
  

UNIVERSITY OF CALIFORNIA, SAN DIEGO 

Parallel Computation with Fast Algorithms for Micromagnetic 

Simulations on GPUs 

 

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor 

of Philosophy 

 

in 

 

Electrical Engineering (Electronic Circuits and Systems) 

 

by 

 

Sidi Fu 

 

Committee in charge: 

Professor Vitaliy Lomakin, Chair 

Professor Prabhakar R. Bandaru 

Professor Eric E. Fullerton 

Professor Zhaowei Liu 

Professor Ross C. Walker 

 

 

2016 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Sidi Fu, 2016 

All rights reserved.



  

iii 

 

 

 

 

SIGNATURE PAGE 

 

The Dissertation of Sidi Fu is approved, and it is acceptable in quality and form for 

publication on microfilm and electronically: 

 

________________________________________________________________________ 

 

________________________________________________________________________ 

 

________________________________________________________________________ 

 

________________________________________________________________________ 

 

________________________________________________________________________ 

Chair 

 

 

 

University of California, San Diego 

2016 



  

iv 

 

DEDICATION 

To my mother Kun Zhao, my father Xiaojun Fu  

and  

my dear Yan Jiao. 

 

  



  

v 

 

TABLE OF CONTENTS 

SIGNATURE PAGE ............................................................................................ iii 

DEDICATION...................................................................................................... iv 

TABLE OF CONTENTS ..................................................................................... v 

LIST OF FIGURES ........................................................................................... viii 

LIST OF TABLES .............................................................................................. xii 

ACKNOWLEDGEMENTS .............................................................................. xiii 

VITA.................................................................................................................... xvi 

ABSTRACT OF THE DISSERTATION ....................................................... xvii 

1. Introduction .................................................................................................. 1 

1.1. Introduction to Micromagnetics .............................................................. 1 

1.2. The Landau-Lifshitz-Gilbert Equation ................................................... 3 

1.3. Governing Micromagnetic Interactions .................................................. 5 

1.3.1. Magnetostatic Interaction ................................................................... 5 

1.3.2. Magnetocrystalline Interaction ........................................................... 7 

1.3.3. Exchange Interaction .......................................................................... 8 

1.3.4. Zeeman Interaction ............................................................................. 9 

1.3.5. Other Interactions ............................................................................... 9 

1.4. Finite Difference Methods and Finite Element Methods ...................... 10 

1.5. FastMag: A Fast and Accurate Micromagnetic Solver ......................... 12 



  

vi 

 

2. Parallel Computation on GPU .................................................................. 16 

2.1. Introduction to GPU Computing ........................................................... 16 

2.2. GPU Programming Model .................................................................... 18 

2.3. GPU Programming Points..................................................................... 22 

2.4. GPUs on Various Platforms .................................................................. 25 

2.4.1. GPU in Desktops and Laptops ......................................................... 25 

2.4.2. GPUs in Servers/Clouds ................................................................... 27 

2.4.3. GPUs in Embedded Systems ............................................................ 29 

2.4.4. Numerical Results ............................................................................ 31 

2.5. GPUs in Micromagnetics ...................................................................... 36 

3. Fast Algorithms for Micromagnetic Field Evaluation ........................... 39 

3.1. Fast Magnetostatic Field Evaluation ..................................................... 40 

3.1.1. NUFFT for Finite Element Method ................................................. 41 

3.1.2. A Scalar Potential Approach for Finite Difference Method ............ 48 

3.1.3. GPU OOMMF with Tensor Approach ............................................. 55 

3.2. Fast Exchange Field Evaluation............................................................ 58 

3.2.1. Acceleration Strategy ....................................................................... 60 

3.2.2. Implementation of the computation ................................................. 67 

3.2.3. Numerical Results ............................................................................ 70 

4. Fast Algorithms for Time Integration In Micromagnetic Solvers ........ 80 

4.1. Explicit and Implicit Time Integration Methods .................................. 81 

4.2. Linear multi-step methods and Runge-Kutta Methods ......................... 83 



  

vii 

 

4.3. The Time Integration Methods in FastMag .......................................... 85 

4.4. Stiffness Problem and Preconditioning Methods .................................. 87 

4.5. Block-diagonal Preconditioning Method .............................................. 89 

4.6. Numerical Results ................................................................................. 94 

5. Micromagnetic simulations of Advanced Magnetic Media and 

Recording Systems ................................................................................... 110 

5.1. A Brief History of Magnetic Media and Recording Systems ............. 111 

5.2. Perpendicular Magnetic Recording..................................................... 114 

5.3. Discretized Cap Model of Magnetic Media ........................................ 116 

5.3.1. Discretized Cap Layer Modeling ................................................... 117 

5.3.2. Discretized Cap Layer Models ....................................................... 120 

5.3.3. GPUs Implementation .................................................................... 121 

5.3.4. Numerical Results .......................................................................... 121 

6. Summary and Future Directions ............................................................ 127 

6.1. Summary ............................................................................................. 127 

6.2. Future Directions ................................................................................ 129 

6.2.1. Novel Parallel Computing Systems................................................ 129 

6.2.2. Full GPU Implementation of FastMag ........................................... 130 

Bibliography ...................................................................................................... 132 

 

  



  

viii 

 

LIST OF FIGURES 

Figure 1.1: (a) Magnetization processing around the effective field; (b) Magnetization 

processing around the effective field with damping effect; (c) Action of arbitrary torque 

on the magnetization [3]. .................................................................................................... 4 

Figure 1.2: A magnetic dipole moment generates magnetic fields that form closure loops.

............................................................................................................................................. 5 

Figure 1.3: Vortex state formed in the magnetic cube [9]. ................................................ 7 

Figure 1.4: Skyrmion simulated by FastMag................................................................... 10 

Figure 2.1: One of the latest Nvidia GPUs, GTX 1080. .................................................. 17 

Figure 2.2: (a) Serial application vs. (b) parallel applications. The dependence between 

operations in (a) closes the opportunity for parallelization. ............................................. 18 

Figure 2.3: CUDA programming model. ......................................................................... 19 

Figure 2.4: Programming models: (a) CPU programming model: task parallel; (b) GPU 

programming model: data parallel. ................................................................................... 21 

Figure 2.5: Comparison of a C program and a CUDA program working on vector adding.

........................................................................................................................................... 22 

Figure 2.6: CPU and GPU brief-architecture: the CPU and GPU have separate memories. 

CPU focus more on powerful ALUs, while GPU focuses more on massive data 

processing. ........................................................................................................................ 24 

Figure 2.7: Theoretical peak performance in single precision. (The data for 2016 is 

preliminary.) [35]. ............................................................................................................. 26 

Figure 2.8: GPUs in the cloud computing [39]. ............................................................... 28 



  

ix 

 

Figure 2.9: Computational power comparison between desktop GPUs and embedded 

chips [6]. All chips shown are from Nvidia, and dual GPUs are not included for fair 

comparison. Data collected from open-source benchmarks [42]. ..................................... 30 

Figure 2.10: Comparison of performance, power efficiency and cost efficiency among 

desktop multi-core CPU, Desktop GPU (GTX 690) and Mobile GPU (Jetson TK1). The 

baselines of three criteria are normalized to 1. Performance results are based on 

micromagnetic simulations. .............................................................................................. 36 

Figure 3.1: Projection step of NUFFT. The randomly distributed source (green triangle) 

is projected to the uniform surrounding grid points.......................................................... 44 

Figure 3.2: FFT step of NUFFT. Demonstrate FFT to compute the convolution from 

source grids to observer grids. .......................................................................................... 45 

Figure 3.3: Back projection step of NUFFT. Interpolate the FFT results from previous 

step (red circles) to the non-uniformly distributed observers (red star). ........................... 46 

Figure 3.4: Near-field correction step of NUFFT. Subtract the FFT results from the 

nearby grids and then add analytical results back. The accuracy of the NUFFT method is 

guaranteed by this step and is tunable by defining the range of the nearby boxes (the 

range of the light green boxes).......................................................................................... 47 

Figure 3.5: The numerical error of GPU implementation for the magnetostatic field by 

the scalar potential method and tensor method as a function of discretized grid cell size. 

Both methods show a quadratic convergence. .................................................................. 53 

Figure 3.6: Simulation time per time step for the scalar potential method and tensor 

method as a function of problem size. The scalar method is faster than tensor method and 

both results fit well with the O(NlogN) trend. .................................................................. 54 

Figure 3.7: Runtime per time step for OOMMF on CPU and GPU as a function of the 

number of discretization cells N. The time for the magnetostatic field computation on the 

GPU is also included. The computation for the magnetostatic field takes most of the run 

time in the GPU implementation. ..................................................................................... 56 

Figure 3.8: GPU and multi-core CPU speed-up of OOMMF implementation as a 

function of the number of discretization cells N. An increase in the speed-up with N is 

observed. ........................................................................................................................... 57 



  

x 

 

Figure 3.9: An example of the sparse matrix CSR format............................................... 61 

Figure 3.10: Spy-plots of one sparse matrice before and after sorting. (a) spy-plot of 

unsorted sparse matrix (b) spy-plot of the sorted sparse matrix with box-sorting method 

(c) spy-plot of the sorted sparse matrix with RCM sorting method. ................................ 63 

Figure 3.11: Run-time streaming of an 8 streams with 2 flying streams implementation 

shown in Nvidia Visual Profiler. Yellow strips represent the memory transfer and green 

strips represent kernel computation. ................................................................................. 65 

Figure 3.12: Schematic view of a magnetic write head. .................................................. 75 

Figure 4.1: Clustered mesh nodes in various applications: a) magnetic thin films, b) 

magnetic write-head pole tip, c) magnetic particles. ........................................................ 89 

Figure 4.2: Identification of the blocks from the coefficient matrix. The spy-plot (left) of 

the coefficient matrix extracted from the corresponding tetrahedral mesh (right) is 

exhibited. ........................................................................................................................... 91 

Figure 4.3: Geometry and the mesh of the magnetic thin film test-case. ........................ 95 

Figure 4.4: Condition number and the number of linear iteration per Newton iteration 

with and without block-diagonal preconditioning. ........................................................... 96 

Figure 4.5: The lowest, highest and average CPU time with different preconditioning 

methods. The best achievable speed-up with the block-diagonal method and the iLU 

method is tagged. .............................................................................................................. 97 

Figure 4.6: Geometry size and the mesh of the tested magnetic cone. .......................... 100 

Figure 4.7: Condition number and the number of linear iteration per Newton iteration 

with and without block-diagonal preconditioning. ......................................................... 100 

Figure 4.8: The lowest, highest and average CPU time with different preconditioning 

methods. The best achievable speed-up with the block-diagonal method and the iLU 

method is tagged. ............................................................................................................ 101 



  

xi 

 

Figure 4.9: Geometry and the mesh of the tested magnetic write head. ........................ 103 

Figure 4.10: Condition number and the number of linear iteration per Newton iteration 

with and without block-diagonal preconditioning in the test case write head I (250K). 105 

Figure 4.11: The lowest, highest and average CPU time with different preconditioning 

methods on three write head test cases, respectively. ..................................................... 106 

Figure 4.12: Speed scaling of matrix factorization against problem size. ..................... 108 

Figure 5.1: Magnetic recording system. ........................................................................ 110 

Figure 5.2: Roadmap of hard disk drive technology [97]. ............................................. 114 

Figure 5.3: Schematic diagram of perpendicular magnetic recording [100]. ................ 115 

Figure 5.4: Schematic diagram of the ECC media. Between the cap layer and the 

granular layers (oxide layers) there are the exchange-coupled layers. ........................... 115 

Figure 5.5: Schematic comparison of a) macro-spin model with b) discretized model. 118 

Figure 5.6: Schematic view and simulation results showing how closure domains can be 

formulated in the discretized model. ............................................................................... 119 

Figure 5.7: Schematic comparison of a) magnetic boundary with b) non-magnetic 

boundary in the discretized model. ................................................................................. 120 

Figure 5.8: a) Layout of the magnetic layers in the ECC media that is simulated; b) Bit 

pattern of the magnetization used in the simulation. ...................................................... 122 

Figure 5.9: The region where Contextual SNR is measured and an illustration of how it 

is measured...................................................................................................................... 123 

Figure 5.10: Comparison of simulation to the experiment: Resolution versus KFCI 

(linear density). ............................................................................................................... 124 



  

xii 

 

LIST OF TABLES 

Table 2.1: Performance of desktop CPU, GPU and embedded GPU, with speed-up 

against desktop CPU with a single core. ........................................................................... 32 

Table 2.2: Performance of Various platforms and speed-up versus single-core CPU. .... 34 

Table 3.1: Timing Results of OOMMF Solver ................................................................ 58 

Table 3.2: Computational time of single and multi-GPU implementations. ................... 72 

Table 3.3: Speed and device memory consumption of memory saving approach. .......... 75 

Table 3.4: Computation Time of FastMag Solver (in seconds). ...................................... 77 

Table 4.1: Summary of statistical data for different preconditioning schemes. .............. 99 

Table 4.2: Summary of statistical data for different preconditioning schemes. ............ 102 

Table 4.3: Summary of magnetic properties in the tested write head. ........................... 104 

Table 4.4: Summary of statistical data for different preconditioning schemes. ............ 107 

Table 5.1: Representative simulation results. ................................................................ 125 

 

  



  

xiii 

 

ACKNOWLEDGEMENTS 

I would like to sincerely thank the people who have helped me throughout my 

graduate study at UC San Diego. Among them, I especially want to appreciate my 

advisor Prof. Vitaliy Lomakin. He offered me the opportunity to join the CEM group as a 

member of this “big family”. He not only supports me through his guidance in the 

research but also through the suggestions in normal life. He plays the roles of an advisor, 

a father and a sincere friend at the same time. His profound knowledge in magnetism, 

electromagnetism, numerical methods and parallel computing allows me to progress to 

this stage in my Ph.D. study. Prof. Lomakin also supports me for attending academic 

conferences and summer internships, which greatly broadened my vision of the future 

career. 

I would also like to thank Adam Torabi, Byron Lengsfield, Terry Olsen, Roger 

Wood, Lei Xu, Jihoon Park, Gregory Parker and Yimin Hsu for their help during my 

three summer internships at HGST. They always encouraged me and made me feel at 

home, and I also appreciate their teaching me about the hard drive industry. I will not be 

able to complete the work about discrete cap model for magnetic media in Chapter 5 

without them. My gratitude also goes to Brian Cabral, Vladimir Bychkovsky and Jason 

Carreiro for mentoring me during the internship at Facebook. Their way of thinking and 

hands on the projects inspired me in my research work back at UC San Diego. Also, I 

appreciate the opportunities to work with Prof. Eric Fullerton and Prof. Boubacar Kante 

as a teaching assistant in their classes. 

The last but not the least, my lab-mates at the CEM group has been considerably 

helped me throughout my study. Shaojing Li and Ruinan Chang introduced me to the lab 



  

xiv 

 

and patiently answered all my questions. My great thank goes to Dr. Marko Lubarda and 

Dr. Marco Escobar, Qian Ding and Javier Espigares for their welcoming me and helping 

me with patience. I also appreciate to working and being a friend with Simon Couture, 

Majd Kuteifan, Marco Menarini and Iana Volvach, who comes later as my group mates. I 

am grateful to Weilong Cui, Matthew Hu, Sicong Yan and Philippe Scheid who worked 

with me during their internship at CEM group as visiting scholars. 

Chapter 1, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 

this paper: S. Fu, R. Chang, S. Couture, M. Menarini, M.A. Escobar, M. Kuteifan, M. 

Lubarda, D. Gabay, V. Lomakin, "Micromagnetics on High-performance Workstation 

and Mobile Computational Platforms". Journal of Applied Physics, vol. 117, no. 17, pp. 

17E517, 2015. 

Chapter 2, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 

this paper: S. Fu, W. Cui, M. Hu, R. Chang, M.J. Donahue, V. Lomakin, "Finite 

Difference Micromagnetic Solvers with Object Oriented Micromagnetic framework 

(OOMMF) on Graphics Processing Units," IEEE Transactions on Magnetics, vol. 52, no. 

4, pp. 1-9, 2016. S. Fu, R. Chang, S. Couture, M. Menarini, M.A. Escobar, M. Kuteifan, 

M. Lubarda, D. Gabay, V. Lomakin, "Micromagnetics on High-performance Workstation 

and Mobile Computational Platforms". Journal of Applied Physics, vol. 117, no. 17, pp. 

17E517, 2015. 

Chapter 3, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 



  

xv 

 

this paper: S. Fu, W. Cui, M. Hu, R. Chang, M.J. Donahue, V. Lomakin, "Finite 

Difference Micromagnetic Solvers with Object Oriented Micromagnetic framework 

(OOMMF) on Graphics Processing Units," IEEE Transactions on Magnetics, vol. 52, no. 

4, pp. 1-9, 2016. 

Chapter 4, in part, is currently being prepared for submission for publication of 

the material, where the dissertation author was the primary investigator and author of this 

paper: S. Fu, R. Chang, I. Volvach, M. Kuteifan, S. Couture, M. Menarini, V. Lomakin, 

“Block Diagonal preconditioner for implicit time integration in finite element 

micromagnetic solvers”. 

Chapter 5, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 

this paper: S. Fu, L. Xu, V. Lomakin, A. Torabi, B. Lengsfield. "Modeling perpendicular 

magnetic multilayered oxide media with discretized magnetic layers." IEEE Transactions 

on Magnetics, vol. 51, no. 11, pp. 1-4, 2015. 

  



  

xvi 

 

VITA 

2011   B.S. in Micromagnetics, Peking University 

2013  M.S. in Electrical Engineering (Electronic Circuits and Systems), 

University of California, San Diego 

2016  Ph.D. in Electrical Engineering (Electronic Circuits and Systems), 

University of California, San Diego 

 

PUBLICATIONS 

S. Fu, W. Cui, M. Hu, R. Chang, M.J. Donahue, V. Lomakin, "Finite Difference 

Micromagnetic Solvers with Object Oriented Micromagnetic framework (OOMMF) on 

Graphics Processing Units," IEEE Transactions on Magnetics, vol. 52, no. 4, pp. 1-9, 

2016. 

S. Fu, L. Xu, V. Lomakin, A. Torabi, B. Lengsfield. "Modeling perpendicular magnetic 

multilayered oxide media with discretized magnetic layers." IEEE Transactions on 

Magnetics, vol. 51, no. 11, pp. 1-4, 2015. 

S. Fu, R. Chang, S. Couture, M. Menarini, M. A. Escobar, M. Kuteifan, M. Lubarda, D. 

Gabay, V. Lomakin, "Micromagnetics on high-performance workstation and mobile 

computational platforms." Journal of Applied Physics, vol. 117, no. 17, pp. 17E517, 2015. 

M. Kuteifan, M. Lubarda, S. Fu, R. Chang, M. A. Escobar, S. Mangin, E. E. Fullerton, V. 

Lomakin. "Large exchange-dominated domain wall velocities in antiferromagnetically 

coupled nanowires." AIP Advances, vol. 6, no. 4, pp. 045103, 2016. 

J. Park, B. Lengsfield, R. Galbraith, R. Wood, S. Fu. "Optimization of Magnetic Read 

Widths in Two-Dimensional Magnetic Recording Based on Micromagnetic Simulations." 

IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, 2015.



 
 

xvii 

 

ABSTRACT OF THE DISSERTATION 

Parallel Computation with Fast Algorithms for Micromagnetic Simulations on 

GPUs 

 

by 

Sidi Fu 

 

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) 

University of California, San Diego, 2016 

Professor Vitaliy Lomakin, Chair 

 

 

 

Micromagnetics is a field of study considering the magnetization behavior in 

magnetic materials and devices accounting for a wide set of interactions and describing 

the magnetization phenomena from the atomistic scale to several hundreds of microns. 

Micromagnetic simulations are essential in understanding the behavior of many magnetic 

systems. Modeling complex structures can require a significant computational time and in 
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some cases, the system complexity can make simulations prohibitively long or require a 

prohibitively large memory. 

In this thesis, we present a set of methods and their implementations that resulted 

in high-performance numerical micromagnetic tools for modeling highly complex 

magnetic materials and devices. The focus of the dissertation is on solving Landau-

Lifshitz-Gilbert (LLG) equation efficiently, both with numerical methods and advanced 

hardware acceleration. 

To understand the numerical problem to be solved, the introduction Chapter 1 

addresses the LLG equation and the governing interactions involved as well as numerical 

modeling basics on the Finite Difference Method (FDM) and the Finite Element Method 

(FEM). Chapter 1 also presents a versatile micromagnetic framework, referred to as 

FastMag, which implements some of these methods. 

Chapter 2 provides a detailed description of computing based on Graphics 

Processing Units (GPUs). The history of GPU programming model and the programming 

tips serve as the basis for understanding parallel computing on GPUs. It presents 

applications of GPUs on various platforms to demonstrate the current mainstream usage 

of GPUs and their promising future development direction. Chapter 2 also summarizes 

applications of GPUs in micromagnetics. 

Chapters 3 and 4 address two essential aspects of micromagnetic solvers: fast 

algorithms for computing the key interaction components and efficient time integration 

methods. Chapter 3 introduces a non-uniform Fourier transform (NUFFT) method, a 

scalar potential method, and sparse matrix-vector multiplication (SpMVM) algorithms 

implemented on GPUs to accelerate the magnetostatic and exchange interactions. Chapter 
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4 addresses basics of the time integration methods used in FastMag as well as a 

preconditioner to further accelerate the time integration process. 

Chapter 5 presents a numerical model for the current state-of-art magnetic 

recording system using advanced algorithms and GPU implementations described in 

Chapters 2-4.  



 

1 
 

1. Introduction 

1.1. Introduction to Micromagnetics 

Micromagnetics predicts the sub-micrometer magnetic behaviors in various 

systems via numerical modeling [1]. The length-scale covered by the micromagnetics is 

small enough to consider sub-micrometer behaviors like magnetic domain walls but large 

enough to average out the atom-level behaviors [2]. Micromagnetic modeling has 

significant predictive power and is essential for analyzing and designing magnetic 

devices and systems. The modeling of magnetic recording systems (magnetic write/read 

heads, magnetic media in hard-drives), magnetic random-access memory (MRAM), spin-

torque oscillator (STO) and other magnetic systems are important applications of 

micromagnetics.  

Micromagnetics originates from the need to explain magnetic phenomena such as 

magnetic domain wall formation, domain patterns, nucleation fields, reversal modes and 

magnetization dynamics [3]. The magnetic moment density and relevant material 

parameters were introduced as continues variables by W.F. Brown in 1978 [4]. The 

micromagnetic modeling surged in the past 20 years driven by the strong growth of the 

scientific computational power. 

Micromagnetic simulations can be divided into two categories: static simulations 

and dynamic simulations. For static simulations, the equilibrium state, the energy barrier 

or the energy landscape of magnetic systems are of concern. Here, the equilibrium states 
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refer to the stable spatial distribution of the magnetization. Methods such as energy 

minimization method, Nudged Elastic Band (NEB) method, and the relaxation of 

Landau-Lifshitz-Gilbert (LLG) equation are the important candidates to solve the static 

problems. As to the dynamic simulations, the dynamics of the magnetic moments in a 

certain system is the focus. Dynamic simulations usually are based on solving the LLG 

equation. In some cases, the LLG equation is modified to be able to address specific 

dynamic behavior types, e.g. the Landau-Lifshitz-Bloch (LLB) equation is necessary for 

systems in which the temperature can approach the Curie temperature [5]. 

