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Abstract

Large-scale system design optimization is a numerical technique used in solving system design
problems that involve a large number of design variables. These systems are often multidisci-
plinary, with many disciplines interacting with each other. The scale of these problems demands
a gradient-based approach for efficient solutions, and it is often implemented by coupling an en-
gineering model with an optimizer. A recently developed theory on multidisciplinary derivative
computation has made it feasible to solve large-scale system design optimization problems in
only hundreds of model evaluations. This has led to an increase in the number of applications for
large-scale system design optimization with new applications still emerging. This paper presents
a new optimization formulation that can further reduce the required number of model evalua-
tions by unifying two widely used optimization architectures, namely, multidisciplinary feasible,
and simultaneous analysis and design. Complex engineering systems that require solutions of
large nonlinear systems can potentially benefit from this new formulation, and the optimized
solutions can be reached in just tens of equivalent model evaluations. We demonstrate this
order of magnitude improvement using a bar design problem. The paper also provides details
on the practical implementation of this new formulation in an equality-constrained optimization
setting.

Nomenclature

df

dx
= total derivative of a variable f with respect to a variable x

∂F

∂x
= partial derivative of a function F with respect to a variable x
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1 Introduction

Multidisciplinary design optimization (MDO) is a field of engineering that uses numerical op-
timization techniques in design problems that involve multiple engineering disciplines. An MDO
problem usually takes the form of a numerical optimization problem that minimizes an objective
subject to constraints. In practice, such problems are solved by coupling a general-purpose opti-
mization algorithm, called the optimizer, with an engineering model that computes the objective
and constraints, as well as their derivatives. The optimizer evaluates the model at different design
variable values until convergence, reading the outputs of the model.

Large-scale system design optimization (LSDO) focuses on problems that are high-dimensional,
defined as having hundreds or more design variables, and that represent system-level design prob-
lems. High-dimensional design spaces and coupled multidisciplinary models are characteristics of
design problems involving large-scale complex engineered systems as these systems have a large
number of parts that interact with each other in unintuitive ways. For instance, a modern com-
mercial airliner has millions of parts, and its design involves a large number of disciplines such as
aerodynamics, structures, and propulsion that are coupled via feedback loops. In these complex
design problems, intuition and experience have their limits; when that is the case, LSDO provides
an alternative, which is a rigorous and automatic way to compute the best design given a sufficiently
accurate model.

High-dimensional design spaces in large-scale systems necessitate the use of gradient-based
optimizers in LSDO to ensure efficient scalability. Applying large-scale optimization to system
design is challenging, because of the conflicting requirements of efficient derivative computation
(for scalability) and coupling multiple disciplines (for system-level modeling). However, a recently
developed theory [1] that unifies different total derivative computation methods (such as the chain
rule, the coupled chain rule and the adjoint method) overcomes these challenges. OpenMDAO [2]
is an open-source software framework from NASA that implements this theory to automate total
derivative computation, following a modular approach in the construction of models.

These developments have enabled large-scale MDO to be accessible to a larger audience from
different fields in the scientific community. The number of LSDO applications implemented in
OpenMDAO has grown rapidly in the past few years. However, the current algorithms in LSDO
still require hundreds of model evaluations to solve a problem and this poses a significant barrier
to its adoption into an industrial setting.

Computer-aided engineering (CAE) tools such as computational fluid dynamics (CFD), finite
element analysis (FEA), and other partial differential equation (PDE) solvers have significantly
impacted industrial design processes by permeating into day-to-day workflows of engineers. For
LSDO to have the same impact, the jump in computational cost from running a single simulation
to solving an optimization problem with the same model should be limited to only tens of times.
This would allow a 1-hour simulation to be optimized over a weekend rather than a few weeks, or a
1-minute simulation to be optimized in an hour rather than a day. In practice, these differences are
significant in assessing whether LSDO can be a vital, integrated part of practical design cycles. This
motivates the primary objective of this paper which is to accelerate the current LSDO algorithms
through a significant reduction in the number of equivalent model evaluations.

In the current paradigm for LSDO, the optimizer views the model as a black-box that outputs
the objective, constraints and their gradients. This paper presents a new, intrusive paradigm where
the internal components of the model are exposed to the optimizer. An intrusive paradigm enables
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a novel optimization algorithm that could achieve the robustness of a reduced-space formulation
(also known as the MDF architecture) and the efficiency of a full-space formulation (also known
as the SAND architecture) if the two formulations can be unified. The difference between the two
is that full-space treats the model’s state variables as design variables and the implicit equations
that define the state variables as constraints.

Such an intrusive paradigm is used in the field of PDE-constrained optimization. PDE-
constrained optimization is a field of research that deals with the optimization of partial differential
equations (PDEs) involving large, three-dimensional meshes with up to billions of degrees of free-
dom. The envisioned feasibility of a reduction in the number of model evaluations is partly based on
the success of the Lagrange–Newton–Krylov–Schur (LNKS) algorithm in solving PDE-constrained
optimization problems with the cost of as low as five model evaluations [3, 4]. In this setting, the
PDE solver, i.e., the model, and the optimizer are often integrated in a single piece of software
where the optimizer is tailored to the PDE.

In LSDO, the model is complex, heterogeneous, and multidisciplinary—three reasons why the
black-box model has been favored over the intrusive model, thus far. However, the proposed
paradigm shift is timely because recent work in LSDO is trending towards the construction of
models within computational frameworks (as in OpenMDAO). In this case, the work required to
expand the interface is entirely on the framework side.

This paper presents a new, hybrid architecture and provides numerical results that validate its
efficacy. The paper proceeds as follows. In Sec. 2, we provide some background for the unification
algorithm with details on the unified derivatives equation (UDE), the reduced-space formulation,
and the full-space formulation. In Sec. 3, we present a new algorithm that can achieve our aggressive
speed improvement target for an equality-constrained case. This section also provides some details
on the practical implementation of the algorithm. In Sec. 4, we solve a bar design problem using
the reduced-space approach and our novel approach and then compare the results.

