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ABSTRACT OF THE THESIS

Model Development to Predict Power Output for a Novel Laser Test System

by

Lynette Ho Ching To

Master of Applied Statistics

University of California, Los Angeles, 2023

Professor Hongquan Xu, Chair

Optical spectroscopy technology has evolved significantly, from its use in research to detect

new materials to its use in the medical field to diagnose diseases. Applications of this tech-

nology have been used in wearables that provide insights to promote health and wellness.

Rockley Photonics has prototyped a novel wearable via a miniaturized laser system, and

the characterization of the laser output power is important for algorithm development. The

functional data of interest includes repeated measurements across multiple laser systems

operating at various current and temperature ranges. The ability to develop a repeatable

and reliable test system is crucial, and thus this paper aims to apply statistical methods to

propose a framework in developing models for power prediction. Prototype laser systems

(N=5) were tested using a standard procedure and laser output power was characterized to

understand significant test factors. Preliminary findings suggest that operator and repeated

measurement factors are not significant to the output power and that models can be de-

veloped on an individual laser channel bases using an ordinary least squares (OLS) model

with third order current effects. The application of using the same base model for individual

lasers on each tested device is important for continued development of algorithms to be used
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to detect various biomarkers in the health sensing space.
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CHAPTER 1

Introduction

Spectroscopy is the study of light and its effect on matter. Its application extends to many

different disciplines including quantum research, medical imaging, and detection of distant

asteroids in space. An everyday application of this technology includes wearable technology,

which most consumers would recognize as heart rate monitoring via a photoplethysmogram.

The fundamentals behind the photoplethysmogram involves the emission of LED light (green,

red, infrared) to detect changes in volumetric changes in blood circulation.1 Rockley Pho-

tonics, a company striving to develop a next generation wearable sensor, has taken this

principle a step further using a proprietery laser sensing technology. Applications of the

lasing technology can be used to detect various biomarkers or health metrics such as core

body temperature. 2 This paper defines the ”laser system” as the prototype that contains

36 laser channels and an on-board photodetector that measures laser signal. Laser signal is

measured as a voltage, which can be correlated to laser output power. For the purposes of

discussion in this report, laser power refers to the voltage signal measured from the lasers.

While laser power is critical in developing various biomarker detection algorithms, there

are other aspects of the laser system that need to be understood to ensure that prototypes

produce repeatable and reliable measurements.

A standard protocol was developed to measure laser power in a controlled setting. Figure

1.1 provides an overview of the test system, which is defined as the test environment and

1Castaneda, Esparaza, Gharami, Soltanpur, 2018

2Rockley Photonics, 2021
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procedure in which the lasers system is operating. A current driver controls the current,

ranging from 20 mA to 250 mA in 10 mA steps, at which the lasers operate. When the test

begins, a temperature controller of the test environment begins heating the laser system.

The test sequence then proceeds where the lasers are turned on in order of channel number

(i.e. from Laser 1 to Laser 36). The light that is emitted from the modules is reflected off

of a control medium and detected by the on-board photodetector. For the entire duration

of the test, an on-board thermistor is measuring the temperature of the laser system.

Figure 1.1: Test System Overview

Independent variables such as drive current and laser channel will contribute to the

amount of laser power that is detected. Similarly, the test system’s temperature as measured

by the on-board thermistor may also affect laser power. The goal of this paper is to determine

how much variability is contributed by these different sources and to propose a framework

2



for developing power prediction models that can be used in a manufacturing setting.
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CHAPTER 2

Dataset of Interest

The dataset of interest was collected in Pasadena, California in January 2023 on a prototype

test system. This chapter will describe an overview of how the data was collected and the

motivating question for this thesis.

2.1 Measurement Data Explained

Three operators took repeated measurements on each of the 5 devices under test. The

sequence of events for each measurement on the test system involves a temperature ramp

(controlled by a temperature controller) and a ”sweep” through the currents from 20 mA to

250 mA in 10 mA steps (i.e. the current starts at 20 mA, then 30 mA, then 40 mA... then

250 mA, and back to 20 mA). As a result, an identifier called ”Measurement Number” is used

to identify a full ”current sweep” for each of the lasers as they are pulsed in order. Figure2.1

illustrates a simplified representation of how the current is swept across the temperature

ramp for each measurement. At each current set point, all 36 lasers are pulsed one at a time.