To model geometries in a complex magnetic system, the system needs to be 

discretized into smaller sub-domains and each subdomain (or its boundaries) is assigned 

an unknown magnetization state. Modeling methods in Micromagnetics can be 

categorized into two kinds based on how the discretization is defined: Finite Difference 

methods (FDMs) and Finite Element methods (FEMs). FDMs discretize the geometries 

into uniform cubes (or bricks), while the FEMs typically use tetrahedrons. The way that 

FDM handles the discretization is simpler than FEM. As a result, the FDM modeling is 

easier to implement and the simulation often may be faster for simple systems. The 

accuracy of FDM is good enough for relatively simple structures like magnetic thin films. 

However, FEM gives more flexibility in modeling complex, e.g. non-uniform and non-

regular boundaries and geometries, by utilizing tetrahedrons. 

An important component in enabling the analysis and design of complex magnetic 

devices is the development of parallel computational codes [6]. Parallel computation is 

generally demonstrated on the parallel platforms such as multi-core CPUs, GPUs, and 

multiple computational nodes of CPUs and GPUs. Taking advantage of the fact that 
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certain amount of the compute-intensive operations involved in the simulation is 

parallelizable, the workload can be scheduled onto separate computational units to be 

evaluated at the same time. 10x to 100x acceleration can be achieved through replacing a 

serialized code with its parallelized counterpart [6]. 

1.2. The Landau-Lifshitz-Gilbert Equation 

The LLG equation defines the precessional and damping dynamics of the 

magnetization M . The description of the time evolution of the magnetization was first 

proposed by Lev Landau and Evgeny Lifshitz in the form of the Landau-Lifshitz equation 

[7]: 

 - -
s

d

dt M


    eff eff

M
M H M M H ,  (1.1) 

where   is the electron gyromagnetic ratio, and  is a phenomenological damping 

parameter. The component effH  is the effective magnetic field that the magnetization is 

exposed to, which is the combination of the magnetostatic field, exchange field, 

anisotropy field, external field, spin-transfer torque, magneto-restriction effect, 

Dzyaloshinskii-Moriya interaction (DMI) effect and etc. The evaluation of the effective 

field is among the most important components of solving the LLG equation, which will 

be discussed in detail in the following sections. 

The first term in Eq. (1.1) is the precessional term. The magnetization is driven by 

the torque generated by the effective field to precess and the magnetization precesses 

along the axis defined by the effective field if the second term of Eq. (1.1) is zero. The 

second term is called the damping term. The magnetic system goes to the equilibrium due 
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to the energy dissipated described via the damping term. Note that even though the 

system energy changes due to the damping term, the magnitude of the magnetization 

vector preserves its magnitude. Combining the two terms, the magnetization in a 

magnetic system generally goes to the equilibrium state in a precessional manner. 

 

Figure 1.1: (a) Magnetization processing around the effective field; (b) Magnetization 

processing around the effective field with damping effect; (c) Action of arbitrary torque 

on the magnetization [3]. 

An alternative representation of the Landau-Lifshitz equation was given by T.L. 

Gilbert [8] and is referred to as the Landau-Lifshitz-Gilbert (LLG) equation 

 
2

'
- -
1 ' s

d d

dt M dt

 


  


eff

M M
M H M  ,  (1.2) 

where ' is a phenomenological damping parameter which is different from  in Eq. 

(1.1), ' sM   where  is a material property related damping parameter. 

The Eq. (1.2) can be re-written into 

 
2 2

1 '

1 ' 1 '
eff eff

s

d

dt M

 

 
     

 

M
M H M M H  . (1.3) 

This equation form is most prevalently utilized in the micromagnetic world and it 

will be used in this dissertation. Note that although Eq. (1.1) and Eq. (1.3) are the same in 
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terms of the format of having both effM H  and eff M M H  terms, they are different 

equations. The difference lies in the coefficient. For example, the coefficient of the 

precessional term effM H  depends on the damping in Eq. (1.3). 

1.3. Governing Micromagnetic Interactions 

The behavior of the magnetization M  in LLG Eq. (1.3) is determined by the 

effective field effH , which includes components arising from several interactions. Among 

these interactions, the magnetostatic interaction, magneto-crystalline interaction, 

exchange interaction, and Zeeman interactions are the four typical components. Apart 

from them, magnetostriction, spin transfer torque, and Dzyaloshinskii-Moriya 

Interactions (DMI) may have a strong impact on the magnetization behavior. We review 

these interactions next. 

1.3.1. Magnetostatic Interaction 

A magnetic dipole moment generates a magnetic field with closed field lines, as 

shown in Fig. 1.2.  

 

Figure 1.2: A magnetic dipole moment generates magnetic fields that form closure loops. 
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When multiple magnetic moments presents, they interact with each other through 

the magnetostatic field. The magnetostatic energy takes the form 

 31
( ) ( )

2
ms ms

V

E d  M r H r r , (1.4) 

where the magnetostatic field msH  can be defined as superposition integral: 

 
'

ms

( )
( )

4
V

r dV



 


M r

H
r r

,

 (1.5) 

which has a double derivative operator outside the integral. Alternatively, moving the 

rightmost differential operator under the integrand (via integration by parts) and defining 

effective volume and surface charge densities 

 ˆ( ) ( ); ( )M M    r M r n M r
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 (1.6) 

the magnetostatic field can be given by its volume and surface integral components: 
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 (1.7) 

Although no physical magnetic monopoles or magnetic charges exist, this form of 

expression gives an analogy to the electric field generated by electric charge densities. As 

a result, Eq. (1.7) gives a convenient way of computing and understanding the 

magnetostatic field. 

The magnetostatic field has a significant effect on the magnetization dynamic and 

static behavior. For example, the magnetization in a magnetic structure tends to end up in 

an equilibrium state that minimizes the energy. In cases, where the magnetostatic field is 

dominant, the minimization is mostly related to the minimization of the magnetostatic 

energy. An example is a vortex state formed in a magnetic cube of a sufficiently large 
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size. Figure 1.3 shows a so-called µMag standard problem 3 [9] result. In this case, the 

magnetic interactions lead to the magnetization of a vortex state. 

 

Figure 1.3: Vortex state formed in the magnetic cube [9]. 

1.3.2. Magnetocrystalline Interaction 

Magnetocrystalline interaction reflects the symmetry of the crystal structure in a 

magnetic structure. For example, often existing magnetocrystalline interaction is uniaxial 

anisotropy, which leads to a preferential magnetization direction along the so-called easy 

axis. The uniaxial anisotropy energy is minimized when the magnetic moments align 

with the easy axis. The energy is given by the following expression: 

 
2 3( )anis

V

E K d   m k r , (1.8) 

where m  is the unit magnetization vector, and k  is the uniaxial direction. In this 

formulation, K is positive, meaning that the magnetization tends to align with the easy 

axis k . When K is negative, then the magnetization prefers to stay perpendicular to k , 

in which case k  is called hard axis. 
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The magnetocrystalline interactions can also be written as a part of the effective 

magnetic field via 

  
2

anis

S

K

M
 H m k k , (1.9) 

Cubic anisotropy and higher order terms also may be important [10]. 

1.3.3. Exchange Interaction 

Exchange interaction resembles springs between the magnetic moments to bond 

the moment vectors in the same direction. The exchange energy can be defined as 

 
2 3( )ex

V

E A d   m r r , (1.10) 

where A  is the exchange constant Taking the derivative of the energy over the 

magnetization vector, the expression for the exchange field can be obtained as 

 
2

exch

0

2

S

A

M
 H m , (1.11) 

where SM  is the saturation magnetization. 

Eq. (1.10) tells that exchange interaction prefers the uniformity of the magnetic 

moments. However, the magnetostatic interaction promotes the magnetic moments 

following the axis of the magnetic samples. Magnetocrystalline interaction prefers the 

moments to stay align with the easy axis so that the magnetization is such as it minimizes 

the overall energy. Such competition between the exchange interaction and other 

magnetic interactions may generate a variety of magnetization configurations, including 

uniform, domain wall, vortex, and other configurations.  
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1.3.4. Zeeman Interaction 

The Zeeman interaction is the interaction between the magnetization and the 

applied/external field. The energy related to the Zeeman interaction can be expressed in 

the form 

 3( ) ( )z z

V

E d  M r H r r  (1.12) 

It is obvious from Eq. (1.12) that the magnetization M tends to align in the same 

direction as applied/external field zH  to obtain the lowest energy state. On the other hand, 

it maximizes the Zeeman energy if the magnetization and the applied/external field zH
 

lie in the opposite directions. 

Zeeman interaction is widely exploited in the magnetic systems in the real world. 

For example, the magnetostatic field generated by the magnetic write head can be taken 

as an applied/external field in the magnetic media thin films to manipulate the 

magnetization orientation in the thin films. The hard-drives utilize this effect to record the 

binary data. 

1.3.5. Other Interactions 

STT effect depicts the phenomenon that lattice is capable of absorbing the angular 

momentum from the spin-polarized current. This effect has promising applications 

because it allows manipulating the magnetization of a certain magnetic sample by 

applying a local spin-polarized current in the system. Typical applications of the STT 

effect are Magnetic RAM (MRAM) and spin-torque oscillators (STO). Note that STT is 
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an effect not directly related to the energy, so it does not contribute to the total energy of 

the magnetic system. 

Dzyaloshinskii-Moriya Interaction (DMI) is an antisymmetric exchange coupling 

[11]. It arises from a broken symmetry in the system, which could be realized at surfaces 

of thin films. DMI is drawing a great interest of the magnetism community since it could 

induce chiral spin structures such as skyrmions [12] and other unconventional 

phenomena [13] [14] [15]. Fig. 1.4 shows skyrmion simulated by the numerical magnetic 

solver FastMag. The magnetization is pointing up on the edges and pointing down in the 

center [12]. The technology could be used to produce new-generation of spintronic 

devices. 

 

Figure 1.4: Skyrmion simulated by FastMag. 

1.4. Finite Difference Methods and Finite Element Methods 

The two main types of micromagnetic solvers are based on the Finite Element 

method (FEM) [16][17][18][19] and Finite Difference method (FDM) [20][21] [22]. The 
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two methods are different in how the structures are discretized. As a result, their 

formulation, implementation, speed, and numerical accuracy are different. 

FDM uses a regular grid of rectangular brick cells, at which the differential 

operators can be approximated by central differences. The size of each brick cells is 

x y z   , and the time step is t . For explicit time integration schemes, to maintain 

numerical stability, the time step t  has to decrease with finer space discretization ( x , 

y , z ), as what the Courant–Friedrichs–Lewy condition states [23]. 

Due to the regularity of the discretization grid, the formulation of the 

micromagnetic modeling with FDM is relatively simple and the implementation is quite 

straightforward. Moreover, the computational speed of FDM can be good for simple 

magnetic structures, such as rectangular thin films. Therefore, it is extensively utilized in 

the micromagnetics community for such cases. On the other hand, FDM suffers from 

certain factors that prevent a universal application of the method. Most importantly, the 

modeling accuracy for the magnetic samples that come with fine geometrical features can 

be unsatisfactory. This is due to the fact that regular brick cells intrinsically are not well 

suited to model curved boundaries. 

FEM greatly solves the problem by applying arbitrary shaped finite elements in 

the mesh. Each finite element could be a triangle, a quadrilateral, or even a curved 

triangle in 2-dimensional case. As to 3-dimensional mesh, the elements could be 

tetrahedrons, hexahedrons, pyramids and prisms [24]. The flexibility in the discretization 

gives the better geometric modeling accuracy. The modeling flexibility and accuracy 

come, however, with complexities in formulation and implementation. Since sparse 

matrix inversion is often involved in FEM, the computational speed may be slower than 
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that of FDM when handling simple magnetic structures. To efficiently invert the matrix, a 

suitable preconditioner may be necessary to accelerate the process. Preconditioning will 

be discussed in Chapter 4.  

Both FDM and FEM are successfully used in the micromagnetics community. 

The formulations, implementations, and applications of both methods are discussed in 

this dissertation. The choice of numerical modeling method depends on the application. A 

rule of thumb is for simple magnetic structures, such as rectangular thin films, one may 

choose FDM while for complicated structures, such as magnetic write heads or 

multilayered MRAM cells, one may choose FEM. 

1.5. FastMag: A Fast and Accurate Micromagnetic Solver 

FastMag is a FEM based micromagnetic simulator that is intended for solving 

problems of high geometrical and material complexity. FastMag’s flexibility and 

performance rely on several advanced computational methods, including fast evaluation 

of effective fields, fast evaluation of the system Jacobian, efficient time integration, 

efficient methods for system discretization, and the ability to run on various computing 

platforms [6]. A brief description of the FastMag computational components and the 

outline of the performance and optimization of these components are given here. 

The main components of the FEM-based micromagnetic codes of FastMag include 

the evaluation of the magnetostatic field and exchange field, computing the system 

Jacobian, and time integration. From the computational mathematics point of view, these 

components can be cast in terms of dense products, sparse products, FFTs, and iterative 

solvers using these products. 
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 In FastMag the evaluation of the magnetostatic field is accomplished by 

computing the superposition integrals based on the magnetization states at the nodes of a 

tetrahedral mesh, which is different from a more conventionally used scheme in 

micromagnetics based on solving the Poisson equation. The evaluation of the integrals is 

based on the assumption of a constant of linearly varying magnetization in each 

tetrahedron, which is obtained from its values at the nodes. The computation of the 

magnetostatic field includes several steps: 

 For each node (i.e. a vertex of a tetrahedron), near- and far-field nodes are identified 

based on their distance, e.g. with respect to the largest edge in the mesh.  

 The fields at the near-field nodes are computed directly via analytical integrals. 

From the code implementation point of view, this step includes a tabulation of the 

field interactions, which is a sparse matrix representation of the field contributions to 

each node from its near-field node list. These computations are accomplished via 

sparse matrix-vector products. 

 For computing far fields, the magnetic scalar potential is first found via a quadrature 

rule. The quadrature rule translates the integrals into discrete summations. The 

quadrature rule effectively translates the vector magnetization states into scalar 

charges assigned to the mesh nodes (or to the quadrature points) and converts the 

continuous integrals into discrete sums. 

 The magnetic scalar potentials at the far-field nodes are computed via the non-

uniform Fourier transform (NUFFT), which also is referred to as Adaptive Integral 

Method in Electromagnetic solvers [25]. NUFFT includes four main steps: 

Projection of the spatially non-uniform nodal charges into a uniform grid; 
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Convolution computation of the potentials on the uniform grid via FFT; 

Interpolation of the potential from the uniform grid onto the non-uniform mesh node 

locations; Corrections for the closely located points by using direct summations. 

Some of these steps are cast into dense and sparse matrix-vector summations and 

some the steps are computed on-the-fly without defining any matrix operations.  

 Once the potential values are found, the magnetostatic field is computed as the 

divergence. This operation is cast into a sparse matrix-vector product. 

The computation of the exchange field is accomplished using the weak FEM 

formulation with the box-method [26]. In this approach, the field at each mesh node is 

obtained by tabulating a sparse stiffness matrix, which gives the exchange contribution at 

each mesh node from its surrounding nodes. The evaluation of the exchange field 

involves a sparse matrix-vector product each time exchange field is needed. The time 

integration of the LLG equation in FastMag can be accomplished via the implicit multi-

step backward differentiation formula (BDF) [27] [28]. For stiff problems, which often 

appear in micromagnetics, the time step required for numerical stability can be very small, 

which can make simulations slow. Implicit time integrators methods can significantly 

increase the time steps, thus increasing the simulation speed and code robustness. The 

implicit implementations require solving a non-linear system at each time integration, 

usually via Newton iterations. At each non-linear iteration, a linear system is solved via 

an iterative solver such as GMRES (direct inversion solvers also can be used but only for 

small problems). This iterative process requires evaluating the system Jacobian. FastMag 

implements an approach in which the system Jacobian computation is entirely based on 

the computation of the effective fields used together with analytical formulas. Therefore, 
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the computation of the Jacobian involves the same operations as those required for the 

effective fields. 

 

Chapter 1, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 

this paper: S. Fu, R. Chang, S. Couture, M. Menarini, M.A. Escobar, M. Kuteifan, M. 

Lubarda, D. Gabay, V. Lomakin, "Micromagnetics on High-performance Workstation 

and Mobile Computational Platforms". Journal of Applied Physics, vol. 117, no. 17, pp. 

17E517, 2015.  
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2. Parallel Computation on GPU 

The speed limitation of single-core systems has become an obstacle when solving 

large-scale problems in micromagnetics and other fields of study. Micromagnetic solvers 

for multicore and multi-CPU computing systems have been developed, but such systems 

have limitations in their performance. Massively parallel GPU computer systems have 

emerged offering ultra-high performance. A single GPU can match the computation 

power of a middle-range CPU cluster, but at a much lower cost and power consumption. 

Solvers for the LLG equation on GPUs can be highly efficient but several important 

points need be addressed to fully exploit the computational power of GPU architectures 

[6] [16][21][29].  

In this chapter, we describe parallel computing applied to GPUs. The 

programming models on GPUs may be different from those on CPUs, and we introduce a 

few important programming points to achieve an optimized performance. Moreover, use 

of GPUs on various platforms such as desktops, servers, and embedded systems are 

reviewed. Finally, we conclude this chapter with uses of GPUs in the micromagnetic 

community. 

2.1. Introduction to GPU Computing 

GPUs are one of the many processor types in a modern desktop, laptop, clusters 

and embedded systems. The massively parallel system GPU was originally designed for 

graphics related applications, such as display, image, video, gaming, etc. The focus of the 
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GPU is the data throughput, namely processing a large amount of data with the same 

operation pattern at the same time. However, the impacts of GPUs have stepped beyond 

its original scope. As a result, a new term, General Purpose GPUs (GPGPUs), is 

becoming increasingly popular in a number of computational communities. 

Computational scientists and researchers put much effort in designing or modifying their 

data or compute intensive algorithms to run on GPUs so that 10x – 1000x acceleration 

could be attained [30]. 

 

Figure 2.1: One of the latest Nvidia GPUs, GTX 1080. 

Many-core systems such as GPUs are well suited for parallel computing, where a 

computational job is divided into a number of independent but similar operations. We 

note that the benefit of GPU is not universal since there are certain kinds of applications 

that have to stay with serial operations, as shown in Fig. 2.2 (a). Specifically, many-core 

systems are efficient for applications that are similar to the one shown in Fig. 2.2 (b). 
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Figure 2.2: (a) Serial application vs. (b) parallel applications. The dependence between 

operations in (a) closes the opportunity for parallelization. 

Many real world applications are parallel-friendly. For example, the n-body 

problem evaluates the gravity between moving celestial bodies, as a result, the 

computational complexity is O(N2). However, since the gravity only depends on the mass 

and the location of the interacting two bodies, regardless of all the other N – 2 bodies in 

the simulation, the compute-intensive operations in this problem are independent. The 

GPU acceleration can be best demonstrated on such application types [31]. It also can be 

efficient for fast methods that scale computationally as O(N) or O(NlogN). 

2.2. GPU Programming Model 

Through the device driver and programming language, developers are able to 

focus on the computational operations instead of the hardware details. As a result, the 

differences of the hardware implementation details from various vendors are hidden. 



19 
 

 

OpenCL and CUDA are the two mainstream programming languages for GPUs. OpenCL 

can run on GPUs from both mainstream vendors AMD and Nvidia, while CUDA can 

only run on Nvidia GPU but it was the first and most common GPU programming 

approach. In this dissertation, CUDA is the focus. 

 

Figure 2.3: CUDA programming model. 

With CUDA it is straightforward to control the stream processors (SPs) and 

multiple levels of memory as well as memory transfers between CPU and GPU. In the 

context of CUDA, the computational resources are organized in three levels: grid, blocks, 

and threads (Fig. 2.3). If we name the subroutines that run on GPUs as kernels, then each 

kernel has a grid, which is composed of a few blocks (e.g. 6 blocks). Inside each block, 
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there are a few threads (e.g. 15 threads). A thread is a set of instructions to be executed 

sequentially by a GPU SP. However, it is easier to understand by regard a thread as the 

smallest launched instances in CUDA, and multiple threads could run in parallel in the 

GPU. For example, let us consider a case in which there are 6 15 90   threads in 

parallel for Kernel 1. Each thread can be identified with a unique thread index. Similarly, 

each block comes with a unique block index. As a result, all the threads and blocks within 

a grid are indexed. Note that these are all software concepts, concretely, the total number 

of threads could be more than actual hardware SPs. In that case, the threads can be 

scheduled onto the SPs serially automatically. 

Programming models for GPU can be compared with those for many-core CPUs. 

In CPUs, the computational tasks can be parallelized in a few task-paths onto different 

physical cores, as shown in Fig. 2.4(a). Each CPU core is powerful and the jobs can be 

handled at the same time. The Task-parallel model is efficient when handling different 

kinds of jobs even if they do not share the same computational pattern. On the other hand, 

the GPU uses Data-parallel model. Namely, a task is passed into a single operation 

scheduler so that the data could be divided into pieces for different cores, as shown in Fig. 

2.4(b). Each GPU core is less powerful here, compared to a CPU core, but the throughput 

of a GPU can be much larger than a CPU due to a large number of cores. 
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Figure 2.4: Programming models: (a) CPU programming model: task parallel; (b) GPU 

programming model: data parallel. 

The programming model decides how the CUDA language is designed. As an 

extension to the “C” programming language, CUDA inherits many features from “C”. Fig. 

2.5 is a sample program to add two long vectors. On the host (CPU) side, a GPU kernel 

“vectorAdd_parallel” is called. Note that the grid structure and the block structures have 

to be specified in the brackets “<<<…>>>”. In this example, there are 16 blocks in the 

grid and each block is a bundle of 192 threads. The GPU kernel “vectorAdd_parallel” is 

executed by every launched instance, namely, the 16 192 3072   threads. The index of 

the instance i is identified with “blockIdx”, “blockDim” and “threadIdx” so that each 

thread could be assigned to a unique location in the arrays. 
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Figure 2.5: Comparison of a C program and a CUDA program working on vector adding. 

2.3. GPU Programming Points 

One of the latest consumer line GPUs NVIDIA GeForce GTX 1080 has 2560 

stream processors. These processors are launched by CUDA threads in the CUDA 

programming environment [32]. In GTX 1080, 64 stream processors form a streaming 

multi-processor. All processors within a certain multi-processor share a certain amount of 

L1 cache and fast shared memory. There is also the GPU global memory, which is much 

larger but also slower. Threads within a GPU have access to global memory while 

threads within a block only have access to this block’s shared memory. Unlike the cache, 

the shared memory on GPU is managed by the programmer. It is imperative to take 

advantage of the shared memory for developing highly efficient GPU code. 

The number of “IF” statements should be minimized for speed consideration. 

Each stream processor can launch one thread at a time, 32 threads form a warp which is 
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an “atomic” execution unit. Here, “atomic” execution means all the 32 threads execute 

the same instruction at a given time. In other words, a warp is the smallest execution unit 

in GPU. The reason for this is the “atomic” execution behavior of a warp. For example, 

we can assume that it takes one time cycle for a certain warp to execute the same 

instruction. However, it may take several cycles if threads within a warp have different 

types of instructions. The need to execute different instruction types would require some 

threads to wait, thus decreasing the computational efficiency. 