2 Background

2.1 Current paradigm

In the current approach for LSDO, an engineering model is built within a software framework
(such as OpenMDAO) that couples an optimizer, from a library of optimizers, with the model.
The coupled optimizer-model structure (shown in Fig. 1) built in the software framework solves a
problem iteratively; the optimizer generates new design variable values based on the model outputs
from the previous iteration. The iterations proceed until the optimality and feasibility criteria for
the problem are satisfied, where optimality is the reduced-gradient norm and feasibility is the norm
of constraint violations.
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OpenMDAO
Figure 1: Current approach. The design variables are x. The objective and the constraints are
respectively, F (x) and C(x).
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With this approach, the computational cost of solving an optimization can be measured via the
number of model evaluations required. For simplicity, we can treat both computing the objective
and constraints, and computing the derivatives as one model evaluation because in efficient imple-
mentations, the computation times are similar. State-of-the-art LSDO methods can solve problems
[5–11] with up to tens of thousands of design variables in only hundreds of model evaluations [12]
as can be seen in Fig. 2.
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Common research model wing optimization

Air taxi design-economics optimization
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Figure 2: The state-of-the-art in LSDO. Previous LSDO problems require hundreds of model
evaluations. Superbasic variables are the design variables that are not fixed due to bounds or
constraints.

Given the current level of efficiency of LSDO, a paradigm shift is necessary to achieve further
reductions in computation time. The only way to reduce the optimization time further is to reduce
the cost of each running of the model which is possible by enabling partial model evaluations.
Partial model evaluations are possible only with an intrusive paradigm where the optimizer has
access to the operations performed inside a model. This makes it necessary to have computational
frameworks that can facilitate such an intrusive environment. Therefore, an improvement over the
state-of-the-art in LSDO calls for the creation of new optimizers and computational frameworks
that can handle an intrusive paradigm.

2.2 MAUD: modular analysis and unified derivatives

LSDO is challenging because the difficult requirements for efficiency in large-scale problems
are exacerbated by the complex, multidisciplinary models in system-level design problems. The
scalability aspect necessitates gradient-based optimization and efficient, accurate derivative com-
putation. The adjoint method is a critical technique because for a problem with nx design variables,
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it can reduce the gradient computation time in each optimization iteration from the cost of nx model
evaluations (in the finite-difference method) to less than one model evaluation.

The challenge is that the implementation of the adjoint method is time-intensive and it is
specific to a particular choice of the output (objective or constraints). Therefore, any change in the
model or the optimization problem requires deriving and implementing the new adjoint equations.
This significantly reduces the usability of the adjoint method in a practical design setting, where
the model is modified, disciplines are added or temporarily removed, and the optimization problem
is tweaked frequently, within an iterative cycle. Moreover, the adjoint method only applies to
a particular model structure where there is a single set of state variables implicitly defined by
residuals. If all states are explicitly defined, or there are multiple disciplines (i.e., sub-models)
with implicit states, or there is a combination of disciplines with implicit and explicit states, the
adjoint method cannot be applied, and a different method such as the chain rule or the coupled
adjoint method must be used. The modular analysis and unified derivatives (MAUD) architecture
unifies all derivative computation methods using a single equation so that regardless of the model
structure, solving this equation is mathematically equivalent to using the appropriate method: the
adjoint method, chain rule, and so on.

We now present the equations underlying MAUD. A general optimization problem given a model
with internal state variables can be stated as

min
x

F (x) R(x,Y(x)) = 0

subject to x ≥ 0 where F (x) = F(x,Y(x))
C(x) = 0, C(x) = C(x,Y(x)),

(1)

where x ∈ Rn represents the design variables, F : Rn → R and F : Rn × Rr → R represent the
objective function, C : Rn → Rm and C : Rn × Rr → Rm represent the vector-valued constraint
function, and Y : Rn → Rr represents the implicit solution ofR(x,Y(x)) = 0 as an explicit function.
Therefore, we have n design variables, m constraints and r state variables. Moreover, we can define
y ∈ Rr as the vector of state variables, f ∈ R as the objective value, and c ∈ Rm as the vector of
constraint values.

The components in a complex model can be of many types: PDE solvers, surrogate models,
closed-form expressions, or algebraic systems of equations. In all cases, we can describe the model
by concatenating all variables into a single vector, u ∈ RN , and define an appropriate residual
function R : RN → RN . Solving the system R(u) = 0 is then equivalent to evaluating the model.

Under mild conditions, we can apply the inverse function theorem to R to obtain [1, 13]

∂R

∂u

du

dr
= I =

∂R

∂u

T du

dr

T

, (2)

where ∂R/∂u consists of partial derivatives of R, F , C and du/dr contains the derivatives we
need: df/dx and dc/dx. Based on the model structure, the chain rule, the adjoint method,
hybrid methods, and all other methods for computing discrete derivatives can be derived from
Eq. (2). For example, we can derive the adjoint method by choosing u = [x, y, f ]T and R(u) =
[x− x∗, −R(x, y), f −F(x, y)]T (where x∗ is the design variable vector at which we compute the
adjoint), inserting into the right equality of Eq. (2), and applying block back-substitution.

MAUD can be summarized as follows: the user can implement their model as a modular set of
components within a computational framework and provide partial derivatives of each component’s
outputs with respect to its inputs, where the combined set of partial derivatives form ∂R/∂u. Then,

5



regardless of the model structure, the framework only needs to solve Eq. (2) to compute the model-
level derivatives in the most efficient way (e.g., the adjoint method for a model with internal state
variables).
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Figure 3: OpenMDAO framework. OpenMDAO couples the model with an optimizer and auto-
matically computes the model derivatives using MAUD architecture. Opt is the optimizer, C and
D denote the internal components of the model and their partial derivatives, respectively.

