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ABSTRACT OF THE DISSERTATION

Array Architectures and Physical Layer Design for Millimeter-Wave Communications

Beyond 5G

by

Han Yan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Danijela Cabric, Chair

Ever increasing demands in mobile data rates have resulted in exploration of millimeter-

wave (mmW) frequencies for the next generation (5G) wireless networks. Communications

at mmW frequencies is presented with two keys challenges. Firstly, high propagation loss

requires base stations (BSs) and user equipment (UEs) to use a large number of antennas

and narrow beams to close the link with sufficient received signal power. Consequently,

communications using narrow beams create a new challenge in channel estimation and link

establishment based on fine angular probing. Current mmW system use analog phased

arrays that can probe only one angle at the time which results in high latency during link

establishment and channel tracking. It is desirable to design low latency beam training by

exploring both physical layer designs and array architectures that could replace current 5G

approaches and pave the way to the communications for frequency bands in higher mmW

band and sub-THz region where larger antenna arrays and communications bandwidth can

be exploited. To this end, we propose a novel signal processing techniques exploiting unique

properties of mmW channel, and show both theoretically, in simulation and experiments its

advantages over conventional approaches. Secondly, we explore different array architecture

design and analyze their trade-offs between spectral efficiency and power consumption and

area. For comprehensive comparison, we have developed a methodology for optimal design of

ii



system parameters for different array architecture candidates based on the spectral efficiency

target, and use these parameters to estimate the array area and power consumption based

on the circuits reported in the literature. We show that the hybrid analog and digital

architectures have severe scalability concerns in radio frequency signal distribution with

increased array size and spatial multiplexing levels, while the fully-digital array architectures

have the best performance and power/area trade-offs.

The developed approaches are based on a cross-disciplinary research that combines inno-

vation in model based signal processing, machine learning, and radio hardware. This work

is the first to apply compressive sensing (CS), a signal processing tool that exploits sparsity

of mmW channel model, to accelerate beam training of mmW cellular system. The algo-

rithm is designed to address practical issues including the requirement of cell discovery and

synchronization that involves estimation of angular channel together with carrier frequency

offset and timing offsets. We have analyzed the algorithm performance in the 5G compli-

ant simulation and showed that an order of magnitude saving is achieved in initial access

latency for the desired channel estimation accuracy. Moreover, we are the first to develop

and implement a neural network assisted compressive beam alignment to deal with hardware

impairments in mmW radios. We have used 60GHz mmW testbed to perform experiments

and show that neural networks approach enhances alignment rate compared to CS. To fur-

ther accelerate beam training, we proposed a novel frequency selective probing beams using

the true-time-delay (TTD) analog array architecture. Our approach utilizes different sub-

carriers to scan different directions, and achieves a single-shot beam alignment, the fastest

approach reported to date. Our comprehensive analysis of different array architectures and

exploration of emerging architectures enabled us to develop an order of magnitude faster

and energy efficient approaches for initial access and channel estimation in mmW systems.
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CHAPTER 1

Introduction

1.1 Motivation

Global mobile data traffic is expected to exceed 160 exabytes per month by the year 2025,

4.2 times higher than that in 2019 [56]. More than 95% of data will be transmitted to and

from 6 billion smart gadgets, enabling applications like high definition video streaming, vir-

tual/augmented reality, automatic driving [45], etc. The the fifth generation mobile network

new radio (5G-NR) is expected to deliver more than half of the mobile traffic [56] due to

its capability to support multi-Gbps peak data rate, ultra-low latency, more reliability and

connection density [48].

Although the legacy microwave frequency bands (sub-6GHz) is a key component in 5G-

NR, they are extremely crowded and it has become difficult to provide significant capacity

gains in these bands [49]. In order to further improve the network throughput for beyond 5G,

one of the most promising proposals is to use higher frequencies where abundant spectrum

is available. The millimeter-wave (mmW) frequency band1 is one such example. In fact,

5G-NR is the first generation of cellular system to include mmW band. Operation in 26, 28,

and 39 GHz has been standardized and deployed. Meanwhile, mmW communication has also

become a key enabler for wireless personal/local area network. The IEEE standards 802.15.3c

and 802.11ad have been developed in the unlicensed mmW band, i.e., 57 to 71 GHz [88,89].

In the near future, it is expected that more mmW licensed band will be open to support the

5G evolution together with the unlicensed bands [8].

1Strictly speaking, the mmW band includes frequency 30 to 300 GHz since the associated wavelength is
between 1 to 10 millimeters. However, mmW is commonly refer to frequency >24GHz.
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In the past few years, there have been extensive testing, channel measurements and

prototype developments for mmW band cellular communication by academia, industry and

service providers, e.g., New York University [139], Samsung [96,131], Nokia [46], AT&T [79].

These studies have characterized and quantified key design challenges for cellular system

design in mmW band. First of all, the channel propagation loss in mmW band is 20dB

higher than in sub-6GHz band [137] and mmW signals undergo 20-35dB penetration loss

from the human body [131]. To provide adequate service coverage, it is necessary to densify

the mmW base stations with cell radius as small as a hundred meters [27,33]. Furthermore,

both mmW base station (BS) and user equipment (UE) can equip with large number of an-

tennas for transmission and reception due to the reduce wavelength, which enables forming

of narrow beams with high beamforming gains. Due to the properties of mmW propagation

and sparsity of multipath channel, beam steering can effectively improve link budget. Be-

sides, to make radio chipsets power and cost efficient, the current 5G-NR mmW transceivers

are designed with phased antenna array (PAA) [87] or subarray where multiple PAA and

associated radio-frequency (RF)-chain are digitally connected [136]. As a consequence, sig-

nal processing techniques [83] and network protocols [159] for mmW mobile network are

designed under constraints of PAA architectures.

1.2 Challenges and objectives

The future generations of mmW mobile network will operate in the higher mmW frequency

band with more spectrum to meet the ever increasing demands [189,197]. Their realization

will demand fundamental rethinking of radio architectures, signal processing and networking

protocols to be scalable with the increased antenna number and bandwidths. This disserta-

tion intends to address three major challenges in these areas.

Fast and scalable initial access: In cellular networks, the link between BS and UE is

established during initial access (IA) where BSs transmit a synchronization sequence towards

UEs so that UEs can identify BSs in their proximity. In conventional sub-6GHz networks, a

BS omni-directionally transmits a synchronization sequence by a single antenna. However,
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such transmission scheme from BS might not reach UEs in the mmW band due to the high

propagation and penetration losses. A crude way of closing the link is to sweep directional

beams at the BS and the UE, respectively, in all possible directions in search of a synchro-

nization sequence. However, such exhaustive search based approach has poor scalability with

the increased number of antennas and increased number of users. Novel signal processing

techniques for mmW IA need to be developed in an overhead and latency efficient manner.

Fast and scalable beam training: Beam training is a key component of mmW cellular

system that enables maximum gain of beamformed directional communications between

BS and UE [72]. It is also referred as beam alignment as BSs and UEs needs to align

narrow beams from antenna array towards angle-of-arrival (AoA) and angle-of-departure

(AoD) of dominant propagation path. This physical layer procedure is not only needed as

part of the IA, but also required whenever UE mobility occurs which causes the variation of

channel propagation directions. The existing beam alignment with PAA uses extensive beam

sweeping to estimate AoD and AoA, as it can only probe one steering direction at a time.

Such PAA-based beam alignment has its associated overhead and latency linearly increases

with array size and number of users. Challenge arise in handling the future evolution of

mmW mobile network. Novel signal processing, both in analog or digital domain, is required

to accelerate beam alignment for mmW radios.

Power and cost efficient array architecture for spatial multiplexing: In the current

5G-NR mmW, the support of multiple-input multiple-output (MIMO) spatial multiplexing

by using PAA is highly limited. More advanced array architecture is certainly needed in the

5G evolution, particularly in the BS side. There are multiple trending candidate, including a

hybrid analog and digital array architecture which digitally controls multiple analog PAA to

conduct multi-steam communication [17, 23, 96]. Meanwhile, the current array architecture

in sub-6GHz, namely fully digital array, is another promising candidate. However, the

performance, power, and cost trade-off of these array architecture candidate have been fully

understood.
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1.3 Contributions and novelties of dissertation

The contribution and novelties of the dissertation is summarized as follows.

Compressive sensing based fast initial access for beam alignment

We start by addressing the scalability issue of mmW initial access with PAA. Instead of using

discrete Fourier transform (DFT) based directional sounding beam during this procedure, we

propose to use quasi-omni pseudorandom antenna weight vector (AWV). We have developed

sparsity exploiting signal processing technique, which facilitates the system to jointly achieve

initial cell discovery, synchronization, and fine resolution beam alignment. Cell discovery al-

gorithm has been tailored for this novel sounding beam for non-compromised sensitivity.