For instance, when the device is driving at 20 mA, Laser 1 turns on followed by Laser 2

followed by Laser 3... up to Laser 36. The drive current then increases to 30 mA and Laser

1 turns on followed by Laser 2 etc.

4



Figure 2.1: Simplified schematic of current sweep and temperature ramp

The dependent variable of interest is power measured by the on-board photodiode. Figure

2.2 shows a representative example of measured power over a full current sweep for Laser 1

on a single measurement. Aggregating all the measurements for the same laser across the

entire measurement (i.e. full temperature range), Figure 2.3 shows the overlaid curve for the

same laser. As the temperature increases, the signatures of each sweep is observed to shift

to the right. The movement of the power curves within a measurement is a challenge when

comparing across repeated measurements when assessing repeatability. Recall that there

are 36 lasers for each measurement, increasing the dimensions of the data collected for each

measurement.
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Figure 2.2: Single current sweep for one channel on one device
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Figure 2.3: Overlaid current sweep for one channel on one device across temperature ramp

The variability in the measurements can be shown by the different shapes of the power

measurements for a single laser and one operator. The different colored curves in Figure 2.4

demonstrates challenges in the repeatability of the curve with repeated measures for a single

operator. Further, the measured temperature of the devices are also variable as seen in Figure

2.5 with the varying start and end temperatures for each repeated measurement. It is also

important to note the duration of each measurement; each measurement is aproximately 300

seconds in duration which corresponds to a total test time of approximately 7 minutes given

the time associated to cool and warm the test system. It is favorable to have a shorter test

time with a more narrow temperature ramp such that the associated test time is minimized

and increasing throughput of tested devices.
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Figure 2.4: Overlaid current sweep for one channel across 3 repeated measurements

Figure 2.5: Example of temperature ramp for 3 repeated measurements
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The final variable to consider is the individual operator. The measured dataset includes

measurements from three different operators. In addition to the variability of measurements

within operators, there is also variability contributed across operators. The different colored

curves in Figure 2.6 shows the power curve for the same channel for a single measurement

of each of the operators. Again, there is a challenge of how similar the curves are given the

extra variable of different operators.

Figure 2.6: Example of single current sweep for three operators

The objective of this thesis is thus to answer the following questions:

• What is an appropriate framework to assess repeatability of the measurements given

the various factors (current, temperature, operator, repeated measurements) on the

measured output (power)?

• Using this framework, how can models be developed to approximate measurement

curves?

9



2.2 Dataset Overview

The columns of data are described as follows:

• Device: the identifier of each unique device [unitless]

• Current: the drive current of the prototype laser system [mA]

• Power: the power measured on the on-board photodetector [V]

• Temperature: the temperature of the laser system measured on the on-board thermistor

[C]

• Start Time: the date and time of the measurement [MM/DD/YYYY HH:MM]

• Test Number: Encoded test repeat number from start time [unitless]

• Operator: the identifier of the unique operators [unitless]

• Channel: the identifier of the laser channel number [unitless]

• Measurement Number: the identifier for the measurement of each ”sweep” of the lasers

[unitless]

10



CHAPTER 3

Exploratory Data Analysis

3.1 Data Inclusion

The dataset of interest was collected based on the availability of the operators and the test

station, which resulted in an unbalanced count of measurements for each device and each

operator. Methodologies for randomization and design of experiments could be implemented

to further improve the findings from the analysis. 1. A total of individual measurements

were taken across the 3 operators and 5 devices. The counts of measurements per device

and operator is summarized in Figure 3.1.

1C. F. J. Wu and M. S. Hamada (2009)
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Figure 3.1: Test counts for each device and operator

The distribution of power output demonstrated the need for data exclusion. Due to the

system operating at low currents such that power output was undetectable, there was a

disproportionate amount of data that was measured as zero power or close to zero power.

As a result, data where output power measured less than 0.05 V was removed from the

datset. Figure 3.2 illustrates the probability distribution before removal of data (top) and

after removal of low power points (bottom).
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Figure 3.2: Probability density histogram for power data

The response variable of interest is power output and the predictors of interest are current

and temperature. The relationship of these variables are summarized in Figure 3.3 for a

single laser channel (Channel 1). The relationship between current and power suggests a

higher-order polynomial relationship where power current increases with temperature. The

13



relationship between temperature and power is not as clear and will be explored in the future

sections.

