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ABSTRACT OF THE THESIS

Distributed Joint Inference of Graphical Models

by

Gilbert Paul Neuner

Master of Science in Statistics
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Professor George Michailidis, Chair

This thesis introduces an algorithm for estimating Gaussian graphical models from multiple

subpopulations sharing some dependence structure. The algorithm uses proximal gradient

descent to estimate solutions to a neighborhood regression problem along with L1 and graph

Laplacian penalty terms. The graph Laplacian penalty term induces similarity amongst

neighborhood regression coefficients belonging to subpopulations known to share much de-

pendence structure. Further, the algorithm can be distributed amongst agents and a server

to ensure that agents do not share their datasets with each other. The distributed algo-

rithm is equivalent to the non-distributed algorithm from an input-output perspective. The

algorithm is compared with the graphical lasso on multiple synthetic datasets.

ii



The thesis of Gilbert Paul Neuner is approved.

Qing Zhou

Arash Ali Amini

George Michailidis, Committee Chair

University of California, Los Angeles

2024

iii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Gaussian Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Inference of Precision Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Multiple Subpopulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Directed Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Non-Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Application of Proximal Gradient Descent . . . . . . . . . . . . . . . . . . . 18

3.3 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Statement of Non-Distributed Algorithm . . . . . . . . . . . . . . . . . . . . 19

3.5 High-Level Overview of Non-Distributed Algorithm . . . . . . . . . . . . . . 21

3.6 Step Size Scheme and Stopping Criteria . . . . . . . . . . . . . . . . . . . . . 22

3.7 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 The Distributed Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



4.2 Separating the Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Statement of Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Algorithmic Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Experimental Setups: 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Experimental Setup: 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Choice of Tuning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Results: Experiments 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6 Results: Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Derivation of Equation 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



LIST OF FIGURES

5.1 Subpopulation graphs: Experiments 1-6 . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Venn diagrams: Experiments 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Subpopulation graph: Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Support of Ω, experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



LIST OF TABLES

5.1 Summary of experiments 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Results, experiments 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 F1 score by subpopulation, experiments 1-6 . . . . . . . . . . . . . . . . . . . . 41

5.4 Normalized RMSE, experiments 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Results, experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 F1 score by subpopulation, experiment 7 . . . . . . . . . . . . . . . . . . . . . . 43

vii



CHAPTER 1

Introduction

1.1 Main Contribution

The main contribution of this thesis is developing a joint estimation method for neighbor-

hood regression coefficients which takes into account shared dependence structure between

subpopulations and which can be distributed so that agents need not share datasets.

1.2 Roadmap

• Chapter 1 provides an introduction for the thesis.

• Chapter 2 provides background on graphical models, particularly graphical models. It

also reviews methods for inference of graphical models in both the single population

and multiple subpopulation cases.

• Chapter 3 states the main optimization problem, derives the non-distributed algorithm

as an instance of proximal gradient descent, and breaks down pseudocode for the non-

distributed algorithm.

• Chapter 4 explains the distributed setting and formulates the distributed algorithm,

which is equivalent to the non-distributed algorithm from an input-output perspective.

• Chapter 5 provides numerical results for the distributed algorithm and the graphical

lasso in 7 different experimental settings.
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• Appendix A computes the gradient of the differentiable part of the objective function,

which is needed for proximal gradient descent.

1.3 Notation

Matrices

Bij

If B is a matrix, then Bij denotes the ij-th element of B.

B·i

If B is a matrix, then B·i denotes the i-th column of B.

Lists of Matrices

C(k)

Lists of matrices will be indexed by superscript (k). If C is a list of K matrices, then

its elements would be written C(1), . . . , C(k), . . . , C(K).

Cij

If C is a list of K matrices, then Cij denotes the vector of length K consisting of

(C
(1)
ij , . . . , C

(K)
ij ).

(C)(s)

Iteration number of an algorithm will be indexed by superscript (s), outside of paren-

theses. If the iterations of the algorithm are divided into subparts, then s may be

fractional.

combining notations

These notations are compatible. For example, (C
(k)
ij )(s) denotes the ij-th element of

the k-th element of the list of matrices C, having been updated by the s-th iteration

2



of an algorithm.

Block Matrices

block matrix

Let D ∈ RKp×Kp. D can be visualized as divided into K2 blocks, where the ij-th block

Dij ∈ Rp×p consists of the [(i− 1)p+ 1]-th to ip-th rows and [(j − 1)p+ 1]-th to jp-th

columns of D. Observe that this overloads the notation for an element of a matrix.

block column of a block matrix

The notation for a column of a matrix is overloaded for block matrices. If D ∈ RKp×Kp

is a block matrix, then D·k denotes the [(k − 1)p+ 1]-th to kp-th columns of D.

block Hadamard product

If B ∈ Rp×p is a matrix, and D ∈ RKp×Kp is a block matrix, then B□D ∈ RKp×Kp is

the block matrix where (B□D)ij = BijDij. Note that Bij ∈ R but Dij ∈ Rk×k.

Other Notation

In order of appearance, in section 2.4 and chapters 3, 4 and 5:

K

Number of subpopulations

k

Subpopulation index, k ∈ {1, . . . , K}

nk

Sample sizes

p

Dimension

3



Σ

Covariance matrices Σ = {Σ(1), . . . ,Σ(K) }, Σ(k) ∈ Rp×p

X

Data matrices X = {X(1), . . . , X(K)}, X(k) ∈ Rnk×p, rows drawn from N(0,Σ(k))

W

Adjacency matrix of subpopulation graph W ∈ RK×K

Θ

Correlation matrices Θ = {Θ(1), . . . ,Θ(K)}, Θ(k) ∈ Rp×p

Θ̂

Estimate of correlation matrices Θ̂ = {Θ̂(1), . . . , Θ̂(K)}, Θ̂(k) ∈ Rp×p

Ψ

Sample correlation matrices Ψ = {Ψ(1), . . . ,Ψ(K)}, Ψ(k) ∈ Rp×p

∥ · ∥L

graph Laplacian penalty ∥ · ∥L : RK → R

β

Neighborhood regression coefficients β = {β(1), . . . , β(K)}, β(k) ∈ Rp×p, β
(k)
ij = −Ω(k)

ij /Ω
(k)
jj

β̂

Estimate of neighborhood regression coefficients β̂ = {β̂(1), . . . , β̂(K)}, β̂(k) ∈ Rp×p

∥ · ∥2

Euclidean norm

λ

L1 parameter λ > 0

4



ρ

Laplacian parameter ρ > 0

f(β;W,X, λ, ρ)

Objective function

g(β;W,X, ρ)

Differentiable part of objective function

h(β;λ)

Proximable part of objective function

Sκ(·)

Soft-thresholding operator

a, b

Step size parameters a > 0, b ∈ (0, 1)

smax, tol, tmin

Parameters for checking stopping criteria

s

Iteration counter

ts

Step size

Y (k)

Matrix Y (k) ∈ Rp×p, Yqr = ⟨X(k)
·q , X

(k)
·r ⟩

∥ · ∥F

Frobenius norm

5



g0(W,β, ρ)

Laplacian part of objective function

gk(X
(k), β(k))

Neighborhood regression parts of objective function

hk(β
(k), λ)

Soft-thresholding parts of objective function

fk

Part of objective function computed by agent

e•

Number of edges expected to be shared by the subpopulations in •

A•

An Erdos-Renyi graph expected to have e• edges

6



CHAPTER 2

Background

2.1 Graphical Models

The PhD thesis [Pla18] gives an excellent background on graphical models. Much of that

information is applicable for this thesis, so the background given here borrows heavily from

the background of [Pla18].