Occupancy is another important parameter to explore the power of GPU. To hide 

the latency of certain executions, a single streaming multi-processor (SM) holds many 

warps such that when some warps are temporarily stalled, the schedulers of SM can 

switch to other launch-ready warps. Therefore, the more active warps on an SM, the more 

latency is hidden. However, the number of warps controlled by a single SM is limited by 

the available resources on a single SM, such as registers, shared memory, and block sizes. 

GPU global memory is a separate part of memory from CPU memory, so any data 

that needs to be operated on GPU has to be transferred from the CPU memory. The GPU 

global memory has significant access latency. This latency is hidden when reading data 

from the continuous addressed in the memory via so-called coalesced access. It is 

important to arrange data uniformly in the memory so that coalesced access mechanism 

can be utilized. 
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Figure 2.6: CPU and GPU brief-architecture: the CPU and GPU have separate memories. 

CPU focus more on powerful ALUs, while GPU focuses more on massive data 

processing. 

GPU also has a category of “shared memory”. Shared memory is very fast on-

chip memory and it works as a memory pool for the threads to share the intermediate data. 

Synchronization may be launched to avoid the race condition. The maximum size of 

shared memory on a single SM is 48KB. On the other hand, Nvidia Pascal architecture 

provides another way to share data in registers between threads within a warp: the shuffle 

instruction. Shuffle instructions allow exchanging data in a warp of threads by enabling 

the threads to access other threads’ registers. Shuffle instructions can be used in the 

operations including reductions, scans, transposition and sorting. It has been proved to be 

always faster than the safe shared memory operations [33]. Since the space of shared 

memory is limited, shuffle instruction is favorable for certain applications that lack 

shared memory resource. 

Although shared memory is as fast as cache, its access can be slowed down by 

bank conflicts. In Nvidia GPU, the shared memory is organized into memory banks, and 

memory locations on the same bank can only be accessed once at a time. Thus, if there 
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are two threads within one warp trying to access the same bank, these two accesses have 

to be serialized. To avoid this, a linear accessing stride is preferred. 

2.4. GPUs on Various Platforms 

Multiple parallel platforms have been used in micromagnetics, including multi-

core central processing units (CPU) and graphics processing units (GPU). In particular, 

GPUs were introduced offering ultra-high performance, which allowed using inexpensive 

desktop computers as high-performance computer clusters. Recently, new embedded 

mobile-based computer architectures emerged, and their performance increase has been 

higher than that of desktop CPU and GPU systems. In addition, embedded systems offer 

low power consumption and manufacturing cost [6]. 

In this section, we explore using micromagnetic solvers on high-performance 

parallel platforms, including desktop multi-core CPU, desktop GPU and embedded 

mobile computing architectures. The feasibility and convenience of using these systems 

for high-performance computing will be investigated. 

2.4.1. GPU in Desktops and Laptops 

Traditionally, all the desktops and laptops that are equipped with separate GPUs 

were designed for gaming or graphics-related work. Ever since GPGPU became practical 

in 2001, it has attained tremendous achievement in the compute intensive applications 

such as computational photography and physics simulations. This wide adoption of 

GPGPUs has reversely encouraged the vendors of GPUs to improve their architecture 

further for computing tasks. Apart from the companies AMD and Nvidia that ships GPUs, 
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Intel has commercialized a relatively new many-core system called Xeon Phi [34]. The 

GPUs from AMD and Nvidia currently are dominating the market, while Xeon Phi is 

appearing to be a strong competitor.  

 

Figure 2.7: Theoretical peak performance in single precision. (The data for 2016 is 

preliminary.) [35]. 

The computational power of GPGPUs has been increasing rapidly over the recent 

years, as indicated by the theoretical peak performance data in Fig. 2.7. The raw 

computational power of the strongest GPU is about 10x over the latest version of CPU. 

The increase of the power of GPUs has outpaced that of CPUs. As discussed in previous 

sections, the strong computational power of GPU relies on its capability on handling a 

large amount of data at the same time. This ability cannot be real without large memory 

bandwidth, which guarantees the availability of data when the streaming processors are 

ready to process it. 
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Utilizing GPGPUs on the desktop for computational purpose effectively reduces 

the cost of High-Performance Computing. It allows running real-world complex large-

scale simulations on normal computers. The price of one of the latest GPGPUs from 

Nvidia GTX 1080 is only $699, with a raw performance of 9 GFLOP/s and 8 GB 

memory. Nowadays, the GPGPUs on desktop serve as an important resource of scientific 

computation. GPGPU is a reasonable start point of utilizing GPU for scientific research, 

and then high-end cluster GPU could be introduced to further improve the performance. 

2.4.2. GPUs in Servers/Clouds 

An emerging computational power is the cloud computing which quickly 

dominates the commercial computing field. Researchers prefer the centralized 

computational resources to accelerate their applications with the controllable budget. 

Cloud computing’s relatively low cost allows the researchers to exploit its full power 

from weather prediction to molecular dynamics. Cloud computing provides massive 

scalability to allow ultra-scale computation with very high performance, which is 

essential for the resource-hungry applications. Also, the clouds hide the layer of 

infrastructure from the users to free the commercial users and researchers from the 

maintenance work. The servers provided in the cloud computing service are maintained 

by the computer architecture experts, the backup service scheme provides an almost 100% 

reliability to the normal users. Here, the reliability comes in three folds. Firstly, the data 

is guaranteed to be secure since there is redundant data storage. Secondly, the service will 

not fail easily because of a single point since there are always redundant resources ready 

to be utilized. Thirdly, each cloud user is isolated to avoid cyber-security problems. 
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Moreover, the users are able to specify the demands so as to avoid wasting the computing 

resources [36]. It is not hard to predict that the computation executed in the clouds are 

much more energy efficient than the individual desktops. 

A famous application of the GPUs in large-scale clusters and clouds are the deep 

learning in the context of the artificial intelligence. In deep learning, a neural network 

like computing model is constructed to divide the learning process into a few layers that 

are composed of nodes (neurons). In general, the prediction accuracy improves with the 

number of nodes and layers involved, however, this is at the price of the more 

complicated model and computational time. In 2016, a deep learning cluster model by 

Google, named “Alpha Go” beat the world’s best Go player [37]. Go is said to be one of 

the most complicated game in the world, way beyond the chess game [38]. The ability to 

compute the optimized strategy relies on the high computational power delivered by the 

GPU clusters. 

 

Figure 2.8: GPUs in the cloud computing [39]. 
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The market for cloud computing is growing rapidly, including the computation 

and graphics rendering work delivered by GPUs. Scientists can now process petabytes of 

data up to 10x faster than with CPUs in applications ranging from energy exploration to 

deep learning [40]. A series of GPU called Nvidia Tesla GPUs are delivered for scientific 

computing specifically. These GPUs are equipped with error-correction mode to 

guarantee the accuracy of the results computed by the GPU, which is different from the 

GPGPU. GPGPU may deliver relatively high errors due to the fact that they are designed 

for graphical rendering which does not require high accuracy. The Tesla GPUs are widely 

used in, but not limited to, the scientific computer centers. Researchers have investigated 

the power of cloud computing for the micromagnetic simulations [41]. It is promising 

that the cloud computing could be the dominant resource for the micromagnetic 

simulations so that the benefits of cost effectiveness, strong computational power, 

scalability, and reliability could be exploited. 

2.4.3. GPUs in Embedded Systems 

Recently, new embedded mobile-based computer architectures emerged, and their 

performance increase has been faster than that of desktop CPU and GPU systems. 

Embedded systems have been dramatically changing our daily life since the mobile 

devices such as smartphones and pads grow its popularity. In these devices, usually, a 

GPU is integrated with a multi-core CPU on the same chip to render the graphics. In 

addition, embedded systems offer low power consumption and manufacturing cost. 

Therefore, there are chances that researchers could utilize the computational power out of 

the mobile GPUs. 
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Figure 2.9: Computational power comparison between desktop GPUs and embedded 

chips [6]. All chips shown are from Nvidia, and dual GPUs are not included for fair 

comparison. Data collected from open-source benchmarks [42]. 

Fig. 2.9 demonstrates that performance increase of mobile systems currently 

outpaces that of traditional GPUs and they also have a significantly lower power 

envelope. Jetson TK1 was the first embedded mobile supercomputer that enables fully 

functional Nvidia CUDA, which allows porting micromagnetic codes developed for 

desktop GPUs. Jetson TK1 is a miniature-sized system that has all computer components, 

including a motherboard, mobile CPU, mobile GPU, memory, and storage space. Jetson 

TK1 delivers high computational performance (326 GFlops) at a low cost ($192 for the 

entire system) and low power consumption (10w). Jetson TK1 is powered by Nvidia 

Tegra K1, which breaks the performance record of embedded system chips and can be 

used in any mobile platforms such as mobile phones and tablets. Tegra K1 has 192 GPU 

cores in a single streaming multiprocessor. As a comparison, the currently one of the 
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most powerful desktop GPUs, Nvidia GTX 1080, has 2560 GPU cores in 40 streaming 

multiprocessors with 180w power consumption, around $700 cost, and it requires a host 

computing system with a separate CPU, motherboard, memory, and storage drive. Tegra 

K1 and GTX 1080 share a similar, but not the same, GPU architecture, which makes their 

coding similar, with some optimization and compilation differences.  

Considering that Tegra K1 GPU has 14x fewer GPU cores than, e.g., GTX 1080, 

the Jetson parallelism saturates faster, which means that Tegra K1 can be more beneficial 

for smaller problems. Jetson TK1’s memory has a lower bandwidth so that Tegra K1’s 

performance is more sensitive to the memory access. The GPU-CPU memory transfer is 

also slower on Tegra K1 (10x slower from CPU to GPU and 2x slower from GPU to 

CPU), which means that applications that offload all computations to GPU would benefit 

more on Jetson TK1. 

With Linux operating system pre-installed, Jetson TK1 is a platform ready for the 

massive computational workload. The network port allows Jetson TK1 connecting with 

other devices, implying the possibility to build cluster at a low cost and power 

consumption. 

2.4.4. Numerical Results 

As outlined in Chapter 1 the numerical operations required in the FEM 

micromagnetic code, such as FastMag, include dense products, sparse products, and 

NUFFT with FFTs.  

Since Tegra K1 has a similar GPU architecture as desktop GPUs, the optimization 

methods are similar as well, but there are also some differences. The GPU of Tegra K1 
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has less shared and register memory per core so that Tegra K1 GPU performs better with 

compute-intensive applications. In particular, it requires using a large near-field size in 

the NUFFT optimization. The shared and register memory size limitation may lead to 

occupancy issues for certain GPU kernels that run well on desktop GPU. Therefore, 

splitting long GPU kernels into shorter ones may be beneficial on Tegra K1. Tegra K1 

has lower memory bus width, slower memory clock rate, and smaller L2 cache so that 

applications sensitive to memory access speeds should be careful in coalescing the GPU 

global memory access and taking advantage of shared memory and warp-shuffle 

instructions to minimize the global memory traffic. 

Table 2.1: Performance of desktop CPU, GPU and embedded GPU, with speed-up 

against desktop CPU with a single core. 

 
Problem 

Size 

CPU 

1 core 

CPU 

4 cores 
Jetson TK1 GTX 690 

N-body 
32K 9052 ms (1.0x) 2142 ms (4.2x) 137 ms (66.1x) 19 ms (484x) 

1K 9.39 ms (1.0x) 3.19 ms (2.9x) 1.48 ms (6.3x) 0.78 ms (12x) 

NUFFT 
270K 1924 ms (1.0x) 887.1 ms (2.2x) 341.8 ms (5.6x) 43.6 ms (44x) 

4K 13.0 ms (1.0x) 4.86 ms (2.7x) 8.94 ms (1.5x) 2.74 ms (5x) 

FFT 
2M 34.0 ms (1.0x) 15.7 ms (2.2x) 22.4 ms (1.5x) 1.5 ms (23x) 

4K 0.080 ms (1.0x) 0.037 ms (2.2x) 0.527 ms (0.2x) 0.093 ms (1x) 

SpMVM 
600K 17.09 ms (1.0x) 7.70 ms (2.2x) 17.4 ms (1.0x) 1.88 ms (9x) 

4K 0.074 ms (1.0x) 0.019 ms (3.9x) 0.60 ms (0.1x) 0.33 ms (.2x) 

 

Table 2.1 shows the performance comparison between a 4-core CPU (Intel i7-

3770), a desktop GPU (GTX 690) and an embedded GPU (Tegra K1). The N-body 

problem is a sample code by Nvidia, which provides both CPU and GPU benchmarks. 

NUFFT and SpMVM are implemented in FastMag, the details of which will be discussed 

in the following chapters. FFT is from Nvidia cuFFT library and it is applied in the 

NUFFT implementation. CPU results of FFT and SpMVM are from Intel MKL. Small 
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and large problem sizes are chosen for each algorithm. It is evident that the performance 

gap between Jetson TK1 and desktop GPU is significantly narrower for smaller problem 

sizes, which is due to the fact that the full utilization of parallelization on the desktop 

GPU is achieved at larger problem sizes.  

The multi-core CPU results were obtained using OpenMP. Comparing the results 

of GPUs with the multi-core CPU, in general, the GPUs are favorable for large and 

compute-intensive applications. Jetson TK1 GPU is faster than multi-core CPU for n-

body and NUFFT algorithms, while GTX 690 is significantly faster than multi-core CPU 

in most cases. 

A Jetson TK1 CPU to Intel i7-3770 CPU comparison test was also conducted, 

showing that embedded CPU is 11.0x slower than desktop CPU. This ratio is larger than 

mobile GPU to desktop GPU difference, which means that using the GPU of Tegra K1 

for computations is most beneficial. 

To demonstrate the feasibility of using desktop and mobile CPU and GPU 

systems for micromagnetic modeling, Table 2.2 shows the simulation results of the 

FastMag simulator. The numerical tests included the time relaxation dynamics in a soft 

magnetic cylinder of sizes ranging from 300 nm radius by 50 nm height to 60 nm radius 

by 10 nm height. In order to evaluate the speed scaling on different computational 

platforms, we tested 7 different cases listed in Table 2.2. The geometry aspect ratios in all 

cases were kept roughly the same. The material properties were Ms=8.0e5 A/m, A=1.3e-

11 J/m, K = 5.0e5 J/m3 and alpha=0.01. The cylinder was meshed with a tetrahedral 

mesh of around 4nm edge length, leading to the total number of nodes ranging from 3 

thousand (0.01 million elements) to 300 thousand (1.5 million elements). The 300-
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thousand node problem was the largest we could run on Jetson TK1 system, limited by 

the Jetson TK1 memory of 2GB. The GPU workstation we used for testing had a Nvidia 

GTX690 at 915 MHz (a single GPU device of the dual-GPU card was used), and one 4-

core Intel-i7 3770 CPU at 3.4GHz. Each single GPU of GTX690 has 1536 cores. Jetson 

TK1 has 192 GPU cores at 852 MHz, while the integrated mobile CPU has 4 cores 

running at 2.3 GHz. Two time integration methods were tested: BDF for implicit time 

integration and Heun Method for explicit time integration. For all GPU tests, 

magnetostatic field, exchange field, and the numerical system Jacobian were evaluated on 

GPU. For the multi-core CPU tests, magnetostatic and exchange fields were computed on 

multiple cores, with 2 threads per core exploited. All results presented are from single-

precision floating point operations. 

Table 2.2: Performance of Various platforms and speed-up versus single-core CPU. 

 #Nodes 
#Eleme

nts 

CPU 1  

core 

CPU 4 

cores 
GTX 690 

Jetson 

TK1 

Implicit 

Time 

Integration 

(mins/ns) 

3K 0.01M 0.99 (1.0x) 0.67 (1.5x) 0.71 (1.4x) 2.9 (0.3x) 

10K 0.065M 12.4 (1.0x) 5.9 (2.1x) 1.7 (7.4x) 9.0 (1.4x) 

20K 0.1 M 30.1 (1.0x) 10.0 (3.0x) 2.7 (11.0x) 
17.5 

(1.7x) 

50K 0.25 M 115 (1.0x) 36.9 (3.1x) 7.7 (15.0x) 
54.5 

(2.1x) 

100K 0.5 M 186 (1.0x) 84.4 (2.2x) 18.5(10.1x) 136 (1.4x) 

170K 1.0 M 298 (1.0x) 126 (2.4x) 28.7(10.4x) 224 (1.3x) 

270K 1.5 M 539 (1.0x) 276 (2.0x) 61.1 (8.8x) 339 (1.6x) 

Explicit 

Time 

Integration 

(ms/step) 

3K 0.01M 18.9 (1.0x) 86.4 (2.2x) 5.87 (3.2x) 
16.0 

(1.2x) 

10K 0.065M 135 (1.0x) 52.5 (2.6x) 10.5(12.9x) 
51.7 

(2.6x) 

20K 0.1 M 228 (1.0x) 94.1 (2.4x) 16.0(14.2x) 109 (2.1x) 

50K 0.25 M 558 (1.0x) 217 (2.6x) 29.9(18.7x) 234 (2.4x) 

100K 0.5 M 1202 (1.0x) 471 (2.5x) 53.1(22.7x) 494 (2.4x) 

170K 1.0 M 2093 (1.0x) 912 (2.3x) 93.8(22.3x) 914 (2.3x) 

270K 1.5 M 3794 (1.0x) 1482 (2.6x) 172 (22.1x) 
1456 

(2.6x) 



35 
 

 

All the hardware types showed good performance. Parallelization of serial CPU 

code with 4 CPU cores achieved up to 3.1x acceleration. Jetson TK1 had up to 2.6x 

speed-up against a single core CPU and it was 3x-9x slower than the desktop GPU. The 

desktop GPU results were 3x-23x faster than the single core CPU results. 

The implicit BDF time integration method, while being more efficient in time 

stepping as compared to the explicit time integration, had some performance limitations 

in terms of desktop GPU-CPU and Jetson TK1 - desktop CPU speed-ups. The limitation 

is related to the fact that in our implementation while most of the computationally 

intensive parts are on GPU a part of the BDF integrator is running on CPU, which 

restricts overall GPU-CPU gains. In particular, Jetson TK1 showed similar performance 

as multi-core CPU with explicit method while it was averagely 1.6x slower than multi-

core CPU with the implicit method. Jetson TK1 CPU is 11.0x slower than the desktop 

CPU. A larger portion of workload on CPU with the implicit method led to less favorable 

results on Jetson TK1 platform. On the other hand, the explicit time integrator had a 

better GPU-CPU speed-up but the overall speed performance was slower due to the need 

for smaller time steps. We work to port the BDF time integrator to GPU, with expected 

additional performance gains. 

We note that the raw simulation time performance is not the only metric when 

assessing the feasibility of using a computing system. Power consumption and cost are 

additional important metrics when assessing throughput of a computational facility, e.g. 

when one needs to run a large number of micromagnetic simulations for device design 

and optimization. The comparison among all tested platforms is summarized as Fig. 2.10, 

where Jetson TK1 platform showed an attractive operation in terms of the cost/power 
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consumption - performance ratio. When comparing Jetson TK1 to a desktop CPU system, 

the former is up to 2.6x faster than a single core, similar performance as multi-core, over 

5x lower cost, and 20x-30x lower power consumption. When comparing Jetson TK1 to a 

desktop GPU system, the former was 3-9x slower but it is 10-20x less expensive and uses 

around 70x less power. Therefore, embedded mobile computing platforms have favorable 

cost and power efficiencies for micromagnetic simulations. 

 

Figure 2.10: Comparison of performance, power efficiency and cost efficiency among 

desktop multi-core CPU, Desktop GPU (GTX 690) and Mobile GPU (Jetson TK1). The 

baselines of three criteria are normalized to 1. Performance results are based on 

micromagnetic simulations. 

2.5. GPUs in Micromagnetics 

Micromagnetic models based on the LLG equation and its derivatives are 

important tools for understanding the performance in magnetic recording systems. 

Multiple parallel platforms have been used in micromagnetics, including multi-core 
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central processing units (CPU) and graphics processing units (GPU). In particular, GPUs 

were introduced offering ultra-high performance, which allowed using inexpensive 

desktop computers as high-performance computer clusters [16][18]. Important 

micromagnetic solvers powered by GPU includes FastMag [16], magnum.fe [19], 

OOMMF [32], MuMax [21], magnum.fd [43], GPMagnet [44], MicroMagnum [45] and 

etc. Opportunities of accelerating the micromagnetic solvers with GPUs lie in two aspects: 

specific compute-intensive algorithms and the entire solver. While the most time-

consuming micromagnetic solver components can be accelerated by GPU with certain 

algorithms, there are still benefits offloading all the computational work within a solver 

to the GPU [21]. 

As pointed out by previous sections, the performance brought by GPUs for some 

important algorithms, such as SpMVM, FFT, NUFFT and N-body, is impressive 

compared with the same algorithm on CPUs. These algorithms are heavily used in 

micromagnetic solvers. Taking the magnetostatic field evaluation in the FastMag as an 

example, the SpMVM algorithm can be applied to the gradient and divergent operator to 

evaluate the magnetic charge density from the magnetization, and evaluate the magnetic 

field from the magnetic field from the magnetic potential, respectively. Meanwhile, the 

NUFFT algorithm is essential to guarantee high speed here by calculating the magnetic 

potential from the magnetic charge density. The formulation, implementation details and 

the numerical results for the above algorithms will be addressed in Chapter 3. 

Provided with the highly optimized algorithms, having a full GPU version of 

micromagnetic solver could push the speed performance further. The time spent on the 

repetitive pointwise array operations and GPU-CPU memory transfers could be saved by 
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offloading the entire solver onto GPU. Moreover, the basic time integration solvers and 

some preconditioners are also good for GPU acceleration, as discussed in Chapter 4. An 

example of a full-GPU micromagnetic solver is covered in Chapter 5. 

 

Chapter 2, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 

this paper: S. Fu, W. Cui, M. Hu, R. Chang, M.J. Donahue, V. Lomakin, "Finite 

Difference Micromagnetic Solvers with Object Oriented Micromagnetic framework 

(OOMMF) on Graphics Processing Units," IEEE Transactions on Magnetics, vol. 52, no. 

4, pp. 1-9, 2016. S. Fu, R. Chang, S. Couture, M. Menarini, M.A. Escobar, M. Kuteifan, 

M. Lubarda, D. Gabay, V. Lomakin, "Micromagnetics on High-performance Workstation 

and Mobile Computational Platforms". Journal of Applied Physics, vol. 117, no. 17, pp. 

17E517, 2015. 
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3. Fast Algorithms for Micromagnetic Field 

Evaluation 

Among all the governing interactions, the evaluation of the magnetostatic and 

exchange energy/field takes most of the effort to develop fast algorithms. For the 

magnetostatic interaction, we present two methods in this chapter: NUFFT in the context 

of the FEM and a scalar method in the context of the FDM. Both algorithms are designed 

to compute the magnetic potential from the magnetic charge densities. The methods 

reduce the computational complexity of the integral operator evaluation for the 

magnetostatic field from O(N2) to O(NlogN). 