Further, impact of synchronization errors, i.e., carrier frequency offset (CFO) and sample

timing offser (STO), have been incorporated in the design. The proposed beam alignment

algorithm that re-processes the asynchronous IA signals can achieve highly accurate angular

channel estimation. We have theoretically analyzed the proposed algorithm in terms of miss

detection rate under timing synchronization errors, and further derived Cramér-Rao lower

bound of angular estimation under frequency offset, considering the 5G-NR compliant IA

procedure. To accommodate the ever increasing bandwidth for beam training in standard

evolution beyond 5G, we designed the beam squint robust algorithm. We use simulation

with realistic mmW channels model to show that the proposed approach is advantageous

to existing solution. The proposed algorithm offers orders of magnitude access latency sav-

ing compared to existing solution, when the same discovery, post training signal-to-noise

ratio (SNR), and overhead performance are targeted. This conclusion holds true in vari-

ous propagation environments and 3D locations of a mmW pico-cell. Further, our results

demonstrated that the proposed beam squint robust algorithm is able to retain unaffected

alignment accuracy with increased system bandwidth.

To the best knowledge of the author, this is the first work that applies compressive sensing

framework in the mmW initial access for link establishment.
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Machine learning assisted noncoherent compressive beam alignment

Although compressive sensing is a promising framework to accelerate beam alignment, it

suffers from model mismatch due to practical array hardware impairments. In this topic,

we introduced a neural network assisted compressive beam alignment method that uses

noncoherent received signal strength measured by a small number of pseudorandom sounding

beams to infer the optimal beam steering direction. We have developed a proof-of-concept

of the proposed approach with a 60 GHz 36-element PAA and tested in a suburban line-of-

sight environment. Our results show that our approach requires only 5 channel probings to

achieve post alignment beamforming gain within 1dB margin compared to exhaustive search

with 64 channel probings (92.2% overhead reduction). Compared to purely model-based

noncoherent compressive beam alignment, our method also has 75% overhead savings.

To the best knowledge of the author, this is the first work that implements and exper-

imentally verifies the efficacy of machine learning assisted compressive noncoherent mmW

beam alignment.

True-time-delay analog array based single shot beam alignment

Apart from advanced digital signal processing tailored for mmW PAA radio, novel analog

array architecture and analog signal processing can also be leveraged to enhance the beam

alignment. We present the theory and signal processing algorithm of an one-shot beam

training scheme using true-time-delay (TTD) array. We have derived the TTD array based

mmW wideband system model with cyclic-prefix (CP) based orthogonal frequency-division

multiplexing (OFDM) waveforms. We show that TTD arrays can apply unique AWV to

different subcarriers with a single RF-chain and analog array. Such beam is referred as

rainbow beam. Moreover, we analyzed the properties of rainbow beam and derived the

relationship between subcarrier frequencies and the corresponding steering directions in the

closed form. The required delay tap spacing of TTD arrays and number of subcarriers to

simultaneously scan the entire angular space were also analytically determined. Lastly, we

5



have designed a low-complexity signal processing algorithm that leverage rainbow beam for

beam alignment using a single OFDM pilot symbol. The numerical results from realistic

mmW system simulation show that the proposed approach can achieve accurate single-shot

beam alignment in urban environment.

To the best knowledge of the author, this is the first work that develops the single-shot

beam alignment approach using true-time-delay analog arrays.

Comparative study on mmW array architecture for beamforming and MIMO

we provide an overview of the state-of-the-art mmW massive antenna array designs and

comparison among three array architectures, namely digital array, partially-connected hy-

brid array (sub-array), and fully-connected hybrid array. The comparison of performance,

power, and area for these three architectures is performed for three representative mmW

cellular system downlink use cases, which cover a range of pre-beamforming SNR and multi-

plexing regimes. This is the first study to comprehensively model and quantitatively analyze

all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantiza-

tion error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution

network, 4) power and area estimation based on state-of-the-art mmW circuits including

baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators,

mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation

results show that the fully-digital array architecture is the most power and area efficient

compared against optimized designs for sub-array and hybrid array architectures. Our anal-

ysis shows that digital array architecture benefits greatly from multi-user multiplexing. The

analysis also reveals that sub-array architecture performance is limited by reduced beam-

forming gain due to array partitioning, while the system bottleneck of the fully-connected

hybrid architecture is the excessively complicated and power hungry RF signal distribution

network.

To the best knowledge of the author, this is the first work that analyzes RF distribution

scalability bottleneck in hybrid arrays.
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1.4 Organization of dissertation

The remaining of the dissertation is organized as follows. In Chapter 2, we present initial

access and beam training design that utilizes compressive sensing. This chapter is based

on my previous publication [183]. In Chapter 3, we discusses the implementation concerns

of compressive beam alignment. Further, we present a machine learning assisted proof-of-

concept using mmW testbed. This chapter is based my manuscript submitted for publication

[186]. In Chapter 4, the fast beam alignment design that leverage the true-time-delay analog

array is presented. This chapter is based on my previous publication [180] In Chapter 5, the

comparative study of array architecture for MIMO multiplexing is presented.This chapter is

based on my previous publication [187]. Chapter 6 concludes the dissertation and highlight

open research questions.
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CHAPTER 2

Initial Access and Beam Training for Millimeter-Wave

Cellular Systems

2.1 Introduction

The mmW communication is a promising technology for the future cellular network includ-

ing the 5G-NR [21]. Due to abundant spectrum, it is expected that the mmW network

will support ultra-fast data rate. As shown in both theory and prototypes, mmW system

requires beamforming (BF) with large antenna arrays at both BS and UE to combat severe

propagation loss [139].

Significant differences in propagation characteristics and hardware architectures for mmW

band compared to microwave band require novel signal processing techniques [83] and phys-

ical layer procedures [5].

IA is the fundamental physical layer procedure that allows UE to discover and synchronize

with nearby BS before further communication. However, IA for mmW networks brings new

challenges and opportunities as compared to IA for sub-6GHz band networks. In mmW

system, conventional omni-directional IA with single antenna can not be reliable, and as a

result IA needs to leverage transmitter and receiver antenna array to exploit BF gain [30,72].

A key design challenge in mmW IA is the design of sounding beams for reliable discovery.

In addition, beam training is required to achieve high BF gain enabled by large arrays and

establish communication link. However, beam training now introduces additional access

latency and signaling overhead due to repeated channel probing.
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2.1.1 Related works

A number of works investigated various sounding beam designs and signal processing al-

gorithms for mmW IA and beam training. Directional beams for IA and beam training

are the most popular and extensively investigated in recent literature [15, 18, 30, 71, 72, 102,

103, 105, 114, 191]. Directional initial access (DIA) is first studied in [30] where a General-

ized Likelihood Ratio Test is proposed to solve the cell discovery problem under unknown

MIMO channel and synchronization parameters. The authors concluded that the direc-

tional IA signal improves discovery range as compared to omni-directional IA. The DIA is

further investigated in [103] where overhead and access latency are analyzed. Works [102]

and [191] study DIA and its access latency in large networks using stochastic geometry.

Impact of beam-width of sounding beams in DIA is researched in [18]. The comparison be-

tween omni-directional and DIA is also discussed in [114]. IA using out-of-band information,

e.g., location, sub-6GHz measurement, are discussed in [71, 72]. The aforementioned works

mostly focused on the overhead and latency for the cell discovery, while beam training is

either not discussed or assumed to have coarse resolution [103]. It is common that DIA is

paired with directional beam training [15, 105] where hierarchical sounding beams are used

in multiple stages to achieve fine angular resolution for each user individually. However,

such user-specific hierarchical sounding beams introduce prohibitive latency when a BS is

connected to large number of UEs.

The alternative approaches for beam training are based on parametric channel estima-

tion [19, 74, 112, 128, 145, 161, 168, 172, 198]. Exploiting the mmW sparse scattering nature,

compressive sensing (CS) approaches have been considered to effectively estimate channel pa-

rameters based on channel observations obtained via various sounding beams. Works [19,112]

proposed a CS-based narrowband BF training with pseudorandom sounding beamformers in

the downlink, and [145, 168] extended this approach for a wideband channel. Other related

works include channel covariance estimation [128, 161, 172] which requires periodic channel

observations, and UE centric uplink training [74, 198]. It is worth nothing that all recent

works focus on channel estimation alone while assuming perfect cell discovery and synchro-
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nization. The 5G-NR frame structure that supports IA is rarely considered, and further the

feasibility of joint initial access and CS-based beam training has not been investigated.

There are also recent works that consider some practical aspects of IA. For example,

frequency offset robust algorithms in narrowband mmW beam training are reported in [119,

126, 144, 181]. There are several hardware prototypes that consider a practical approach

of using received signal strength (RSS) in CS-based beam training. Channel estimation

problem without phase measurement is a challenging problem, which was solved via novel

signal processing algorithms based on RSS matching pursuit [142], Hash table [81], and sparse

phase retrieval [141]. Note that phase free measurements were associated with a particular

testbed, and this constraint does not necessarily apply to mmW systems in general.