In the following definition, f is an arbitrary density function.

Let X =
[
X1 . . . Xp

]
∈ R1×p be a random (row) vector with positive density. Let A,

B, C be disjoint subsets of {1, . . . , p}. Then XA and XB are conditionally independent

given XC , written XA ⊥⊥ XB | XC , if

f(XA, XB | XC) = f(XA | XC)f(XB | XC).

Let G = (V,E) be a graph, where V = {1, . . . , p}. Then we can associate each random

variable Xi with the i-th vertex of G.

A graph G = (V,E) is a undirected graphical model with respect to the random

vector X if it satisfies one of the following Markov properties:

Global Markov Property (G)

∀A,B,C ⊆ V : C separates A and B =⇒ XA ⊥⊥ XB | XC .

7



Local Markov Property (L)

∀i : Xi ⊥⊥ XV \(ne(i)∪{i}) | Xne(i)

Pairwise Markov property (P)

∀i, j : (i, j) /∈ E, i ̸= j =⇒ Xi ⊥⊥ Xj | Xl,l ̸=i,j.

The Markov properties are subject to the following containments [Lau96]:

Proposition 1 (Markov property containments). For any probability distribution over an

undirected graph G,

(G) =⇒ (L) =⇒ (P ).

Moreover, if the probability measure is strictly positive, then

(G) ⇐⇒ (L) ⇐⇒ (P ).

In particular, if X is multivariate Gaussian, then (G) ⇐⇒ (L) ⇐⇒ (P ).

2.2 Gaussian Graphical Models

Let X =
[
X1 . . . Xp

]
∈ Rp be multivariate normal, with covariance matrix Σ. Without

loss of generality, it may be assumed that the mean is 0. Let Ω = Σ−1 be the precision

matrix of X, which is symmetric.

Proposition 2 (adjacency and precision have same support). If X =
[
X1 . . . Xp

]
∼

N(0,Σ) and G = (V,E) is a graphical model with respect to X, then

(i, j) ∈ E ⇐⇒ Ωij ̸= 0.

8



This result is useful because it shifts the inferential target from the adjacency matrix of

the graphical model of X to the precision matrix of X.

2.3 Inference of Precision Matrix

Methods for inferring the precision matrix of a Gaussian random vector may be categorized

as global or local. While global methods recover Ω itself, local methods only recover the

support of Ω. Local methods involve recovering the neighborhood set of each vertex.

All methods presented here assume that Ω is sparse. Without a sparsity assumption, Ω

would not be recoverable in the high-dimensional setting. Also, the sparser Ω is, the more

interpretable the corresponding graphical model is. The sparsity assumption is reflected by

L1 penalization terms.

One global method is the graphical lasso [FHT07]. The graphical lasso is an algorithm

for solving the optimization problem

Ω̂ = argmax
Ω⪰0

{
log detΩ− tr(SΩ)− λ

∑
i ̸=j

|Ωij|

}
.

In the above, S is the empirical covariance matrix, log detΩ − tr(SΩ) is the Gaussian log-

likelihood of Ω, and −λ
∑

i ̸=j |Ωij| is an L1 regularization term.

An alternative global method is given in [RBL08], which is based on the optimization

problem

Θ̂ = argmax
Θ=Θ⊤,Θ≻0

{
log detΘ− tr(ΨΘ)− λ

∑
i ̸=j

|Θij|

}
.

In the above, Ψ is the sample correlation matrix and log detΘ − tr(ΨΘ) is the Gaussian

log-likelihood of the correlation matrix Θ. The SPICE estimator Θ̂ can be transformed to

an estimate for Ω via Ω̂ = Ξ̂−1Θ̂Ξ̂−1, where Ξ̂2 = diag(S).

By contrast, neighborhood regression [MB06] is a local method. Neighborhood re-
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gression involves inferring β ∈ Rp×p where βij = −Ωij/Ωjj and βii = 0. This new inferential

target is useful because it has the same support as Ω and by extension the adjacency matrix

of the graphical model.

Neighborhood regression is possible because of the following observation:

Proposition 3 (support of precision as regression coefficients). If x =
[
X1 . . . Xp

]
∼

N(0,Σ), then any Xj given Xl,l ̸=j is Gaussian with

E[Xj | Xl,l ̸=j] = −
∑
i ̸=j

βijXi

Var(Xj | Xl,l ̸=j) = Ω−1
jj .

This, along with the sparsity assumption, is the setup for p lasso regression problems. Let

X ∈ Rn×p be the data matrix, where the rows are draws of x =
[
X1 . . . Xp

]
∼ N(0,Σ).

The optimization problem is

β̂ = argmin
β∈Rp×p,diag(β)=0

{
1

2n

p∑
j=1

∥X·j −
∑
i ̸=j

X·iβij∥22 + λ
∑
i ̸=j

|βij|

}
.

Neighborhood regression is an algorithm for solving the above optimization problem.

However, there is no guarantee that β̂ is symmetric. One solution recommended by [MB06] is

to apply a post-processing step whereby the entries Âij of the adjacency matrix Â ∈ {0, 1}p×p

are set to 1 if β̂ ̸= 0 and β̂ ̸= 0.

2.4 Multiple Subpopulations

In the previous sections, the goal was to infer a graphical model from a single data matrix

X. By contrast, suppose that there are multiple data matrices X(k) ∈ Rnk×p, k = 1, . . . , K,

and the goal is to infer a graphical model for each of them. Moreover, it is believed that the

10



K graphical models share many common edges. A naive approach would be to apply one of

the previous methods separately on each of the K data matrices. Better would be a joint

method which could leverage the shared structure between the X(k).

For example, the K data matrices may correspond to different cancer subtypes. Being

different kinds of cancer, it is expected that the K graphical models would each have some

idiosyncratic edges; all being kinds of cancer, it is expected that the K graphical models

would share some common edges.

A common strategy for dealing with multiple subpopulations is to extend one of the

methods from the previous section, and add a penalty term inducing similarity between sub-

populations. For example, [GLM11] and [DWW14] extend the graphical lasso by considering

the likelihood

1

n

K∑
k=1

nk

(
log detΩ(k) − tr

(
S(k)Ω(k)

))
(2.1)

where n =
∑K

k=1 nk. To induce similarity between subpopulations, [GLM11] parametrizes

Ω
(k)
ij = δijγ

(k)
ij

where δij ≥ 0 is a common factor and γ
(k)
ij is an idiosyncratic factor. Then the optimization

problem involves the likelihood 2.1 and L1 penalties
∑

i ̸=k δij and
∑

i ̸=j

∑K
k=1 |γ

(k)
ij |.

The optimization problem of [DWW14] involves the likelihood 2.1 and penalties
∑K

k=1

∑
i ̸=j |Ω

(k)
ij |

and
∑

i ̸=j

√∑K
k=1 Ω

(k)2

ij .

The penalty terms of [GLM11] and [DWW14] encourage Ω
(k)
ij and Ω

(k′)
ij and Ω

(k)
ij and

Ω
(k′′)
ij to be equally similar. However, there might be a situation where it is known that some

subpopulations are more similar than others. To address this possibility, [SS16] place the

K subpopulations onto a subpopulation graph, a weighted, undirected graph where the

weight of the edge between subpopulations i and j, denoted Wij, represents their degree of

similarity. The weights Wij are collected into an adjacency matrix W ∈ RK×K .