Figure 3.3: Summary of response and predictors for Channel 1

Each device has 36 lasers, all of which have a potentially unique response during the test

sequence. To show a simple representation of the exploratory data analysis, the remainder

of this chapter will consider a truncated dataset with one operator, one test measurement,

14



one device, and one channel (Channel 1).

3.2 Multiple Linear Regression

To study the relationship of each predictor on the response, a simple multiple linear regres-

sion2 was applied to the truncated dataset with one operator, one test measurement, one

device, and one channel (Channel 1) . Equation 3.1 displays the multiple linear regression

expression where y refers to output power, x1 refers to temperature, x2 refers to current, and

the β terms refer to the respective coefficients or vectors of coefficients (β1, β2) and intercept

(β0).

y = β0 + β1x1 + β2x2 (3.1)

The need for a transformation was also investigated.3 The top plot in Figure 3.4 shows

characteristics of a bimodal distribution of the raw output power, and the bottom plot shows

a more normally distributed distribution of the transformed (square root) power output. The

remainder of this section will explore the multiple linear regression on both of these outputs.

2J. J. Faraway (2005)

3S. Sheather (2009)
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Figure 3.4: Probability density histogram of raw and transformed power

The summary for each multiple linear regression is shown in Figure 3.5. The R2 value of

regression using the raw power output (a) was 93.9% and resulted in residuals that increased

with the fitted power output. The R2 value of regression using the transformed power output

(b) was 94.0% and resulted in residuals that have a parabolic shape centered around 0.4 V.
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The assumption of homoskedasticity in the residuals is not met, which suggests that there

is a trend of increasing variance with the fitted power (a) and trend of variance driven by

a higher order factor with the transformed power (b). However, it is interesting to note

that the R2 values for both regressions are similar, so the shape of the residuals suggest the

exploration of a polynomial regression. Recall from Figure 3.3 that the predictor, current,

may have a higher order relationship with power output. This will be further expanded in

the next section.

Figure 3.5: Summary of multiple linear regressions for raw (a) and transformed (b) power

The logaraithmic transformation was also explored for the multiple linear regression,

which yielded unfavorable results compared to the squre root transformation. However,

Section 4.5 will explore the Ordinary Least Squares (OLS) models which demonstrate the

benefit of the log transformation.
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3.3 Higher Order Fit for Current Term

The exploration of a higher order for the predictor, current, was done by comparing the

root mean square error (RMSE) of various polynomial fits using current as the predictor and

power as response. Using RMSE as an accuracy metric to compare across, polynomial fits

with degrees up to 7 were used to determine identify what the recommended power should be

used for the polynomial fit. Figure 3.6 (right) demonstrates that the 2nd order polynomial

results in a reduction in RMSE of 0.007 and improvement with the 3rd order polynomial

is an improvement in RMSE of less than 0.0005. The left plot shows that the 2nd and 3rd

order fits are nearly identical, as the predicted curves are overlaid with the original data.

The next chapter uses the 2nd and 3rd order terms for current as a basis for building the

models to (a) predict output power and (b) determine the significance of the additional test

paramters such as operator and repeat measurements.

Figure 3.6: Exploration of degree for current term

18



CHAPTER 4

Model Development

4.1 Framework Overview

The onset of this thesis aimed to define a framework to determine the effects of various

factors of a multidimensional experimental dataset. Due to the nested nature of each test

measurement, meaning one device is measured numerous times by numerous operators, and

each device has power data collected over a range of currents and temperature, this chapter

proposes a framework to break down the model development such that the final models can

serve as a predictor of output power.