Last but not the least, the evolution of future mmW systems will certainly use wider

bandwidths and larger array aperture. Therefore, the spatial wideband effect, a.k.a., beam

squint, will play a vital role in the system design [41,170]. Recent works reveal that a beam

squint unaware array processing results in a compromised channel estimation performance in

both sub-6GHz and mmW systems [92,143,169,171]. However, the mmW beam training that

involves both transmitter and receiver array has not been considered. Further, the impact of

estimation error due to beam squint in data communication phase under frequency flat beam

steering is not fully investigated. Overall, while IA and beam training algorithms have been

extensively studied in the literature, there is a lack of understanding about the theoretical

limits and performance of signal processing algorithms that jointly achieve cell discovery and

beam training using asynchronous IA signal in mmW frequency selective channel.

2.1.2 Contributions

In this work, we propose to use quasi-omni pseudorandom sounding beams and novel sig-

nal processing algorithm to jointly achieve initial cell discovery, synchronization, and fine

resolution beam training. More specifically, we provide answers to the following questions.

How to use pseudorandom sounding beams for IA? We propose an energy detection algo-

rithm for initial discovery tailored for pseudorandom sounding beams. We derive the optimal
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detection threshold, analyze the miss detection probability and the impact of synchronization

errors, i.e., CFO and STO.

How to reuse received IA signal for beam training? We propose a novel CS-based beam

training algorithm that re-processes the frequency asynchronous IA signals to provide well

aligned beam pair. We derive the Cramér–Rao lower bound (CRLB) of asynchronous training

in line-of-sight (LOS) channel. We show that proposed algorithm reaches CRLB in LOS and

remains effective in non-line-of-sight (NLOS).

What are the benefits of compressive IA? We compare the proposed approach with DIA

followed by hierarchical directional beam training. Key performance indicators for both

approaches are numerically compared, including discovery rate, post beam training SNR,

overhead and access latency. The simulation study based on 5G-NR frame structure and

measurement-endorsed 3D 28 GHz channel shows that the proposed approach is advanta-

geous to DIA for UEs across wide range of locations in a pico-cell.

How to design squint robust beam training with increased IA bandwidth for beyond 5G

systems? We propose a dictionary adaptation based approach that facilitates the proposed

compressive beam training to be robust to the spatial wideband effect. In particular, the

non-identical array responses for different subcarriers are incorporated in both on-grid search

and off-grid refinement. The enhanced beam training method estimates propagation angle

more accurately and provides higher post-training array gain across a wideband frequency

range compared to existing compressive sensing based approach under high beam squint

regime.

2.1.3 Organizations and notations

The rest of the chapter is organized as follows. We start with a brief introduction of 5G-NR

frame structure, IA and beam training in Section 2.2. In Section 2.3, we present the system

model and problem statement. Section 2.4 includes the proposed algorithm for cell discovery

and timing acquisition followed by associated performance analysis. In Section 2.5 we present

the algorithm and analysis for initial beam training under CFO. The squint robust beam
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training is presented in Section 2.6. The access latency, overhead, and complexity analysis

is included in Section 2.7. The numerical results are presented in Section 2.8. Open research

issues are summarized in Section 2.9. Finally, Section 2.10 concludes the chapter.

Notations: Scalars, vectors, and matrices are denoted by non-bold, bold lower-case,

and bold upper-case letters, respectively. The (i, j)-th element of A is denoted by [A]i,j.

Conjugate, transpose, Hermitian transpose, and pseudoinverse are denoted by (.)∗, (.)T,

(.)H, and (.)† respectively. The inner product is 〈a,b〉 , aHb. The l2-norm of h is denoted

by ||h||. diag(a) aligns vector a into a diagonal matrix. Kronecker and Hadamard product

are denoted as ⊗ and ◦, respectively. <(x) and =(x) are the real and imaginary parts of x,

respectively. Set S = [a, b] contains all integers between a and b.

2.2 Preliminaries: initial access and beam training

In this section, we introduce the mmW physical layer initial access procedure in 5G-NR

cellular network. We briefly review the frame structure, synchronization sequences, and

directional IA scheme as well as beam training. The reader is referred to work [72] for a

more detailed survey.

Frame Structure: Figure 2.1 shows the frame structure of 5G-NR. We focus on two

functional blocks, namely synchronization signal burst (SSB) and channel state information

reference signal (CSI-RS). 5G-NR uses OFDM, and the subcarrier spacing is either 120 kHz

or 240 kHz for mmW band. The SSB set is transmitted by a BS with period TF, typically

20 ms. A SSB set consists of up to M = 64 burst blocks. In each one of the burst blocks of

duration TB, a specific sounding beam pair is used by BS and UE. The CSI-RS block with

duration Tr is dedicated to specific UE(s) for fine beam training and tracking. CSI-RS can

use all frequency resources, i.e., up to Btot, and it has periodicity of TR, an implementation

dependent value.

Synchronization Signal: Referring to Figure 2.1, each SSB has 4 OFDM symbols, i.e.,

primary synchronization signal (PSS), physical broadcast channel (PBCH), and secondary
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Figure 2.1: The 5G-NR mmW frame structure with emphasis in beam management function

and the illustration for directional initial access.

synchronization signal (SSS), followed by another PBCH. PSS is used in cell detection and

synchronization, and it is assigned to the middle P = 128 subcarriers of the first OFDM

symbol. The PSS in 4G-LTE is based on Zadoff-Chu (ZC) sequences due to their perfect

cyclic-autocorrelation property and their Fourier duals [101], while in 5G-NR PSS is replaced

by Maximum Length Sequences (M-sequences) [7]. There are NPPS = 3 and 336 unique

sequences of PSS and SSS, respectively, and these 1008 combination define the cell identifier

of BS. PBCH carries control information.

Beamformed Initial Access: The BS periodically transmits IA blocks and such signals

are processed by UEs which desire to establish the initial access, reconnect after beam

misalignment, and search for additional BSs for potential handover. The sounding beams

in SSB are intended to facilitate multi-antenna processing in BS and UE when no a priori

channel information is available. Referring to Figure 2.1, BS and UE in the DIA scheme

use MT and MR transmitter and receiver beams to cover angular space at both ends. One

transmitter and receiver beam pair is used at a time, for all M = MTMR SSB.

Beam Training: The purpose of beam training is to identify and report the best beam
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pair between BS and UE. The sounding beams in DIA typically have large beam-width and

flat response inside angular sectors [160]. Such design covers the angular space of BS and

UE within M bursts, but achieves coarse propagation directions estimation [103]. Thus DIA

relies on directional beam training to refine angular resolution where BS and UE steer narrow

sounding beams within the sectors of interest during CSI-RS periods.

2.3 System model

This section introduces the system model that adopts the 5G-NR frame structure and prob-

lem formulation. All important notations are summarized in Table 2.1.

2.3.1 Asynchronous received signal model in initial access

Consider a single cell system with a BS equipped with NT antennas. The BS transmits

beamformed IA signal over mmW sparse multipath channel to UEs. We focus on the IA and

BF training procedure for a single UE1. The UE uses analog array architecture, i.e., phased

array, with NR antennas. We assume that a single stream of IA signal is transmitted by the

BS regardless of its architecture.

We first consider the received signal model when a UE searches for BS to initialize the

connection. In this procedure, UE follows a periodic SSB structure and uses predefined

receiver beamformers to capture the signal according to [72]. As illustrated in Figure 2.2,

when the signal is present, the received samples, sampled at Ts, is denoted as

y[n] =
Nc−1∑
d=0

ej(εFn+ψ[n])wH[n]H[d]v[n− d− εT]s[n− d− εT] + wH[n]z[n], n ∈ [0, NF − 1].

(2.1)

In the above equation, εT is the unknown integer sample STO within range2 0 ≤ εT ≤

1Since this downlink procedure does not have UE-specific precoding, it is straightforward to extend it to
multiple UEs.

2We assume coarse timing synchronization is available with 10 µs level accuracy that corresponds to
current 4G-LTE. Practically it is achievable via GPS clock or non-standalone mmW network [72].
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Table 2.1: Nomenclature

Symbol Explanations

p, P Index and total number of subcarriers

m, M Index and total number of SSB

l, L Index and total number of multipaths

NT, NR Number of antenna in BS and UE

TB, NB Duration and sample number in each SSB

Ts, TF Sample duration of IA signal and period of SSB set

TR,Tr Period and duration of CSI-RS

Nc, Ncp Max. excess delay taps and length of CP

Ntrain, NU Required CSI-RS and UE number

∆f , εF CFO in [Hz] and normalized in [rad/sample]

εT Initial STO in UE (number of sample)

H[d] MIMO channel at d-th delay sample

aT (θ), aR (φ) Spatial responses of BS and UE

φl, θl, gl, τl Gain/AoA/AoD/delay of l-th multipath

αl, βl Real and imaginary parts of gl

s, s̃, s̃[n] Frequency and time domain PSS vector and sequence

vm,wm RF precoder/combiner of the m-th burst

z[n], zm, σ2
n Noise sequence, vector, and power

P ?
FA Target FA prob. in initial discovery

PMD,PT, PMD,NT MD prob. w/ and w/o perfect timing

γPT, ηPT, γNT, ηNT Detection statistic and threshold w/ and w/o perfect timing

ym Received OFDM symbols at m-th burst

d, t, r Vectors with candidates delay/AoA/AoD

GD, GT, GR Parameter grid in delay/AoA/AoD est.