11



As an example of a case where the subpopulation graph is known externally, [SS16] give

genetic networks of strains of a virus, which should correspond to evolutionary lineages of

their phylogenetic trees. On the other hand, the genetic network of cancer cells might be

unknown. [SS16] give a method for estimating the subpopulation graph in the case that it

is unknown, which involves hierarchical clustering.

The method presented in this thesis will also make use of a subpopulation graph. For

simplicity, it is assumed that the subpopulation graph is known, and that all weights Wij

are 0 or 1 (i.e., the subpopulation graph is unweighted). This corresponds to the case where

subpopulation similarities are captured only by the shape of the subpopulation graph.

The LASICH estimator of [SS16] is the solution to the following optimization problem:

Θ̂ = argmin
Θ=Θ⊤,Θ≻0

{
−

[
1

n

K∑
k=1

nk

(
log detΘ(k) − tr

(
Ψ(k)Θ(k)

))]

+ ρ
K∑
k=1

∑
i ̸=j

∣∣∣Θ(k)
ij

∣∣∣+ ρρ2
∑
i ̸=j

∥Θij∥L

}
.

Like the optimization problem of [RBL08], this optimization problem involves the Gaussian

correlation-based log-likelihood and L1 regularization. Given Θ̂, Ω̂ is recovered analogously

to [RBL08].

To account for subpopulation structure, the optimization problem includes a Laplacian

term, where the graph Laplacian penalty is given by

∥Θij∥L =

√√√√ K∑
k,k′=1

Wkk′

(
θ
(k)
ij − θ

(k′)
ij

)2
.

The effect of this term is to exploit the information in W to encourage similarity among

values of θ
(k)
ij and θ

(k′)
ij .

In contrast to the previous joint approaches, which incorporate a penalty term into global

methods, [MM16] incorporates a penalty term into neighborhood regression, a local method.

12



The joint structural estimation method (JSEM) consists of two steps. Suppose that

for every βij = (β
(1)
ij , . . . , β

(K)
ij ), it is known how to best partition βij into subsets whose

elements are induced to be similar. For every i ̸= j, this knowledge is encoded by Gij, a

partition of {1, . . . , K}. For every g ∈ Gij and k ∈ g, β
(k)
ij are known to be similar. Then,

the first step is to solve

min

 1

n

K∑
k=1

∥X(k)
·j −

∑
i ̸=j

X
(k)
·i β

(k)
ij ∥22 + 2

∑
i ̸=j

∑
g∈Gij

λ
[g]
ij ∥β

[g]
ij ∥2


to obtain Ê(k) =

{
(i, j) : β

(k)
ij ̸= 0

}
. Then, this edge set is used as a constraint for K

optimization problems

min
Ω(k)⪰0

(i,j)/∈Ê(k) =⇒ Ω
(k)
ij =0

{
tr(S(k)Ω(k))− log detΩ(k)

}
.

JSEM is a combination of local and global methods, the penalty term for inducing simi-

larity across subpopulations being added to the local step.

2.5 Directed Graphical Models

This main algorithm of this thesis and the aforementioned methods are for inference of

undirected graphical models. Also worth mentioning is distributed annealing on regu-

larized likelihood score (DARLS) by [YAZ24]. Like the main algorithm of this thesis,

DARLS is a distributed algorithm for inference of graphical models (see chapter 4 for more

on distributed algorithms). However, the graphical models inferred by DARLS are directed

acyclic graphical models. A directed acyclic graph is a directed acyclic graphical model

(DAG) if it corresponds to a set of random variables {X1, . . . , Xp} with probability density

factorizing as

13



p(x1, . . . , xp) =

p∏
j=1

p(xj | PAj = paj),

where PAj ⊂ {X1, . . . , Xp} \ {Xj} is the parent set of Xj with paj being its value. DAGs

are useful for inferring causal relations among variables.

The inferential target of DARLS is βij, associated with the edge Xi → Xj and βij = 0 if

Xi /∈ PAj. [YAZ24] considers the case of generalized linear DAG (GLDAG), where the

conditional density is given by

p(xj | paj, βj) = cj(xj) exp
(
⟨β⊤

j x, xj⟩ − bj(β
⊤
j x)

)
.

Like the multiple subpopulations setting, [YAZ24] considers a case where the data {X(1), . . . , X(K)}

is split amongst K agents. Unlike the multiple subpopulations setting, the {X(1), . . . , X(K)}

of [YAZ24] are iid.

In both this thesis and [YAZ24], the data {X(1), . . . , X(K)} is split amongst K computa-

tional agents. Both this thesis and [YAZ24] make use of distributed algorithms to address

privacy concerns as well as concerns about the cost of communicating X(·).

A challenge unique to inference of DAGs is respecting the acyclicity constraint. To

address this challenge, it is useful to observe that every directed acyclic graph has at least

one topological sort. A permutation π is a topological sort of a directed acyclic graph

if a ∈ PAb implies that a precedes b in the ordered defined by π. Therefore, the objective

function is given by minπ∈P f(π), where

f(π) = min
β∈D(π)

K∑
k=1

nk

n
ℓIk(β) + λ

∑
i,j

∥βij∥F .

In the above,

• ℓIk(β) is the normalized negative log-likelihood of the subsample belonging to the k-th

computational agent.

14



• P is the set of all permutations on {1, . . . , p}.

• D(π) is the set of DAGs whose topological sorts are compatible with a permutation

π ∈ P .

The basic iteration of DARLS is as follows:

1. Based on the current permutation π̂, central server proposes “neighboring” permuta-

tion π+.

2. Central server and agents compute (β+, f(π+)) via distributed optimization. This step

involves proximal gradient descent.

3. Central server sets (π̂, β̂, f(π̂)) ← (π+, β+, f(π+)) with probability determined via

simulating annealing heuristic.

15



CHAPTER 3

Non-Distributed Algorithm

3.1 Optimization Problem

Whereas the approach of [SS16] is to add a Laplacian term to the global method of [RBL08],

the approach of this thesis is to add a Laplacian term to neighborhood regression, a local

approach. The optimization problem is

β̂ = argmin
β∈S

{
K∑
k=1

[
1

2nk

p∑
j=1

∥X(k)
·j −

∑
i ̸=j

X
(k)
·i β

(k)
ij ∥22 + λ

∑
i ̸=j

|β(k)
ij |

]
+ ρ

∑
i ̸=j

∥βij∥2L

}

= argmin
β∈S

{
K∑
k=1

1

2nk

p∑
j=1

∥X(k)
·j −

∑
i ̸=j

X
(k)
·i β

(k)
ij ∥22

+ ρ
∑
i ̸=j

K∑
k,k′=1

Wkk′

(
β
(k)
ij − β

(k′)
ij

)2
+ λ

K∑
k=1

∑
i ̸=j

|β(k)
ij |

}

where

• The optimization variable, β, is a list of K matrices. The k-th element of β is written

β(k) and has dimension p× p.

• The optimization variable β is constrained to be within the set

S = {{β(1), . . . , β(K)} : β(1), . . . , β(K) ∈ Rp×p, diag(β(1)) = · · · = diag(β(K)) = 0}.
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In other words, the diagonal elements of β(k) must all be 0, for k = 1, . . . , K. This con-

straint ensures that the optimization problem, which does not depend on the diagonal

elements of each β(k), has a unique solution.

• The data, X, is a list of K matrices. The k-th element of X is written X(k) and has

dimension nk × p.

• The adjacency matrix W , is a matrix with dimension K ×K and

∥βij∥2L =
K∑

k,k′=1

Wkk′

(
β
(k)
ij − β

(k′)
ij

)2
.

