code, and trained segmentation networks. We believe that easy-
to-use AI tools and collaborative development of powerful models
will benefit the digital pathology research community.

This work was motivated by our previously developed Human-
AI-Loop (H-AI-L)7 which allows for iterative annotation of WSIs
significantly reducing the annotation burden. As most work in
computational pathology, H-AI-L has found limited utilization by
the pathology research community due to the complexities of
installation. To address this limitation, we implemented Histo-
Cloud as an online tool which does not require the installation of
any software on the user’s local computer. All processing occurs
on the remote server, which hosts the web client. Like the original
H-AI-L work, we use the DeepLab segmentation network23 for
processing image patches, but Histo-Cloud uses on-the-fly pro-
cessing of WSI patches, streaming data directly from the slides to
increase the tool’s performance and scalability. Data permissions
(set via the digital slide archive—DSA13) can be adjusted to keep
uploaded data secure.

Annotation done interactively on the WSI fits easily into
pathologist workflow, and the cloud-based nature of Histo-Cloud
abstracts any computational overhead away from the end-user.
Annotation can be done on any internet-connected device
without any software installation. If the user prefers to annotate
locally, we have added options to ingest and export annotations in
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Fig. 5 Murine model glomerulus feature analysis—utility study. Feature analysis from glomeruli segmented from renal tissue whole slide images (WSIs)
from three murine models: a is an aging model and b, c are two type 2 diabetic nephropathy (DN) models (KKAy and Db/Db). In each panel, the left plot
shows an unsupervised uniform manifold approximation and projection for dimension reduction (UMAP) representations of 315 engineered image features
extracted from the murine glomeruli, where the glomeruli were segmented using the glomerulus model. Here each dot is a glomerulus and the red and blue
colors differentiate the disease from the control. Definitions and quantification strategy of the 315 engineered image features are available in our prior
work5. The right plot shows the highest differentially expressed feature as predicted using the Seurat software37. The representative glomeruli from each
murine class depicting this differentially expressed feature, and the feature value, are shown on the right for each murine model. Each dot in the UMAP and
violin plots in [a–c] represents a WSI. d shows a K-nearest neighbors (KNN) classifier performance plotting the Cohen’s Kappa measure as a function of K
neighbors for classifying the unsupervised UMAP features with respect to disease vs control status for the murine models. This analysis was done using
tenfold cross-validation using a similar method as formalized in a previous work35. Definitions of the 315 features are provided in Supp. Table 2. This study
suggests that the seamless segmentation of glomeruli from large WSIs using our tool facilitates conducting deep glomerular feature analysis to study novel
murine models.
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an extensible markup language (XML)38 format readable by the
commonly used WSI viewer Aperio ImageScope39. The authors
note two complimentary works: HistomicsML40 and Quick
Annotator41, both use superpixels42 and active learning43 to
speed the annotation process. HistomicsML also uses Histo-
micsUI for deployment, and Quick Annotator is run locally in the
QuPath slide viewer44. A future extension of our tool will com-
bine edge detection and snapping45 to speed up the initial seg-
mentation by human annotators.

Conducting the transfer learning study using the GTEx tissue
histology WSIs (Fig. 3a) (15,989 WSIs containing 2.6 trillion total
image pixels, 4.7 TB of data) and training the glomerulus model
for glomeruli segmentation (Fig. 2a) (743 WSIs, 1.8 trillion pixels,
276 GB) were stress tests for scalability. Setting Histo-Cloud’s
accessibility benefits aside, the study of glomeruli segmentation
(Fig. 2) not only uses the largest most-diverse cohort of WSIs, but
also reports the best performance in the literature for glomerular
segmentation. In our previous work on H-AI-L7 we trained
Deeplab-v246 using a dataset of 13 PAS and hematoxylin and
eosin (H&E) stained murine WSIs containing 913 glomeruli, and
achieved an F-score= 0.92. Kannan et al.47 used Inception-V348

for the sliding window classification of glomeruli with a set of 885
patches from 275 trichrome-stained biopsies and reported
MCC= 0.63. Bueno et al.49 trained U-net6 with 47 PAS-stained
WSIs and reported Accuracy= 0.98. Gadermayr et al.50 used 24
PAS-stained murine WSIs to train U-net6, reporting Preci-
sion= 0.97 and Sensitivity= 0.86.

Jayapandian et al.51 present the most comprehensive results on
glomeruli segmentation, training U-net6 on a dataset containing
1196 glomeruli from 459 human WSIs stained with H&E, PAS,
Silver, and Trichrome, reporting F-score= 0.94. However, their
analysis is limited to glomeruli with minimal change disease52. In
contrast, our training dataset (GlomTrainSet) contained a large
dataset of 743 WSIs from both humans and mice, stained with
diverse histological stains, with 61,734 total glomeruli, from
diverse disease pathologies beyond minimal glomerular changes.
The holdout dataset GlomTestSet 1 contained similar diversity
(Fig. 2c). Our trained model also performed well on independent
test datasets GlomTestSet 2 and 3 (Fig. 2a). Predictably, perfor-
mance on GlomTestSet 2 and 3 (which contain slides from
institutions never seen during training) was lower than the
holdout dataset. Despite this, a visual assessment of the inde-
pendent test set segmentation by expert pathologists was favor-
able. The modularity of Histo-Cloud will allow others to adapt
the trained model to include more structurally abnormal
glomeruli.