Differential operators are also essential in micromagnetic solvers, since the 

application includes the divergence and gradient operators in the magnetostatic field 

evaluation, and also the exchange field evaluation. In this chapter, we introduce a Sparse 

Matrix-Vector Multiplication (SpMVM) method on GPUs. In the context of implicit time 

stepping, SpMVM is called multiple times in each simulation time-step when solving 

stiff problems. Therefore, the speed of the exchange field evaluation is important for the 

speed performance of micromagnetic solvers. The capacity of GPU memory has been a 

limiting factor for the fast algorithms on GPU for a long time. Therefore, the SpMVM 

algorithm is further developed to run on multiple GPUs. Moreover, a memory-saving 

approach for SpMVM algorithm on single GPU is introduced. The numerical results of 

the developed algorithms are addressed to prove the efficiency. 
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3.1. Fast Magnetostatic Field Evaluation 

The magnetostatic field can be defined as a superposition integral  
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It is one of the most important components of any micromagnetic solver. It can affect 

both the numerical accuracy and computational speed. Since the magnetostatic 

interaction involves all-to-all superpositions, the computational complexity of the 

micromagnetic modeling for it is O(N2) if the superpositions are evaluated directly. For 

FEM codes, typically, this integral is replaced by the equivalent Laplace equation solver 

with a proper boundary handling [46]. Researchers have also developed other approaches 

to accelerate the evaluation of such interactions, such as the fast multipole methods [47], 

the non-uniform grid interpolation method [48], and the Fast Fourier Transform [49]. 

Among them, the Fast Fourier Transform (FFT) which reduces the complexity to 

O(NlogN) is of great importance and widely adopted by the micromagnetic community in 

FDM solvers. This is also due to the easy availability of the well-developed numerical 

FFT libraries [50][51][52]. 

In this work, the magnetostatic field is implemented by defining magnetic charge 

densities, magnetic potential and magnetic field via the following procedure: 
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Here, M  and M  are volume and surface charge densities, respectively. The numerical 

operators that are involved here are differential operators (divergence and gradient 

operators) and integral operator. In FastMag, the differential operators are implemented 

as SpMVM, while the integral operator is implemented via the NUFFT algorithm. 

To give a good coverage of the fast evaluation methods for the magnetostatic field, 

a demonstration of the method in the context of the FDM solver will be discussed. The 

method introduced also follows the three steps in Eq. (3.2). Compared with the traditional 

method, it saves GPU memory and number of operations. The overall performance of the 

novel method and the comparison to the traditional method are addressed. To achieve the 

best speed performance, all the algorithms in this chapter are implemented on CPU and 

GPUs. 

3.1.1. NUFFT for Finite Element Method 

The integral operator in Eq. (3.1) is a convolution between the magnetization 

( )m r  and the Green’s function 1 r r . The brute-force way to tackle the evaluation 

would be of the complexity of O(N2). Fast Fourier Transform can reduce the 

computational complexity of the convolution from O(N2) to O(NlogN) and it is easy to 

implement using well-developed FFT libraries such as FFTW, Intel MKL and Nvidia 

CUFFT library available online. 

However, the regular FFT algorithms available from the above packages are 

insufficient for the non-uniform distributed source problems. The non-uniform distributed 
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sources are common in the solvers with FEM, when the magnetization is defined at the 

finite element mesh nodes (vertices of the tetrahedrons). 

An approach to reduce this high computational cost is NUFFT, which extends the 

FFT from uniform to general non-uniform sampling. Apart from the regular FFT 

algorithm, NUFFT introduces the interpolation and projection procedures to handle the 

non-uniformly distributed sources accompanied with near-field corrections. Here, we use 

“sources” and “observers” to represents the input and output of the NUFFT algorithm, 

respectively. 

To be specific, NUFFT solves the non-uniformed distributed sources problem by 

subdividing the computational domain into uniform boxes, so that FFT can be operated 

after projecting/interpolating the sources to vertexes of boxes. NUFFT takes advantage of 

the fact that the magnetostatic far-field varies slowly. As a result, the magnetostatic far-

fields can be approximated well even if we do not compute the far-field with the exact 

locations of sources. On the other hand, the boxes within a pre-defined distance for a 

certain observer point are considered as near-field boxes and the field generated by the 

sources inside near-field boxes are computed directly with analytical method. 

The NUFFT algorithm comprises four stages. In stage I, the sources are 

interpolated/projected onto the vertexes of uniform boxes. FFT is, then operated on the 

sources to get the potential on vertexes of boxes in stage II. In the next stage, the 

field/potential is interpolated/projected to the observer points. In the last stage, the near-

field is computed analytically and added to the previous results.  

To implement NUFFT on GPU, we utilized Nvidia CUFFT library for the FFT 

computation. Other kernels are optimized such that the GPU memory is accessed in a 
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coalesced way, which means that a group of GPU global memory can be read/write in 

parallel. Furthermore, the fast-speed GPU shared memory is also utilized to reduce the 

slow-speed GPU global memory accesses within, for example, the forward and backward 

interpolation/projection kernels. These optimization methods are important because 

memory access is the bottleneck for most of GPU kernels that we have implemented for 

NUFFT. 

To realize the algorithm on GPU efficiently, the algorithm has to be carefully 

implemented as summarized in the following steps: 

A. Projection.  

Due to the limitation of the FFT algorithm, any irregularly located sources have to 

be projected onto regular grids first. Therefore, a uniform grid is created to hold the 

projected values from the sources. The grid comprises the number of grid points of O(N). 

Defined by the grid points are boxes. Each box contains a certain number of non-uniform 

sources (or observers) such that this number is of 𝑂(1). 

As shown in Fig. 3.1, a non-uniform source point (green triangle) is projected 

onto the surrounding uniform grid points. Note that the uniform source projection grids 

have to enclose all the sources in space. In Fig. 3.1, the range of non-uniform distributed 

sources (green solid line) is within the regular source grids (black solid line). The 

interpolation method uses Lagrange polynomials [53], among which the linear 

interpolation (first order interpolation) in 2D space is shown as an example in Fig. 3.1. 

Two interpolation schemes, namely linear interpolation and cubic interpolation (third 

order interpolation), are implemented in our NUFFT algorithm. There are speed and 

accuracy differences out of the choice of the interpolation order. Due to the amount of 
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numerical operations required for the computations, it is clear that the cubic 

interpolations are more accurate while the linear interpolations are faster. A practical 

choice of the interpolation method is based on the application. For instance, in the context 

of the most applications we run with FastMag, linear interpolation is accurate enough. 

Therefore, linear interpolation is preferred in such cases and we set linear interpolation as 

our default option for NUFFT algorithm. 

Although the CPU implementation of this procedure seems straightforward, 

having an efficient GPU implementation is not simple. Coalesced memory access should 

be followed for reading the amplitudes and coordinates of the sources. Shared memory is 

used to hold the data, which helps to only access data from slow global memory once. All 

the repetitive memory access is through the shared memory. We note that all the 

necessary data are pre-loaded from CPU to GPU global memory. This also applies to the 

rest of the implementation steps. 

The computational cost for all boxes and sources scales as O(N). 

 

Figure 3.1: Projection step of NUFFT. The randomly distributed source (green triangle) 

is projected to the uniform surrounding grid points. 
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B. Fast Fourier Transform.  

The next step is to apply the FFT algorithm on the regular grids. In Fig. 3.2, the 

convolution between the sources (green circles) and the Green’s function 1 r r  is 

evaluated and results in the potential at the observer points, which are located on the 

uniform observer grid (red circles). 

Nvidia cuFFT library [52] is utilized for computing FFTs on GPUs. In FFTs, we 

exploit the fact that the real-space sources and potentials are real-valued quantities to 

minimize the GPU memory consumption and computational workload. The CPU 

implementation uses the FFTW library. The interface of FFTW is similar to that of 

cuFFT and it provides a good performance on CPU benchmarks [50]. 

Since only FFTs are involved in this stage, its computational cost is of O(NlogN). 

 

Figure 3.2: FFT step of NUFFT. Demonstrate FFT to compute the convolution from 

source grids to observer grids. 

C. Back-projection.  
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This is an inverse process to step A, applied to the observers. Lagrange 

polynomials are used to interpolate from the uniform observer grids (red circles) to the 

non-uniformly distributed observer points (red stars). Note that only the surrounding 

regular grids contribute to the observers inside the same box. The back-projection 

procedure provides linear and cubic interpolation options to provide the freedom to 

balance between the speed and numerical accuracy. 

Similar to the projection stage, utilizing the shared memory and following the 

coalesced memory accessing rule is the key to implementing an efficient GPU kernel for 

this stage. The computational cost of this stage is of O(N). 

 

Figure 3.3: Back projection step of NUFFT. Interpolate the FFT results from previous 

step (red circles) to the non-uniformly distributed observers (red star). 

D. Near-field correction.  

The last near-field correction step is necessary to ensure the accuracy of the 

NUFFT algorithm. By applying the FFT on the regular grids, location shift from the 

original sources and observers to the uniform grids causes numerical errors when sources 

and observers are close to each other. To solve this problem, the contributions of the 
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potentials from the nearby sources are re-computed in the near-field correction step. To 

be specific, the FFT results are subtracted from the results of the previous step and then 

analytically computed superposition integrals from the near-field sources are added. 

Within the range of the near field correction, the complexity of this step is 𝑂(𝑁𝑛𝑓
2 ), where 

𝑁𝑛𝑓
2  is the number of sources (and observers) per box. However, we choose the number 

of boxes as 𝑂(𝑁) so that the number of observers per box is 𝑁𝑛𝑓 = 𝑂(1). As a result, the 

overall computational effort of this stage for all boxes is of 𝑂(𝑁). 

 

Figure 3.4: Near-field correction step of NUFFT. Subtract the FFT results from the 

nearby grids and then add analytical results back. The accuracy of the NUFFT method is 

guaranteed by this step and is tunable by defining the range of the nearby boxes (the 

range of the light green boxes). 

Through defining the range of the nearby grids, the time spent in this step and the 

accuracy of the NUFFT algorithm are controllable (the accuracy control is in addition to 

the accuracy control by the interpolation order). In practice, we take the surrounding 

boxes around a certain observer box as near-boxes, as indicated by the light green shaded 

range in Fig. 3.4. The range of these boxes allows controlling the error. In many cases 
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one level of boxes is sufficient for accuracy at the level of 1e-3 and two or three levels 

may be needed for accuracies levels of 1e-4 – 1e-5. There is also a compromise if it is 

more efficient to control the accuracy by increasing the interpolation order or by 

increasing the near-box range. 

3.1.2. A Scalar Potential Approach for Finite Difference Method 

This section introduces a scalar potential approach for computing the 

magnetostatic field in the context of FDMs. This approach is an alternative to a more 

conventionally used “tensor” approach, which directly finds the magnetostatic field using 

superposition with the tensor integral kernel. The scalar potential approach uses scalar 

charges to find the scalar potential, which is used to compute the field as the gradient of 

the potential. The scalar potential approach has a lower computational cost and memory 

requirements. In this section, we compare their formulation, GPU implementation, 

numerical accuracy and speed performance. 

A. Tensor Method 

In the tensor formulation, the double del operator is moved under the integral 

from (3.1) to result in 
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For numerical implementation, the magnetization is assumed to be uniform in 

each discretization cell and the field is obtained by averaging over the observation cells: 
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where iV  is the volume of the of the cell i  , whereas idS  and jdS  represent surface 

integrals over the surfaces of the cells i  and j  . The tensor ijN  provides the field 

generated by the magnetization in the cell j  at the cell i  and can be computed as 

outlined in [54]. 

The direct cost of computing the magnetostatic field via Eq. (3.4) is of 
2( )O N . 

However, using the fact that the discretization is uniform, the summation in Eq. (3.4) can 

be computed via three-dimensional Fast Fourier Transform (FFT), which reduces the 

computational cost to ( log )O N N . 

The numerical procedure involves one forward FFT of the ijN tensor components, 

which is done once in the precomputation step. In each time integration step, the 

computations involve forward FFTs of the three vector m  components, products and 

summations of these components with the Fourier images of the tensor ijN , and the 

inverse FFT of the three vector components of the resulting magnetic field. 

The number of operations of the tensor method per time step scales as 13 logc N N , 

where the constant 1c  is related a single scalar 3D FFT evaluation. The memory storage 

scales as 12N . The rate of numerical convergence for decreasing cell size D  is of 

2( )O D
 [55]. 

B. Scalar Potential Method 

In the scalar potential approach, the field is evaluated by finding the volume and 

surface charges, computing the potential, and finding the field via finite differences as Eq. 

(3.2). The potential is found via the scalar superposition integrals. 
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Evaluating the volume charges is a straightforward task. On the other hand, 

evaluating the surface charges and the corresponding scalar potential is more involved. 

This is because if the magnetization locations are assigned at the cell centers, the surface 

charge locations are shifted by half-cell with respect to the volume charges. One simple 

approach, then, is to consider volume and surface charges and corresponding potential 

parts separately. However, such an approach would require evaluating the integrals for 

the potential twice. The approach we use is to find the magnetization states at the grid 

nodes by averaging over cells surrounding the nodes, i.e.  

 ( ) ( )
n c nc
i i i c ni

I im m , (3.5) 

where for each node ni  the summation is over the cells ( )c ni i  surrounding this node and 

( )c nI i  is the number of the surrounding cells. These nodal magnetization values are then 

used to find the surface charges at the grid nodes at the boundaries. Next, surface charges 

are found as a sum of the surface charges on the surfaces surrounding the nodes: 

 , ( ) ( )( )
ˆ( )

n n s n s ns n
s i i i i i ii i

q s  m n , (3.6)  

where ni  is the boundary node numbers, ( )
ˆ

s ni in  is the normal corresponding to the 

surrounding boundary surfaces, and ( )s ni is  is the areas of the surrounding surfaces. The 

areas ( )s ni is  are taken such that no part of any surface is account more than once per each 

surface node, i.e. if the structure is discretized into cubic cells with the side surface area 

of s , ( ) 4
s ni is s  . The volumetric charges , nv iq  corresponding to the nodes are found 

by finite differences at all nodes. Through similar approach as surface charges, there is no 

overlap between volumes taken for different , nv iq . In this approach the volumetric and 
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surface charges are collocated at the nodes, which allows lumping them together for the 

purpose of computation of the scalar potential: 

 
1 | |

n

n

n n

n n n

i jn n

N
j self

i i

j i j

q
 




 



r r

r r
, (3.7) 

where ,n nj v jq q  at the interior nodes and , ,n n nj v j s jq q q   at the boundary nodes. The 

term 
n

self

i  represents the self-term given via the exact integration of the volume and 

surface charges corresponding to the effect of the surrounding surfaces and volumes on 

the same node. The computation can be further made more accurate by considering that 

the charges 
nj

q  are spread into volumetric charge densities in cells centered at the node 

and replacing the factor 1| |
n ni j

r r  with the integral 
1( ) | |

n n n n
jn

j j i j
V

q v dv  r r . The 

summation in Eq. (3.7) or the integrals in Eq. (3.2) can be treated as three dimension 

scalar convolutions via FFT. Once the potential at the nodes is found, the magnetostatic 

field is found by finite differences at the centers of the cells. 

As compared to the tensor approach, the scalar potential approach has a reduced 

computational cost and memory consumption. In particular, the number of FFTs is 

reduced from 6 to 2, and the memory consumption is reduced 3 times. The overall 

accuracy of computing the field scales quadratically with respect to the discretization cell 

size, similar to the tensor approach, although as shown in the examples the tensor 

approach is more accurate by a constant for the same cell size. 

C. Implementation 

Provided that the GPU memory is limited compared to the CPU memory, saving 

memory is important to enable large-scale problems. This is especially important in the 
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implementation of the tensor approach for the magnetostatic field. The GPU memory is 

mainly consumed by storing the Green’s function and magnetization or magnetic charge 

data in Fourier-transformed space. For N discretization cells, the storage required for the 

tensor approach is 30N real numbers, including 24N for the 3 FFT-extended vector 

components of the magnetization and 6N for the FFT-extended tensor; this storage 

calculation includes zero padding for the non-cyclic convolution, symmetries, and the 

fact that the computation space is real. The storage of the scalar potential approach in 

[56][57][58] is 27N real numbers, including 24N for the 3 FFT-extended vector 

components of the magnetization and 3N for the FFT-extended Green’s function. The 

memory requirement for the scalar potential approach presented here is significantly 

lower—it is 12N real numbers, including 8N for the FFT-extended scalar potential, 3N 

for the magnetization, and 1N for the FFT-extended scalar Green’s function. The GPU 

memory cost of both the tensor approach and scalar potential approach can be further 

reduced by 1/3 or more with the FFT approach introduced in [59]. Such an improvement 

would maintain the fact that the scalar potential approach is more favorable in terms of 

computational speed and memory consumption. The GPU memory consumption is 

carefully managed by reusing GPU memory whenever possible, such that extra GPU 

buffer is rarely needed. Up to 8M cells and 4M cells can be fit into a 2GB GPU with the 

scalar potential method and the tensor method, respectively. 

D. Numerical Results 

(1) Accuracy Analysis 

Fig. 3.5 compares the accuracy of the magnetostatic field evaluation via the scalar 

potential and tensor approaches. In order to validate the accuracy and convergence, we 
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discretize a fixed-size cube (49nm x 49nm x 49 nm) into an increasing number of cubic 

cells. The initial magnetization state zM z  was chosen so that both volume and surface 

charge densities exist ( M  = -1 emu/cm4, M  = 49 emu/cm3 when z = 49 nm, else M  

= 0). For this case, the magnetostatic field can be found analytically. The error was 

defined as 
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Error
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From Fig. 3.5 it is evident that both the scalar potential and tensor approaches 

have quadratic convergence. The tensor method is more accurate due to the fact that it 

avoids the approximation of charges at the boundaries and numerical derivative 

operations in the superposition integrals. 

 

Figure 3.5: The numerical error of GPU implementation for the magnetostatic field by 

the scalar potential method and tensor method as a function of discretized grid cell size. 

Both methods show a quadratic convergence. 

(2) Speed Comparison 
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We can clearly compare the speed of scalar and tensor methods implementations 

of the solver in Fig. 3.6. The running time per time step of the implementations of both 

methods follows a ( log )O N N  trend. We can also observe that the speed of the scalar 

method on GPUs is higher than that of the tensor method. At the points where CUFFT 

has the highest efficiency on GPU, e.g. 83, 163, 323, 643, 1283, the scalar method is about 

50% faster. This percentage is higher at other points (up to ~60%) because CUFFT is 

working with lower efficiency at these points and that leads to a higher weight of FFT 

comparing to other parts of the code. As a result, the problem of more FFTs becomes 

more significant at these points. Since FFT performs better when the transformed array 

size are composed of small prime factors, like 2, 3, 5 and 7, we always zero-pad the array 

to these sizes. As a result, a smooth curve of timing results is achieved in Fig. 3.6. 

 

Figure 3.6: Simulation time per time step for the scalar potential method and tensor 

method as a function of problem size. The scalar method is faster than tensor method and 

both results fit well with the O(NlogN) trend. 
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3.1.3. GPU OOMMF with Tensor Approach 

As an extension of the work on the GPU implementation of the tensor method, we 

demonstrate a GPU implementation of the widely used Object Oriented Micromagnetic 

Framework (OOMMF) based on the tensor method [20]. The implementation is such that 

most of the user-related OOMMF components are unchanged and only the lower-level 

modules are ported to GPU. This allows OOMMF users to run their models as before but 

at a greater speed. The GPU-accelerated OOMMF has been made freely available to the 

micromagnetic community at the UCSD website [61] and OOMMF website [60]. 

A. Implementation 

In addition to the implementation details discussed with respect to the tensor 

method above, here, we discuss details related to the time evolver. The time evolver is the 

section of code that implements the time evolution of the LLG equation. To avoid CPU-

GPU data transfers at every time step, we implemented the time evolver on the GPU so 

that the entire OOMMF simulation runs on the GPU. The adaptive Euler method and a 

fixed-time-step evolver were implemented. The adaptive time evolver includes error-

tracking kernels. The reduction kernel, which sums up and finds the minimal or maximal 

values of an array, is required for numerical error-tracking in the adaptive time evolver. It 

is not an easy kernel to implement efficiently on the GPU because it requires significant 

data communication between CUDA threads and it is not compute-intensive. A highly 

efficient GPU reduction implementation [62] was adopted. With this reduction kernel, the 

global memory is read via coalesced access to shared memory. The shared memory is 

then used for the reduction with serial addressing to avoid shared memory bank conflicts. 

In addition, synchronization among CUDA threads is avoided to the extent possible by 
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taking advantage of the “atomic” behavior of the GPU warps. This approach results in a 

highly efficient reduction kernel as demonstrated in the following section. 

B. Numerical Results 

 

Figure 3.7: Runtime per time step for OOMMF on CPU and GPU as a function of the 

number of discretization cells N. The time for the magnetostatic field computation on the 

GPU is also included. The computation for the magnetostatic field takes most of the run 

time in the GPU implementation. 

Fig. 3.7 shows the timing results of the OOMMF adaptive Euler solver using 

single-precision for the GPU computations and double-precision for the CPU 

computations. There is a difference in the simulation time of OOMMF running on CPU 

versus GPU, but both show a step-like behavior in the simulation time. The steps occur 

when the number of cells in each dimension surpasses a power of two, i.e. 16, 32, 64. 

This occurs because OOMMF pads the FFT array to a power of two. For example, when 

the number of grid cells is 33, the FFT array is padded to 128 although a size of only 

2 33 1 65    is necessary for the computation. With this padding strategy, the FFT 

computation always stays at its best performance, whereas there are some unnecessary 

computations during the simulation. 
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Fig. 3.7 also breaks down the time spent on the magnetostatic field computation 

on GPU. This time is very close to the computational time of the entire OOMMF solver 

on GPU when the total number of discretized cells is large enough. This reflects the fact 

that in our implementation kernels other than the magnetostatic field are subdominant. 

One can also observe that the computational time for the magnetostatic field has higher 

weight at the points with sizes that are not powers of two. This further verifies that the 

FFT computations take most of the computational time when the FFT array is padded to a 

power of two. 

 

Figure 3.8: GPU and multi-core CPU speed-up of OOMMF implementation as a 

function of the number of discretization cells N. An increase in the speed-up with N is 

observed. 

Fig. 3.8 shows the GPU-CPU speed-up, demonstrating the speed-up increase with 

the number of discretized cells. The efficiency increase is due to the fact that multiple 

GPU streaming processors can be utilized more efficiently for larger problems and the 

memory access time is hidden by the computations to a larger extent. In the same figure, 

limitations of speed-ups by multi-core CPU is observed. 
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We also tested double-precision computations as shown in Table 3.1. We find that 

using the GTX690 the double-precision performance is 2.0x – 3.5x slower than single-

precision. It is interesting to note that the number of double-precision streaming 

processors on the GTX690 GPU we used is 24x fewer than single-precision processors. 

The comparatively smaller reduction of the double-precision performance indicates that 

the FFT computations that dominate the overall cost are memory access latency limited. 

Indeed, the memory access time for a given number of double-precision accesses is about 

twice that for the same number of single-precision accesses. The reduction in the 

computational speed for the double-precision case is closer to 1/2 as explained by 

memory bandwidth and not 1/24 as would be explained by the number of streaming 

processors. 