The first phase of the framework is to determine the independence of channels. Given that

there are 36 channels on each device, determining how similar or different channel output

power is would direct the subsequent phases. The second phase is then to pool all of the

data (across all devices, all operators, all repeated measurements) on a single channel. The

purpose of this analysis is to assess whether data collected on a given channel is significantly

affected by the operator or repeated measurement. The third phase is to further down-select

the data, limiting to one device. Isolating the analysis within a single device is motivated by

the intrinsic variability due to device-to-device differences and removes an additional source

of variation. The final phase is the the most narrowed dataset, which is representative of

the potential use case in which laser systems are tested in a manufacturing setting and the

models would be used for further development. During this phase, the comparison of models

on the same laser channel for different devices will also enlighten the need for models to be
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developed on an individual device basis. All models assume that there is no interaction effect

of current and temperature on operator, device, and repeat measurement (i.e. start time).

4.2 Phase 1: Comparison of All Channels

The standard model development approach is to feed all factors into a giant model and

down-select factors based on the statistical significance of each factor. However, given that

each device has 36 laser channels, this approach may not be valid given that there are system

designs that define the need for differences in laser channels based on the needs of the laser

system application. Ordinary Least Squares (OLS) was used to determine the significance

of the predictors on the response.1 Equation 4.1 defines the base model where y refers to

output power, x1 refers to temperature and x2 refers to current. Channel, Device, and

Operator refer to the the corresponding categorical variables, and the β terms refer to the

respective coefficients (β1 to β8) and intercept (β0).

y = β0+β1x1+β2x2+β3x1 ∗x2+β4x
2
2+β5x

3
2+β6Channel+β7Device+β8Operator (4.1)

The R2 for this model with all laser channels was 92.8% and the ANOVA summary

(Figure 4.1) provides evidence to show that the laser channel is significant. The Channel

Number factor contributes the most amount of variance (approximately 24.6% of the total

variance) while the operator factor contributes the last amount of variance (approximately

0.00019% of the total variance). It is observed that the sum of squares of the residual

(RSS) is 2521.2, which is disproportionately high (about 52.13%) compared to the other

model parameters. This suggests that much of the variance is explained by the residuals,

indicating a model that can be further improved. The next phase will thus investigate a

single channel to compare across all devices and all test measurements.

1D. C. Montgomery (2005-2019)

20



Figure 4.1: ANOVA summary for model from Equation 4.1

4.3 Phase 2: All Devices, All Measurements, One Channel

The effect of the device number was determined by defining another OLS model. The cate-

gorical variables Device and Operator were included in the base model defined in Equation

4.2, where the remainder of the variables are defined the same as Equation 4.1. The R2 for

this model was 93%, and the ANOVA table in Figure 4.2 provides evidence that the device

number is significant, which suggests that each device should have its own model to predict

output power. The Operator term is determined to not be significant at an alpha-level of

0.05, which provides early evidence that operator variability is negligible. This is expected

given that the early stages of the prototype development may result in device to device

differences, which are shown in this result. It is also observed that the sum of squares of

the residual (RSS) is 59.4, which is disproportionately high (about 46.5%) compared to the

other model parameters.

y = β0 + β1x1 + β2x2 + β3x1 ∗ x2 + β4x
2
2 + β5x

3
2 + β6Device+ β7Operator (4.2)

21



Figure 4.2: ANOVA summary for model from Equation 4.2

4.4 Phase 3: One Device, All Operators, One Channel

The third phase of the model development is determining the effect of operator and repeated

measurement on the response. Recall that Figure 3.1 summarized the count of measurements

for each device and each operator. For any given device, each operator had taken either one,

two, or three measurements. The repeated measurement refers to any measurement that

was taken two or more times. As a result, the variable start time in the dataset refers to

the categorical variable of each repeated measurement. To illustrate the effect of operator

and repeated measurements on the output power, the different colored curves in Figure

4.3 correspond to each individual measurement taken by the corresponding operator. For

example, there are two unique shapes of the measurements taken by Operator 1 (blue) where

one curve has the first peak at 125 mA and another curve has its first peak at around 150

mA.

22



Figure 4.3: Overlaid curve for the first sweep of each measurement for Device 1, Channel 10

Two different models were generated to determine the effect of the operator and re-

peated measurement on the response variable. Equation 4.3 includes the categorical variable

Operator and Equation 4.4 includes the categorical variable, start time. Because Opeartor

is nested within start time, each term is included in each model separately, and not together.

y = β0 + β1x1 + β2x2 + β3x1 ∗ x2 + β4x
2
2 + β5x

3
2 + β6Operator (4.3)

y = β0 + β1x1 + β2x2 + β3x1 ∗ x2 + β4x
2
2 + β5x

3
2 + β6start time (4.4)

The summarized ANOVA output (Figure 4.4) for each model suggests that the operator

term is not significant at an alpha level of 0.05 (Model from Equation 4.3) and the repeated

measurement term (i.e. start time) is not statistically significant (Model from Equation

4.4) at an alpha level of 0.05. These findings suggest that the operator factor and repeated

measurements are not important on the output power measurements.