• The Laplacian parameter ρ and L1 parameter λ are positive numbers.

Let

f(β;W,X, λ, ρ) =
K∑
k=1

1

2nk

p∑
j=1

∥X(k)
·j −

∑
i ̸=j

X
(k)
·i β

(k)
ij ∥22

+ ρ
∑
i ̸=j

K∑
k,k′=1

Wkk′

(
β
(k)
ij − β

(k′)
ij

)2
+ λ

K∑
k=1

∑
i ̸=j

|β(k)
ij |

denote the objective function, and write

g(β;W,X, ρ) =
K∑
k=1

1

2nk

p∑
j=1

∥X(k)
·j −

∑
i ̸=j

X
(k)
·i β

(k)
ij ∥22 + ρ

∑
i ̸=j

K∑
k,k′=1

Wkk′

(
β
(k)
ij − β

(k′)
ij

)2
and

h(β;λ) = λ

K∑
k=1

∑
i ̸=j

|β(k)
ij |

so that
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f(β;W,X, λ, ρ) = g(β;W,X, ρ) + h(β;λ).

The function g(β;W,X, ρ) is called the differentiable part of the objective function and

h(β;λ) is called the proximable part of the objective function.

3.2 Application of Proximal Gradient Descent

Because the objective function can be separated into a differentiable part and a part which

is easily proximable, it can be optimized using proximal gradient descent. Noting that the

proximal operator of h(β;λ) is given by the soft-thresholding operator

Sκ(x) =


x− κ x > κ

0 |x| ≤ κ

x+ κ x < −κ

,

it is easy to see that the iteration of proximal gradient descent for f(β;W,X, λ, ρ) is given

by

(β)(s) = Sλts

{
(β)(s−1) − ts∇g((β)(s−1))

}
,

where s indexes iteration, and ts is the step-size at the s-th iteration. The gradient (i∗ ̸= j∗)

is given by

∂g

∂β
(k∗)
i∗j∗

=
1

nk∗

p∑
i=1

β
(k∗)
ij∗

〈
X

(k∗)
·i∗ , X

(k∗)
·i

〉
+ ρ

K∑
k=1

Wkk∗(β
(k∗)
i∗j∗ − β

(k)
i∗j∗). (3.1)

Equation 3.1 holds if

• W is symmetric, i.e. Wkk∗ = Wk∗k.
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• For k = 1, . . . , K, the diagonal elements of β(k) are set to −1. In other words, for

k = 1, . . . , K and i = 1, . . . , p, β
(k)
ii = −1.

The values of the diagonal elements of each β(k) can be assigned any value without

affecting the value of the objective function. Therefore, they are set to −1 in order to

simplify writing the gradient and implementing the algorithm.

For the derivation of equation 3.1, see Appendix A.

3.3 Block Matrices

The following notation regarding block matrices is used to write down the Laplacian step

succinctly:

block matrix

Let D ∈ RKp×Kp. D can be visualized as divided into K2 blocks, where the ij-th block

Dij ∈ Rp×p consists of the [(i− 1)p+ 1]-th to ip-th rows and [(j − 1)p+ 1]-th to jp-th

columns of D. Observe that this overloads the notation for an element of a matrix.

block column of a block matrix

The notation for a column of a matrix is overloaded for block matrices. If D ∈ RKp×Kp

is a block matrix, then D·k denotes the [(k − 1)p+ 1]-th to kp-th columns of D.

block Hadamard product

If B ∈ Rp×p is a matrix, and D ∈ RKp×Kp is a block matrix, then B□D ∈ RKp×Kp is

the block matrix where (B□D)ij = BijDij. Note that Bij ∈ R but Dij ∈ Rk×k.

3.4 Statement of Non-Distributed Algorithm

The following algorithm implements proximal gradient descent for f(β;W,X, λ, ρ).
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Algorithm 1 Non-Distributed Algorithm

INPUT: Step size parameters a > 0, b ∈ (0, 1); Stopping criteria smax, tol, and tmin; adjacency

matrix W ∈ RK×K ; Data X(k) ∈ Rnk×p, k = 1, . . . , K; Initial guess (β(k))(0) ∈ Rp×p, k = 1,

. . . , K; Laplacian parameter ρ; L1 parameter λ.

INITIALIZE: Initial iteration s ← 1; Initial step size t1 = a; Y (k) ∈ Rp×p, k = 1, . . . , K, a

symmetric matrix collecting the pairwise inner products of the columns of X(k), i.e., Yqr ←〈
X

(k)
·q , X

(k)
·r

〉
.

REPEAT UNTIL CONVERGENCE:

1: (∆β)(s−1) ←


(β(1))(s−1) − (β(1))(s−1) . . . (β(1))(s−1) − (β(K))(s−1)

. . . . . . . . .

(β(K))(s−1) − (β(1))(s−1) . . . (β(K))(s−1) − (β(K))(s−1)

, a block matrix.

2: (β)(s−2/3) ← (β)(s−1) − tsρ
∑K

k=1(W□(∆β)(s−1))·k

3: for k = 1, . . . , K do

4: for i = 1, . . . , p do

5: (β
(k)
ii )(s−1) ← −1

6: end for

7: (β(k))(s−1/3) ← (β(k))(s−2/3) − ts
nk
Y (k)(β(k))(s−1)

8: end for

9: (β)(s) ← Sλts((β)
(s−1/3))

10: if s > smax or ∥(β)(s) − (β)(s−1)∥F < tol or ts < tmin then

11: return β̂ ← (β)(s)

12: end if

13: if f((β)(s);W,X, λ, ρ) < f((β)(s−1);W,X, λ, ρ) then

14: s← s+ 1

15: ts ← a

16: else

17: ts ← bts

18: end if
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3.5 High-Level Overview of Non-Distributed Algorithm

The iteration of the non-distributed algorithm can be broken down into 5 main steps.

• Lines 1 and 2 constitute the Laplacian step, by which (β)(s−2/3) is obtained from

β(s−1).

• Lines 3 through 8 constitute the neighborhood regression step, by which (β)(s−1/3)

is obtained from (β)(s−2/3).

• Line 9 is the soft-thresholding step by which (β)(s) is obtained from (β)(s−1/3).

• Stopping criteria are checked in lines 10 through 12.

• Step size for the next iteration is determined in lines 13 through 18.

The Laplacian step and neighborhood regression step comprise the gradient descent part

of proximal gradient descent, i.e.,

(β)(s−1/3) = (β)(s−1) − ts∇g((β)(s−1)).

Then, the soft-thresholding step completes an iteration of proximal gradient descent.

Using block matrices, the Laplacian step can be written down in just 2 lines.

One detail omitted from the pseudocode is the following: in line 2, (β)(s−1) is a list of

length K of p × p matrices, but tsρ
∑K

k=1(W□(∆β)(s−1))·k is a Kp × p matrix, so the sub-

traction (β)(s−1) − tsρ
∑K

k=1(W□(∆β)(s−1))·k does not make grammatical sense. To make

the dimensions match, tsρ
∑K

k=1(W□(∆β)(s−1))·k is coerced to a list of length K by hav-

ing its k-th element be the matrix consisting of the [(k − 1)p + 1]-th to [kp]-th rows of

tsρ
∑K

k=1(W□(∆β)(s−1))·k.
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3.6 Step Size Scheme and Stopping Criteria

The non-distributed algorithm uses an unsophisticated step size scheme involving two param-

eters, a > 0 and b ∈ (0, 1). In iteration s, the algorithm obtains β(s) as a function of β(s−1)

and step size ts. Initially, the algorithm tries ts = a. After the s-th iteration is complete,

the algorithm checks if the objective function has been lowered, i.e. f((β)(s);W,X, λ, ρ) <

f((β)(s−1);W,X, λ, ρ). If yes, the iteration counter is advanced (s← s+1) and the algorithm

tries ts+1 = a. If no, the algorithm retries the s-th iteration, this time with a smaller step

size ts ← bts.