MAUD is implemented in NASA’s OpenMDAO software framework (shown in Fig. 3), through
which it has enabled LSDO problems in aircraft wing design [9, 10, 14, 15], satellite design [7, 16],
airline route allocation optimization [17–19], jet engine design [20–24], and wind turbine design [25–
29], among others [8, 30–32].

2.3 Optimization formulations

In MDO, ‘architecture’ or ‘problem formulation’ refers to the particular way in which a problem
is defined and its solution is reached. Given a design optimization problem (1), there are multiple
ways in which we can formulate it in order to find its solution. In this paper, we consider two popular
monolithic MDO architectures (shown in Fig. 4): (1) the reduced-space (RS) architecture, and (2)
the full-space (FS) architecture. The full-space formulation treats the model’s state variables as
additional design variables and the reduced-space formulation solves for the state variables within
the model. The reduced-space architecture is also known as the multidisciplinary feasible (MDF)
architecture or nested analysis and design (NAND), and the full-space architecture is also known
as the simultaneous analysis and design (SAND) architecture.

In the reduced-space formulation, only x constitutes the optimization design variables, and y is
computed implicitly as Y(x) by solving R(x,Y(x)) = 0. In the full-space formulation, both x and
y are treated as design variables, and instead of evaluating Y(x), the responsibility of enforcing
R(x, y) = 0 is handed to the optimizer by making these constraints. The two formulations are
so-named because full-space refers to the (n+ r)-dimensional space of both x and y, while reduced-
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Reduced-space:

min
x
F(x,Y(x))

subject to C(x,Y(x)) = 0
x ≥ 0

with R(x,Y(x)) = 0

(3)

Full-space:

min
x,y

F(x, y)

subject to C(x, y) = 0
R(x, y) = 0
x ≥ 0

(4)

36

 Two opposing architectures
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min
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Figure 4: Reduced-space versus full-space formulation given a complex model with internal state
variables.

space refers to the n-dimensional space of only x.
The tradeoff is that the model evaluation for reduced-space is more costly because it requires

the nonlinear solution of R(x, y) = 0, but the optimization problem is smaller and simpler. The
model evaluation for full-space is simpler and less costly because it simply evaluates F , C and R
without solving any nonlinear systems, but the optimization problem is larger and more difficult
with additional constraints and design variables.

In general, full-space optimization has the potential to be more efficient but it is typically
less robust. The larger problem may cause optimization convergence issues or negate the benefits
from the more inexpensive model because of a greater increase in the number of evaluations.
Reduced-space optimization is more robust, but it is inefficient because it wastes computation
time accurately solving R(x, y) = 0 to compute y in each optimization iteration even when x is
far from converged. Tight convergence is necessary, in reduced-space methods, to ensure accurate
computation of F(x,Y(x)) and C(x,Y(x)) so that the objective and constraint values are consistent
with their derivatives with respect to x that are also provided by the model to the optimizer.

Next, we provide the optimality conditions and Karush-Kuhn-Tucker (KKT) systems for both
formulations in the equality-constrained setting.

2.3.1 Reduced-space equations

We start with Eq. (3) with the bounds on x dropped, and we define the Lagrangian l = L(x, λ)
where
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L(x, λ) = F(x,Y(x)) + λT C(x,Y(x)) (5)

Applying the method of Lagrange multipliers, we obtain the first order necessary optimality
conditions:

dl

dx
=

(
∂F
∂x
− ∂F
∂y

∂R
∂y

−1 ∂R
∂x

)
+ λT

(
∂C
∂x
− ∂C
∂y

∂R
∂y

−1 ∂R
∂x

)
dl

dλ
= C(x,Y(x)).

(6)

Using pk to denote the search direction, it then follows that the KKT system for reduced-space
optimization is given by [

lxx cx
T

cx 0

][
p
(x)
k

p
(λ)
k

]
=

[
−lx

−C(xk,Y(xk))

]
, (7)

where lxx = d2l/dx2, cx = dc/dx, and lx = dl/dx.

2.3.2 Full-space equations

We start with Eq. (4) with the bounds on x dropped, and we define the Lagrangian m =
M(x, y, ψ, λ) where

M(x, y, ψ, λ) = F(x, y) + ψ T R(x, y) + λT C(x, y) (8)

Once again, applying the method of Lagrange multipliers, we obtain the first order necessary
optimality conditions:

dm

dx
=
∂F
∂x

+ ψT
∂R
∂x

+ λT
∂C
∂x
,

dm

dψ
= R(x, y)

dm

dy
=
∂F
∂y

+ ψT
∂R
∂y

+ λT
∂C
∂y
,

dm

dλ
= C(x, y).

(9)

It then follows that the KKT system for full-space optimization is given by


mxx mxy Rx T Cx T
myx myy Ry T Cy T
Rx Ry 0 0
Cx Cy 0 0



p
(x)
k

p
(y)
k

p
(ψ)
k

p
(λ)
k

 =


−mx

−my

−R(xk, yk)
−C(xk, yk)

 , (10)

where mxx = d2m/dx2, mxy = d2m/dydx, myx = d2m/dxdy, myy = d2m/dy2 , Rx = ∂R/∂x,
Ry = ∂R/∂y, Cx = ∂C/∂x, Cy = ∂C/∂y, mx = dm/dx and my = dm/dy.