Table 3.1: Timing Results of OOMMF Solver 

N 

OOMMF 

CPU 

1 core (ms) 

CPU 

6 cores (ms) 

GPU Single 

prec (ms) 

Speed-

up 

GPU Double 

prec (ms) 

Speed-

up 

4K 1.63 0.66 0.84 2.0 1.61 1.3 

32K 14.11 5.12 1.37 10.3 2.69 5.2 

256K 155.3 48.71 5.67 27.4 16.62 9.4 

2M 1323 401.8 41.96 31.5 136.9 9.7 

 

3.2. Fast Exchange Field Evaluation 

The Laplacian operator involved in the evaluation of the exchange field can be 

extracted as a Sparse Matrix Vector Multiplication (SpMV) process. In the context of 

implicit time stepping, SpMVM is called multiple times in each simulation time-step 

when solving stiff problems. Therefore, the exchange field evaluation efficiency is 
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important for the speed performance of a micromagnetic solver. The formulation of 

SpMVM we are going to discuss in this section is 

 y x A  (3.9) 

where A is a sparse matrix, x is a dense input vector and y is a dense output vector. A 

sparse matrix means that the number of nonzero entries is much fewer than the total 

number of entries in the matrix. In order to save memory and reduce computation 

complexity, only nonzero entries are stored and computed in the SpMVM method. 

However, due to indirect and irregular memory access pattern resulting in bad spatial 

locality [63], careful implementation strategies have to be taken to yield high SpMVM 

performance on GPU. 

Though having a strong computation power, GPU is limited by its memory size to 

solve ultra-large problems. GPU memory capacity is relatively small comparing to the 

size of CPU RAM that can be installed on a node. The scarcity of GPU memory becomes 

serious in micromagnetic solvers where there are several GPU algorithms consuming the 

memory. For example, in FastMag, GPU memory is shared by dense matrix algorithms 

like NUFFT and sparse matrix algorithms. To solve this problem, we developed a 

memory saving approach, which is named “on-the-fly” method because it transfers the 

matrix part by part on-the-fly. As it is time-consuming to transfer memory from host to 

device, we take advantage of the concurrent CUDA streams strategy provided by Nvidia 

toolkit to overlap the memory transfer time with computational time. In addition, CUDA 

pinned-host-memory is exploited to maximize the memory transfer throughput. Within a 

single GPU, our memory saving approach enables solving ultra-large SpMVM problems 

with rather high performance. 
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Implementing SpMVM on multiple GPUs is another solution to the GPU memory 

size limitation. Multi-GPU parallelism can further accelerate the simulation speed. 

Through sorting the sparse matrix before computations, we divide the input vector evenly 

among GPUs so that the memory scalability can be preserved. Workload balance among 

GPUs was carefully accounted for so that high parallel efficiency is achieved. 

3.2.1. Acceleration Strategy 

A. Storage Format 

The High-Performance Computer (HPC) community has been exploring several 

methodologies to implement SpMVM on GPUs, especially on the storage formats related 

topics. Bell and Garland have reported benchmarks of the performance of SpMVM on 

GPU with a variety of storage formats, such as Coordinate (COO), Compressed Sparse 

Row (CSR), Blocked-CSR (BCSR), Diagonal (DIA) and ELL formats [64]. Among them, 

CSR format simply compresses the nonzeros in the row order and gives a steady good 

performance on various sparse matrices. Considering that we are focusing on the 

effectiveness of our multi-GPU implementation and memory saving approach on single 

GPU, a straightforward implementation of CSR becomes our first choice. 

CSR format stores the value and column index of each nonzero element in arrays 

Data and Ptr, but the nonzero elements are stored row-wise so that the row index of each 

nonzero element does not need to be explicitly kept in memory. Instead, a shorter array 

RowOffset stores the index of the first nonzero entry in each row, and the last element of 

RowOffset is the total number of nonzeros elements in the matrix. For a M N  matrix 

with the total number of nonzero entries being NNZ, the length of Data and Ptr is NNZ 
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while the length of RowOffset are M+1. Fig. 3.9 illustrates the zero-indexed CSR storage 

format of an example matrix. The arrays RowOffset and Ptr work as lookup tables so that 

the position of each nonzero entry can be identified. 

1 0 0 9

0 8 0 0

0 2 7 0

0 0 3 5

 
 
 
 
 
 

A                       

 

 

 

RowOffset = 0 2 3 5 7

Ptr              = 0 3 1 1 2 2 3

Data           = 1 9 8 2 7 3 5
 

Figure 3.9: An example of the sparse matrix CSR format. 

B. Sorting Sparse Matrix 

Reordering the rows and columns of the sparse matrix is an effective way to 

improve the performance of both single GPU and multi-GPU implementations. First, the 

sparse matrix sparsity pattern can be improved via grouping the nonzero entries together. 

A better data uniformity leads to coalesced memory access of input vector x, which is 

important because the memory access speed is the bottleneck of SpMVM algorithm on 

GPU. Second, conducting the reordering of sparse matrix helps keep the memory 

scalability of multi-GPU and multi-stream implementations. Taking the M-GPU 

implementation as an example, ideally, only 1/𝑀 of input vector should be sent to each 

GPU. However, in reality there are always overlaps between input vector pieces on 

difference GPUs due to the uncertainty of nonzenonzeroro element position in the sparse 

matrix. Sorting helps reduce the overlap between input vector pieces by grouping the 

nonzero elements of the sparse matrix along the diagonal, thus increasing the certainty of 

nonzero element position. Third, sorting the sparse matrix can help with the workload 

balance for multi-GPU and memory saving implementations. This is because the sparsity 
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pattern on different chunks of sparse matrix is guaranteed to be similar by reordering the 

matrix. 

There is a broad range of reordering algorithms proposed such as Column Count 

Method [65], Approximate Minimum Degree Method (AMD) [66], reverse Cuthill-

McKee Method (RCM) [67], King’s Algorithm [68], and the Traveling Salesman 

Problem (TSP) [69]. Among them, AMD method and RCM method are only for 

symmetric matrices. We proposed a sorting method based on the fact that the sparse 

matrices and vectors in the considered applications are generated from sources with 

definite coordinate information in three-dimensional space and the fact that nonzero 

elements are generated by the interactions among adjacent sources. For example, the 

exchange field in the micromagnetic solvers is represented by the Laplacian operator on 

the magnetization. The Laplacian operator can be translated into sparse matrix while the 

magnetization becomes the dense input vector. In this case, the nonzero elements 

represent the exchange interaction among local magnetizations. Taking these into account, 

we can develop a sorting algorithm that groups the nonzero entries together around the 

diagonal in the matrix, without the constraint of symmetry of sparse matrices. 

Since the nonzero entries in the sparse matrix come from the adjacent sources, we 

reorder the sources by cubic boxes so that all the sources located in the same box lead to 

a successive alignment of their corresponding nonzero elements in the sparse matrix and 

input vector. To be more specific, first, we define the boundaries of the sources in 

Cartesian coordinates system. Then, we divide them into uniform sized boxes, which are 

denoted with continuous numbers to specify the box order. The sources in the first box 

are aligned as the first group of elements of the input vector, and then the sources in the 
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second box and so on are aligned. Since the sources are sorted by box, we name this 

sorting method as “box-sorting method”. 

To illustrate the effectiveness of the box-sorting method, we present spy-plots of a 

sparse matrix generated for exchange field in the Finite Element Method, as shown in Fig. 

3.10. The blue dots in the figure represent the non-zero elements in the matrix. The 

apparent difference between the width of nonzero elements bands in Fig. 3.10a and Fig. 

3.10b shows the effectiveness of the box-sorting method. Since we are testing on a 

symmetric matrix, we also show the sorting result by RCM in Fig. 3.10c. We need to 

clarify that our box-sorting approach is not as elegant as other approaches like RCM, but 

it coincides well with the sorting method used in FastMag solver. Provided that the GPU 

speed is almost the same with our box-sorting approach and RCM, we adopted our 

simple but effective sorting approach in this paper. 

 

Figure 3.10: Spy-plots of one sparse matrice before and after sorting. (a) spy-plot of 

unsorted sparse matrix (b) spy-plot of the sorted sparse matrix with box-sorting method 

(c) spy-plot of the sorted sparse matrix with RCM sorting method. 

C. Single GPU Memory Saving Approach 

Since the GPU memory capacity is relatively small comparing with CPU RAM, 

the problem size that can be addressed by GPUs can be significantly limited if all the 

(a (b (c
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matrix elements are kept in the GPU memory. There are two ways to solve the problem. 

The first way is to use multiple GPUs. The second approach is to use a single GPU but 

transfer memory and compute piece by piece. However, the performance of the latter 

method can be limited by the speed of the CPU-GPU memory transfer, which is for a 

PCI-E 3.0 is typically around 4x to 5x slower than the memory speed of a CPU [70]. In 

order to ease the limitation of the GPU memory size while maintaining a high speed, we 

developed an on-the-fly method running on a single GPU. The basic concept is to transfer 

part of Data and Ptr at one time to GPU instead of transferring the entire sparse matrix to 

GPU at the preprocessing step. One decides on the number of pieces that the Data or Ptr 

are divided into, each of which is assigned to a separate CUDA stream. Here, a stream is 

a sequence of operations that execute in issue-order on the GPU, and operations in 

different streams can run simultaneously on a GPU. We use the term “flying stream” to 

denote how many streams are allowed to run simultaneously/on-the-fly. Fig. 3.11 takes 

an example composed of 8 streams with 2 flying streams to illustrate how the on-the-fly 

method works. At the beginning, only two streams are assigned to transfer the memory 

and execute GPU kernels. Once stream0 is done with computation, stream2 is ready to 

take over the memory space from stream0 for memory transfer and computation. 

Therefore, half of the GPU memory space is passed among streams with even numbers, 

while the other half is passed among streams with odd numbers. As shown in Fig. 3.11, 

the capability of overlapping computation time and memory transfer time is utilized to 

mitigate the time loss by memory transfer. 



65 
 

 

  

Figure 3.11: Run-time streaming of an 8 streams with 2 flying streams implementation 

shown in Nvidia Visual Profiler. Yellow strips represent the memory transfer and green 

strips represent kernel computation. 

The total number of streams Nstm equals the number of workload division, while 

the number of flying streams that is denoted as Nfly_stm. If we use M to denote the total 

amount of memory needed without on-the-fly method, then about M/Nstm is needed by 

each stream. In order to overlap the memory transfer and GPU kernel time, the least 

possible value for Nfly_stm is 2. Thus we only need the GPU memory size of 

_ /fly stm stmN M N  to conduct the computation. In other words, if we define S as how 

many times the device memory is saved by on-the-fly method, then 

 
_ _

stm

fly stm stm fly stm

NM
S

N M N N
 


 (3.10) 

However, the memory saving is not free. The total amount of transferred memory 

increases. As a result, the speed of memory saving approach is slower than regular single 

GPU implementation. On the other hand, as we can find from Fig. 3.10 there are overlaps 

between input vectors on different streams. With the increase of Nstm, the total amount of 

overlap will also increase. In other words, Eq. (3.10) is a good estimate of the memory-

saving rate. To reduce the influence from input vector overlap, the assignment of sub-

matrices and input vectors to streams is also based on the sorting method. 
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Different from single GPU and multi-GPU implementations where only 

InputVector needs to be transferred iteratively, memory saving approach requires all GPU 

data arrays being transferred on-the-fly. Data is transferred and computed on GPU piece 

by piece and operations for different pieces could be executed in parallel through CUDA 

streams. Moreover, CUDA streams allow overlapping of operations on different streams. 

To be more specific, the computational time is overlapped by memory transfer time in 

our implementation, as shown in Fig. 3.11. 

Apart from CUDA stream, CUDA event is another essential component of 

memory saving approach. Assuming we have two flying streams and 

 % 2flyID streamID , cudaStreamWaitEvent() can guarantee that there will not be race 

conditions among streams with the same flyID. The details of our implementation are 

shown by the pseudo-code listed in Pseudocode 3.1. The code can be divided into three 

parts: the first part is data uploading from host to device, the second is kernel launching 

and the last part is data download from device to the host. Memory download is put into a 

separate loop to avoid interference with memory upload. CUDA compiler analyzes the 

dependence of the issues declared in each stream to decide all the possible overlapping 

between computation and memory transfer. As illustrated by Fig. 3.11, the resultant 

overlap between kernel and memory transfer is favorable. 

The price of transferring memory on-the-fly is the increase of total amount of 

memory being transferred. As shown in Fig. 3.11, the speed of memory saving approach 

is mainly decided by memory transfer speed. With that said, utilizing pinned-host-

memory to maximize the memory throughput is essential to improve the performance of 

memory saving approach. Pinned-host-memory is always ready to be fetched by GPU 
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without the help of CPU, which is called Direct Memory Access (DMA). On the contrary, 

normal host memory transfer to GPUs has to be interfered by CPU. According to our test, 

pinned-host-memory transfer throughput can be 12.5 GB/s which essentially doubles the 

throughput of normal host memory. Apart from memory throughput, no CPU interference 

decides that memory transfer of pinned-host-memory can be asynchronous to CPU 

operations. As a result, GPU kernel can be overlapped with memory transfer, as we 

discussed in the last paragraph. 

for streamID = 1:numStreams 
 flyID = streamID % 2 
 StreamWaitEvent( Event[flyID] ) 
 MemcpyHostToDevice( flyID ) 
 SpMVMKernel<<< gridSize, blockSize, sMemSize, streamID >>>() 
 RecordEvent( Event[flyID] ) 
end for 
 
for streamID = 1:numStreams 
 MemcpyDeviceToHost( streamID ) 
end for 

Pseudocode 3.1: Memory saving approach. 

3.2.2. Implementation of the computation 

A. SpMVM Kernel 

Since multi-GPU and memory saving approach reuse the same GPU kernel, an 

efficient single GPU kernel is the prerequisite of the other two implementations to yield 

high performance. In this section, we introduce the implementation details of our 

SpMVM GPU kernel. 

There are two different methods to implement CSR kernel computation. One is 

referred as scalar CSR, the other is called vector CSR [71]. Scalar CSR uses the strategy 
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of “one thread per row” while the vector CSR is called “multi-threads per row” approach. 

It has been proved by Bell and Garland that the vector CSR method is more efficient in 

most cases [71] and according to our test the vector CSR method is over 3x faster than 

scalar CSR method. Therefore, we adopt the vector CSR method in our demonstration of 

SpMVM. 

The number of threads per row in the vector CSR method is possible to be 2, 4, 8, 

16 or 32, according to the matrix sparsity pattern. The denser the matrix, the more threads 

are assigned to each row. The selection of the number of threads per row is important to 

guarantee most CUDA threads to be active during computation. The maximum number 

of threads per row is 32 because the smallest parallelization unit in GPU is a warp which 

is composed of 32 threads. We limit the number of the warp to be 1 to synchronize the 

instructions in a block. If there are more than 32 nonzero elements in a row, the 

operations will be processed serially. 

SpMVM kernel can be roughly divided into two steps: dot product and reduction. 

Dot product step is the multiplication of nonzero elements in the sparse matrix and 

corresponding input vector elements. The involvement of accessing Data, Ptr, RowOffest 

and InputVector arrays decides the bottleneck be memory access speed. With vector CSR 

format, memory access of Data and Ptr arrays are coalesced, while access of RowOffset 

array is an efficient broadcast among threads. However, the access of InputVector is non-

coalesced because of the unpredictable position of the corresponding sparse matrix 

element. Sorting before computation could improve the memory access efficiency by 

allowing threads in a warp to access adjacent elements of InputVector. Provided that our 

sorting method has effectively reduced the band of the sparse matrix, there is a good 
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cache locality in the access of InputVector. However, L1 cache is not a choice to cache 

global memory in the Nvidia Pascal architecture. Considering that the access of 

InputVector is read-only, texture memory is helpful to enforce GPU to cache InputVector 

so that the memory traffic between SM and L2 cache is reduced. 

The second step of SpMVM kernel, which is the reduction of dot product results 

in each matrix row, is implemented in a parallel way presented by M. Harris [62]. This 

strategy takes advantage of all possible threads to do a reduction, instead of limiting the 

entire workload to only one thread which is used in the scalar method. This parallel 

reduction strategy relies on communicating intermediate reduction results between 

threads. As we have introduced, shared memory or shuffle instructions are the available 

two options for the communication. In our implementation, we select shuffle instruction 

in order to get rid of the synchronization between threads and the memory traffic between 

registers and shared memory. Another reason why we want to avoid the shared memory 

is to keep the possibility of modifying the kernel in future without the worry about 

limited shared memory resource in SM. 

 

B. Multiple GPUs 

Now that we have developed an efficient SpMVM kernel, the next step to achieve 

a successful multi-GPU implementation is to take care of the sparse matrix partition. For 

those large sparse matrix problems that cannot fit in a single GPU, multiple GPUs can 

handle them by dividing the sparse matrix and input vectors into separate chunks and 

solve them separately. Provided that we are using the CSR format, it was proven in [72] 

that partition the matrix by row is superior to partition by column or grids for multiple 
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GPU implementations. Therefore, we followed this strategy so that each GPU can work 

on one chunk of sparse matrix independently. The parallelization among GPUs is 

accomplished via OpenMP so that each CPU thread controls one GPU. In this way, the 

operations on different GPUs can be launched at the same time. 

Workload balance is an important issue for high parallel efficiency among GPUs. 

Here, the workload not only means the number of nonzero elements but also the sparsity 

pattern. In our implementation, the number of nonzero elements is leveraged among 

chunks of the matrix. However, the sparsity pattern is hard to be perfectly the same 

among chunks. Here, sorting the sparse matrix can guarantee that the nonzero elements 

are grouped along matrix diagonal in each chunk so that the sparsity pattern is more 

likely to be the same than the original sparse matrix. 

3.2.3. Numerical Results 

A. Single GPU Results 

To demonstrate the performance of our SpMVM kernel, we listed our regular 

single GPU implementation testing results in Table 3.1. The necessity to put the 

computation on GPU was proven by the fact that our single GPU implementation is up to 

14.0x, averagely 12.1x faster than MKL. In addition, based on the fact that our single 

GPU implementation is up to 1.7x and averagely 1.6x faster than cusparse library, we 

can say that we have reached a high parallel efficiency in our GPU implementation. 

Comparing to cusparse library, our GPU kernel alone is 1.2x faster and the memory 

transfer is 1.9x faster. 
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Texture memory efficiently improved our kernel performance by caching the 

InputVector in the texture cache. Taking the test case of FEM Sphere as an example, 

texture cache reduces the memory traffic from L2 cache to SM by 2.1x from 2.1GB to 

974MB. The similar story happens to other test cases. Thus it has been proved that 

binding the irregular memory access of InputVector array to texture memory is beneficial. 

The sparsity pattern has a big impact on the sparse matrices whose nonzero 

elements spread randomly, like the case of FEM Sphere. The spy-plots of a sorted and 

unsorted matrix of this test case were shown in Fig. 3.10, where we can observe a 

significant difference. Comparing with 5.54 ms that is needed for the sorted case, 

unsorted sparse matrix takes 16.51 ms. Better sparsity pattern improves the L2 cache hit 

rate by 3.1x from 19% to 59%, whereas memory traffic from global memory to L2 cache 

is reduced from 1180MB to 718MB. The texture memory hit rate is also increased by 

3.3x from 19% to 62%. The memory access to texture memory is more coalesced, such 

that the memory traffic from the texture memory to SM is reduced by 22% from 836MB 

to 635MB. Since high cache hit rate and coalesced memory access reduces the memory 

access time, there are more eligible warps available for warp scheduler in SMs to 

parallelize the workload. Therefore, the parallel efficiency is significantly improved. 
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Table 3.2: Computational time of single and multi-GPU implementations. 

 
nnz/ 

(nnz/row) 

SpMVM 
Serial 

MKL 

Parallel 

MKL 

GPU 

cuspar

se 
1 

GPU 

2 

GPU 

3 

GPU 

4 

GPU 

FEM Cube 17.5M/26.5 2.72 1.63 1.22 1.07 38.02 4.79 4.53 

FEM 

Sphere 
31.8M/14.4 5.54 3.53 2.49 1.81 74.72 11.99 8.99 

dielFilterV3

real 
89.3M/81.0 9.57 5.18 3.59 3.37 123.1 18.93 13.42 

gsm_10685

7 
21.8M/37 3.38 1.99 1.54 1.20 39.95 4.96 5.16 

cube_coup_

dt6 
124M/58 16.5 8.89 6.46 4.89 139.0 31.40 25.40 

 

The application of pinned host memory also guarantees the speed of our 

implementation. To execute the same amount of computational operations, sparser 

matrices need to transfer more data as compared to the computation. In other words, 

memory transfer plays a more important role in such cases. According to our test, the 

pinned host memory leads to up to 12.49 GB/s CPU-GPU memory throughput, while the 

non-pinned host memory only performs up to 4.53 GB/s memory throughput. Therefore, 

the pinned host memory method is necessary for SpMVM in solvers that have heavy data 

transfer workload. 

 

B. Multiple GPU results 

The speed scaling of the multi-GPU implementation can be observed from Table 

3.2. The multi-GPU code shows a continuous speed-up with the increase of the number 

of GPUs. For example, the performance is 1.81 ms with 4 GPUs solving FEM Sphere 

problem, corresponding to 6.6x faster than the execution of MKL running with 12 CPU 

threads. 
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Based on the definition of parallel efficiency 

 1 /p p pE S P T PT   (3.11) 

where Ep is parallel efficiency, Sp is speed-up, P is the number of GPUs, T1 and Tp are the 

execution time of sequential and parallel algorithms respectively, we can observe a high 

parallelization efficiency across multiple GPUs with our implementation. To be specific, 

the parallel efficiency is up to 84.4% and averagely 73% using 4 GPUs in five test cases. 

The parallel efficiency decreases with the increase of the number of GPUs as 

shown in Table 3.2 because (a) the workload cannot be kept perfectly balanced among all 

GPUs and (b) CPU-GPU memory transfer bandwidth is shared by multiple GPUs. 

Although we kept the number of nonzero elements balanced among GPUs and sorting 

method greatly improves the sparsity pattern of the entire sparse matrix, the pattern is 

impossible to be exactly the same among sparse matrix chunks. As a result, kernel 

workload is not the same among GPUs. On the other hand, memory transfer speed is not 

improved much since memory bandwidth is shared, while the computation time is 

significantly reduced. Therefore, memory transfer plays a more important role in the 

performance. With the help of sparse matrix sorting, the sizes of subsets of InputVector 

that needs to be sent to GPUs are kept scalable with the number of GPUs such that multi-

GPU parallel efficiency is improved. 

 

C. Single GPU Memory Saving Approach Results 

From Table 3.3 we can find that the device memory consumption continuously 

decreases with the increase of the number of streams. Due to the fact that some arrays 

cannot be only allocated for flying streams, the actual device memory consumption is 
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further away from the ideal scaling with the increase of the number of streams. However, 

the decrease of the device memory consumption is still high, if we define the memory 

saving efficiency as  

 
_fly stmI

m

c c c stm

N

N

M M S M
E

M M M
    , (3.12) 

where MI is the ideal memory consumption calculation based on Eq. (3.10), Mc is the 

actual memory consumption, M, Nfly_stm and Nstm are all from Eq. (3.10). Apparently, 

when Nstm equals Nfly_stm the memory is not saved so it can be taken as the baseline for 

comparison. With 32 streams and 2 flying streams, the memory saving efficiency is up to 

88.8% and averagely 79.0%. The efficiency is higher in the case dielFilterV3real because 

the nonzero elements are all efficiently grouped around the diagonal of the matrix after 

sorting so that the memory consumption is balanced among all the streams. 