The algorithm checks three stopping criteria. First, it checks whether the number of

iterations s has exceeded a prespecified maximum number of iterations smax. Second, it

checks that ∥(β)(s) − (β)(s−1)∥F is above a prespecified tolerance. Here, the Frobenius norm

∥ · ∥F is the square root of the sum of squares of the off-diagonal entries of each layer

(β(k))(s)− (β(k))(s−1). Lastly, it checks that the step size ts prescribed by the above step size

scheme is not smaller than some prespecified minimum step size tmin.

Another detail omitted from the pseudocode is the following: for some initial guesses β(0),

the algorithm would get “stuck” in the sense that f((β)(0);W,X, λ, ρ) < f((β)(1);W,X, λ, ρ)

even after searching many values of t1. To alleviate this issue, the if statement on line 13

should actually read

if f((β)(s);W,X, λ, ρ) < f((β)(s−1);W,X, λ, ρ) or (bts < tmin and s < 10).

Forcing the algorithm to take steps when it is “stuck” in early iterations allowed it to find

more optimal β in the later iterations.
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3.7 Post-Processing

To ensure that each β̂(k) is symmetric, the following post-processing rule is applied to the

off-diagonal elements of β̂(k), k = 1, . . . , K:

• If one of β̂
(k)
ij and β̂

(k)
ji is zero, set them both to zero.

• If both of β̂
(k)
ij and β̂

(k)
ji are nonzero and β̂

(k)
ij and β̂

(k)
ji have the same sign, set them

both to their mean.

• If both of β̂
(k)
ij and β̂

(k)
ji are nonzero and β̂

(k)
ij and β̂

(k)
ji have opposite signs, set them

both to whichever has the larger absolute value.

The first bullet point, which determines the support of β̂, is the same post-processing

rule as equation 7 of [MB06].
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CHAPTER 4

Distributed Algorithm

4.1 The Distributed Setting

Suppose that K agents each possess one of the X(k), and that they wish not to communicate

the X(k) to each other. This may be due to cost of communication or privacy concerns.

Despite this, the agents still desire to leverage the shared structure between the X(k) when

inferring β(k).

In a non-distributed algorithm, a single computational agent solves an optimization

problem by itself. For instance, algorithm 1 is non-distributed. By contrast, a distributed

algorithm is one in which computational agents communicate in order to solve an optimiza-

tion problem.

To solve the above problem, the algorithm will have to be distributed amongst at least

K computational agents, the k-th computational agent handling at least the computations

involving X(k). These K computational agents will simply be called the agents.

In addition, the distributed algorithm will involve a [K + 1]-th computational agent,

called the server. The agents will communicate only with the server, and the server will

communicate with each of the K agents.

In the non-distributed algorithm, X occurs in two places: in the neighborhood regression

step, and in the computation of the objective function (which is used to determine step size).

These computations will have to be distributed amongst the K agents.

Despite not being necessary to distribute, the soft-thresholding step will also be dis-
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tributed amongst the K agents. The Laplacian step is not easy to distribute, and thus will

be handled by the server.

4.2 Separating the Objective Function

Write

g0(W,β, ρ) = ρ
∑
i ̸=j

K∑
k,k′=1

Wkk′

(
β
(k)
ij − β

(k′)
ij

)2
,

gk(X
(k), β(k)) =

1

2nk

p∑
j=1

∥X(k)
·j −

∑
i ̸=j

X
(k)
·i β

(k)
ij ∥22,

hk(β
(k), λ) = λ

∑
i ̸=j

|β(k)
ij |

so that

f(β;W,X, λ, ρ) = g0(W,β, ρ) +
K∑
k=1

gk(X
(k), β(k)) +

K∑
k=1

hk(β
(k), λ).

The function g0(W,β, ρ) is called the Laplacian part of the objective function, functions

gk(X
(k), β(k)) are called the neighborhood regression parts of the objective function, and

functions hk(β
(k), λ) are called the soft-thresholding parts of the objective function.

The server will handle computing the gradient of g0, and the K agents will handle com-

puting the gradient of gk and soft-thresholding β(k).

Writing fk(X
(k), β(k), λ) = gk(X

(k), β(k)) + hk(β
(k), λ) yields

f(β;W,X, λ, ρ) = g0(W,β, ρ) +
K∑
k=1

fk(X
(k), β(k), λ).

When computing the objective function, the K agents will compute fk, which will be

sent to the server. The server will compute g0 and sum to obtain the value of the objective

function.
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4.3 Statement of Distributed Algorithm

Algorithm 4 implements distributed proximal gradient descent for f(β;W,X, λ, ρ). Its iter-

ation contains two subalgorithms, called the agent step and the server step.

The agent step contains the neighborhood regression step (lines 1 through 4), the soft-

thresholding step (line 5), and computes the neighborhood regression part and soft-thresholding

part of the objective function (line 6). The agent step returns (β(k))(s) and (fk)
(s) (line 7).

Algorithm 2 Agent Step

INPUT: s, ts, X
(k) ∈ Rnk×p, Y (k), (β(k))(s−1), (β(k))(s−2/3), λ.

1: for i = 1, . . . , p do

2: (β
(k)
ii )(s−1) ← −1

3: end for

4: (β(k))(s−1/3) ← (β(k))(s−2/3) − ts
nk
Y (k)(β(k))(s−1)

5: (β(k))(s) ← Sλts((β
(k))(s−1/3))

6: (fk)
(s) ← 1

2nk

∑p
j=1 ∥X

(k)
·j −

∑
i ̸=j X

(k)
·i (β

(k)
ij )(s)∥22 + λ

∑
i ̸=j |(β

(k)
ij )(s)|

7: return (β(k))(s), (fk)
(s).
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The server step checks stopping criteria (lines 1 through 3), determines step size (lines

4 through 10), and contains the Laplacian step (lines 11 and 12). If a stopping criterion is

satisfied, the server step returns (β)(s) (line 2); otherwise, it returns β(s−1), β(s−2/3), s and ts

(line 13).

Algorithm 3 Server Step

INPUT: a, b, (fk)
(s) (k = 1, . . . , K), s, ts, W , (β)(s−1), (β)(s), ρ

1: if s > smax or ∥(β)(s) − (β)(s−1)∥F < tol or ts < tmin then

2: return (β)(s)

3: end if

4: f((β)(s))←
∑K

k=1(fk)
(s) + ρ

∑
i ̸=j

∑K
k,k′=1 Wkk′

(
β
(k)
ij − β

(k′)
ij

)2
5: if f((β)(s)) < f((β)(s−1)) then

6: s← s+ 1

7: ts ← a

8: else

9: ts ← bts

10: end if

11: (∆β)(s−1) ←


(β(1))(s−1) − (β(1))(s−1) . . . (β(1))(s−1) − (β(K))(s−1)

. . . . . . . . .

(β(K))(s−1) − (β(1))(s−1) . . . (β(K))(s−1) − (β(K))(s−1)

, a block matrix.