Q(εF), F Phase error matrix and DFT matrix
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Figure 2.2: Illustration of the received signal model as time sequence.

εT,max ≤ NB, where εT,max is the largest offset known to the system and NB is the number of

samples in one SSB, i.e., NB = TB/Ts. The phase measurement error exp[j(εFn+ψ[n])] comes

from two sources. εF is the normalized initial CFO, i.e., εF = 2πTs∆f where ∆f is absolute

CFO in Hz between BS and UE. ψ[n] is the phase noise process in the UE receiver. Nc is

the maximum excessive multipath delay in discrete time, based on which CP Ncp > Nc for

OFDM symbols is designed. s[n] is the time domain signals of SSB. Referring to Figure 2.2,

we focus on the PSS and treat other symbols as zero [30], i.e.,

s[n] =


szc[n− (m− 1)NB + P −NCP], n ∈ SCP,m

szc[n− (m− 1)NB −NCP], n ∈ SPSS,m

0, otherwise

,

where SCP,m , [(m−1)NB, (m−1)NB +NCP−1], SPSS,m , [(m−1)NB +NCP, (m−1)NB +

N − 1] are the sets with sample index corresponding to CP and PSS in the m-th burst,

respectively. |szc[n]| = 1, n ∈ [0, P − 1] is the Fourier dual of a known PSS sequence, and

N = P + Ncp is the number of samples in PSS including CP. z[n] is the Additive White

Gaussian noise (AWGN) and z[n] ∼ CN (0, σ2
nINR

). Vectors v[n] and w[n] are beamformers

used by BS and UE at instance n, respectively, and they are from a predefined set of IA
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beam codebook, i.e., w[n] ∈ W , {w1, · · · ,wM} and v[n] ∈ V , {v1, · · · ,vM}. BS and

UE sequentially use respective beamformers for an interval of NB samples and switch to the

next one in W and V , i.e., w[n] = wm, if bn/NBc = m and v[n] = vm, if bn/NBc = m.

Beamformer switching is assumed not to introduce latency or phase offset in the transmission

and reception. In this work, we focus on the system where each element of vm and wm

is randomly and independently chosen from a set ST =
{
±1/
√
NT,±j

√
NT

}
, and SR ={

±1
√
NR,±j

√
NR

}
. Such sounding beams require only 4-level phase quantization when

steered by phased array and have randomized quasi-omnidirectional beam pattern.

The discrete time MIMO channel at delay d (d < Nc) is denoted as H[d] ∈ CNR×NT .

Following the extended Saleh-Valenzuela (S-V) channel model in [83], we express H[d] as

H[d] =
1√

NTNR

L∑
l=1

R∑
r=1

[gl,rpc(dTs − τl,r) · aR(φ
(az)
l,r , φ

(el)
l,r )aH

T(θ
(az)
l,r , θ

(el)
l,r )],

where L and R are the number of multipath clusters (typically small, L ≤ 4 [138]) and

sub-paths (rays), respectively. Scalar gl,r, τl,r, θ
(az)
l,r , θ

(el)
l,r and φ

(az)
l,r , φ

(el)
l,r are the complex gain,

excessive delay, AoD in azimuth and elevation plane, and AoA in two planes of the r-th

sub-path within the l-th cluster, respectively. Function pc(t) is the time domain response

filter due to limited temporal resolution Ts. With antenna spacing being half of wavelength

that corresponds to the carrier frequency fc, the angular response vectors at the BS and UE

are denoted as aT(θ) ∈ CNT and aR(φ) ∈ CNR . In uniform planar array (UPA) with N
(az)
R

by N
(el)
R element (N

(az)
R N

(el)
R = NR), the receiver array response is defined as

[aR

(
φ(az), φ(el)

)
]
(kv−1)N

(az)
R +kh

= exp
[
jπ(kh − 1) sin(φ(az)) sin(φ(el)) + (kv − 1) cos(φ(el))

]
.

The transmitter array response is similarly defined.

Note that the above model aligns with measurement-endorsed mmMAGIC channel model

[9] and is used for the system performance evaluation in Section 2.8. However, for the sake of

tractable algorithm design and analysis, the following assumptions and definitions are made.

Assumption 1: Assuming BS and UE use uniform linear array (ULA) with omni-directional

element pattern in the 2D environment, i.e., array response reduces to [aR

(
φ(az)

)
]k =
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exp[jπ(k − 1) sin(φ(az))] and [aR

(
φ(az)

)
]k = exp[jπ(k − 1) sin(φ(az))]. We further remove

the superscript in angle θ and φ for clarity. Intra-cluster AoA, AoD, and delay offsets are

zero, i.e.,
∑R

r=1 gl,r , gl, φl,r = φl, θl,r = θl, τl,r = τl,∀r. Index r is omitted in the rest

of chapter for clarity. The phase error process is solely from CFO i.e., phase noise process

is ψ[n] = 0, ∀n in (2.1). The complex path gain gl is deterministic complex value, i.e.,∑L
l=1 |gl|2 = σ2

g.

Definition 1: The pre-BF SNR is defined as SNR , σ2
g/σ

2
n.

2.3.2 Problem formulations

We intend to address the following three problems, and their connection to the existing works

are remarked.

Problem 1 (Initial Discovery and Timing Acquisition): The UE needs to detect the

SSB from in-band received samples (2.1). This problem is a binary hypothesis testing with

unknown channel H[d] and synchronization errors εT and εF.

H0 : y[n] = wH[n]z[n],

H1 : y[n] =
Nc−1∑
d=0

(
ejεFnwH[n]H[d]v[n− d− εT]s[n− d− εT]

)
+ wH[n]z[n].

(2.2)

In addition, the STO εT is estimated at this stage.

Problem 2 (Initial BF Training): The BF training is triggered once UE has detected IA

signals. In this stage, UE re-uses the asynchronous signal samples (2.1) to estimate the AoD

and AoA of a path with significant power, say θ? and φ?, and they are then used in designing

beamformers, v? = aT(θ?) and w? = aR(φ?), in data communications phase.

Remark 1: The above problems can be solved by DIA and directional beam training

with the help of CSI-RS, while our solution relies on processing IA block only. In additional,

although Problem 2 has overlap with parametric channel estimation, approaches from this

class are not directly comparable. In fact, [74, 145] estimate the entire wideband channel,

which facilitates optimal MIMO processing, but the assumptions of perfect synchronization

and equal channel bandwidths in beam training and data communication do not necessarily
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apply to the 5G-NR compliant model considered in our work. Our goal is to provide well-

aligned beam pair within IA block, i.e. without requiring CSI-RS slots. Finally, the cell

identifier recognition and PBCH decoding are important tasks but are not studied in this

work.

Problem 3 (Squint Robust Beam Training): The model in Assumption 1 and Problem 2

are formulated for 5G-NR compliant cellular system where the bandwidth and array size are

not large enough to exhibit significant beam squint phenomenon. We extend our channel

model and design beam training algorithm that is robust to squint due to increased channel

bandwidth.

2.4 Initial discovery and timing synchronization

This section presents the proposed initial discovery and timing synchronization followed by

their performance analysis.

2.4.1 Initial discovery and timing synchronization algorithm

The UE processes the received signal using the correlation filter with szc[n], and obtains the

detection statistics:

ỹ[n] =
1

P

P−1∑
k=0

y[n+ k]s∗zc[k]. (2.3)

Intuitively, there are M correlation peaks across M SSB. The magnitude of the m-th peaks

depends on the array gain of the m-th sounding beamformer, CFO, and TO. Our proposed

detector combines energy from all M SSB and compares it with the threshold. In contrast

to previous works [30,102,191] where the detection threshold is a fixed constant, we propose

to use the optimal detection threshold based on Neyman-Pearson criterion that meets target

false alarm (FA) rate P ?
FA.

To understand the impact of timing synchronization error, we first consider a Genie

scenario where the UE has perfect timing (PT) information, i.e., εT = 0. In this case, the
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proposed PSS detection scheme is an energy detector over all M bursts. In addition, a

sample time window with Nc is used to collect energy from all multipaths. Specifically, the

proposed hypothesis testing scheme is expressed as

γPT ,
1

M

M−1∑
m=0

Nc−1∑
k=0

|ỹ[k +mNb]|2
H1

≷
H0

ηPT, (2.4)

where the detection threshold ηPT is used to reach false alarm rate constraint such that

Pr(γPT > ηPT|H0) = P ?
FA.