From the testing results in Table 3.2 and Table 3.3, memory saving approach is up 

to 2.8x, averagely 2.3x faster than CPU MKL. Provided that MKL is a highly optimized 

library designed for Intel CPUs, we are confident that our memory saving approach is 

efficiently implemented. We can also find that the memory saving approach has a steady 

speed when applying different numbers of threads. However, memory saving is not 

always free, the computational time starts to increase substantially when the number of 

threads is greater than 32. 
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Table 3.3: Speed and device memory consumption of memory saving approach. 

Num. of Streams 2 4 8 16 32 

FEM Cube 

Speed/ms 15.20 14.67 14.47 14.52 14.82 

Memory/MB 148.23 76.20 39.58 21.26 12.08 

Em
* 100.00% 97.26% 93.63% 87.15% 76.7% 

FEM Sphere 

Speed/ms 28.10 27.14 26.93 27.59 29.03 

Memory/MB 287.522 150.06 80.84 46.00 28.60 

Em
*
 100.00% 95.80% 88.92% 78.13% 62.8% 

dielFilterV3real 

Speed/ms 63.76 61.75 60.86 61.31 60.39 

Memory/MB 729.16 367.79 187.42 97.13 51.32 

Em
*
 100.00% 99.13% 97.26% 93.84% 88.8% 

gsm_106857 

Speed/ms 16.54 15.87 15.26 15.65 15.62 

Memory/MB 184.74 94.81 48.82 26.61 14.67 

Em
*
 100.00% 97.43% 94.60% 86.78% 78.7% 

cube_coup_dt6 

Speed/ms 97.29 94.89 93.68 94.62 95.42 

Memory/MB 1041.17 528.40 269.01 139.17 74.23 

Em
*
 100.00% 98.52% 96.76% 93.52% 87.7% 

 

D. SpMVM in FastMag 

We used FastMag on the real-world test cases to test the effect of the SpMVM 

algorithms introduced above. Fig. 3.12 shows a very basic construction of magnetic write 

head. The tiny tip (~nm) of magnetic write head (~um) in hard drive has to be defined by 

sharp tetrahedrons to achieve good accuracy, where the numerical stiffness is generated. 

In such kind of micromagnetic problems, implicit time evolving method requires calling 

sparse matrix multiplication algorithm 3-20 times. 

 
Figure 3.12: Schematic view of a magnetic write head. 
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We simulated a writing process in the hard drive, the goal of which is to observe 

the dynamics of magnetization on the write head. A total of 0.58 million nodes and 2.4 

million tetrahedron elements are generated to mesh the magnetic write head. The 

simulation takes 572 time-steps to run from 0 ps to 210 ps, where more than 11 thousand 

times of sparse matrix multiplications are involved. (We note that this mesh was 

relatively stiff and the number of linear iterations can be reduced by preconditioning.) 

The testing results are listed in Table 3.4. When we compare the results of SpMVM on 

single GPU with MKL on CPU, we obtain 10.1x of acceleration in the sparse matrix 

multiplication, which leads to 1.6x acceleration of entire FastMag solver. The MKL on 

CPU for SpMVM takes 33.4% of the total solver running time, which is the bottleneck of 

solver speed. With GPU version of SpMVM, it only takes 5.3% of the total running time. 

In other words, running SpMVM on GPU solves one of the bottleneck of FastMag solver 

in this case. 

A similar simulation with larger problem size, where regular single GPU 

implementation does not fit into GPU memory, is tested with multi-GPU implementation 

and memory saving approach. The mesh of the magnetic write head contains a total of 

3.3 million nodes and 18.1 million tetrahedron elements. The simulation takes 697 time-

steps to run from 0 ps to 210 ps, where more than 30 thousand times of sparse matrix 

multiplication are involved. (We note that this mesh was relatively stiff and the number 

of linear iterations can be reduced by preconditioning.) The FastMag solver achieves a 

1.2x speed-up through launching 4 GPUs, comparing with MKL on CPU with 12 CPU 

threads. The speed-up is caused by 6.4x acceleration in the sparse matrix multiplication 

section. 
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When we use 32 streams for memory saving approach to saving the GPU memory 

by ~16x, a 1.3x acceleration was achieved for entire FastMag solver, comparing with 

MKL on single CPU thread. The speed-up is led by a 2.3x acceleration in the sparse 

matrix multiplication section. Therefore, both multi-GPU implementation and memory 

saving approach on single GPU are proven to be capable of solving the ultra-large 

problems, while achieving high computational performance. 

Table 3.4: Computation Time of FastMag Solver (in seconds). 

 

Regular 

Single 

GPU 

Multiple 

GPUs 

Memory 

Saving 

Approach 

Serial 

MKL 

Parallel 

MKL 

Write Head 

Small 

Solver 158.2 N/A N/A 254.9 N/A 

SpMVM 8.4 N/A N/A 85.3 N/A 

Write Head 

Large 

Solver N/A 5868.2 7817.5 10483.1 6821.6 

SpMVM N/A 189.4 1718.0 4014.0 1209.7 

 

In summary, we introduced SpMVM algorithms accelerated by GPU for ultra-

large MM simulations. Based on an efficient single-GPU kernel, we developed multi-

GPU implementation and memory saving approach to overcome the limitation of GPU 

memory size. Through embedding our GPU SpMVM in the micromagnetic solver, we 

accelerate the solver by 1.6x. Solving large MM problems are enabled with multi-GPU 

implementation and memory saving approach on a single GPU, with a high performance. 

Several interesting points were addressed:  

(1) We take advantage of the CSR format as the data structure of the sparse 

matrix. Corresponding to the data structure chosen, we assign several threads to each row 

of matrix instead of one thread per row. 
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(2) Sorting is important for SpMVM in many aspects: a) speed up kernel by 

coalesced memory reading and the improvement of the cache hit rate b) balance the 

workload for multi-GPU implementation c) high memory saving efficiency with memory 

saving approach. 

(3) Texture memory can release the heavy non-coalesced memory access 

burden on the L2 cache and it shows better performance while binding InputVector to 

texture memory. 

(4) Page-locked memory not only leads to a higher memory copy throughput 

but also allows the possibility of overlapping memory transfer time with kernel 

computational time. 

(5) CUDA streams allow us to transfer memory from host to device on-the-fly, 

which is the basis of our memory saving approach. CUDA event provides the possibility 

to control the issue order between streams, which is also essential for our implementation. 

We demonstrated considerable performance gains over other high-performance 

CPU and GPU libraries. With a single GPU, we achieved 14.0x faster than single-

threaded MKL implementation and 1.7x faster than Nvidia cusparse library by single 

GPU. With 4 GPUs, as much as 6.6x and 5.2x are demonstrated comparing with multi-

threaded MKL and cusparse library, respectively. 

The memory saving approach saves the GPU memory by up to 14.2x, 

corresponding to 88.8% memory saving efficiency. The speed of memory saving 

approach is averagely 2.3x faster than MKL on single CPU thread. 

The memory saving approach we proposed is not limited to CSR format, and it 

fits a large variety of sparse matrix formats. In the meantime, our implementation of 
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SpMVM is not limited to micromagnetic applications, other scientific areas such as 

electromagnetism, molecular dynamics and fluid dynamics can easily take advantage of 

our SpMVM algorithm to solve ultra-large problems. 

 

Chapter 3, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 

this paper: S. Fu, W. Cui, M. Hu, R. Chang, M.J. Donahue, V. Lomakin, "Finite 

Difference Micromagnetic Solvers with Object Oriented Micromagnetic framework 

(OOMMF) on Graphics Processing Units," IEEE Transactions on Magnetics, vol. 52, no. 

4, pp. 1-9, 2016. 
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4. Fast Algorithms for Time Integration In 

Micromagnetic Solvers 

While the field/energy evaluation has been extensively studied by the researchers 

[53][56][57], the time integration is another key aspect of a micromagnetic solver. We 

take the solver component that takes charge of the time integration as time evolver. A 

time evolver not only affects the speed performance but also determines the robustness of 

evaluation of the magnetic dynamics. Given the same type of field/energy evaluation 

methods and implementation, an efficient time evolver may deliver a much better 

performance to stay at the same accuracy level. On the other hand, a bad time evolver can 

easily diverge in complicated test-cases. 

This chapter starts with an introduction to the basics of time integration, including 

explicit and implicit time integration methods, as well as linear multi-step methods and 

Runge-Kutta methods. Then, specific methods in the context of the implicit time 

integration method used in FastMag are discussed, namely, the backward differential 

formula (BDF), Newton iteration method, Generalized Minimal Residual (GMRES) 

method equipped with system Jacobian evaluation. The last but not the least, an efficient 

preconditioner designed for stiff problems in micromagnetic simulations is introduced. 

The efficiency of the preconditioner is investigated with several practical test-cases. 
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4.1. Explicit and Implicit Time Integration Methods 

LLG equation evolves in time by integrating a set of Ordinary Differential 

Equations (ODE). A general form of ODE can be written as 

 ( , )
d

f t
dt


y

y , (4.1) 

where y  is a column vector of unknowns, f  represents a set of functions and t  is time. 

For the LLG equation, the unknown y  in the ODE Eq. (4.1) is the magnetization vector. 

Provided with an initial value of magnetization vector, the LLG equation evolves 

in time and reach a certain state. The methods to evolve in time can be categorized into 

two classes: explicit time integration methods and implicit time integration methods. 

Explicit time integration methods, such as the Adams-Bashforth method, were first 

proposed and studied [73][74][75][76]. The explicit methods use the information from 

current and previous step(s) to update the magnetization for the next step. For example, in 

the formulation of the simplest Runge-Kutta methods, the Euler method, the derivative in 

Eq. (4.1) is approximated by a forward difference 

 1n n nd

dt dt

 


y y y
. (4.2) 

Combining Eq. (4.1) and Eq. (4.2), the unknown vector at the next time step 1ny  can be 

derived from the current vector ny , right-hand side of Eq. (4.1) ( , )n nf ty  and the time 

step size dt : 

 

 1 ( , )n n n ndt f t   y y y . (4.3) 
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It is obvious that the computational cost in such time evolver, which involves pointwise 

vector addition and multiplication, is low. In other words, the explicit methods come with 

the benefits of easy formulation and fast computational speed per time step. However, the 

time step may become intolerably small in stiff systems using explicit methods [77][78]. 

Here, an ODE is stiff if the solution being sought varies slowly while there are 

approximate solutions that vary fast or diverge. The stiffness is related to the differences 

in the speed of the fastest decay and slowest decay eigen modes [24].  

Implicit methods are essential in these scenarios to attain large time steps while 

preserving the numerical stability The backward Euler method is a simple example for 

the formulation of the implicit method. The derivative in Eq. (4.1) is approximated by 

backward differences 

 1 1n n nd

dt dt

  


y y y
. (4.4) 

Combining Eq. (4.1) and Eq. (4.4), the numerical evolver solution becomes 

 1 1 1( , )n n n ndt f t    y y y . (4.5) 

In Eq. (4.5), the unknown vector 1ny  appears on both sides of the equation. Therefore, 

the solution for a set of nonlinear equations is required. Eq. (4.5) can be linearized with 

Newton method in the context of Backward Differential Formula (BDF), which will be 

covered in the following sections. In general, the implicit methods provide better 

numerical stabilities and much greater time steps. On the other hand, the implicit methods 

are more complicated in terms of the formulation and implementation, hence the 

computational cost per step is higher than that of explicit methods. For stiff systems, 
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however, implicit time integration schemes typically are much more efficient, especially 

for FEM solvers. 

4.2. Linear multi-step methods and Runge-Kutta Methods 

The time integration methods can be categorized into explicit methods and 

implicit methods but also in another way: linear multi-step methods and Runge-Kutta 

methods. Concretely, there are explicit and implicit multi-step methods and similarly 

explicit and implicit Runge-Kutta methods. 

Runge-Kutta methods use the information from one previous step, and take a few 

intermediate steps to achieving a certain order accuracy. A general form of Runge-Kutta 

methods can be written as 

 

1

1

,

1

  

  ( ,  )

s

n n i i

i

N

i n i n s j j

j

h b

f t c h y h a







 

  





y y k

k k

, (4.6) 

where h  is the step size at the current step, ic h  decides the location of the intermediate 

steps,  ia ,  ib and  ic  make the differences between various Runge-Kutta methods 

with the same order, the number of intermediate steps s  decides the order. Here a method 

is of order s  when its local truncation error at each step is of order 
1( )sO h 

 while the total 

accumulated error is or order ( )sO h . Note that 1N i   formulates an explicit Runge-

Kutta method from Eq. (4.6), while N s  leads to an implicit form of Runge-Kutta 

methods. Popular Runge-Kutta methods include Euler method [79], Heun method [28], 

classical Runge-Kutta methods (rk4) [79], and the Runge–Kutta–Fehlberg method [80], 
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among others. The explicit Runge-Kutta methods can be extended to be adaptive Runge-

Kutta methods. The adaptive methods evaluate the local truncation error at each Runge-

Kutta step by comparing the results from two methods with higher and lower order. As 

the result, the step size h  can be adaptive to the estimation results of the local truncation 

error. These methods are also widely used in micromagnetic solvers [20]. 

The multi-step methods use a linear combination of the information from several 

previous steps iy  and ( , )i if t y  to calculate y  and the desired current step. A general 

formulation of the linear multi-step methods can be written as 

  
1

0 0

,
s N

n s i n i i i n i

i i

a h b f t


  

 

  y y y . (4.7) 

Eq. (4.7) gives an explicit formulation when 1N s  , while it gives implicit formulation 

when N s . Choices of s  and  ia  ib  decide the order of the methods and the specific 

linear multi-step method type, respectively. 

Instead of taking a few intermediate steps, the multi-step methods utilize the 

computed results from the previous steps, which gives the advantages of reducing the 

computational cost. Three important families of linear multi-step methods are the Adams-

Bashforth methods (explicit method), Adams-Moulton methods [81] (implicit method), 

and Backward Differential Formula (BDF) [28] (implicit method). For stiff problems, the 

BDF method is found often the most efficient due to its greater stability range for higher 

orders. It is also noted that implicit multistep methods can be shown to be absolutely 

stable up to the second order but they are only conditionally stable for orders greater than 

the second order. Also, typically implicit methods are not used for orders greater than 6 

due to a reduced range of their stability for higher orders. 
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4.3. The Time Integration Methods in FastMag 

The choice of time integration methods for a micromagnetic solver is non-trivial 

and depends on a particular problem. Considering the advantages of saving 

computational cost and being efficient on stiff problems, the BDF is a good candidate for 

the micromagnetic simulations. The strong exchange field may result in the ODE 

stiffness. In the LLG equation, BDF has been reported to be an effective implicit method 

to increase the time step, such that the speed of the simulation can be greatly improved 

[77][24]. In the following sections, the BDF used in the FEM based micromagnetic 

framework FastMag is discussed. The Newton method to solve the non-linear system and 

the Jacobian-free linear system solver used in the FastMag are also addressed. 

BDF methods are implicit linear multi-step methods with 1 2 0 0s sb b b      

in Eq. (4.7), the other coefficients are chosen so that the method is of order s . Therefore, 

a general formulation of the BDF can be summarized as 

  
1

0

,
s

n s i n i s s n s

i

a hb f t


  



 y y y . (4.8) 

The BDF in micromagnetic simulations is essentially a non-linear system. The 

Newton iteration method with Jacobian in Krylov subspaces have been reported to be 

effective in such systems. V. Tsiantos and J. Miles [82] summarized two categories of the 

Newton methods: 1) Modified Newton methods which explicitly store the coefficient 

matrix and update the matrix every few Newton iterations; 2) Full Newton methods 

which compute Jacobian-vector product in every linear iteration, which can be 

approximated with the Finite Difference scheme to avoid storing the coefficient matrix 
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explicitly. R. Chang [24] gave an analytical derivation of the system Jacobian with full 

Newton method, demonstrating that the computation of Jacobian-vector product can be 

very efficient by one more functional evaluation and several cross products. In the 

context of full Newton methods, D. Suess et al. [77] reported that an approximation of 

Jacobian, omitting the magnetostatic field part, can effectively solve the linear system in 

Krylov subspace. 

This section is concerned with solving the LLG equation, which reads 

  21
eff eff

t






 
     
  

m
m H m m H , (4.9) 

where m is the normalized magnetization vector, effH  is the effective magnetic field, 
 

is saturation magnetization,   and   are electron gyromagnetic ratio and damping 

constant, respectively.  

As introduced in the previous section, the implicit method is essential in the 

simulations with stiffness problem. The method of interest here is the BDF method with a 

constant leading coefficient [83]. Combine Eq. (4.8) with Eq. (4.9) it can be written as 

 

  
1

0

,
s

n s i n i s s n s

i

a hb f t


  



 m m m , (4.10) 

where s  is the BDF order, h  and sb  are constants, n denotes the nth time step. Eq. (4.10) 

can be rewritten in a fully implicit form 

 ( ) ( , ) 0n n n n n nF Bf t   m m a m , (4.11) 

sM
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where 
1

q

n j n jj
 

a m , sB h b . The non-linear system in Eq. (4.11) can be solved 

with Newton method by successively adding correction vectors to the solution nm in the 

context of the prediction-correction method. To this end, a prediction is made on the 

initial solution 
(0)

nm  at the latest time step n. This solution is corrected by Newton 

iterations via 
( 1) ( )m m

n n

  m m v . The correction vector v  is a solution of the following 

linear equation 

 Av b . (4.12) 

Here, 1( )nF  b m  is as in Eq. (4.11), whereas B A I J  is a matrix 

comprised of the unity matrix I  and the system Jacobian matrix ( , )f t  J m m . The 

correction vector v  is in the format of  , , 'x y zv v v , so the coefficient matrix A  is 

composed of 3-by-3 sub-matrices corresponding to the interactions among the x, y and z 

components, respectively. 

The linear system of Eq. (4.12) can be solved in Krylov subspaces. The size of 

Krylov subspaces, which is related to the number of linear iterations, is decided by the 

spectrum properties of the coefficient matrix A . Due to the stiffness in the complex 

micromagnetic problems, especially in the highly exchange coupled systems, the ill-

conditioned coefficient matrix may lead to a very large number of linear iterations. 

4.4. Stiffness Problem and Preconditioning Methods 

The speed problem caused by stiffness can be tackled by preconditioning, which 

turns Eq. (4.12) into an equivalent system 
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 1 1 P Av P b  (4.13) 

for left preconditioners or 

 
1( ) AP P v b  (4.14) 

for right preconditioners [84]. The preconditioning matrix P  should be a good 

approximation to the coefficient matrix A . 

Incomplete LU (iLU) decomposition method has been reported by different 

groups to be efficient [19][77][78]. iLU employs incomplete factorization method to 

obtain an approximation to 
1

A . Here the factorization is incomplete because certain “fill” 

elements, which are nonzero elements newly generated during inversion, are ignored. 

Different strategies on the “fill” elements decide the conditioning quality of the iLU 

preconditioners. For example, iLU0 [85] drops all the “fill” elements, iLU(p) [86] only 

keeps the largest p elements after inversion in each row of the matrix, and iLUt method 

[86] provides an additional threshold by dropping the elements whose absolute value are 

much smaller than the norm of the corresponding row. iLU is a relatively sophisticated 

preconditioner and it can effectively approximate 
1

A  by tuning the parameters. As a 

result, it could lead to significant reduction of the number of linear iterations. However, 

each iLU factorization operation may still be slow, especially when A  is generated in 

large systems. In addition, it is not known in advance what iLU flavor would or would 

not work efficiently in a particular situation, which makes iLU hard to use for a typical 

user.  

A diagonal preconditioner (Jacobi method), which only considers the diagonal 

entries of the coefficient matrices was proposed by V. Tsiantos et al [84]. However, their 
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numerical experiments failed for two reasons: a) the main cause of the stiffness issue in 

the system, namely the exchange interaction, was excluded from their preconditioning 

matrix; b) according to our own experiments, the Jacobi method ignores too much 

spectrum information from the coefficient matrix. As a result, it fails even if the exchange 

interactions are included. 

In the following section, we present an efficient preconditioner that has a low 

computational cost per evaluation and factorization and is efficient for a set of practical 

micromagnetic problems. 

4.5. Block-diagonal Preconditioning Method 

 

Figure 4.1: Clustered mesh nodes in various applications: a) magnetic thin films, b) 

magnetic write-head pole tip, c) magnetic particles. 

For the applications such as magnetic thin films, magnetic write-head pole tip and 

magnetic particles, the mesh nodes of the numerical models are “clustered”. For example, 

each node-pair that resides on the opposite side of the thin films are clustered. The nodes 

are clustered when they are close to each other while far from the others, as shown in Fig. 

4.1 (a). Similar node clusters exist at the pole tip in Fig. 4.1 (b) and each magnetic 
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particle in Fig. 4.1 (c). The large number of linear iterations reported for similar 

applications [77] were caused by the strong internal interactions among clustered mesh 

nodes. Given these facts, we built a light and effective preconditioner, namely block-

diagonal preconditioner. We explicitly compute the coefficient matrix, subdivide it into 

sub-matrices by discarding the close-to-zero elements and then invert each of the sub-

matrices. Binding the directly inverted sub-matrices gives an approximation to the 

inverse of the coefficient matrix. The cost of preconditioning is kept low by 1) always 

inverting small matrices and 2) being able to update and factorize the preconditioning 

matrix every few integration steps. On the other hand, the coefficient matrix-vector 

product exploits the full Newton method in the analytical way to maintain favorable 

accuracy in the linear system while saving memory consumption. Compared to iLU, 

block-diagonal method is highly parallelizable since the sub-matrices are disjoint, leading 

to independent processes such as inversion of the sub-matrices and the sub-matrix vector 

product. The easy implementation allows highly efficient parallel efficiency on multi-

core CPUs or GPUs. 

A. Formulation 

For applications such as the magnetic thin films, magnetic write-head pole tips and 

magnetic particles in Fig. 4.1, iLU preconditioner is not optimal since it takes the global 

interactions into account. In fact, the strong local interactions among clustered mesh 

nodes are the main causes of the stiffness. Therefore, we developed a fast and easy 

approach to building an approximation to the inversion of A  matrix. The method is 

based on the facts that 
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1) In the scenario of the stiff problem, the stiffness of the coefficient matrix can be 

estimated by 
2 2

ex sl h  , where exl  is the exchange length and sh  is the shortest 

edge of mesh [24]. Thus focusing on the clusters of mesh nodes that locate 

close to each other should provide enough spectrum information of the 

coefficient matrix. Fig. 4.2 shows an example where the stiff problem is led by 

a number of nodes with small sh . Therefore, it is reasonable to drop the 

interactions among the weakly-associated nodes. This can greatly save the 

computational time at the price of minor numerical loss. 