12: (β)(s−2/3) = (β)(s−1) − tsρ
∑K

k=1(W□(∆β)(s−1))·k

13: return β(s−1), β(s−2/3), s, ts
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The iteration of the distributed algorithm consists of the agent step and the server step.

All K agents complete the agent step, and the k-th agent sends (β(k))(s) and (fk)
(s) to the

server (lines 1 through 3). Then the server completes the server step. If the server determines

that a stopping criterion was satisfied, then the distributed algorithm terminates and returns

β(s); otherwise, the server sends (β(k))(s−1), (β(k))(s−2/3), s, ts to the k-th agent, k = 1, . . . ,

K.
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Algorithm 4 Distributed Algorithm

INPUT: Step size parameters a > 0, b ∈ (0, 1); Stopping criteria smax, tol, and tmin; adjacency

matrix W ∈ RK×K ; Data X(k) ∈ Rnk×p, k = 1, . . . , K; Initial guess (β(k))(0) ∈ Rp×p, k = 1,

. . . , K; Laplacian parameter ρ; L1 parameter λ.

AGENTS INITIALIZE: Y (k) ∈ Rp×p, k = 1 ,. . . , K, a symmetric matrix collecting the

pairwise inner products of the columns of X(k), i.e., Yqr ←
〈
X

(k)
·q , X

(k)
·r

〉
.

SERVER INITIALIZES: Initial iteration s ← 1; Initial step size t1 = a; (∆β)(0) ←
(β(1))(0) − (β(1))(0) . . . (β(1))(0) − (β(K))(0)

. . . . . . . . .

(β(K))(0) − (β(1))(0) . . . (β(K))(0) − (β(K))(0)

, a block matrix; (β)(1/3) ← (β)(0) −

t1ρ
∑K

k=1(W□(∆β)(0))·k.

SERVER SENDS: (β(k))(0), (β(k))(1/3), s = 1, t1 to the k-th agent, k = 1, . . . , K.

REPEAT UNTIL CONVERGENCE:

1: for k = 1, . . . , K do:

2: k-th agent does agent step; sends (β(k))(s) and (fk)
(s) to server.

3: end for

4: Server does server step.

5: if output of server step is β(s) then

6: return β̂ ← β(s)

7: else

8: Server sends (β(k))(s−1), (β(k))(s−2/3), s, ts to the k-th agent, k = 1, . . . , K.

9: end if
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4.4 Algorithmic Details

The non-distributed and distributed algorithms perform the exact same instructions in the

exact same order, the only difference being that the distributed algorithm has to handle

communication between agents and a server to circumvent communication of X(k). There-

fore, the two algorithms are equivalent from an input-output perspective. Moreover, the

distributed algorithm inherits all algorithmic details from the non-distributed algorithm,

including step size scheme, stopping criteria, and post-processing.
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CHAPTER 5

Numerical Results

This section details numerical experiments for the algorithm of this thesis - code is available

at https://github.com/gilbert-neuner/graphical-models.

5.1 Experimental Setups: 1-6

A total of 7 experiments were run, and each experiment was repeated for 10 runs. For

each experimental run, the data X = {X(1), . . . , X(K)} was generated by drawing from

N(0, (Ω(k))−1) a total of nk times. The construction of Ω will be detailed in section 5.3.

Then, the distributed algorithm was performed on X. As a benchmark, the graphical lasso

was also performed K times, once for each of X(1), . . . , X(K). The expectation is that the

distributed algorithm should perform better than the graphical lasso since it treats X(1), . . . ,

X(K) jointly.

For experiments 1-6, K = 3 subpopulations were considered, with sample sizes n1 = 50,

n2 = 100, and n3 = 50, and dimension p = 100. Two factors which were varied between

experiments were the shape of the subpopulation graph and the sparsity of each Ω(k).

Three subpopulation graphs were considered, which are given in figure 5.1. Graph 1 was

used in experiments 1 and 2, graph 2 was used in experiments 3 and 4, and graph 3 was

used in experiments 5 and 6.
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n1 = 50

n2 = 100 n3 = 50

(a) Graph 1

n1 = 50

n2 = 100 n3 = 50

(b) Graph 2

n1 = 50

n2 = 100 n3 = 50

(c) Graph 3

Figure 5.1: Subpopulation graphs: Experiments 1-6

The adjacency matrices W were chosen by letting Wij = 1 if there is an edge in the

corresponding subpopulation graph and Wij = 0 otherwise.

• experiments 1, 2: W =


0 1 0

1 0 0

0 0 0



• experiments 3, 4: W =


0 1 1

1 0 0

1 0 0



• experiments 5, 6: W =


0 1 1

1 0 1

1 1 0

.

With p = 100, each Ω(k) could contain up to 100(99)/2 = 4950 edges. In experiments

1, 3, and 5, each Ω(k) was expected to contain 100 edges, or an expected sparsity of 0.02.

In experiments 2, 4, and 6, each Ω(k) was expected to contain 200 edges, or an expected

sparsity of 0.04.
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Experiment Graph Exp. Edges per Subpop. Exp. Sparsity per Subpop.

1 1 100 0.02

2 1 200 0.04

3 2 100 0.02

4 2 200 0.04

5 3 100 0.02

6 3 200 0.04

Table 5.1: Summary of experiments 1-6

To fully specify the data generating process for Ω, it must be determined how many edges

should be expected to occur

• Only in subpopulation 1 (e1).

• Only in subpopulation 2 (e2).

• Only in subpopulation 3 (e3).

• In subpopulations 1 and 2 (e12).

• In subpopulations 1 and 3 (e13).

• In subpopulations 2 and 3 (e23).

• In subpopulations 1, 2, and 3 (e123).

This information is conveniently visualized with a Venn diagram. Of course, each Venn

diagram must be subject to the subpopulation graph and sparsity constraints; for example,

if the expected edges per subpopulation is 100, then
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e1 + e12 + e13 + e123 = e2 + e12 + e23 + e123 = e3 + e13 + e23 + e123 = 100.

Figure 5.2 gives the Venn diagrams for experiments 1-6.

5 5

100

k = 1 k = 2

k = 3

0

95

0 0

(a) Experiment 1

10 10

200

k = 1 k = 2

k = 3

0

190

0 0

(b) Experiment 2

10 55

55

k = 1 k = 2

k = 3

0

45

45 0

(c) Experiment 3

20 110

110

k = 1 k = 2

k = 3

0

90

90 0

(d) Experiment 4

5 5

5

k = 1 k = 2

k = 3

95

0

0 0

(e) Experiment 5

10 10

10

k = 1 k = 2

k = 3

190

0

0 0

(f) Experiment 6

Figure 5.2: Venn diagrams: Experiments 1-6

The expectation is that the distributed algorithm should outperform the graphical lasso

since the graphical lasso does not take advantage of shared structure between subpopulations.

For example, in subpopulation 1 of experiment 1, there are 95 edges for which the sample

size is practically 150 rather than 50, due to the overlap between subpopulations 1 and 2.
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By contrast, there is no reason to expect the distributed algorithm to perform better on

subpopulation 3 of experiment 1.

5.2 Experimental Setup: 7

For experiment 7, K = 9 subpopulations were considered, with sample sizes n1 = · · · = n9 =

50, and dimension p = 150.

Figure 5.3 gives the subpopulation graph for experiment 7. Note that the subgraphs

induced by nodes 1, 2, and 3, nodes 4, 5, and 6, and nodes 7, 8, and 9 are individually the

subpopulation graphs for the first six experiments.