3 Methodology

3.1 Corrected full-space method

Before introducing the hybrid algorithm, we define a new optimization method, based on the
full-space formulation which we call the corrected full-space method (CFS). This method, as the
name suggests, is a modified version of the full-space method and has the ability to generate

8



the same sequence of x and λ iterates as the reduced-space method, in an equality-constrained
optimization setting. The feature that differentiates this method from the FS method is that it
modifies the state variable vector, y, and the vector of Lagrange multipliers, ψ, associated with
the residual equations before solving the full-space KKT system. If [xk, yk, ψk, λk]

T are the values
at the end of the kth iteration, this method corrects yk to y′k by solving R(x, y) = 0 and then
ψk to ψ′k by setting dm/dy = 0. The FS KKT system (10) is then solved at the updated point
[xk, y

′
k, ψ

′
k, λk]

T to obtain the new set of values for the next iteration.
We now prove that the sequence of iterates generated by the corrected full-space method and

the reduced-space method are the same.

Theorem 1. Assume (x0, λ0) are given. Then the sequence of iterates {(xk, λk)} generated by the
reduced-space method and the corrected full-space method are identical in an equality-constrained
optimization setting.

Proof. We prove this theorem by induction.

At k = 0, the theorem holds trivially. Assuming that the theorem holds true at k, we prove
that it holds true at k + 1. Let the kth iterate be [xk, λk]

T in the RS method and [xk, yk, ψk, λk]
T

in the corrected FS method.
In the (k + 1)th iteration of the corrected FS method, we start at [xk, yk, ψk, λk]

T and solve
R(xk, y

′
k) = 0 to get an updated y′k. We note that y′k = Y(xk) as R(xk, y

′
k) = 0. Functions and

gradients are now evaluated at [xk, y
′
k]
T .

Setting dm/dy = 0, we solve for ψ′k from Eq. (9):

dm

dy
=
∂F
∂y

+ ψ′Tk
∂R
∂y

+ λTk
∂C
∂y

= 0 =⇒ ψ′k = − ∂R
∂y

−T ∂F
∂y

T

− ∂R
∂y

−T ∂C
∂y

T

λk. (11)

This gives us the corrected values [xk, y
′
k, ψ

′
k, λk]

T . We insert the expression for ψ′k into the expres-
sion for dm/dx in Eq. (9) to obtain

dm

dx
=

(
∂F
∂x
− ∂F
∂y

∂R
∂y

−1 ∂R
∂x

)
+ λTk

(
∂C
∂x
− ∂C
∂y

∂R
∂y

−1 ∂R
∂x

)
. (12)

Comparing with Eq. (6), we can see that dm/dx = dl/dx.
We now solve the FS KKT system (10) at the corrected point [xk, y

′
k, ψ

′
k, λk]

T whereR(xk, y
′
k) =

0, my = 0 and mx = lx. This gives us the following system:


mxx mxy Rx T Cx T
myx myy Ry T Cy T
Rx Ry 0 0
Cx Cy 0 0



p
(x)
k

p
(y)
k

p
(ψ)
k

p
(λ)
k

 =


−lx
0
0

−C(xk,Y(xk))

 . (13)

Solving third row for p
(y)
k and then second row for p

(ψ)
k , we get

p
(y)
k = −R−1y Rxp(x)k and p

(ψ)
k = − Ry −T ((myx −myyR−1y Rx)p

(x)
k + CTy p(λ)k ). (14)

9



Substituting p
(y)
k and p

(ψ)
k from above, the first and fourth rows become the following system:[
Q Cx T − Rx T Ry −T Cy T

Cx − Cy Ry −1Rx 0

][
p
(x)
k

p
(λ)
k

]
=

[
−lx

−C(xk,Y(xk))

]
(15)

where Q = mxx −mxyR−1y Rx −RTxR−Ty myx +RTxR−Ty myyR−1y Rx.

Using dy/dx = −R−1y Rx and cx = Cx − Cy Ry −1Rx gives usmxx +mxy
dy

dx
+

dy

dx

T

myx +
dy

dx

T

myy
dy

dx
cTx

cx 0

[p(x)k

p
(λ)
k

]
=

[
−lx

−C(xk,Y(xk))

]
. (16)

Whenever my = 0, we can prove that

(mxx +mxy
dy

dx
+

dy

dx

T

myx +
dy

dx

T

myy
dy

dx
) =

d2f

dx2
+

m∑
i=1

λi
d2ci
dx2

= lxx (17)

using the identity

d2f

dx2
=
∂2F
∂x2

+
∂2F
∂y∂x

dy

dx
+

dy

dx

T ∂2F
∂x∂y

+
dy

dx

T ∂2F
∂y2

dy

dx
+

r∑
i=1

∂F
∂yi

d2yi
dx2

(18)

on functions F , Ci and Ri.
Substituting Eq. (17) in Eq. (16), we get[

lxx cTx
cx 0

][
p
(x)
k

p
(λ)
k

]
=

[
−lx

−C(xk,Y(xk))

]
. (19)

This is exactly the RS KKT system (Eq. (7)) which means that (xk+1, λk+1) from the (k+1)th
iteration of reduced-space and corrected full-space methods are identical. �

Optimizer
dm/dy = 0

x, y x, y x, y x x

y′1
Component 1
R1(x, y

′) = 0
y′1 y′1 y′1 y′1

y′... y′...
... y′... y′... y′...

y′n y′n y′n
Component n
Rn(x, y

′) = 0
y′n y′n

f
Objective
f = F(x, y′)

c
Constraints
c = C(x, y′)

Figure 5: Corrected full-space architecture.
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The corrected full-space method (CFS) shown in Fig. 5 is, in a way, a hybrid of the FS and RS
methods and requires an intrusive paradigm as the optimizer updates the state variable vector yk
to y′k with the help of solvers inside the model. However, CFS does not offer us much advantage
in terms of computational efficiency as we still need to solve the nonlinear system R(x, y) = 0, the
same number of times as in the reduced-space method, before we reach the solution.

CFS is still a useful tool since it has the characteristics of both the full-space and reduced-space
formulations. In the next subsection, we use CFS to formulate a novel algorithm that has the
ability to vary the extent to which it can exhibit the properties of FS and RS algorithms. The
new algorithm provides a complete unification of the full-space and reduced-space formulations for
equality-constrained optimization problems.