In a practical scenario without initial timing information (NT), i.e., εT 6= 0, we propose

to use the following detector

γNT , max
0≤n<εT,max

1

M

M−1∑
m=0

Nc−1∑
k=0

|ỹ[n+ k +mNb]|2
H1

≷
H0

ηNT (2.5)

that searches all possible instances within STO window εT ∈ [0, εT,max] and uses the highest

energy collected for the hypothesis test. The sample index corresponding to the highest

energy in (2.5) is the estimate of STO, namely

ε̂T = arg max
0≤n<εT,max

1

M

M−1∑
m=0

Nc−1∑
k=0

|ỹ[n+ k +mNb]|2 . (2.6)

2.4.2 Performance of initial discovery and timing acquisition

In this subsection, we analyze performance of the proposed discovery algorithm in terms of

miss detection rate, and the impact of initial synchronization error εF and εT. The exact

expression is challenging and tedious, if not impossible, and therefore we provide a tight

closed-form approximation in the following proposition. To be concise, the subscripts of

γ and η that indicate the timing information assumption are denoted as binary variable

E ∈ {NT,PT}.

Proposition 1. The optimal threshold of (2.5) that reaches target FA rate Pr(γE ≥ η?E|H0) =

P ?
FA is approximately3

η?E = σ2
n

[
Nc

P
+

√
Nc

MP 2
ξE (εT,max, P

?
FA)

]
, (2.7)

3Approximation is tight when STO search window size εT,max ≥ 100.
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where ξE(εT,max, P
?
FA) is the threshold adjustment factor dependent on synchronization com-

puted as

ξE =


Q−1 (P ?

FA) , E = PT

Q−1
(

1
εT,max

)
− 0.78 ln(− ln(1−P ?FA))

Q−1

(
1

εT,max

) , E = NT
, (2.8)

where Q(.) and Q−1(.) are Q-function and inverse Q-function, respectively. The associated

miss detection (MD) rate PMD,E , Pr (γE < η?E|H1) using the optimal threshold η?E is

PMD,E = Q

κ(εT, εF)SNR−
√

Nc

MP 2 ξE (εT,max, P
?
FA)√

2κ2(εT,εF)SNR2

M
+ Nc

P 2M

 , (2.9)

where the SNR degradation factor κ(εT, εF) is defined as

κ(εT, εF) =
2−< (exp [jK(εT)εF])−< (exp [j[P −K(εT)]εF])

P 2 [1−< (exp [jεF])]
, (2.10)

where K(εT) is the number of samples during PSS reception that UE switches beamformer

due to TO.

K(εT) =


NB − εT, if NB − P ≤ εT < NB

0, otherwise

. (2.11)

Proof. See Appendix A.1.

Remark 2: 1 − PMD,NT is a close approximation of probability that UE detects IA and

correctly estimates εT.

We gain two main insights from MD expressions (2.9) corresponding to threshold adjust-

ment factor ξE(εT,max, P
?
FA) and SNR degradation factor κ(εF, εT). Firstly, the CFO affects

MD performance by effectively reducing SNR via term κ(εF, εT). Under maximum CFO

at UE of ±5ppm and typical frame parameters P,M,Nc specified in Section 2.8, the SNR

degradation is bounded by 4 dB, i.e., 10 log10[κ(εF, εT)] ≥ −4dB,∀εT. Secondly, the STO has

impact on both factors. As seen in (2.10), the SNR in the detection problem degrades when

severe STO exists. In fact, K(εT) in κ(εF, εT) models phenomenon that receiver sounding
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beam switches during the reception of PSS, i.e., K(εT) 6= 0. In addition, the presence of STO

forces system to use peak detection scheme (2.5) where system searches peak location over

a sample window with length εT,max, i.e.,the worst case in (2.5). Under H0, the algorithm

picks strongest noise realization over εT,max samples and thus system needs to use higher

threshold than in PT scenario, as seen in (2.7) and (2.8). Note that such degradation does

not depend on the value of εT, and the degradation in (2.9) is not critical with practical max-

imum STO uncertainty εT,max ≤ NB. In summary, synchronization offset does not severely

affect discovery performance of the proposed scheme.

2.4.3 Benchmark approach: directional initial discovery

For completeness, we briefly introduce the benchmark approach using directional sounding

beam in initial discovery [30]. The system model of DIA is similar to Section 2.3, except

that sounding beamformers W and V are codebooks that steer directional sector beams,

e.g., [15, 125]. Adapting the approach in [30] for the wideband channel and known PSS in

SSB, the cell discovery in DIA uses the following detector

γDIA , max
n
|ỹDIA[n]|2

H1

≷
H0

ηDIA (2.12)

where γDIA and ηDIA are the detection statistic and threshold in DIA. Sequence ỹDIA[n] is

the correlation output in (2.3) that corresponds to directional sounding beams. Refer to

Figure 2.1, the UE detects the burst with maximum power and denotes the index as m?
DIA

which is used in directional beam training.

2.5 Compressive initial beam training

This section presents the proposed initial access based BF training. We start with signal

rearrangement based on information obtained from successful cell discovery and timing acqui-

sition. Then, we introduce the CS problem formulation followed by the proposed algorithm.

Finally, we analyze the CRLB of AoA/AoD estimation in LOS.
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2.5.1 Signal rearrangement after timing acquisition

The further processing requires correct detection and CP removal, and therefore we make a

following assumption.

Assumption 2: In beam training, the received IA signal (2.1) is correctly detected and

STO εT is correctly estimated.

The UE first removes CPs of P PSS samples from y[n] corresponding to M bursts and

rearranges them into vector

y =[yT
1 , · · · ,yT

m, · · · ,yT
M ]T,

{ym}p =y[ε̂T +NCP + (p− 1) + (m− 1)NB], p ≤ P.
(2.13)

For notation convenience, in the rest of subsection, we restate the received time domain

signal after removing CP at the m-th SSB ym ∈ CP according to the model in Section 2.3,

ym =
L∑
l=1

g̃m,lQ(εF)FH [f(τl) ◦ s]︸ ︷︷ ︸
xm(ξ)

+zm,
(2.14)

In the above equation, deterministic vector xm(ξ) ∈ CP is observations model of unknown

parameters ξ , [εF, · · · , θl, φl, τl, αl, βl, · · · ]T, where αl = <(gl) and βl = =(gl). zm ∈ CP

is the vectorized random noise. We also define x(ξ) = [xT
1 (ξ), · · · ,xT

M(ξ)]T. Specifically, in

(2.14) vector s ∈ CP contains PSS symbols assigned to P subcarriers. Vector f(τl) ∈ CP

is the frequency response corresponding to the excessive delay τl of a multipath, i.e., the

contribution of τl on the p-th subcarrier is

[f(τl)]p = exp [(−j2π(p− 1)τl)/(PTs)] . (2.15)

Matrix F ∈ CP×P is DFT matrix4. The effective channel gain is defined as

g̃m,l = exp [jεFNB(m− 1)] glw
H
maR(φl)a

H
T(θl)vm,

4With absence of CFO, multiple DFT matrix F in ym gives frequency domain symbols
∑L

l=1 g̃m,l(f(τl) ◦
s) + zm.

23



and it includes the contribution of phase rotation across different SSB due to CFO and IA

beamformers vm and wm. Matrix Q(εF) = diag
([

1, ejεF , · · · , ej(P−1)εF
]T)

contains phase

rotations within an OFDM symbol.

2.5.2 Baseline compressiove sensing formulation

Directly estimating ξ from (2.14) via maximum-likelihood estimator (MLE) requires multi-

dimensional search with prohibitive complexity. In the following subsections, we re-formulate

Problem 2 to facilitate sequential parameter estimation. With straightforward extension of

the derivation in [83, Sec. V], the vector [g̃l]m = g̃m,l in (2.14) can be re-formulated as

g̃l = Q̃(εF)ÃHvec(H̃l), (2.16)

where Ã ∈ CGTGR×M is defined by the Hermitian conjugate of its m-th column as

([Ã]m)H = (vT
m ⊗wH

m)(A∗T ⊗AR).

Note that the above equation is different from [83, Sec. V] which requires M2 sounding beam

pairs. The matrix Q̃(εF) ∈ CM×M contains the phase rotation in each SSB due to CFO.

Q̃(εF) = diag
([

1, ejNBεF , · · · , ejNB(M−1)εF
]T)

. (2.17)

In fact, matrices AT ∈ CNT×GT and AR ∈ CNR×GR are the dictionaries of angular re-

sponses with AoAs and AoDs from grids with GT and GR uniform steps from −π/2 to

π/2, respectively. In order words, the k-th columns in AT and AR are [AR]k = aR([r]k)

and [AT]k = aT([t]k), respectively, where [r]k and [t]k are the vectors that contain angle

candidates.