2) When A is expressed in the form of blocks, for example 
 

  
 

M G
A

H N
 , then 

1

1

1

0

0







 
  
 

M
A

N
 if 0G  and 0H . Since the computational complexity of 

inverting a matrix is O(N3), it is always faster to invert a few small matrices 

than to invert a large matrix. Thus the capability of inverting the small sub-

matrices independently can further accelerate the preconditioner. 

 

Figure 4.2: Identification of the blocks from the coefficient matrix. The spy-plot (left) of 

the coefficient matrix extracted from the corresponding tetrahedral mesh (right) is 

exhibited. 
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As the granularity of sub-matrices gets smaller, the speed of inversion and 

multiplication should also get faster. One extreme of the granularity of sub-matrices is 

that each node is identified as an isolated block to form a single sub-matrix (a 3x3 matrix). 

We have to mention that this could still give good conditioning results, since any sub-

matrices to be inverted contains the necessary information about the appropriate 

interactions, such as magnetostatic interactions and exchange interactions. 

B. Implementation 

The implementation of the block-diagonal method can be split into two stages: one-

time block-identification operations at the simulation set-up stage; and the coefficient 

matrix factorization stage during the iterative time-evolving stage. 

How a list of “blocks” could be generated is straightforward: the mesh nodes that 

are geometrically close to each other will be identified as “blocks”, as shown in Fig. 4.2. 

However, the implementation that takes the following steps is not trivial: 

1) Define a threshold value. The interactions that are weaker than the threshold 

will be dropped. A reasonable threshold could be 

2thresholdValue thresholdDistance , where thresholdDistance  could vary 

based on the mesh information. Though the “interaction” here can include all 

the interactions involved, it is applicable to only take the exchange interaction, 

which is the main cause of the stiffness, into account. 

2) To formulate a list of blocks, for each node that has not been included in any 

other blocks, 

a. Add it to a void list, together with its neighbor nodes that have interactions 

stronger than the threshold value and have not been included in any other 
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blocks. Here, the interaction strength is represented by the amplitude of the 

element in the sparse coefficient matrix. 

b. Exclude a node from the list above if it has a stronger interaction with 

another node outside the list. It will be included in another block later on. 

c. Add the current list, which is identified as one “block”, to a full list 

composed of blocks.  

3) A full list of blocks will be formulated after going over all the nodes. This list 

will be utilized in the following time integration stage to sub-divide the 

coefficient matrices into sub-matrices. 

During the time integration, the preconditioning matrix is updated when A  is 

sufficiently outdated. Updating the preconditioning matrix involves formulating the 

blocked coefficient matrix based on the list of blocks created earlier and then directly 

inverse the sub-matrices. The preconditioning could be applied either with the method of 

Eq. (4.13) or Eq. (4.14). Note that here the matrix A  to be block-wise inverted is not 

used as the coefficient matrix in Eq. (4.12). 

Compared to the iLU0 method where the memory consumption depends on the 

number of nonzero element in the coefficient matrix, the storage requirement of both 

iLUt method and the block-diagonal method scales as ( )O N , where N  is the number of 

the nodes in the mesh. With a reasonable distance threshold under the block-diagonal 

method, a preconditioning matrix could be mostly comprised of 3x3 sub-matrices. The 

corresponding average size of the sub-matrices is usually between 3x3 and 6x6. 
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4.6. Numerical Results 

The efficiency, speed, stability and the scalability of the proposed preconditioner 

have been examined by a variety of numerical experiments with FastMag. 

Magnetic thin films are important structures to be investigated, since they are often 

used in applications, such as magnetic memories and magnetic recording media. A cone 

with very non-uniform mesh (50x length ratio between longest and shortest edge) is 

concerned as a typical example of small stiff problems. We also tested a set of magnetic 

write heads with identical geometry size, but with varying mesh size and mesh quality. 

The numerical examples here are designed to cover different problem scales and severity 

of stiffness issue. For all the simulation shown here, we use a workstation with an Intel 

Xeon E5 CPU and Nvidia GTX690 GPU. The magnetostatic field evaluation is offloaded 

onto the GPU, otherwise, all the other numerical computation is conducted on a single 

core of CPU.  

A. Magnetic Thin Films 

The vertically aligned mesh-node pairs that reside on the opposite sides of the thin 

films are the dominant causes of the stiffness problem in FEM simulations. This is 

because for a very thin film, the opposite nodes are strongly exchange coupled. The 

blocks identified via the node distances can bind those aligned nodes together, such that 

the stiffness issues caused by each individual node pair can be tackled accurately. With 

the block-diagonal method, the strong interactions contained in each node-pair are 

organized into sub-matrices while other minor interactions are dropped. The sub-matrices 

can be inverted independently to form a high-quality preconditioning matrix. The choice 
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to set the threshold distance of the block-diagonal method is to be greater than the 

thickness but smaller than the lengths of the edges on the surfaces. 

 

Figure 4.3: Geometry and the mesh of the magnetic thin film test-case. 

The relaxation process of a soft thin film is demonstrated in our numerical 

experiment. The initial out-of-plane magnetization goes in-plane due to the shape 

anisotropy. The dimensions of the thin film in Fig. 4.3 are 150 nm for the radius and 0.5 

nm for the thickness. The average mesh edge length is 5 nm. The magnetic properties 

include the magnetic exchange constant Aex = 1.0e-6 erg/cm, saturation magnetization Ms 

= 1068 emu/cc, uniaxial anisotropy Hk = 2K/Ms = 0, damping constant α = 0.5. The 

number of the nodes and Finite Element tetrahedral elements in the mesh are 6.7K and 

19.4K, respectively. Simulation time is set to be 5 ns. The absolute and relative time step 

tolerances are both 1e-3, and the linear iteration tolerance is 5e-2. 

The stiffness of the coefficient matrix A  can be represented by the 2-norm 

condition number ( ) A  [24]. The condition number max min( ) ( ) ( )  A A A  is the ratio 

of largest singular value to the smallest singular. It depicts the differences between Eigen 

modes with fastest and slowest decay. Fig. 4.4 clearly shows that the condition number of 

the coefficient matrix is effectively reduced by the block-diagonal method throughout the 



96 
 

 

simulation. As a result, the number of linear iterations per Newton step is reduced as well. 

Fig. 4.4 also reveals the correlation between the condition number of the coefficient 

matrix to the number of linear iterations involved in the simulation. The out-of-plane 

magnetization goes in-plane at around 0.1ns, before which the numerical linear system is 

less stiff since the time-step is relatively small. The time step adaptively increases when 

the stable final state is reached after 0.1ns. At this stage, the condition number increases 

dramatically as the numerical system turns stiff. However, the block-diagonal method 

keeps the condition number at a low level (red curve in Fig. 4.4), regardless of the 

magnetization dynamics. 

 

Figure 4.4: Condition number and the number of linear iteration per Newton iteration 

with and without block-diagonal preconditioning. 

We also experimented with the optimal performance of iLU for this problem. The 

parameters we tuned include the iLU methods (iLU0 and iLUt), the max-fill bandwidth 

of the inverted matrix by iLUt (1, 3, 10, 30, 50). In the block-diagonal preconditioner the 
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numerical experiments included varying the distance threshold (1 pm, 1nm, 3nm, 5nm, 

10nm, 20nm). For all methods, we experimented with the frequency of updating the 

coefficient matrix (every {3, 10, 30, 50} time steps), and using the left or right 

preconditioners. The best, worst, and mean performance with all the options is 

summarized in Fig. 4.5. The block-diagonal method achieved 3.9x acceleration while the 

best iLU method gives 2.9x speed-up. However, it is hard to predict which iLU method is 

proper to use before the simulation starts. As indicated by Fig. 4.5, the simulation could 

be slowed down by as much as 22x if iLUt1 (iLUt, max-fill bandwidth is 1) is chosen. In 

other words, the performance of the iLU methods is unstable. To the contrary, choosing 

the parameters for the block-diagonal method is fairly straightforward. It delivers 

satisfying performance as long as the distance threshold is set to be greater than the thin-

film thickness. 

 

Figure 4.5: The lowest, highest and average CPU time with different preconditioning 

methods. The best achievable speed-up with the block-diagonal method and the iLU 

method is tagged. 
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Table 4.1 summarize the optimal simulation results achieved by the implicit 

method without preconditioning, the implicit method with the iLU preconditioning, and 

with the block-diagonal preconditioning. The CPU time for the preconditioners accounts 

for the coefficient matrix factorization operations and the sparse matrix-vector product 

operations to apply the preconditioning. Without preconditioners, the evaluation of the 

magnetostatic field on GPU only takes a small portion of overall time (2.1%), while the 

iterative linear solver takes 96.3%. The magnetostatic field evaluation is subdominant 

here because (a) the problem scale is small and (b) the numerical problem is very stiff. 

Therefore, preconditioning is necessary in this case to accelerate the simulation by 

reducing the number of linear iterations. From Table 4.1, we find that both 

preconditioning methods efficiently reduce the number of linear iterations. However, the 

block-diagonal method results in a better CPU time performance due to its low cost per 

evaluation. The time spent on the block-diagonal method is only 13.5% of the total CPU 

time, which is significantly lower than 40.4% for the iLU method. As a result, the block-

diagonal method achieved 3.9x acceleration while the iLU method only gives 2.9x. 
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Table 4.1: Summary of statistical data for different preconditioning schemes. 

 

Implicit 

Method 

Implicit Method 

w/ ilu Precond.* 

Implicit Method w/ 

blkDiag Precond.** 

Total T
CPU

 (s) 146.6 57.1 38.1 

Avg. T
CPU

 per time step 

(ms) 
268.4 103.1 63.0 

Avg. T
CPU

 for preconditioner 

per time step (ms) 
NA 41.6 8.5 

Avg. TimeStep (ps) 9.15 9.02 8.28 

#Rhs Evaluation 574 900 732 

Avg. #linear iterations per 

Newton step 
71.43 3.70 6.72 

* The best performance of all iLU methods tested is given by iLUt with max-fill 

bandwidth=30, coefficient matrix updated every 10 time steps, and with left 

preconditioning. 

** The best performance of all block-diagonal preconditioning tested is given with 

distance threshold=10nm, coefficient matrix updated every 10 time steps, and with left 

preconditioning. 

 

B. Magnetic Cone 

Switching a soft magnetic cone is a good example for small simulations that have 

severe stiffness issue due to clustered mesh nodes. As depicted by Fig. 4.6, here we tested 

a cone that has a diameter of 400 nm and a height of 400 nm. The edge length is as small 

as 0.5 nm at the tip of the cone (50 nm in height) while ~20 nm elsewhere. The magnetic 

properties are Aex = 1.0e-6 erg/cm, Ms = 1000 emu/cc, Hk = 2K/Ms = 0, α = 0.2. Applied 

field Happ=(0, 0, 1.0e3) Oe is added to switch the uniform initial magnetization from m = 

(0, 0, -1) to m = (0, 0, 1). The number of nodes and elements in the mesh are 3.5K and 

17K, respectively. The simulation time was 1 ns with absolute and relative time step 

tolerance of 1e-4, and linear iteration tolerance of 5e-2. 
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Figure 4.6: Geometry size and the mesh of the tested magnetic cone. 

From Fig. 4.7 we can see that the condition number of the block-diagonal 

preconditioned matrix is always lower than the original matrix. The number of linear 

iterations per Newton step is also much smaller than in the original case. The correlation 

of the condition number and the number of linear iterations per Newton step is obvious. 

 

Figure 4.7: Condition number and the number of linear iteration per Newton iteration 

with and without block-diagonal preconditioning. 
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Again, numerical experiments were performed for the best performance of different 

options, similar to the thin film example. The best, worst, and mean performance with all 

the options is summarized in Fig. 4.8. The speed of simulation can be greatly improved 

by proper preconditioners (up to 5.9x by the block-diagonal method). However, unsuited 

preconditioner could slow down the simulation by a factor of 1.6x (iLUt3). Fig. 4.8 also 

indicates that the performance of the solver utilizing the block-diagonal preconditioner is 

stable with various thresholds and is better than the ones using iLU preconditioners. Thus, 

we can simply choose a certain threshold by the block-diagonal preconditioner, for 

example, 1pm, which will give a close-to-best performance.  

 

Figure 4.8: The lowest, highest and average CPU time with different preconditioning 

methods. The best achievable speed-up with the block-diagonal method and the iLU 

method is tagged. 

The numerical metrics of the simulations demonstrated are summarized in Table 

4.2. Again, due to the small problem size, the computation of magnetostatic field on GPU 

only takes a very small portion of the overall time (1.3% without preconditioning), while 
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the iterative linear solver takes most of the simulation time (77.1% without 

preconditioning). Preconditioning is necessary to accelerate the simulation by reducing 

the number of linear iterations. We can learn from Table 4.2 that the preconditioning 

quality by the iLU preconditioner, in this case, is better than the block-diagonal 

preconditioner. Specifically, the iLU method reduced the linear iterations by 24.8x while 

the block-diagonal method gives 7.0x. However, the block-diagonal preconditioner is still 

the preferable option considering the computational time, because the preconditioner 

itself is very fast. The percentage of CPU time spent on preconditioning is 7.3% by the 

block-diagonal preconditioner, comparing with 42.2% by the iLU preconditioner. 

Table 4.2: Summary of statistical data for different preconditioning schemes. 

 

Implicit 

Method 

Implicit Method w/ 

ilu Precond.* 

Implicit Method w/ 

blkDiag Precond.** 

Total T
CPU

 (s) 91.7 23.3 18.1 

Avg. T
CPU

 per time step (ms) 172.7 43.1 35.8 

Avg. T
CPU

 for preconditioner 

per time step (ms) 
NA 18.2 2.6 

Avg. TimeStep (fs) 1.88 1.84 1.98 

#Rhs Evaluation 687 741 744 

Avg. #linear iterations per 

Newton step 
91.68 3.70 13.11 

* The best performance of all iLU methods tested is given by iLUt with max-fill 

bandwidth=30, coefficient matrix updated every 30 time steps, and with left 

preconditioning. 

** The best performance of all block-diagonal preconditioning tested is given with 

distance threshold=1nm, coefficient matrix updated every 10 time steps, and with left 

preconditioning. 

 

 

C. Magnetic Write Heads 
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The magnetic write head is one of the common applications of the Finite Element 

method based micromagnetic solvers. To achieve proper accuracy, the number of 

unknowns, which is proportional to the number of nodes in the mesh, can be very large. 

We conducted a set of simulations with the same magnetic write head but with different 

meshing methods, leading to the number of mesh-nodes as 265K (write head I), 750K 

(write head II) and 4M (write head III). The three examples are representative in that they 

cover different problem sizes and mesh qualities. The mesh quality varies but it does not 

necessarily depend on the mesh size. Among the models of concern, the 750K case has 

the best mesh quality while the other two models have similar lower mesh quality. The 

good quality here refers to the mesh containing fewer tetrahedron elements with small 

angles. Its strong effects on the stiffness of the coefficient matrix are reflected in the 

number of linear iterations per Newton step.  

 

Figure 4.9: Geometry and the mesh of the tested magnetic write head. 

The geometry size of the write head in Fig. 4.9 is {6, 4.71, 7.36} µm in the x, y and 

z direction, respectively. The magnetic properties of the model are summarized in Table 
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4.3. The initial magnetization is m = (1, 0, 0). The periodic applied field generated by a 

coil surrounding the main pole is added to switch the magnetization at the tip. The 

simulation was run for 2 ns with absolute and relative time step tolerance of 1e-4, and 

linear iteration tolerance of 5e-2. The maximal Krylov subspace size, i.e. the maximal 

number of iterations, was set so that the linear system always satisfy the tolerance before 

reaching the limitation. 

Table 4.3: Summary of magnetic properties in the tested write head. 

 Easy Axis K (erg/cc) Ms (emu/cc) Aex (erg/cm) α 

Pole tip (1 0 0) 1403 2.35 1.1e-11 0.2 

SUL (1 0 0) 955 1.6 1.1e-11 0.2 

Other parts (1 0 0) 3980 1.0 1.1e-11 0.2 

 

The condition number and the number of linear iterations per Newton step result 

for the write head I are shown in Fig. 4.10. The fluctuation of the original (un-

preconditioned) curves can be explained as follows: (1) the ODE solver is initialized with 

a small time-step; (2) The time step increases during 0ns ~ 1ns, and 1ns ~ 2ns when the 

applied coil field is relatively stable, leading to relatively large condition number; (3) The 

phase of the applied coil field changes at 1ns, inducing dynamics into the system. As a 

result, the time step is adaptively reduced and the condition number of the coefficient 

matrix is relatively small. A clear correlation between the condition number and the 

number of linear iterations per Newton step is demonstrated by the non-preconditioned 

curves. On the other hand, the block-diagonal preconditioning method shows reliable 

conditioning quality, resulting in small condition number and the number of linear 

iterations per Newton step. 
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Figure 4.10: Condition number and the number of linear iteration per Newton iteration 

with and without block-diagonal preconditioning in the test case write head I (250K). 

The same exhaustive search for the best performance for different options is 

conducted as introduced in the previous (film and cone) examples as summarized in Fig. 

4.11. We see a significant speed-up by proper preconditioner utilization (up to 6.4x with 

the block-diagonal preconditioner). The speed-up achieved by the block-diagonal method 

is better than the other preconditioning method in all three test cases. It is also apparent 

from Fig. 4.11 that the results from the block-diagonal preconditioner have much smaller 

deviation than other methods.  

Despite the 15x problem size difference between the test cases “write head I” and 

“write head III”, both have normal mesh quality which leads to similar averaged linear 

iterations per Newton step (~33). In these two cases, without preconditioning about 90% 

of the CPU time is spent on the linear iterative solver. With preconditioning, the CPU 

time spent on operations other than the preconditioner is roughly the same. In such 
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scenario, the fast speed of block-diagonal preconditioner is favorable, as indicated by Fig. 

4.11. 

 “Write head II” has a very good mesh quality, such that only 49.1% of the total 

CPU time is spent on the linear solver when no preconditioner is applied. As a result, 

even though the problem size of “write head II” is 3x larger than “write head I”, the speed 

without preconditioning is faster. In this case, exploiting the preconditioners has to be 

careful because a bad preconditioner could generate worse results, as shown by the iLU0 

results in Fig. 4.11. However, the block-diagonal preconditioner can still improve the 

speed of simulation by 1.3x, which demonstrates its robustness. 

 

 

Figure 4.11: The lowest, highest and average CPU time with different preconditioning 

methods on three write head test cases, respectively. 

The best results of the three write head test cases are summarized in Table 4.4. The 

block-diagonal preconditioner is robust in that it always reduces the number of linear 

iterations per Newton step. The CPU time spent on the block-diagonal preconditioner is 
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about 10% of the total CPU time. The preconditioner itself is sufficiently “light” so that 

even when the coefficient matrix is not very stiff (write head II), it still leads to the 

performance improvement. The iLU method is also efficient in reducing the number of 

linear iterations when a specific optimal parameters are chosen. However, there are large 

fluctuations in the performance depending on the parameter choice, which makes it hard 

to use. For the block-diagonal preconditioner, we can simply choose a default small 

threshold for selecting blocks to result only in 3 x 3 blocks, still achieving an improved 

performance. If the stiffness source is known, the threshold can be related to that source 

(such as in the thin film case) achieving an even better performance. 

Table 4.4: Summary of statistical data for different preconditioning schemes. 

 
Write Head I (265K 

nodes, 1.4M elements) 

Write Head II (750K 

nodes, 4M elements) 

Write Head III (4M 

nodes, 22M elements) 

 

Implici

t 

Method 

Implicit 
Method 

w/ ilu 

Precond.
* 

Implicit 

Method 

w/ 
blkDiag 

Precond. 

** 

Implici

t 

Method 

Implicit 
Method 

w/ ilu 

Precond.
* 

Implicit 
Method w/ 

blkDiag 

Precond.*
* 

Implicit 
Method 

Implicit 
Method 

w/ ilu 

Precond.
* 

Implicit 

Method 

w/ 
blkDiag 

Precond.

** 

Total T
CPU

 (s) 5.8e3 1.1e3 9.1e2 3.6e3 3.2e3 2.7e3 2.5e5 6.1e4 4.2e4 

Avg. T
CPU

 per 

time step (s) 
4.76 0.88 0.77 3.07 2.76 2.27 195.3 47.81 32.33 

Avg. T
CPU

 for 

precond. per 
time step (s) 

NA 0.17 0.08 NA 0.51 0.18 NA 10.93 3.34 

Avg. 

TimeStep (ps) 1.64 1.57 1.72 1.72 1.74 1.66 1.57 1.56 1.53 

#Rhs 
Evaluation 1949 1926 1913 1989 1822 1888 2194 2260 2237 

Avg. #linear 
iterations per 

Newton step 
30.96 1.49 1.26 3.79 1.79 1.54 35.94 4.02 3.57 

* The best performance of all iLU methods (iLU0 and iLUt) tested on write head {I, II, 

III} are given by iLUt with max-fill bandwidth = {3, 1, 3}, coefficient matrix updated 

every {50, 30, 30} time steps, and with right preconditioning. 

** The best performance of all the block-diagonal preconditioning tested on write head {I, 

II, III} are given with distance threshold = {10nm, 3nm, 1nm}, coefficient matrix 

updated every 10 time steps, and with right preconditioning. 
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D. Matrix Factorization Speed Scaling 

One important advantage of the block-diagonal method over the iLU method is the 

speed scaling of matrix factorization over the problem size, which is demonstrated by Fig. 

4.12. Here we compare the averaged CPU time spent on each factorization operation by 

the iLUt methods and the fully isolated block-diagonal method as an example. The data 

comes from the presented four test cases. (The thin film test is omitted since the size is 

similar to the magnetic cone test.) It is obvious that the speed of the block-diagonal 

factorization scales linearly while the iLUt factorization speed scales with a higher order. 

This indicates that the block-diagonal method could be even more favorable when 

simulating much larger problems, e.g. problems with over 10M mesh nodes. 

 

Figure 4.12: Speed scaling of matrix factorization against problem size. 

In summary, a new block-diagonal preconditioning method for Jacobian Newton-

Krylov approach in the context of BDF solving time integration of micromagnetic 

simulations is proposed. The formulation of the method was explained in detail and a 
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variety numerical examples demonstrated its speed, stability, and scalability. The time 

spent on preconditioning is much less than the time for the iLU method, so it is a good 

candidate for simulations that cannot achieve good performance due to slow 

preconditioner factorization. The convenience of usage is indicated by the robust high 

performance of the block-diagonal method. The method is highly parallelizable, thus it is 

ready to be imported to multi-core CPU and GPU platforms. 

 

Chapter 4, in part, is currently being prepared for submission for publication of 

the material, where the dissertation author was the primary investigator and author of this 

paper: S. Fu, R. Chang, I. Volvach, M. Kuteifan, S. Couture, M. Menarini, V. Lomakin, 

“Block Diagonal preconditioner for implicit time integration in finite element 

micromagnetic solvers”. 
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5. Micromagnetic simulations of Advanced 

Magnetic Media and Recording Systems 

We start with discussing the magnetic recording system, which is composed of a 

magnetic reader/sensor, magnetic write head, and magnetic media. Each component of 

the system requires intense research and manufacturing efforts to demonstrate the modern 

high-capacity hard disk drive. The focus of this chapter is on the numerical simulations 

for the magnetic recording media, the structure and material of which have fundamentally 

changed over the past 20 years. 