A comparison of the reduced-space, full-space and corrected full-space methods:

Algorithm 1 RS method

1: loop

2: Run the model at xk solving

R(xk,Y(xk)) = 0

3: Assemble Ak, bk

4: Solve Akpk = bk

5: Update

[
xk+1

λk+1

]
=

[
xk

λk

]
+ pk

6: end loop

Ak =

[
lxx cx

cx 0

]

bk =

[
−lx

−C(xk,Y(xk))

]

Algorithm 2 FS method

1: loop

2: Run the model at (xk, yk)

3: Assemble Ak, bk

4: Solve Akpk = bk

5: Update


xk+1

yk+1

ψk+1

λk+1

 =


xk

yk

ψk

λk

+ pk

6: end loop

Ak =


mxx mxy Rx

T Cx T

myx myy Ry
T Cy T

Rx Ry 0 0

Cx Cy 0 0



bk =


−mx

−my

−R(xk, yk)
−C(xk, yk)



Algorithm 3 CFS method

1: loop

2: Run the model at (xk, yk) solving

R(xk, y′k) = 0

3: Compute ψ′
k by solving

RT
y ψ

′
k = −FT

y − CTy λk

4: Assemble Ak, bk

5: Solve Akpk = bk

6: Update


xk+1

yk+1

ψk+1

λk+1

 =


xk

y′k
ψ′

k

λk

+ pk

7: end loop

Ak =


mxx mxy Rx

T Cx T

myx myy Ry
T Cy T

Rx Ry 0 0

Cx Cy 0 0



bk =


−mx

0

0

−C(xk, y′k)



3.2 A unification for the equality-constrained optimization setting

To demonstrate the feasibility of unifying the reduced-space and full-space algorithms, we
present the unification for an equality-constrained optimization setting. We call the basic algo-
rithm that achieves the unification SURF, which stands for strong unification of reduced-space and
full-space, where ”strong” references the fact that LNKS only links the linear systems in the RS and
FS methods while SURF provides a complete unification of both the methods. SURF is presented
in Algorithm 4. The loop that begins in line 1 marks the start of each outer iteration. Line 4
updates the approximation to the Hessian of the full-space Lagrangian and lines 5 and 6 represent
the assembly and solution of the KKT system for full-space optimization with a preconditioner.
Lines 7 and 8 are standard steps for computing the step size and applying the step, respectively.
Note that we assume iterative solution of the KKT system; to consider the SQP setting, we can

11



simply ignore the preconditioner.

Algorithm 4 SURF (strong unification of reduced-space and full-space)

SURF unifies the reduced- and full-space methods for an equality-constrained optimization setting.

1: loop

2: Run the model at (xk, yk) inexactly solving R(xk, y
′
k) = 0

3: Compute ψ′k by inexactly solving RT
y ψ
′
k = −FT

y − CTy λk
4: Update the approximation to the Lagrangian Hessian, Hk, at [xk, y

′
k, ψ

′
k, λk]T

5: Assemble Ak, bk, M̃−1k

6: Solve M̃−1k Akpk = M̃−1k bk

7: Compute αk via a line search

8: Update
[
xk+1, yk+1, ψk+1, λk+1

]T
=
[
xk, y

′
k, ψ

′
k, λk

]T
+ αkpk

9: end loop

Note:

1. Hk =

[
mxx mxy

myx myy

]
is the Hessian of the Lagrangian, pk is the search direction and αk is the step size.

2. Akpk = bk is the FS KKT system (10), and M−1k and M̃−1k are exact and approximate preconditioners

for Ak such that Mk = M1M2,kM3,kM4, and

Ak =


mxxmxy Rx

T Cx T

myx myy Ry
T Cy T

Rx Ry 0 0

Cx Cy 0 0

 , bk =


−mx

−my

−R(xk, y
′
k)

−C(xk, y′k)

 ,M1 =


0 0 I 0

0 I 0 0

I 0 0 0

0 0 0 I

 ,M2,k =


Ry 0 0 0

myy RT
y 0 0

mxy RT
x I 0

Cy 0 0 I



M3,k =


I 0 R−1y Rx 0

0 I R−Ty myx −R−Ty myyR−1y Rx R−Ty CTy
0 0 mxx −mxyR−1y Rx −RT

xR−Ty myx +RT
xR−Ty myyR−1y Rx CTx −RT

xR−Ty CTy
0 0 Cx − CyR−1y Rx 0

 ,M4 =


0 I 0 0

0 0 I 0

I 0 0 0

0 0 0 I

 .

Without lines 2 and 3, Algorithm 4 is the Lagrange–Newton–Krylov–Schur (LNKS) algorithm [3,
4] developed for PDE-constrained optimization. LNKS is so-called because the method of Lagrange
multipliers yields the KKT optimality conditions, which are solved with Newton’s method, which
in turn constructs linear systems solved using a Krylov subspace method with a Schur complement
preconditioner. The defining characteristic of LNKS is the Schur complement preconditioner that
amounts to an inexact version of the reduced-space linear system, but LNKS is still full-space.

Lines 2 and 3 are what enable SURF to unify the reduced- and full-space formulations. Before
solving the full-space KKT system in lines 4, 5, and 6, we inexactly solve the nonlinear system
representing the model to update yk to y′k at xk. Subsequently, we compute ψ′k using an equation
that comes from setting dm/dy to zero in Eq. (9). If lines 2 and 3 are skipped, SURF becomes
a full-space algorithm; if the two systems in lines 2 and 3 are exactly solved, SURF becomes a
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reduced-space algorithm; and if lines 2 and 3 uses inexact solvers, SURF becomes a hybrid. We
know that SURF (Algorithm 4) without lines 2 and 3 is just the full-space algorithm. We can also
see that SURF with lines 2 and 3 performed with exact solvers is the corrected full-space algorithm;
it produces the same (xk, λk) iterates as the reduced-space algorithm. This follows directly from the
property of the corrected full-space method discussed in the previous section. A similar algorithm
where a subset of variables are inexactly solved within a Newton iteration was proposed previously
by Yang et al. [33]. However, they apply this approach to field variables in a PDE, whereas we
apply it to the state and adjoint variables.