23



Figure 4.4: ANOVA summary for models from Equation 4.2 and 4.4

4.5 Phase 4: One Device, One Operator, One Channel

The final phase of the model development is to consider the lowest level dataset that is

representative of what measurements taken in a manufacturing setting. For instance, were

these laser systems to only be tested once, how would a model be developed for each channel?

This section will explore the models for two laser channels, Channel 1, and Channel 10, on

a single device (Device 1).The log transformation is used as the transformation of choice

given the better performance compared to the square root transformation that was explored

in previous sections. For simplificity, only comparisons with the log transformation are

included in this section.

4.5.1 Device 1, Channel 1

An OLS model for the un-transformed response was first determined. The full model with

all the second order temperature, third order current, and first order interactions was the

starting point for model development. Equation 4.5 defines the full model where y refers

24



to output power, x1 refers to temperature, x2 refers to current, the β terms refer to the

respective coefficients (β1 to β6) and intercept (β0). This full model resulted in an R2 value

of 94.2% and and AIC of -5612.

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2 + β6x

3
2 (4.5)

A simplified model after removing non-significant terms is shown in Equation 4.6 which

only includes the first order temperature factor, third order current factor, and no interaction

terms. This model yielded an R2 value of 94.0% and and AIC of -5570.

y = β0 + β1x1 + β2x2 + β3x
2
2 + β4x

3
2 (4.6)

As seen from the R2 and AIC statistics, the simplified model has a 0.2% reduction in

the R2 value and a 0.7% increase in AIC. Given that the simplified model has no interaction

terms and fewer factors while sacrificing marginal performance in the R2 and AIC terms,

the simplified model will be the first model of comparison using the untransformed power

response variable. This simplified model thus has the coefficients as indicated in Equation

4.7.

y = 0.0268 +−0.00268x1 + 0.00112x2 + [5.078e−6]x2
2 + [−1.049e−8]x3

2 (4.7)

A model using the form from Equation 4.5 where y is the log transformation of power was

also developed and yielded an R2 of 96.8% and AIC of -3234. A simplified model was also

developed and follows the form in Equation 4.6. Simplified models for both the untrans-

formed and transformed responses include the 3rd order current term and no interaction

terms. The simplified model for the transformed, simplified model yielded an R2 of 96.7%

and AIC of -3191.

The change in the R2 and AIC statistics between the simplified and full model for the

transformed response was also 0.2% reduction in the R2 and 0.7% increase in AIC. Similar

25



to the model comparisons for the untransformed response, the simplified model from 4.6 is

the selected model given the comparable model performance and reduction of factors in the

model. As a result, the simplified model of the transformed response has the coefficients

shown in Equation 4.8, where y is the log transformation of the output power.

y = −2.9439− 0.0075x1 + 0.0371x2 − 0.0002x2
2 + [3.295e−7]x3

2 (4.8)

The model development for both the untransformed and transformed response were re-

peated using an 80-20 test-train split. The performance of the fits for the untransformed

response are demonstrated in Figure 4.5 where the left figure shows the fitted points in yel-

low overlaid with the actual points in green. The shape of the residuals in the right figure

has a shape such that the variance in the residuals is increasing with the fitted power, again

suggesting that the assumption in homoskedasticity is not met.The performance of the fits

for the transformed response are shown in Figure 4.6. Comparing the residuals from Figure

4.5 and Figure 4.6, it can be observed that the residuals of the transformed response have

a less obvious trend than observed in the untransformed response’s residuals. This suggests

that the assumption on homoskedasticity of the residuals is better addressed with the trans-

formed response except when the fitted value is small, which corresponds to the cases where

the power output is small and hard to measure accurately.
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Figure 4.5: Summary of fitted power for Channel 1, untransformed response