[r]k = −π
2

+ (k − 1)∆φ, [t]k = −π
2

+ (k − 1)∆θ. (2.18)

Also note that the steps ∆θ and ∆φ depend on the desired resolution. In this work, GT

and GR are used as number of steps and namely ∆θ = 2π/GT and ∆φ = 2π/GR. Matrix

H̃l ∈ CGR×GT contains the complex path gain of the l-th path, i.e., it has 1 non-zero element

whose location depends on the AoA and AoD of the l-th cluster in the angular grids.
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Remark 3: Assuming noisy observation of g̃l and zero CFO, (2.16) reduces to the baseline

problem in [83, Sec. V]. However, (2.14) implies that the former assumption is non-trivial

unless s = 1, τl = 0,∀l, e.g., [19]. Moreover, algorithm designed with latter assumption is

sensitive to CFO [181]. Finally, the AoA/AoD estimators are commonly confined in r and

t [19]. We address these challenges in the following three subsections.

2.5.3 Effective gain estimation

To address the challenge discussed in Remark 3, we propose the following approach. We

treat Q(εF) in (2.14) as identity matrix and estimate delay of dominant path and gain, say

τl and g̃m,l, by maximum likelihood approach. Actually, the proposed algorithm uses sparse

impulse support [d]q = q∆τ to construct a dictionary, where ∆τ = NcTs/GD is the step-size

of delay candidates. Based on the knowledge of the model (2.15) and PSS signal s, the delay

estimation is implemented as

q̂ = arg max
1≤q≤GD

〈pq, ȳ〉/‖pq‖2 and τ̂ = [d]q̂, (2.19)

where ȳ =
∑M

m=1 ym/M is the received PSS samples averaged over M SSB. The vector pq

contains PSS samples when the true delay of dominant path is [d]q, i.e., pq , FH [f ([d]q) ◦ s] ,

where f([d]q) is by plugging in [d]q into (2.15). The estimated delay tap τ̂ enables estimating

effective gain of a significant path by

ĝ =
(
pH
q̂ ⊗ IM

)
y, (2.20)

where IM is the M ×M identity matrix.

2.5.4 On-grid joint AoA and AoD estimation robust to CFO

The second step uses a modified matching pursuit to solve CS problem (2.16) from ĝ while

incorporating the existence of CFO in Q̃. In the conventional matching pursuit step, say the

k-th, the anticipated effective channel response corresponding to an AoA and AoD pair, i.e.,

[Ã]k, is used to evaluate inner product with g [112]. The proposed heuristic treats AoA and
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AoD as known in the k-th step, and uses the MLE of CFO ε̂F,k which is available in closed

form. The modified matching pursuit is expressed as

k̂ = arg max
1≤k≤GRGT

〈Q̃(ε̂F,k)ãk, ĝ〉/‖ãk‖2, (2.21)

where ãk , [Ã]k from (2.16). The matrix Q̃(ε̂F,k) has structure as (2.17). The input ε̂F,k is

the MLE of CFO when treating AoA/AoD as they correspond to ones in [Ã]k. Specifically,

the CFO estimator relies on the estimator in [94] by treating ȳk = ã∗k ◦ ĝ as a tone with

frequency εF.

ε̂F,k =
1

NB

∠

(
1

M − 1

M−1∑
m=1

[ȳk]
∗
m [ȳk]m+1

)
. (2.22)

Operation ∠(x) = tan−1[=(x)/<(x)] evaluates angle based on complex samples. To get

estimates of the AoA, AoD, and CFO, index k̂ is used to select candidates from grids (2.18)

after the following adjustment k̂R = b(k̂ − 1)/GTc+ 1 and k̂T = k̂ − (k̂R − 1)GT,

φ̂ = [r]k̂R , θ̂ = [t]k̂T , ε̂F = ε̂F,k̂. (2.23)

2.5.5 Off-grid refinement

The aformentioned heuristics provide estimates of delay, AoA, and AoD that are restricted

to the grid, i.e., elements of d, r and t. Grid refinement is a technique to provide off-grid

estimation accuracy. There are several approaches considered in the literature including

multi-resolution refinement [109] and the Newtonized gradient refinement [110]. In this

work, we propose to use first order descent approach. As initialization of refinement, the

estimator from previous steps is saved into ξ̂
(k)

for k = 1. In the k-th iteration, the error

vector is evaluated

e(k) = y − x
(
ξ̂

(k)
)
, (2.24)

where y is the received signal after rearrangement as (2.13), x(ξ̂
(k)

) is obtained by plugging

in estimated parameters into parametric model (2.14). In other words, e(k) is the error vector
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between observed signal sequence and received signal model using current estimates, which

is then used to update parameters. The complex gain in iteration k is computed as

ĝ(k+1) = (∇xg)
†y, (2.25)

where ∇xg = (∂x(ξ)/∂g)|
ξ=ξ̂

(k) is the partial derivative of x(ξ) over parameter g in (2.14)

evaluated at ξ̂
(k)

. The refinement steps for delay, CFO, AoA, and AoD are moving towards

the gradient of their estimators in the previous iterations. For concise notation, in the

following equation and paragraph we use x to denote the parameter to be refined, i.e.,

x = {τ, εF, θ, φ}. The refinement steps are

x̂(k+1) = x̂(k) + µx<
[
(∇xx)

†e(k)
]
, x = {τ, εF, θ, φ}, (2.26)

where µx is the step-size, vector ∇xx = (∂x(ξ)/∂x)|
ξ=ξ̂

(k) is the the partial derivative of

x(ξ) in (2.14) over parameter of interest. The above approach iteratively runs by appending

updated parameter into x(ξ̂
(k+1)

) for the next iteration until the error ‖e(k)‖2 converges or

falls below threshold ε0.

It is worth noting that the proposed approach can be extended to support multi-path

training which has been covered by a variety of works in CS-based approaches [74, 112,119,

126, 128, 145, 161]. However, the main motivation of this work is to showcase and analyze

pseudorandom sounding beams in the initial access and initial beam training. Thus the only

metric directly comparable to its counterparts [18,30,71,72,102,103,114,191], namely single

path training, is evaluated.

The algorithm is summarized in Algorithm 1.

2.5.6 Analysis of initial beam training in line-of-sight channel

In this subsection, we provide lower bound of AoA/AoD estimation variance in pure LOS5

scenario, namely CRLB in joint estimating ξ = [εF, θ1, φ1, τ1, α1, β1]T. Based on (2.14), the

5In the NLOS environment, the Assumption 1 facilitates intuitive algorithm design, but the failure to
consider intra-cluster angular spread results in an inaccurate performance analysis.
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Algorithm 1 Compressive Initial Access and Beam Training

Input: Received IA signal sequence y[n]

Output: Discovery decision; Beam pair v?,w?

% ——— Initial Discovery ———

1: PSS correlation (2.3).

2: Energy detection (2.5) and timing acquisition (2.6).

3: if PositiveDecision then

% —— Initial BF Training (Coarse) ——

4: Arrange sequence y[n] into vector y as (2.13).

5: Estimate excessive delay as (2.19).

6: Estimate effective channel gain as (2.20).

7: Matching pursuit (2.21) with CFO estimation (2.22).

8: Get AoA, AoD, and CFO estimators in (2.23).

% —— Initial BF Training (Fine) ——

9: while ‖e(k)‖ > ε0 in (2.24) do

10: Use refinement steps (2.25) and (2.26); k = k + 1.

11: end while

12: Report beam pair w? = aR(φ
(k)
l ), v? = aT(θ

(k)
l ).

13: end if
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likelihood function is Pr(y; ξ) = (2πσ2MP
n )−1exp (−(‖y − x(ξ)‖2)/(σ2

n)). The log-likelihood

function is L(y; ξ) , ln[Pr(y; ξ)]. The lower bound of estimation variance is given in the

following proposition.

Proposition 2. The CRLB of AoA/AoD estimation in the compressive initial BF training

stage in LOS environment is

var(φ̂1) ≥ [J−1]2,2, var(θ̂1) ≥ [J−1]3,3 (2.27)

where J , ∂2L(y; ξ)/∂ξ2 is the Fisher Information Matrix whose expressions are listed in

Appendix A.2.

Proof. See Appendix A.2.

2.5.7 Benchmark beam training 1: hierarchical directional search

The directional beams in SSB allow BS and UE to coarsely estimate the propagation di-

rections [42]. Although approach in [42] is not tailored for wideband channel with synchro-

nization offset, it relies on RSS measurement within burst and therefore it is robust to the

model mismatch. Using the SSB index that corresponds to the maximum received power,

the system uses the knowledge of directional sounding beams to infer channel propagation

angles. Specifically, as illustrated in Figure 2.1, the estimated θ? and φ? are the centers

of the m̂T-th and m̂R-th sounding beams in BS and UE [42], respectively. Note that the

estimated angle sector indices m̂T and m̂R are computed from the SSB index m?
DIA in (2.12),

i.e., m̂R = b(m?
DIA − 1)/MTc + 1, and m̂T = m?

DIA − (m̂R − 1)MT. The large width of a

sector beam results in poor angular resolution in DIA. In order to improve the resolution,

hierarchical directional beam training scans narrower beams within the sector of interest.