The preconditioner Mk in Algorithm 4 corresponds to a Schur complement decomposition of
the full-space matrix, following the LNKS approach [3]. M1 and M4 in the definition of Mk are
permutation matrices, and they are easily inverted. The Schur complement is the (3, 3) block of
M3,k, and the lower-right 2 × 2 block of M3,k is exactly the KKT matrix of the reduced-space
algorithm when we set my = 0 in the full-space algorithm. A single matrix-vector product of this
2× 2 block can be computed with two model Jacobian linear solutions, one of Ry and one of RTy .

The significance of this unification is twofold. First, switching between reduced-space and
full-space is simple; we only have to change the inexact solver tolerances. Second, the SURF
algorithm allows easy access to a continuous spectrum of hybrid methods. We note that the choice
on this spectrum can be made on a variable-by-variable basis. Since the model is implemented as
a collection of modular components as shown in Fig. 6, certain components can be more tightly
converged than others.

In summary, SURF unifies the reduced-space and full-space algorithms, and it enables effortlessly
selecting one of the two or a hybrid, simply by changing the solver tolerances in lines 2 and 3 of
Algorithm 4.

Optimizer
dm/dy ≈ 0

x, y, εy x, y, εy x, y, εy x x

y′1, r1
Component 1

r1 = R1(x, y
′) ≈ 0

y′1 y′1 y′1 y′1

y′..., r... y′...
... y′... y′... y′...

y′n, rn y′n y′n
Component n

rn = Rn(x, y
′) ≈ 0

y′n y′n

f
Objective
f = F(x, y′)

c
Constraints
c = C(x, y′)

Figure 6: SURF architecture. Optimizer computes tolerances εy to which the residuals are solved
within the model.

3.3 Some implementation details

In practice, equality-constrained optimization problems are solved using sequential quadratic
programming (SQP) where the search directions are obtained from a sequence of quadratic pro-
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gramming (QP) subproblems. Each QP subproblem minimizes a quadratic problem subject to
linearized constraints, and under certain conditions, it is equivalent to solving the KKT system.
The directions derived from the QP subproblem is then used in a line search to find the step towards
the next iterate.

Implementation of a general-purpose optimizer requires addressing some practical aspects of an
optimization algorithm: (1) Hessian approximations, and (2) a line search that guarantees global
convergence. The following subsections give recommendations on using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm for Hessian approximation and using a line search method
that ensures global convergence, in the purview of SURF. These are suggestions by the authors
based on the literature available on practical optimizers, and they are not validated on any test
problem.

3.3.1 Positive-definite BFGS approximation of the Hessian of the full-space Lagrangian

Within a single iteration of SURF, we take two steps as opposed to a single step taken in any
conventional algorithm. The first step updates just y and ψ, which we call the ‘correction step’ as
it corrects the value of y and ψ from the previous iteration. The second step is the solution of the
KKT system which we call the ‘QP step’ as it is the conventional step taken in a direction given
by the QP subproblem.

We can define the different points in iteration (k + 1) as: ξk = [xk, yk, ψk, λk]
T (at the start of

the iteration), ξ′k = [xk, y
′
k, ψ

′
k, λk]

T (at the corrected point) and ξk+1 = [xk+1, yk+1, ψk+1, λk+1]
T

(at the end of the iteration). This gives us the correction step p′k and the QP step αkpk as follows:

p′k =


xk − xk
y′k − yk
ψ′k − ψk
λk − λk

 =


0

p
′(y)
k

p
′(ψ)
k

0

 and αkpk =


xk+1 − xk
yk+1 − y′k
ψk+1 − ψ′k
λk+1 − λk

 =


αkp

(x)
k

αkp
(y)
k

αkp
(ψ)
k

αkp
(λ)
k

 (20)

We can denote the design variable vector as v, which includes both x and y such that vk = [xk, yk]
T ,

v′k = [xk, y
′
k]
T , and vk+1 = [xk+1, yk+1]

T .
General-purpose optimization algorithms based on SQP use a positive-definite BFGS approxi-

mation for the Lagrangian Hessian when solving a QP subproblem. In SURF, we can approximate
the Hessian of the Lagrangian

Hk =

[
mxx mxy

myx myy

]
(21)

at the corrected point ξ′k using a modified BFGS algorithm. Let us denote the positive-definite

BFGS approximation of Hk (generally indefinite, at a solution) as Ĥk. We note that Ĥk is a
positive-definite approximation of the Lagrangian Hessian rather than the projected Lagrangian
Hessian (Hessian projected onto the null space of the Jacobian of the constraints) which is, in
general, positive-definite near a solution. Ĥk can be estimated from Ĥk−1 using the BFGS update
formula

Ĥk = Ĥk−1 −
1

dTk Ĥk−1dk
Ĥk−1dkd

T
k Ĥk−1 +

1

wTk dk
wkw

T
k , (22)

where

dk = v′k − v′k−1 and wk = ∇M(v′k, ψ
′
k, λk)−∇M(v′k−1, ψ

′
k, λk)
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The gradients of M are taken with respect to v and we note here that ψ′k and λk are our best
available estimates for the Lagrange multipliers.