 

Figure 5.1: Magnetic recording system. 



111 
 

 

5.1. A Brief History of Magnetic Media and Recording 

Systems 

Areal density has been quoted as the key factor to mark the progress of the 

magnetic recording. The areal density of the hard drive has increased from 20 GB/in2 in 

the year 2000 [87] to 1.3 TB/in2 in the year 2015 [88]. The technology of perpendicular 

magnetic recorder (PMR) [89], shingled magnetic recording (SMR) [90] has greatly 

contributed to such as amazing areal density speed increase. Currently, the PMR 

technology is dominating the market. The hard disk drives shipped with the SMR 

technology is mainly used in the cold storage, due to the fact that writing shingled tracks 

takes much longer time than the normal PMR tracks. However, the speed of the areal 

density increase has slowed down during the past few years [88]. 

The limiting factor of the continuous high-speed areal density increase is the 

thermal stability in the magnetic media [87]. The magnetic media grain volume has to 

decrease to improve the areal density in the traditional magnetic media. However, the 

information stored in the magnetic media tends to be unstable when the volume of the 

magnetic grain decreases. To explain this, we consider a simple magnetic grain model 

where only uniaxial magneto-crystalline and Zeeman energy are considered. According 

to the Neel-Arrhenius formula [91] 

  1

0 exp b Bf E k T  , (5.1) 

where   is the mean exit time, namely, the averaged magnetic grain stabilization time, 

bE  is the energy barrier  
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  01
n

b uE K V H H , (5.2)  

Bk  is Boltzmann constant, T is temperature, 0f can be defined with an analytical 

asymptotic formula [91]: 

  
2

0 2 4 1Q K u B kf H K V k T H H    , (5.3) 

where Q  is a dimensionless damping parameter,   is the electron gyromagnetic ratio,

uK  is the uniaxial anisotropy constant, 2K u sH K M , sM  is saturation magnetization, 

V  is the grain volume and H  is the applied field on the magnetic grain. From Eq. (5.1) , 

Eq. (5.2) and Eq. (5.3), we see that the thermal stability of the magnetic material is 

exponentially related to the volume of the grain size V  and uniaxial anisotropy constant 

uK . 

An obvious approach to improving the thermal stability of the magnetic materials 

is to maximize the magnetocrystalline energy density, which is related to material 

coercivity uK  [87]. Nevertheless, large coercivity uK  would decrease the writeability of 

the magnetic materials. 

Intense efforts have been made to explore novel methods of magnetic recording, 

including Heat Assisted Magnetic Recording (HAMR) [92], Microwave Magnetic 

Recording (MAMR) [93], Two Dimensional Magnetic Recording (TDMR) [94], and Bit 

Patterned Media (BPM) [95]. HAMR and MAMR are two promising energy-assisted 

magnetic recording methods. HAMR utilize a laser on the high-coercivity magnetic 

material to decrease the effective coercivity within a confined spot so that the data can be 

written at this location. MAMR takes advantage of the microwave generated by a STO to 
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periodically pump energy into the magnetic recording system so that the magnetization 

could be switched on a high coercivity material. TDMR focuses more on the signal 

processing of the reading process, which makes use of an array of heads to read the 

magnetization simultaneously. The technology is referred as 2D since a single track 

cannot be read or written successfully without considering the adjacent tracks [96]. BPM 

is proposed to use engineered well-defined magnetic islands so that each island stores 

exactly one bit of data [94]. 

Although hard disk drive shipped with HAMR or TDMR technology is predicted 

to roll out in 2017-2018, the evolution of the magnetic recording technology has been 

postponed by a few years. Difficulties of applying the new techniques come in various 

ways. For instance, the high temperature created by the laser in HAMR technology may 

degrade the surface of the magnetic recording materials and even the magnetic heads. 

BPM required highly uniform processing of the materials over an entire disk which might 

greatly increase the cost the manufacturing, meanwhile the requirement on the carefully 

synchronized reading/writing process with the islands positions is also very challenging. 

TDMR and MAMR have not been proven to be able to deliver noticeable performance 

increase yet. 

A roadmap figure at the Advanced Storage Technology Consortium (ASTC) 

summarized the novel technologies and the challenges, as shown in Fig. 5.2 [97]. With 

combined HAMR and BPM, it is promising to achieve 10 Tb/in2 areal density in 2025, 

which is 10x denser than the current hard disk drives. However, progress has to be made. 

Numerical modeling and simulations play an important role in predicting the capabilities 

of the proposed novel technology configurations. In the following sections, with the 
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currently dominating technology PMR being addressed, a modeling approach designed 

for the latest magnetic media design is introduced. The numerical results are compared 

with the traditional modeling results to address the importance of the new model. 

 

Figure 5.2: Roadmap of hard disk drive technology [97]. 

5.2. Perpendicular Magnetic Recording 

In this section, we discuss more technical details of PMR [98] since it is the 

currently dominating technology. 

Compared with the previous generation, namely the longitudinal magnetic 

recording, PMR uses magnetic media with perpendicular anisotropy. Thus the stable state 

of the magnetization in the media is out of plane. In PMR, a soft under-layer (SUL) is 

used to guide the write-head field through the magnetic media layers, so that the effective 

writing field is stronger. The geometrical property of the write-head is designed to utilize 

a monopole shape so that the strength of the field is the strongest when penetrating the 

media. The magnetic media used in PMR can be thicker to deliver better thermal stability 
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and promote the magnetostatic field to stabilize the relaxed magnetization. Moreover, the 

coercivity (Ku) and the saturation magnetization (Ms) also can be stronger [99]. As a 

result, the thermal stability is further improved to achieve higher areal density. 

 

Figure 5.3: Schematic diagram of perpendicular magnetic recording [100]. 

More media layers have been added to assist the reversal process during the 

magnetic recording, which is referred as Exchange Coupled Composite (ECC) media 

[101][102]. ECC media has been essential in achieving improved recording performance 

[103] as both areal and linear density are increased without compromising the thermal 

stability. 

 

Figure 5.4: Schematic diagram of the ECC media. Between the cap layer and the 

granular layers (oxide layers) there are the exchange-coupled layers. 
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ECC media contains an exchange coupled cap layer and granular oxide layers, as 

shown in Fig. 5.4. Most of the lateral exchange in the media arises from the cap layer and 

the noise performance of media strongly depends on the cap layer thickness. Thus, 

optimizing the cap layer is essential to achieve good recording performance. Currently, 

the short bit length in a code word (the 1T bit length) is approaching the media grain 

diameter and non-uniform magnetization behavior in the cap layer may have important 

effects. Therefore, it is important to model non-uniform behavior in the cap layer and in 

thin oxide layers to accurately evaluate recording performance. In the following section, 

two new models are proposed to account for the non-uniform behavior that comes with 

the modern cap layer in the ECC media. 

5.3. Discretized Cap Model of Magnetic Media 

The traditional macro-spin model [103] assumes the magnetization and material 

parameters such as saturated magnetization (Ms), and anisotropy field (Hk) can be 

modeled as being uniform in each layer comprising a grain. In addition, the exchange 

interaction (Js) within a grain is not included in the model. However, scattering 

experiments [104][105] show a radial grading of media properties in each grain. In the 

cap layer of current media, magnetization may vary gradually within grains to form 

closure domains. The macro-spin model may not be able to fit the semi-continuous nature 

of the cap layer and the switching properties of very thin magnetic layers often found in 

the current generation of magnetic media. As a result, performance metrics based on a 

macro-spin model may diverge from the experimental data at high linear densities in 
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many key areas, such as resolution, non-linear effects [106], and particularly signal-to-

noise-ratio (SNR). 

In this section, we report simulation results from two discretized models: Model 1 

discretizes all regions in a granular/semi-continuous layer, which includes both the grain 

centers and the boundaries, and Model 2 discretizes only the grain centers. Both models 

employ a distribution of material parameters across each grain. To efficiently implement 

both schemes we developed the models to run on a cluster of GPUs. A detailed 

description of the models is provided. We also compare the performance of the fully 

discretized cap models for ECC media to the macro-spin model in this section. 

5.3.1. Discretized Cap Layer Modeling 

As shown in Fig. 5.5, our macro-spin model subdivides the grains and grain 

boundaries into cubic cells. The fields in each cell, with the exception of internal 

exchange, are computed independently during the calculation of the effective field (Heff) 

in the LLG equation which also includes a thermal field. Only the boundary cells are 

subject to a lateral exchange interaction. The fields are then averaged in each granular 

layer. A single spin is then used in the LLG equation. Thus, the magnetization of the 

cubic cells inside a single grain are all aligned. The physical properties are assumed to be 

uniform across the entire grain. Thus, the field operating on each layer represents an 

effective field which includes the effects of internal interactions in an average sense. The 

anisotropy field employed in a macro-spin model may, therefore, be very different from 

the anisotropy field in a discretized media model. 
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Figure 5.5: Schematic comparison of a) macro-spin model with b) discretized model. 

In contrast to the macro-spin model, a discretized media model allows each cell to 

have distinct properties such as 𝑀𝑠 , 𝐻𝐾 , and 𝐽𝑠 . This approach provides a better 

approximation to the cap and thin oxide layers, where the properties are thought to be 

graded both laterally and vertically. The influence of the inter-layer and inter-granular 

exchange strength on the magnetic recording performance has been often discussed in the 

literature [102][107]. It is found that if one exceeds an optimal exchange strength, 

increased cluster size in the media results in lower signal-to-noise ratio (SNR). Increased 

cap inter-granular exchange can also result in the lower resolution [103]. Exchange also 

influences the writeability of the media, which can be defined as the percentage of the 

grains that are switched in the presence of an external magneto-static field [103]. Both 

inter-granular and inter-layer exchange coupling have a large impact on writeability. The 

exchange field generated by the cap layer increases with Ms in the cap layer and 

decreases with Ms in the oxide layers [102]. Given the importance of these magnetic 

properties, an accurate description of the distribution of these parameters may be 

essential to reliably assessing recording performance. 
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In a discretized media model, the magnetization of each discretization cell is an 

independent variable in the LLG equations. The smaller length scale makes describing 

closure domains in the cap layer possible. The influence of these domains is reflected in 

the degradation of the read-back resolution and in high-density SNR performance in 

magnetic recording experiments. Fig. 5.6 illustrates how a discretized model can describe 

closure domains at transitions while the macro-spin model cannot. The same figure 

compares plots of the simulated in-plane magnetization for a small bit pattern, 6T-6T-2T-

1T-2T. It shows the appearance of closure domains in the dual-layer discretized cap 

model, while the domain wall generated by macro-spin model is not significant. The 

formulation of these closure domains leads to a poorer 2T/6T resolution than found in the 

macro-spin model.  

In this study, we only discretize the cap layers but our implementation is general 

so that any media layer can either be discretized or treated as a macro-spin. 

 

Figure 5.6: Schematic view and simulation results showing how closure domains can be 

formulated in the discretized model. 
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5.3.2. Discretized Cap Layer Models 

Two discretization models are investigated and we compare the simulation results 

to the commonly used macro-spin model. In the first model, the space between the grains 

is considered magnetic and the inter-granular exchange between the grains results from 

the interactions between the boundary cells. In the second model, the boundary between 

the grains is non-magnetic and inter-granular exchange is determined by a surface 

interaction. These two models are illustrated in Fig. 5.7. 

In order to demonstrate both models, we implemented a general discretization 

scheme, where grain boundaries may possess magnetic properties. Properties can be 

varied from layer to layer so the model can describe layer properties, in particular, cap 

layer properties, which can change with layer thickness. The magnetic properties within a 

grain vary as a function of radius [104][105]. We incorporate this effect by partitioning 

the grains into three regions: an internal region, a shell region and a boundary region. 

Each region is assigned different magnetic properties (Ms, Hk and Js). 

 

Figure 5.7: Schematic comparison of a) magnetic boundary with b) non-magnetic 

boundary in the discretized model. 
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5.3.3. GPUs Implementation 

A fully discretized model increases the computational effort needed to simulate 

the recording process as both the total number of variables in the problem increases and 

the LLG time-step must be reduced due to the large exchange fields present in the model. 

In this work, we used the Heun method and the time-step had to be reduced by a factor of 

10 to maintain stability. To overcome these difficulties, the micromagnetic media model 

was implemented on a massively parallel computational platform composed of GPGPUs 

[16][6]. 

We used Nvidia Geforce Titan GPUs, which have 2688 streaming processors. 

Titans have a global memory of 6 GB, which is sufficient for the simulation size of 4096 

pseudo-random-bits (PRBS). 

In our micromagnetic model, each cubic cell is assigned a CUDA 

thread/processor. The full computational workload is offloaded to GPU so that no GPU-

CPU memory transfer is involved during the computations. The most computational-

intensive component of the model is the evaluation of the magneto-static field. These 

computations are accomplished using FFTs, which are accelerated by the Nvidia cuFFT 

library. The computation of other fields and the time-integration are primarily local 

operations, which are parallelized based on one-thread-per-observer strategy on the GPU. 

5.3.4. Numerical Results 

As depicted in Fig. 5.8 (a), a four-layer ECC media is used in the simulations, 

where the cap layer was modeled as two discretized layers to approximate vertically 

graded material properties. 
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Figure 5.8: a) Layout of the magnetic layers in the ECC media that is simulated; b) Bit 

pattern of the magnetization used in the simulation. 

The bit pattern used to generate all the test results is shown in Fig. 5.8 (b). It 

contains long magnetic bits (6T) from which Jitter and DC SNR are obtained. The Jitter 

is computed as the variation of the transition position between the two 6T bits. DC SNR 

is determined at the center of the first 6T bit. The Magnetic Writing Width (MWW) is 

measured at several cross-track positions in the center of the 6T magnets and then 

averaged. 

The bit pattern also contains short magnetic bits (2T and 1T), from which 

resolution and a high-frequency SNR are determined. A “Contextual SNR” is measured 

from the 2T-1T-2T regions of the bit pattern as shown in Fig. 5.9. The Contextual Signal 

is determined as the difference in signal at the center of the 1T bit and the signal at the 

center of the second 2T bit. The noise is the normalized standard deviation of the signal 

at all points within the entire region defined in Fig. 5.9. The 2T pattern is repeated so that 

the 2T/6T resolution results can be extracted from a central 2T bit. Here 2T/6T resolution 

is computed as the ratio of the peak amplitude at the 2T bit to that at the 6T bit. 
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Figure 5.9: The region where Contextual SNR is measured and an illustration of how it 

is measured. 

A. Low-Frequency Parameter Performance 

In Fig. 5.10, we show the 2T/6T resolution extracted from a discretized cap 

simulation compared to experimental results. Very good agreement between the 

simulations and experiment is seen. In these simulations, we employed a standard FEM 

model of the writer and reader used to represent a current server class drive product. 

Under similar circumstances, the macro-spin model has 4%-5% better resolution than the 

discretized model. The difference comes from the fact that the macro-spin model is not 

capable of describing closure domain in the cap layer.  
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Figure 5.10: Comparison of simulation to the experiment: Resolution versus KFCI 

(linear density). 

B. Noise Performance 

Resolution results can often be fitted by varying the magnetic spacing between the 

head and media. For a more thorough comparison of the discretized model and the 

macro-spin model we also investigate the high-frequency noise performance of the two 

methods. In this study, we use Contextual SNR as the high-frequency noise metric. 

Here, we evaluate the equivalence of the models by matching the low-frequency 

parameters (jitter, resolution, MWW, and DC SNR), and compare the Contextual SNR 

produced by the models. Table 5.1 lists the simulation results based on the two 

discretized models and the macro-spin model. The low-frequency results are matched by 

tuning lateral and vertical exchange constant Js and Jv, Hk, and the reader recession 

height. We find that even if the Jitter matches at 2.02 nm, resolution matches at ~30%, 

MWW matches at ~63nm, and DC SNR matches at 25.8, there are still significant 

variations in the Contextual SNR results. The discretized model can more accurately 
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describe the inter-granular exchange strength, which controls the interplay between 

resolution, cluster size (noise effects) and writeability. These high-frequency effects are 

not simply duplicated in a macro-spin model. 

The noise performance figures indicate that the discretized media model can 

produce quite different results from a macro-spin model. Combined with the low-

frequency performance discussed in the previous section, we feel that the discretized 

model offer significant advantages over the macro-spin model in assessing current 

magnetic recording systems. 

Table 5.1: Representative simulation results. 

Modelsa 
Jitter 

(nm) 

Res. 

(%) 

MWW 

(nm) 

DC SNR 

(db) 

Contex. 

SNR (db) 

Macro-spin Model 

Run1 
2.02 31.4 62.5 25.6 -0.24 

Macro-spin Model 

Run2 
2.02 28.4 62.9 25.5 -2.42 

Discretized Cap: 

Mag. Grain 

Boundary 

2.02 28.7 63.6 26.3 -0.84 

Discretized Cap: 

Non-mag. Grain 

Boundary 

2.07 29.2 63.9 25.8 -0.98 

*The bit length = 10.34nm, grain pitch = 9.45nm and KFCI = 2465. 

In summary, two micromagnetic models based on discretized media layers were 

developed. These models were compared to the macro-spin model and the results indicate 

that the discretized model offer significant advantages over the traditional model. In order 

to handle the additional computational workload necessitated by the discretized model, 

the code was implemented on a cluster of GPUs. The discretized media possesses a 

number of important features which can better describe resolution and high-frequency 

SNR as the bit length approaches the grain pitch in a magnetic recording system. 
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Chapter 5, in part, is a reprint but with minor modifications of the following 

journal articles, where the dissertation author was the primary investigator and author of 

this paper: S. Fu, L. Xu, V. Lomakin, A. Torabi, B. Lengsfield. "Modeling perpendicular 

magnetic multilayered oxide media with discretized magnetic layers." IEEE Transactions 

on Magnetics, vol. 51, no. 11, pp. 1-4, 2015. 
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6. Summary and Future Directions 

6.1. Summary 

The presented dissertation mainly contributed in the following three areas: 1) Fast 

field evaluation and time integration methods targeting the massively parallel system 

GPU, designed for the micromagnetic solvers; 2) Newly designed numerical model for 

modern magnetic recording media; 3) The design and implementation details of a 

micromagnetic solvers on various platforms, including newly emerged GPU systems. 

Provided the basics of Micromagnetics, such as LLG equation, governing 

interactions in magnetic systems, and typical numerical modeling methods, a versatile 

micromagnetic solver FastMag is introduced. FastMag has been intensely used internally 

and externally to model complex magnetic structures. 

The ability of FastMag simulating various magnetic structures highly relies on its 

strong computational capability, where the role of the massively parallel computational 

system GPU is indispensable. We provided a detailed description of GPU computing 

applied to micromagnetics, including the development progress of GPU during the past 

10 years, its internal hardware model, and corresponding programming methods and tips. 

Use of GPUs on various platforms, such as desktops, clusters, and embedded systems 

was presented. The brief knowledge of GPU is one of the prerequisites of the 

understanding of the following chapters discussing the algorithms designed for GPU. 
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An efficient micromagnetic solver includes (1) highly optimized field/energy 

evaluation methods and (2) efficient and robust time integration methods. A time-

consuming component in many micromagnetic solvers is the evaluation of the 

magnetostatic field/energy due to the fact that it requires a superposition of all unknowns. 

An efficient algorithm NUFFT was implemented to evaluate the magnetic potential from 

the effective magnetic charge densities. The algorithm is especially valuable for FEM 

solver, such as FastMag. Although the mathematical basics are the same as CPU 

algorithms, the implementation of GPU codes require careful management of the data 

arrangement and operation flows. Our NUFFT algorithm that runs on a relatively old 

GPU achieves up to 80x speed-up against the CPU implementation. Given the efficient 

implementation of NUFFT, the SPMV algorithm is the next bottleneck of the solver 

speed. An efficient implementation of the SPMV algorithm on single GPU and multiple 

GPUs were introduced. New implementation methods to save GPU memory in cases of 

ultra-large problems were presented. Two approaches to evaluate the magnetic potentials 

in the context of the FDM were also discussed. 

A block-diagonal preconditioner was introduced to improve the speed and 

robustness of time integration of stiff micromagentic problems. This preconditioner has a 

low computational cost per evaluation, is robust for many micromagnetic problems, and 

achieves a good performance as compared to other more computationally intense 

preconditioners. 

Finally, we presented new computational methods and tools for modeling modern 

magnetic recording media, based on multiple exchange coupled layers and a capping 

layer. The development of several novel technologies of the magnetic recording systems, 
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such as HAMR, MAMR, TDMR and BPM are briefly discussed and the role of the 

numerical simulation in such systems are addressed. 

6.2. Future Directions 

6.2.1. Novel Parallel Computing Systems 

As discussed in Chapter 2, the future of the micromagnetic simulations may 

migrate to cloud computing. The benefits of utilizing multiple computing nodes in the 

cloud computing come in three folds: (1) it allows ultra-large scales simulations that does 

not fit into a single computing node; (2) it can accelerate the simulations by the capability 

of using a number of computing nodes; (3) it saves the energy throughput via the efficient 

management of the computational power in the “clouds”. 

Another promising parallel computing technology is based on embedded systems, 

which come with a low energy consumption and low manufacturing cost. During the past 

few years, the embedded system became dominating the electronics consumption in the 

world and pushing the hardware development into a new stage. Modern embedded 

systems usually comprise multi-core CPU and GPU. The algorithms in the traditional 

desktop GPUs and multi-core CPUs can be applied to the embedded system without 

major changes in the implementation. For relatively small micromagnetic simulations, the 

use of embedded systems is especially promising. This creates opportunities to save the 

computational cost via the subdivision of the computational demands, which is important 

in the supercomputer centers. With the continuing increase of the computational power of 



130 
 

 

the embedded systems, there is a bright future to see high energy-and-cost efficient 

simulations on such systems. 

6.2.2. Full GPU Implementation of FastMag 

FastMag is capable of fully running on a single core or multiple cores of a 

multicore CPU, or partially offloading to GPU. Most of the computing-time bottlenecks 

are already offloaded to GPU to achieve a high speed. Provided with these optimization 

methods being applied, a full GPU version of FastMag could push the speed performance 

of FastMag still higher. The current CPU components may seem trivial, but in certain 

test-cases the computational time spent on operations, such as pointwise array operations, 

could not be ignored. These operations can be highly optimized if implemented on GPUs. 

One concern of the full GPU implementation of a large-scale solver, such as 

FastMag, is that the GPU memory consumption could be too large. As a result, the 

problem size that the solver can handle may be limited by the GPU memory size. 

However, with the development of the GPU hardware technology, the memory capacity 

in the GPUs is also increasing rapidly. One of the latest GPGPU published by Nvidia, 

GTX Titan X, comes with 12 GB of memory in a single GPU, which is 6x greater than 

the relatively old GPU that is used in most of the numerical tests in here. It is reasonable 

to predict that the size of the GPU memory could go even larger in the future. 

Another concern could be the difficulties in implementation since the complexity 

of the CPU code is already considerable. A possible solution could be OpenACC 

powered by Nvidia. It uses pragma statements before the targeting parallelization blocks 

to automatically parallelize the code that previously runs on CPU. This is not much more 
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difficult than the OpenMP implementation for multicore CPU. There have been a few 

successful projects using OpenACC on GPUs [108][109]. Therefore, it is worthwhile to 

investigate and try to integrate it into FastMag. 
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