Such procedure occurs during CSI-RS bursts which are scheduled for individual UEs.
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2.6 Squint robust beam training in beyond 5G

We have discussed the compressive sensing based beam training design in a 5G-NR compliant

model without beam squint. In the beyond 5G-NR era, with the increased bandwidth as

well as the increased array size, the beam squint becomes more significant. In this section,

we present the enhanced version of beam training robust to beam squint.

2.6.1 Received signal with spatial wideband effect

By extending the channel model of [171] to multi-antenna UEs scenario, the channel in the

p-th subcarrier is denoted as

H(f)[p] =
1√

NTNR

L∑
l=1

glexp

[
−j2πτl(p− 1)

PTs

]
aR(φl)ã

H
T(θl, p). (2.28)

Due to the fact that antenna array at BS is commonly larger than in mobile terminal, the

beam squint is modeled at the transmitter end. Thus the p-th subcarrier experiences a

unique transmitter array response, which is defined by its n-th element

[ãT(θ, p)]n = exp

(
jπ(n− 1)

fp
2fc

sin(θ)

)
= exp

[
jπ(n− 1)

(
1 +

p̃(p)

PTsfc

)
sin(θ)

]
.

The function p̃(p) = p − P/2 − 1 relates the index of subcarrier p ∈ [1, P ] with the radio

frequency for this subcarrier fp = fc + p̃(p)/(PTs) [75]. For notational convenience, we use p̃

instead of p̃(p) in the rest of the chapter. Note that when the bandwidth in beam training

is negligible as compared to the carrier frequency6, i.e., 1/(Tsfc)� 1, the transmitter array

response vector reduces to the one in Section 2.3, i.e., ãT(θ, p) ≈ aT(θ),∀p. Also, when the

array size is small or the true propagation angle is close to bore-sight, i.e., θ ≈ 0, the impact

of beam squint is negligible [170].

In order to focus on the spatial wideband effect, we ignore the initial synchronization

error and utilize the unit symbols s = 1 when developing the enhanced training algorithm

for beam squint regime. Following extension of Section 2.5.1, the received signal in the

6Such condition holds true in 5G-NR compliant frame structure.
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frequency domain is

y(f)
m [p] = wH

mH(f)[p]vm + z(f)
m [p], (2.29)

where z
(f)
m [p] is the post combining additive white Gaussian noise (AWGN) in the m-th SS-

burst and the p-th subcarrier. Using the similar approach as in 2.5.2 and ignoring noise for

notational clarity, the above received signal can be reformulated as

y(f)
m [p] = (vT

m ⊗wH
m)(Ã∗T[p]⊗AR ⊗ aT

d [p])g.

In this expression, ÃT[p] ∈ CNT×GT is defined by its k-th column as ãT([t]k, p) where the

on-grid AoD candidates are from (2.18), and AR is defined in Section 2.5. The vector

ad[p] ∈ CGD is defined as by its k-th element as e−j2π(p−1)[d]k/(PTs). g ∈ CGTGRGD is L-sparse

vector that contains path gain that corresponds to a tuple of AoA, AoD, and delay on the

grid.

2.6.2 Squint robust beam training

We propose to apply the matching pursuit based algorithm to estimate channel parameters

from y(f)[p] = [y
(f)
1 [p], · · · , y(f)

M [p]]T. To incorporate beam squint in estimation, the following

components ĀT ,
∑P−1

p=0 ÃT[p]/P ∈ CNT×GT are pre-computed as it is then used in the

squint aware dictionary. Specifically,
[
ĀT

]
1,k

= 1, ∀k, and

[
ĀT

]
n,k

=exp[jπ(n− 1) sin([t]k)]
exp[−j π(n−1) sin([t]k)

2fcTs
]− exp[j π(n−1) sin([t]k)

2fcTs
]

P
(

1− exp[j π(n−1) sin([t]k)
PfcTs

]
) , n 6= 1. (2.30)

The proposed method first identifies the delay of dominant path τ̂l. Then, the signal y[p]

is filtered as

ȳ =
1

P

P∑
p=1

y(f)[p]ej2π
τ̂l(p−1)

TsP (2.31)

With an accurate excessive delay estimate τ̂l, the compressive sensing problem is formulated
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for the signal ȳ as

ȳ =


(vT

1 ⊗wH
1 )(Ā∗T ⊗AR)

...

(vT
M ⊗wH

M)(Ā∗T ⊗AR)


︸ ︷︷ ︸

Ψ

ḡ (2.32)

where ḡ = (1T
GD
⊗IGTGR

)g ∈ CGTGR is the sparse vector whose non-zero elements correspond

to AoA and AoD of the the significant path whose delay is estimated as τ̂l. The filtering

(2.31) significantly reduce contribution of other paths in (2.32) when operating in wideband.

The beam squint aware dictionary Ψ ∈ CM×GTGR utilize the knowledge of ĀT in (2.30), AR,

and sounding beamformer wm and vm.

The on-grid estimates of AoA and AoD can be effectively achieved by applying matching

pursuit in (2.32). Further, the off-grid accuracy can be achieved in a similar manner as

Section 2.5.5. Specifically, iterative gradient descent algorithm is used based on an initial

value from the on-grid estimates. The gradient for each of the parameter of interest is directly

available by taking the derivative of (2.29). The residual error in the k-th iteration is defined

by

e(k) =
∑
m,p

|y(f)
m [p]−wmĤ(f)[p]vm|2

where Ĥ(f)[p] in the k-th iteration is computed by plugging the estimated channel parameters

into (2.28). The algorithm is summarized in Algorithm 2.

The proposed approach provides AoA/AoD report robust to beam squint during training.

In addition, the beamforming vector of BS in data communication phase also needs to

accommodate squint. Although detailed discussion is beyond the scope of this work, we

propose a simple heuristic approach for data communication phase, where frequency flat7

beamformer v? are design such that it provides constant gain for all frequency range of data

bandwidth, i.e., [fc − Btot/2, fc + Btot/2]. Given estimated AoD θ?, the squint aware beam

7Frequency flat beamformers can be implemented by analog array architecture. Readers are referred
to [143, 171] for approaches using frequency dependent beamformer design in handling squint after beam
training, where digital or hybrid array architecture is used.
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v? needs to have its beam-width large enough to cover [θmin, θmax], which correspond to the

squinted directions of the entire data channel. Specifically, the two critical directions are

θmin = sin−1[(1− Btot

2fc
) sin(θ?)] and θmax = sin−1[(1 + Btot

2fc
) sin(θ?)].

Algorithm 2 Squint Robust BF Training

Input: Received IA signal sequence y[n]

Output: AoA/AoD pair φ?, θ?

% —— Beam Training (Coarse) ——

1: Estimate excessive delay τ̂l as (2.19).

2: Convert y[n] to frequency symbols y(f)[p]

3: Filter frequency domain measurements as (2.31).

4: On-grid angle estimates via matching pursuit in (2.32) that utilize squint aware dictio-

nary (2.30).

% —— BF Training (Fine) ——

5: while e(k) > ε0 do

6: Use gradient refinement based on (2.29); k = k + 1.

7: end while

8: Report AoA/AoD pair φ? = φ
(k)
l , θ? = θ

(k)
l .

2.6.3 Benchmark beam training 2: squint non-aware compressive sensing

There are various wideband mmW channel parameter estimation approaches that use com-

pressive sensing [74,143,145,168,171,198]. To compare the performance of proposed squint

robust beam training, we use [168] as the second benchmark method. In this method, the

channel parameters are estimated for each subcarrier seperately, i.e., the problem is decou-

pled into multiple parallel parameter estimations, which are then solved via compressive

sensing algorithm. Although [168] is originally designed for on-grid angle estimation, the off-

grid accuracy can be achieved by narrowband refinements. Due to a squint non-aware nature

of this approach, AoD estimated from different subcarriers has deviation under beam squint

regime. We use the empirical average of AoD estimates over all subcarriers for comparison
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Figure 2.3: Initial access latency model for directional initial access and the proposed com-

pressive initial access. The associated latency in each step is shown under bracket.

with our wideband AoD estimates.

2.7 Access latency, overhead and digital backend complexity

In this section, we present a model for analyzing three system performance indicators, namely

access latency, overhead, and computational complexity. Note that this unified model applies

to both directional scheme and the proposed approach.

Based on [72], we propose to use the latency model8 for both SSB and CSI-RS as shown

in Figure 2.3. In both IA schemes, the failure of cell discovery introduces penalty of TF for

a new IA block. When cell discovery occurs, the additional latency is required for scheduled

8Note that model is simplified to emphasize the topics discussed in this work. There are other types of
latency including processing and feedback through beam reporting.
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CSI-RS according to the required number Ntrain. Thus the access latency is

Tlatency = MTB +
+∞∑
k=0

P k
MD(1− PMD)kTF + T̃RNTrain (2.33)

where the first term includes latency for cell discovery. In the second term, T̃R is the average

time for the UE to get the scheduled CSI-RS for beam training and it is expressed as

T̃R =
1

NU

[
KF∑
k=0

KR∑
q=1

((k − 1)TF + qTR) +
Kres∑
q=1

(KFTF + qTR)

]

In the above equation, NU denotes the number of UEs in the network. They share available

CSI-RS in a time division manner to combat channel dynamic. Due to the limited number

of CSI-RS KR = b(TF −MTB)/TRc within one IA period, more than one frame duration is

required to meet scheduling of large number of UE NU. Therefore, in (2.33) KF = b(NU −

1)/KRc is the number of frames required to assign all CSI-RS to UEs and Kres = NU−KcycKR

is the residual delay in the last frame. As shown in the next section, DIA and directional

BF training typically require larger Ntrain than the proposed approach.