K = 4

K = 5 K = 6

K = 1

K = 2 K = 3

K = 7

K = 8 K = 9

Figure 5.3: Subpopulation graph: Experiment 7

Two adjacency matrices W were considered:
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Wcorrect =



0 1 0 0 0 0 0 0 0

1 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 1 0

0 1 0 0 0 0 0 1 1

0 1 0 0 0 1 1 0 1

0 0 0 0 0 0 1 1 0



Wincorrect =



0 0 1 1 1 1 1 1 1

0 0 1 0 1 0 0 0 1

1 1 0 1 1 1 1 1 1

1 0 1 0 0 0 1 1 1

1 1 1 0 0 1 1 1 1

1 0 1 0 1 0 1 0 1

1 0 1 1 1 1 0 0 0

1 0 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0


The matrix Wcorrect is the adjacency matrix of the subpopulation graph, and the matrix

Wincorrect was obtained by replacing zeros with ones and ones with zeros for all off-diagonal

elements of Wcorrect. The expectation is that the distributed algorithm should perform better

when W is correctly specified.

In accordance with the subpopulation graph, the following “Venn diagram segments”

were specified. Each was expected to contain 75 edges.

• Only in subpopulation 1 (e1).
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• Only in subpopulation 3 (e3).

• Only in subpopulation 5 (e5).

• Only in subpopulation 9 (e9).

• In subpopulations 1 and 2 (e12).

• In subpopulations 4 and 5 (e45).

• In subpopulations 2, 4, and 6 (e246).

• In subpopulations 2, 6, and 8 (e248).

• In subpopulations 2, 7, and 8 (e278).

• In subpopulations 7, 8, and 9 (e789).

Consequently, expected number of edges and expected sparsity between subpopulations

was not constant. For example, subpopulation 3 was expected to have 75 out of a possible

150(149)/2 = 11175 edges, or an expected sparsity of 0.007, while subpopulation 2 was

expected to have 300 edges, or an expected sparsity of 0.027.

5.3 Data Generation

The method for generating data was similar to that of [SS16]. Given a Venn diagram, Ω was

generated in the following way:

1. For each e•, generate the adjacency matrix of an Erdos-Renyi graph expected to have

e• edges, and call it A•.

2. For each A•, for each non-zero above-diagonal element A•
ij and corresponding A•

ji,

replace with a uniform draw from (−0.7,−0.5) ∪ (0.5, 0.7).
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3. Form Ω(k) by creating an empty matrix, putting each A• on its block diagonal in order,

and zeroing those block diagonal elements which correspond to A• where • does not

contain k.

4. Add 0.1 to the diagonal of Ω(k) until Ω(k) is positive definite.

For example, figure 5.4 shows what the support (in black) of Ω(1), Ω(2) and Ω(3) might

look like in experiment 5. In accordance with the Venn diagram, Ω(1) shares edges with Ω(2)

and Ω(3), and each Ω(k) has some edges which it doesn’t share.

Figure 5.4: Support of Ω, experiment 5

Having generated Ω(k), the true β(k) is calculated by β
(k)
ij = −Ω(k)

ij /Ω
(k)
jj , and X(k) is

generated by drawing from N(0, (Ω(k))−1) a total of nk times.

5.4 Choice of Tuning Parameters

For all experiments, the parameters of the distributed algorithm were a = 1, b = 0.5,

smax = 1000, tol = 10−3, tmin = 10−6, and
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(ρ, λ) ∈ {2−0.5, 2−1.5, 2−2.5, 2−3.5, 2−4.5} × {2−1.5, 2−2.5, 2−3.5}

selected to maximize F1 score. For each experiment, the grid search was performed on a

dataset distinct from the datasets of the 10 runs, but from the same data generating process.

For experiments 1-6, the initial guess was (β)(0) = {I100×100, I100×100, I100×100}, where

I100×100 denotes an identity matrix with dimension 100. For experiment 7, the initial guess

was instead an array of 9 identity matrices, each with dimension p = 150.

For the graphical lasso, which was used in all experiments, the glasso function from the

glasso package was used, along with default values for all the parameters and s set to the

sample covariance matrix, nobs set to 50 or 100 appropriately, and

ρ ∈ {2−0.5, 2−1, 2−1.5, 2−2, 2−2.5, 2−3, 2−3.5, 2−4, 2−4.5, 2−5}

selected to maximize F1 score.

Note that while ρ is the Laplacian parameter and λ is the L1 parameter of the distributed

algorithm, for the glasso function ρ is the L1 parameter.

5.5 Results: Experiments 1-6

Since each experiment consisted of 10 runs, all results are reported as their mean plus or

minus their standard deviation.

Table 5.2 contains five statistics derived from confusion matrices. These are accuracy,

sensitivity, specificity, precision, and F1 score. Actual positives correspond to nonzero off-

diagonal entries of Ω, and actual negatives correspond to zero off-diagonal entries of Ω.

Predicted positives correspond to nonzero off-diagonal entries of β̂, and predicted negatives

correspond to zero off-diagonal entries of β̂.
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Exp. Alg. Accuracy Sensitivity Specificity Precision F1 Score

1 joint 0.986±0.002 0.367±0.078 0.998±0.001 0.828±0.034 0.503±0.069

1 glasso 0.979±0.003 0.515±0.075 0.989±0.004 0.497±0.061 0.499±0.033

2 joint 0.966±0.002 0.353±0.043 0.992±0.002 0.644±0.040 0.454±0.038

2 glasso 0.967±0.002 0.423±0.035 0.989±0.003 0.633±0.052 0.505±0.024

3 joint 0.981±0.003 0.593±0.071 0.989±0.003 0.541±0.047 0.563±0.037

3 glasso 0.974±0.004 0.523±0.067 0.984±0.005 0.403±0.058 0.452±0.044

4 joint 0.967±0.003 0.491±0.053 0.987±0.004 0.621±0.045 0.545±0.027

4 glasso 0.959±0.003 0.434±0.058 0.981±0.005 0.496±0.047 0.459±0.031

5 joint 0.986±0.002 0.407±0.081 0.998±0.001 0.797±0.048 0.533±0.073

5 glasso 0.979±0.003 0.441±0.052 0.990±0.003 0.484±0.065 0.459±0.048

6 joint 0.967±0.002 0.388±0.040 0.991±0.002 0.646±0.051 0.483±0.036

6 glasso 0.968±0.002 0.356±0.046 0.994±0.002 0.716±0.044 0.474±0.041

Table 5.2: Results, experiments 1-6

Observe that the distributed algorithm performed worst in experiments 1 and 2, when

the subpopulation graph contained the least edges.

Table 5.3 contains F1 scores for experiments 1-6, separated by subpopulation.
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Exp. Alg. k = 1 k = 2 k = 3

1 joint 0.536±0.082 0.546±0.106 0.407±0.093

1 glasso 0.492±0.055 0.538±0.051 0.463±0.057

2 joint 0.455±0.040 0.538±0.059 0.368±0.039

2 glasso 0.487±0.037 0.534±0.037 0.496±0.017

3 joint 0.522±0.031 0.652±0.063 0.526±0.040

3 glasso 0.418±0.057 0.524±0.079 0.424±0.033

4 joint 0.505±0.037 0.568±0.052 0.550±0.066

4 glasso 0.425±0.034 0.498±0.086 0.450±0.048

5 joint 0.524±0.073 0.557±0.084 0.520±0.075

5 glasso 0.448±0.065 0.487±0.052 0.445±0.043

6 joint 0.460±0.047 0.530±0.032 0.467±0.040

6 glasso 0.471±0.043 0.487±0.042 0.463±0.046

Table 5.3: F1 score by subpopulation, experiments 1-6

For the distributed algorithm and experiments 1 and 2, F1 scores are highest for subpop-

ulation 2, which has the largest sample size and an edge to subpopulation 1. F1 scores are

lowest for subpopulation 3, which has half the sample size of subpopulation 2, and no edges

to subpopulations 1 or 2.