Given Ĥk−1 is positive-definite, the updated BFGS approximation Ĥk remains positive-definite
if and only if wTk dk > 0. The approximate curvature wTk dk may not be positive always since we
are trying to approximate a Hessian that is, in general, indefinite. With SQP using quasi-Newton
methods, Powell [34] states that the iterates converge towards a solution along a path that lies in
the null space of the constraint Jacobian. Since Hk is positive-definite along the constraint surface
near the solution, the approximate curvature wTk dk becomes positive as the iterates converge closer
to a minimizer of the problem.

When the iterates are far from the solution, this generally doesn’t hold. However, in cases
where wTk dk is negative but the curvature along the constraint surface is positive, we can use a new
scheme to find a positive approximate curvature. We compute a new step dnk that lies in the null
space of the Jacobian of the constraints J ′k at v′k. We note that the constraints now refer to both
the constraints and the residuals, and the constraint Jacobian J ′k is the lower left 2× 2 block of the
matrix Ak in the SURF KKT system in Algorithm 4.

Under the assumption that J ′k has full row rank, we find dnk = (I − J ′Tk [J ′kJ
′T
k ]−1J ′k)dk as the

projection of dk on the null space of J ′k. With the new step, we define a new point, v′nk−1 = v′k− dnk ,
which is the projection of v′k−1 on the null space of J ′k. We also define a new update pair (dnk , w

n
k )

with respect to the points v′nk−1 and v′k as

dnk = v′k − v′nk−1 and wnk = ∇M(v′k, ψ
′
k, λk)−∇M(v′nk−1, ψ

′
k, λk). (23)

When (wnk )Tdnk is positive, we update the Hessian using the new update pair (dnk , w
n
k ). However,

when the curvature along the constraint surface is negative, (wnk )Tdnk is also negative and in such

cases, we skip the update and set Ĥk = Ĥk−1.
In practice, we might encounter situations where inverting [J ′kJ

′T
k ] is computationally expensive.

In such situations, an alternative to the above-mentioned scheme could be used but the downside
is that this alternate scheme is always well-defined and would be applied even in cases where it
is unnecessary, i.e., even when (wnk )Tdnk is negative. Let σk (> 0) be the minimum allowable
approximate curvature. When wTk dk < σk, we can define a ∆wk such that wk = wk + ∆wk, and
wTk dk = σk. We can now compute wk from ∆wk given by

∆wk =
σk − wTk dk

wTk dk − dTk Ĥk−1dk
(wk − Ĥk−1dk). (24)

The modified update pair (dk, wk) can then be used to compute the new Hessian approximation.
We should note the following about the original modification (23) for the Hessian approxima-

tion. Whenever the approximate curvature is not positive, we need to make an additional model
evaluation at the new point v′nk−1 but this evaluation is not expensive as it does not invoke the
nonlinear solvers for R(x, y) = 0. Also, similar modifications are rarely needed more than a few
times in conventional SQP algorithms [34] and therefore, we assume the same applies for SURF.
In essence, with our new scheme, positive-definite Hessian updates can be made without incurring
significant computational costs.

3.3.2 Line search guaranteeing global convergence

Line searches use merit functions as tools to measure the progress of the optimization algorithm.
Any standard merit function, such as the l1 or l∞-penalty function, can be used in a line search to
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find the step length αk ∈ (0, 1] that satisfies the sufficient decrease condition. However, in order to
make use of fast line search methods that enforce the strong Wolfe conditions and are not susceptible
to the Maratos effect, we need smooth merit functions. The augmented Lagrangian merit function
is one such smooth merit function used in state-of-the-art gradient-based optimizers. We provide
an outline on using an augmented Lagrangian merit function in a line search algorithm within
SURF that enforces the strong Wolfe conditions.

The augmented Lagrangian for SURF can be written as

LA(x, y, ψ, λ; ρ) = F(x, y)+ ψ T R(x, y)+ λT C(x, y)+
1

2
ρ(C(x, y)TC(x, y)+R(x, y)TR(x, y)) (25)

where ρ is the penalty parameter that penalizes the constraint violations and the residuals. The
merit function for the (k + 1)th iteration of SURF based on the augmented Lagrangian is

Gk(α; ρ) = LA(xk + αp
(x)
k , y′k + αp

(y)
k , ψ′k + αp

(ψ)
k , λk + αp

(λ)
k ; ρ). (26)

For a given ρ, Gk(α; ρ) represents the augmented Lagrangian as a function of the step length, α.
In order to guarantee a sufficient decrease along the direction pk, ρ is updated, if required, before
starting the line search in each iteration. With G′k(α; ρ) = dGk(α;ρ)

dα , the step length, αk, is found by
enforcing the strong Wolfe conditions,

Gk(α; ρ) ≤ Gk(0; ρ) + ηaαG′k(0; ρ) and |G′k(α; ρ)| ≤ ηw|G′k(0; ρ)| , (27)

where ηa and ηw are pre-assigned constants such that 0 < ηa ≤ ηw < 1 and ηa < 0.5. Practical
implementations use ηa = 10−4 and ηw = 0.5.

Fast line search algorithms use safeguarded polynomial interpolation to find a Wolfe step αk
that satisfies both the above conditions in Eq. (27). Such algorithms are implemented in two
stages: the first stage locates an interval (αlow, αhigh) that contains a Wolfe step, and the second
stage explores this interval using safeguarded polynomial interpolation to find the Wolfe step αk.

4 Numerical results

The basic SURF algorithm was applied to a notional engineering optimization problem. We
optimize the thickness distribution of a bar modeled with a variable number of elements with
nonlinear stress-strain behavior. The nonlinear, equality-constrained optimization problem is

min
x

F Td

subject to V (x) = V0
with K(x, d)d− F = 0, (28)

where d is the displacement vector, F is the force vector, V is the volume function, V0 is the
allowable volume, and K is the function that computes the stiffness matrix.