Figure 4.6: Summary of fitted power for Channel 1, transformed response
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4.5.2 Device 1, Channel 10

It has also been shown that the power output is dependent on the individual channels. To

explore the difference in model development per channel, Channel 10 was used to generate fits

to compare to the fits from Channel 1 on the same device. The methodology from Section

4.5.1 was repeated for Channel 10, an arbitrary channel for comparison. The simplified

model for the untransformed response was found to have the same model parameters as the

simplified model from Channel 1 (Equation 4.6). The coefficients for this model are shown

in Equation 4.9. This model has an R2 of 93.2% and AIC of -5125. Comparing this model

to the respective model for Channel 1, it is observed that the R2 is slightly reduced from

94.0%.

y = 0.0165 +−0.0026x1 + 0.0013x2 + [4.334e−6]x2
2 + [−7.978e−9]x3

2 (4.9)

Continued model development using the transformed response also resulted in the same

model parameters as that found from Channel 1 (Equation 4.6). The coefficients for this

model are included in Equation 4.10 where y refers to the log transformation of the power

output. This model has an R2 of 96.2% and AIC of -849.3. Similar to the findings from

the models for Channel 1, the transformed response yields better performing R2 and AIC

statistics.

y = −7.0040− 0.0183x1 + 0.0906x2 − 0.0005x2
2 + [8.143e−7]x3

2 (4.10)

Reviewing the final models for Channel 1 and Channel 10 on the same device illustrates

how models can be developed per channel on the same device. For instance, the two example

channels show that the transformed response produces the best R2 and AIC statistics for

model goodness of fit. The two channels also resulted in simplified models that had the

same base parameters. The differences in the models are driven by the coefficients, which

can provide a stepping stone for the same base model for all of the channels.
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4.5.3 Device 3, Channel 10

The final model for comparison is taking the same channel on a different device to show the

device-to-device needs for model development. Device 3 was selected as an arbitrary device

of comparison, and Channel 10 was identified as the channel of interest. The same model

development steps in Section 4.5.2 were followed and the simplified model of the transformed

response shared the same model parameters from Equation 4.6. This model resulted in an

R2 of 96.1% and AIC of -801.3. The coefficients for this model are included in Equation 4.11

where y refers to the log transformation of the power output.

y = −5.5580− 0.0208x1 + 0.0742x2 − 0.0004x2
2 + [6.556e−7]x3

2 (4.11)

Inspection of the model coefficients from Equation 4.10 and Equation 4.11 results in the

apparent difference in the intercept value. Device 1’s model has an intercept of -7.0040

while Device 3’s model has an intercept of -5.5580. The difference in the measured data is

shown in Figure 4.7. The measured power on Device 3 (green curve) has peaks that are

higher than that of Device 1 (blue curve) which is consistent with the larger intercept. From

this comparison, it is evident that the local maxima in the power curves contributes to the

intercept of the coefficient and the overall model.
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Figure 4.7: Comparison of power predictions for Device 1 and Device 3

4.5.4 Summary

This section dove into three specific examples that demonstrated three main takeaways when

generating models on an individual device and channel:

• Transforming the response variable for model development yielded overall better R2

and AIC compared to the untransformed models

• The final model parameters were the same (first order temperature, third order current,

and no interaction terms) for all three examples

The presence of local maxima in the current sweeps (Figure 4.7) may have a significant effect

30



on the overall model.

31



CHAPTER 5

Conclusion

The objective of this paper was to introduce the complexity of data collection for a novel

laser test system and propose a framework to generate models for power prediction that

could be used in a manufacturing setting. The proposed framework started with the largest

aggregate dataset including all of the model parameters such as current, temperature, oper-

ator, device, and repeated measurement. A stepwise approach was taken to determine that

devices and channels are significant factors, which are expected due to the nature of the

prototyping process with inherent device variability and the system design of various lasing

wavelengths. In contrast, it was determined that the operator and test repeat parameters

were not important, suggesting that the test system is robust enough for test repeatability.

The final phase of the model development explored three examples for an individual laser on

a selected device. Comparison of the final models determined that the log transformation

of the response resulted in the best models, which all shared the same model parameters.

This finding provides a basis for generating the same base model for each laser, which can

be implemented in larger test systems that use the power models for further laser system

development.
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