When testing the effectiveness of transfer learning, we found
that adapting the ImageNet model for segmenting glomeruli,
arteries, and arterioles using the VesselTrainSet, performed
equivalently to using the glomerulus model as the starting point.
The ImageNet model was trained on thousands of natural image
classes and is widely used in computer vision literature as a
generalized feature extractor32. It is surprising that despite having
refined its convolutional features on renal tissue the glomerulus
model did not offer a performance improvement for another
renal tissue segmentation task. This result suggests that it may be
better to start network training using the ImageNet parameters
which offer a very generalized set of features more applicable to
the segmentation of any tissue type (this is now the default for
training Histo-Cloud models in the cloud). Encouragingly, when
applying the developed vessel segmentation model to different
tissue types from the publicly available GTEx tissue WSIs31, the
segmentation of arteries and arterioles was found to be consistent
with expert opinion (Fig. 3c).

Perhaps the most interesting aspect of a cloud-based segmen-
tation tool is the ease of crowdsourcing annotation and

developing collaborative models across centers or institutions53.
As discussed above and also known that manual annotation of
IFTA boundaries by multiple pathologists suffer from a high
degree of disagreement9. In contrast, Histo-Cloud’s web-based
system allowed the annotators to view each other’s annotations in
annotating IFTASet 1, 2, and 3, and IFTATestSet 2 for the multi-
institute IFTA study (see IFTA segmentation—adaptability under
Results). We further note that visualizing IFTA prediction con-
fidence using heatmaps was more reflective of the underlying
biology than using contours, confirmed by subject matter experts
via visual assessment. Namely, a heatmap depicts a probability,
which is more informative than contours, which display binary
predictions. Examples of IFTA segmentations on the holdout data
IFTATestSet 2 as both contours and heatmaps are shown in
Fig. 4d. The functionality to output segmented regions as heat-
maps is available using the segmentation plugin.

The IFTA segmentation study further highlights the impor-
tance of training set diversity. Training using data from more
institutions improved segmentation performance, even when less
WSIs from each institution were used. Namely the performance
of the Combined 1/3rd model in comparison to Institution 1,
Institution 2, and Institution 3 models (see IFTA segmentation—
adaptability under Results). This and the results described in the
previous paragraph suggest a cloud-based environment is ideal
for the development of models for histology segmentation,
avoiding bias and allowing easy interaction between annotators
for generating ground-truth by centralizing data from multiple
institutions. Users can choose to pool their data or simply utilize
models trained by others to aid in annotation or for transfer
learning.

Finally, the murine model analysis case study suggests that our
tool will enable basic science laboratories working on murine
experiments to study differential abundant image features in
various disease models as well as in treatment groups. In sum-
mary, the analytic approaches described here will enable
researchers who lack software engineering skills to analyze his-
topathology from murine models or human tissue, using an
intuitive online cloud-based framework. In the future, we plan to
extend the capabilities of Histo-cloud to include instance seg-
mentation as well as classification of tissues.

Data availability
The digital pathology WSI data are in.svs or.scn format which uses lossless compression
to represent the information content in images in pyramidal form. Images used in this
work can be accessed based on shared data from our earlier publications; namely, from
https://bit.ly/3PmcO1F5, https://bit.ly/3eywm0J9, https://bit.ly/3e6XZzs54, and https://
goo.gl/cFVxjn7. Further, the dataset from the KPMP consortium is openly available via
https://www.kpmp.org/available-data. The KPMP renal tissue biopsy WSI database
contains more than 1000 WSIs and can be used for validating as well as additional
training of the computational tools developed in this article. Moreover, a running
instance (Athena) of Histo-Cloud is available for public testing and select WSIs have
been made available via this public instance. Links to these resources can be found in the
Introduction—Histo-Cloud section. We also include Supp. Data 1–6 in.xlsx format to
provide the source data used for generating graphs and plots in Figs. 2–5 as well as Supp.
Figs. 2, 3, respectively. Other reasonable requests for data can be submitted to the
corresponding author, and the data will be shared following local institutional regulatory
requirements.

Code availability
The source code can be run traditionally via the command line, but we expect most users
will utilize the intuitive HistomicsUI-based cloud interface (Fig. 1d). The source code is
available on GitHub at https://github.com/SarderLab/Histo-cloud and packaged as a pre-
built Docker image29 https://hub.docker.com/r/sarderlab/histo-cloud. This data sharing
allows for easy deployment on a remote server for use as well as further development by
the community over the web. Additionally, a publicly available instance of Histo-Cloud is
available for the community at: athena.ccr.buffalo.edu. All the models described are
available in the <Collections> section in the <Segmentation models> folder on
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athena.ccr.buffalo.edu or at https://bit.ly/3ejZhab. Documentation for using this tool is
available at https://bit.ly/3nNMpfH. A video overview of Histo-Cloud is available at
https://bit.ly/3r5GrZr. The code at the time of publishing is archived on Zenodo55.
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