For the distributed algorithm and experiments 5 and 6, F1 scores are highest for sub-

population 2, since it has the largest sample size and all subpopulations are connected by

an edge.

Table 5.4 contains normalized RMSE for experiments 1-6, computed as ∥β − β̂∥F/∥β∥F .

41



Exp. Alg. Normalized RMSE

1 joint 0.855± 0.034

1 glasso 1.403± 0.036

2 joint 0.897± 0.017

2 glasso 1.557± 0.031

3 joint 0.807± 0.030

3 glasso 1.350± 0.030

4 joint 0.887± 0.023

4 glasso 1.512± 0.061

5 joint 0.858± 0.032

5 glasso 1.269± 0.027

6 joint 0.871± 0.023

6 glasso 1.375± 0.031

Table 5.4: Normalized RMSE, experiments 1-6

5.6 Results: Experiment 7

Table 5.5 contains overall results for experiment 7.

Alg. Accuracy Sensitivity Specificity Precision F1 Score N. RMSE

Wcorrect 0.988±0.001 0.561±0.044 0.995±0.002 0.638±0.062 0.593±0.020 0.889±0.014

glasso 0.987±0.001 0.338±0.031 0.997±0.001 0.607±0.051 0.433±0.035 1.234±0.020

Wincorrect 0.98±0.003 0.623±0.048 0.986±0.004 0.413±0.057 0.492±0.025 0.934±0.010

Table 5.5: Results, experiment 7

Table 5.6 contains F1 scores by subpopulation for experiment 7.
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k Wcorrect glasso Wincorrect

1 0.594±0.080 0.424±0.060 0.532±0.113

2 0.546±0.029 0.377±0.092 0.461±0.035

3 0.627±0.071 0.530±0.078 0.420±0.064

4 0.620±0.053 0.462±0.081 0.524±0.082

5 0.595±0.057 0.440±0.055 0.481±0.049

6 0.607±0.053 0.443±0.056 0.502±0.057

7 0.614±0.068 0.452±0.109 0.520±0.079

8 0.579±0.060 0.426±0.095 0.497±0.055

9 0.599±0.083 0.423±0.095 0.537±0.103

Table 5.6: F1 score by subpopulation, experiment 7
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APPENDIX A

Derivation of Equation 3.1

The gradient (i∗ ̸= j∗) is given by

∂g

∂β
(k∗)
i∗j∗

=
1

nk∗

p∑
i=1

β
(k∗)
ij∗

〈
X

(k∗)
·i∗ , X

(k∗)
·i

〉
+ ρ

K∑
k=1

Wkk∗(β
(k∗)
i∗j∗ − β

(k)
i∗j∗).

Equation 3.1 holds if

• W is symmetric, i.e. Wkk∗ = Wk∗k.

• For k = 1, . . . , K, the diagonal elements of β(k) are set to −1. In other words, for

k = 1, . . . , K and i = 1, . . . , p, β
(k)
ii = −1.

To see this, note that the gradient of the neighborhood regression term is given by
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∂

∂β
(k∗)
i∗j∗

K∑
k=1

1

2nk

p∑
j=1

∥X(k)
·j −

∑
i ̸=j

X
(k)
·i β

(k)
ij ∥22

=
1

2nk∗

∂

∂β
(k∗)
i∗j∗

∥X(k∗)
·j∗ −

∑
i ̸=j∗

X
(k∗)
·i β

(k∗)
ij∗ ∥22

=
1

2nk∗

nk∗∑
ℓ=1

∂

∂β
(k∗)
i∗j∗

(
X

(k∗)
ℓj∗ −

∑
i ̸=j∗

X
(k∗)
ℓi β

(k∗)
ij∗

)2

=
1

2nk∗

nk∗∑
ℓ=1

∂

∂β
(k∗)
i∗j∗

X
(k∗)
ℓj∗ −

 ∑
i/∈{i∗,j∗}

X
(k∗)
ℓi β

(k∗)
ij∗

−X
(k∗)
ℓi∗ β

(k∗)
i∗j∗

2

=
1

2nk∗

nk∗∑
ℓ=1

∂

∂β
(k∗)
i∗j∗

2X
(k∗)
ℓi∗ β

(k∗)
i∗j∗

−X(k∗)
ℓj∗ +

∑
i/∈{i∗,j∗}

X
(k∗)
ℓi β

(k∗)
ij∗

+
(
X

(k∗)
ℓi∗ β

(k∗)
i∗j∗

)2
=

1

nk∗

nk∗∑
ℓ=1

X
(k∗)
ℓi∗

−X(k∗)
ℓj∗ +

∑
i/∈{i∗,j∗}

X
(k∗)
ℓi β

(k∗)
ij∗

+
(
X

(k∗)
ℓi∗

)2
β
(k∗)
i∗j∗


=

1

nk∗

nk∗∑
ℓ=1

X
(k∗)
ℓi∗

X
(k∗)
ℓi∗ β

(k∗)
i∗j∗ −X

(k∗)
ℓj∗ +

∑
i/∈{i∗,j∗}

X
(k∗)
ℓi β

(k∗)
ij∗


=

1

nk∗

〈
X

(k∗)
·i∗ , X

(k∗)
·i∗ β

(k∗)
i∗j∗ −X

(k∗)
·j∗ +

∑
i/∈{i∗,j∗}

X
(k∗)
·i β

(k∗)
ij∗

〉

=
1

nk∗

〈
X

(k∗)
·i∗ ,−X(k∗)

·j∗ +
∑
i ̸=j∗

X
(k∗)
·i β

(k∗)
ij∗

〉

=
1

nk∗

(
−
〈
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(k∗)
·i∗ , X

(k∗)
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〉
+
∑
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β
(k∗)
ij∗

〈
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(k∗)
·i∗ , X

(k∗)
·i

〉)
.

Adopting the notational convention β
(k∗)
j∗j∗ = −1, we could write

=
1

nk∗

p∑
i=1

β
(k∗)
ij∗

〈
X

(k∗)
·i∗ , X

(k∗)
·i

〉
.

For the gradient of the Laplacian term, note that
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∂β
(k∗)
i∗j∗

ρ
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i ̸=j
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k,k′=1
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ij
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(k)
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(
β
(k∗)
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(k′)
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))

= 4ρ
K∑
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(
β
(k∗)
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(k)
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)
(symmetry of W )

= ρ
K∑
k=1
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(
β
(k∗)
i∗j∗ − β

(k)
i∗j∗

)
. (absorb the constant)

46



REFERENCES

[DWW14] Patrick Danaher, Pei Wang, and Daniela M Witten. “The joint graphical lasso
for inverse covariance estimation across multiple classes.” J. R. Stat. Soc. Series
B Stat. Methodol., 76(2):373–397, March 2014.

[FHT07] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Sparse inverse covari-
ance estimation with the lasso.”, 2007.

[GLM11] Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. “Joint estimation of
multiple graphical models.” Biometrika, 98(1):1–15, March 2011.

[Lau96] Steffen L. Lauritzen. Graphical Models. Oxford Science Publications, 1996.
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