The problem is solved using reduced-space, full-space, and SURF optimizers. All algorithms
use a backtracking line search enforcing the strong Wolfe conditions and a direct solver for the KKT
system. For SURF, we use pre-selected inexact solver tolerances. All the preliminary results dis-
cussed in this section use a positive-definite BFGS approximation of the Hessian of the Lagrangian,
without any of the modifications presented earlier in Sec. 3.3.1. Including the modifications would
give a more robust and efficient algorithm.
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Figure 7: Bar optimization: (a) optimization time across varying number of bar elements, (b)
optimized thickness distribution, (c) convergence with model evaluations, and (d) convergence
with linear solutions. Note that Figs. 7b-7d show results for a bar modeled with 50 elements.17



Fig. 7a shows that SURF with a hybrid formulation is, on average, roughly an order of magnitude
more efficient than the RS and FS formulation in time and number of model Jacobian linear
solutions across various numbers of bar elements. The full-space formulation for this problem
converges only with 10 and 50 bar elements, and it fails for models with 20, 100, and 200 bar
elements. This underlines the unreliability of full-space methods, and why reduced-space is still
considered the state-of-the-art in LSDO. The full-space formulation can be very efficient for some
problems; however, for the bar problem considered here, it is not competitive with the reduced-space
method.

Fig. 7b shows the optimized thickness distribution for a bar modeled with 50 elements. Although
all three methods converge to the same solution, SURF has a clear edge over the others in terms
of the computation time, and the number of linear systems solved, as seen from Fig. 7a.

Fig. 7c and Fig. 7d compare the three methods with regard to convergence. Fig. 7c shows the
progress in optimality and feasibility as model evaluations proceed while Fig. 7d characterizes the
convergence with respect to the number of linear systems solved.

In Fig. 7c, we see that the number of model evaluations is the lowest for the reduced-space
approach since we have exact values for the state variables at each iteration. We should note that
the theoretical minimum number of model evaluations needed for convergence is achieved using the
RS formulation. However, this can be a misleading metric to assess the computational efficiency of
different optimization formulations since the computational cost of each model evaluation depends
on the model used in the formulation. A more accurate metric for comparison would be the number
of equations or linear systems of similar size solved during an optimization. Fig. 7a reinforces this
argument by showing that the computation times and the number of linear solutions are closely
related.

In our problem, each nonlinear system is solved iteratively using solutions from a sequence of
linear systems. Exact models in the RS method require more linear system solutions to converge
whereas inexact models in SURF need a lower number of linear solutions depending on the toler-
ances imposed on the solver. We see from Fig. 7d that the number of linear solutions required to
reach the optimized design is minimum for SURF compared to the other two methods. Therefore,
according to this performance metric, we observe that SURF is an order of magnitude more efficient
than both its parent methods.

Although it seems that the RS approach is very efficient compared to the FS, Fig. 7d shows
that both the methods solve almost the same number of linear systems before reaching a solution.
This can also be seen from figure Fig. 7a as both RS and FS takes almost the same amount of
time and linear solutions to solve the problem. The slight increase in computation time for the
FS approach compared to RS can be attributed to the fact that the linear systems solved in FS
are larger than the systems solved in RS. We also see from Fig. 7c and Fig. 7d that the number
of model evaluations and the number of linear solutions are the same for an FS formulation as no
nonlinear systems are solved during a model evaluation and the only linear system solved is the FS
KKT system.

5 Conclusion

This paper presented a new, hybrid architecture for formulating large-scale system design op-
timization (LSDO) problems. The primary objective is to overcome the limits on computational
efficiency that can be realized in conventional architectures. The best optimization algorithms
implemented in popular architectures take hundreds of model evaluations to converge to a solu-

18



tion. The algorithm presented in this paper utilizes an intrusive paradigm to break the barriers on
efficiency set by conventional architectures.

A review of the state-of-the-art in LSDO is presented in Sec.2, which includes details on the
unified derivatives equation (UDE) and popular architectures for large-scale system design optimiza-
tion: the reduced-space architecture and the full-space architecture. The reduced-space approach
is inefficient but robust, whereas the full-space approach has the potential to be efficient but is not
always robust.

In Sec.3, the corrected full-space method (CFS) is introduced, which is the first step toward
the unification of the full-space (FS) and reduced-space (RS) methods in an equality-constrained
optimization setting. Although the underlying KKT system in the corrected full-space method
is the same as that in the full-space method, the corrected full-space method generates the same
iterates as the reduced-space method. SURF (strong unification of full-space and reduced-space)
is a hybrid algorithm based on the corrected full-space method that can generate all possible
hybrids of the full-space and the reduced-space methods. Depending on the tolerances on the
inexact solvers, SURF can exhibit the behavior of its parent algorithms to varying degrees. This
property of SURF can be exploited, by deriving the best from both the parent methods, to obtain
the maximum computational efficiency without compromising on the robustness of the algorithm.
Some implementation-specific details of SURF are discussed at the end of Sec.3 which includes a
scheme for the BFGS approximation of the Lagrangian Hessian, and a line search method based
on an augmented Lagrangian merit function.

Sec.4 provided the results of SURF applied to a bar optimization problem. The numerical results
suggest that SURF has the potential to improve the efficiency of the current LSDO algorithms
by up to an order of magnitude. It is worth noting that these results were based on pre-selected
constant solver tolerances and an even better efficiency could be achieved if we can compute optimal
tolerances for each iteration.

SURF provides a way to generate any hybrid of the full-space and reduced-space methods but
currently there is no mechanism for identifying the precise hybrid that offers the best computational
efficiency. Strategies to compute optimal tolerances are needed, and these tolerances must be se-
lected adaptively from one iteration to the next for extracting the maximum efficiency. Although the
unification is complete for an equality-constrained setting, most problems in LSDO are inequality-
constrained problems. Extending the present algorithm for general inequality-constrained opti-
mization problems and formulating a strategy for adaptive hybrid selection are potential areas for
further research.
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