Following [72], the overhead (OH) ratio is modeled by counting the time-frequency re-

source in IA and CSI-RS

OH =
MBIATB +KRBtotTr

BtotTF

× 100% (2.34)

where BIA = 1/Ts is the bandwidth in IA and the channel usage is MTs every period TF.

We focus on varying CSI-RS density KR. Note that with reduced KR (increased TR), the

OH reduces with a cost of additional latency.

Although existing work shows that narrowband based IA provides SNR gain due to the

low noise bandwidth [30], increasing bandwidth BIA in IA and beam training offers improved

latency. In this work, we assume that increasing BIA is achieved by using fixed pilot length

P and reduced Ts. This facilitates shorter OFDM symbol periods, and thus latency reduces

with smaller TB in (2.33). Furthermore, the overhead remains the same since BIATB in (2.34)

remains constant.
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Table 2.2: Digital Baseband Operations (complex multiplications)

Function Block Equation Operations

Initial Discovery

PSS FIR corr. (2.3) PNB

Detection and time sync. (2.4) or (2.5) NB

Initial BF training (on-grid stage)

Excess. delay est. (2.19) and (2.20) PGD + PM

AoA/AoD est. (2.21) MGTGR

CFO est. (2.22) 2MGTGR

Initial BF training (off-grid stage)

Alternative updates (2.25) and (2.26) O(KiteNTNRMP )

Error norm evaluation - KiteMP

The required baseband operations of the proposed approach are summarized in Table 2.2,

where only the complex multiplications are taken into account. To reach the on-grid accu-

racy, the existing compressive sensing based wideband channel estimation requires complex-

ity O(PMGTGR) when all P subcarriers are used [168], or O(PselMGTGR) where a selective

number of Psel subcarriers are used [145]. The proposed approach reduces this most com-

putationally demanding steps into O(MGTGR). Admittedly, the refinement stage involves

higher complexity, since each iteration contains the computation of gradient and gradient

based updates (2.26) and (2.25). Here, only scaling laws in terms of system parameters

are provided for clarity. Refinements require Kite iteration and quantitative analysis of this

values is left as future work. The beam squint robust algorithm in Section 2.6 contains

the same online computational complexity. Moreover, it is worth noting that the above

analysis contains online computation, and assumes there is an offline pre-computation of all

required dictionaries for matching pursuit, i.e., pq in (2.19), ãk in (2.21). Lastly, directional

IA involves the computation of (2.4) or (2.5) and its computational complexity is given in

Table 2.2.
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2.8 Results

This section presents the numerical comparison between the proposed approach and DIA

with directional beam training.

2.8.1 Simulation settings

The simulations follow 5G-NR frame structure. We first evaluate performance in the simpli-

fied 2D S-V channel model. The maximum excess delay is set as Nc = 4 samples. As for the

DIA, we use two approaches to design directional sector beams, i.e., least-squares based sec-

tor beamforming codebook [15] and frequency sampling method based sector beamforming

codebook [125, C23.4]. Examples of beam patterns9 are shown in Figure 2.4. In each of the

Monte Carlo simulations, we generate an independent random realization of pseudorandom

sounding beam codebook and channel parameters, unless otherwise mentioned.

The next evaluation focuses on the performance of the proposed algorithm in a realistic

3D mmW propagation environment where the sparsity is compromised, i.e., there are non-

trivial angular and delay spreads within each multipath cluster. In Section 2.8.3 we simulate

the system with QuaDRiGa simulator [90] based on mmMAGIC model [9] in 28 GHz urban-

micro (UMi) environment. We remove Assumptions 1, 2 from Section 2.3.1 and 2.5.1. UPA

NT = 16×4, NR = 4×4 are used at BS and UE, respectively, to exploit the higher sparsity in

the elevation plane. The proposed algorithm follows straightforward extension, namely, the

estimated indices in dictionary (2.23) are mapped to AoA/AoD in both azimuth and elevation

plane to fit into 3D environment. In the simulations, the transmit power is set to Pout = 46

dBm. The large scale channel model includes pathloss and shadowing. The AWGN on the

receiver with 4 dB noise figure is added with power of −170 + 10 log10(BW) dBm, where the

noise bandwidth is 1/Ts and Btot = 400 MHz [91] for IA and data stage, respectively. More-

over, the UE phase noise, ψ[n] in (2.1), is modeled as Weiner process [50] that corresponds to

9We uses an optimistic DIA system where sector beams are synthesized by arrays with ideal phase and
magnitude control.

37



oscillator with phase noise spectrum −114 dBc/Hz at 1 MHz offset [55]. The other detailed

simulations setting in QuaDRiGa can be found in the supplementary material [178]. The

DIA and beam training are also extended for UPA and 3D channel, i.e., frequency sampling

method based sector beams are extended in both azimuth and elevation plane. During each

one of Ntrain CSI-RS, BS and UE use 16 sounding beams pairs which bisect previous scanned

azimuth and elevation angular regions. We use post-training SNR as performance indicator,

which is evaluated by dividing channel gain Pout

∑Nc−1
d=0 |(w?)HH[d]v?|2 over noise power in

Btot.

Lastly, we evaluate the performance of the enhanced beam training under beam squint

regime, where up to 2 GHz bandwidth for IA and beam training is considered. To demon-

strate the impact of spatial wideband phenomenon, we assume that the transmitter uses

linear arrangement with NT = 128 antenna elements, and the AoD is chosen to be far from

bore-sight, i.e., randomly drawn from [35◦, 45◦]. The UE uses NR = 16 elements, and beam

squint is not modeled at the receiver. The training SNR is 10 dB regardless of the bandwidth.

Unless otherwise mentioned, the simulation parameters are summarized in Table 2.3.

2.8.2 Performance in simplified Saleh-Valenzuela channel model

The miss detection rate10 of the proposed approach for initial discovery is shown in Figure 2.5,

and it is verified against the theoretical expressions (2.9). We have the following findings.

Firstly, the lack of perfect timing synchronization introduces around 3 dB sensitivity loss as

shown between the blue circled curve and red solid curve. However, this issue is unavoidable

in practical systems. Secondly, less than 3 dB sensitivity loss occur when ±5 ppm CFO

is present in addition to STO, as shown by the light blue dashed and green dashed-and-

dotted curves. Finally, the practical STO (≤10 µs) is noncritical as shown by red solid and

blue dashed curves. But when STO is large enough to cause transmitter and receiver burst

beamforming window mismatch, e.g., 17 µs STO which corresponds to large K(εT) in (2.11),

10Miss detection rate in simulation is evaluated by a generalized definition Pr(γNT > ηNT, ε̂T = εT|H1) in
this proposed approach when εT 6= 0.
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Table 2.3: Summary of Simulation settings

Parameters Values in Simulations

Frame Structure

SSB Signal Bandwidth 1/Ts = 57.6 MHz [72]

Carrier and PSS Length P = 128 [72]

Max Excessive Delay Nc = {4, 32}

Length of CP Ncp = {8, 32}

SSB Duration NB = 1024 (TB = 17.84 µs) [72]

SSB Num. M = 64 [72]; MT = 16, MR = 4

SSB Set Period TF = 20 ms [72]

Initial Synchronization Offset

Freq. Offset at UE Up to ±5 ppm [3]

Timing Offset at UE εT = 170 or 960, (∆τ = 3 µs or ∆τ = 17 µs)

STO Search Window εT,max = 1024

Algorithm Design

Target False Alarm P ?
FA = 0.01

Dictionary Size GD = 500, GT = 2NT, GR = 2NR
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Figure 2.4: Beam patterns of two sector beam designs [15, 125] with MT = 16 transmit

sectors and one realization of 16 pseudorandom beams. In the polar plot, the r-axis refers

to the gain in decibel and the angular axis refers to steering angle in degrees. All patterns,

i.e., least-square based sector beam (LS-Sec. BF), frequency sampling method based sector

beam (FSM-Sec. BF), and pseudorandom sounding beam (PN BF), are simulated using

uniform linear array with NT = 128 elements.
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severe sensitivity loss is introduced as shown in grey dotted curves. In summary, these

simulations verified the findings from Section 2.4 that practical initial synchronization error

introduces up to few decibel sensitivity loss as compared to perfect synchronization scenario.

The comparison among proposed approach and benchmark DIA based discovery ap-

proaches is also presented in Figure 2.5. Although common sense may doubt the efficacy of

the proposed approach since there is no significant angular gain for any beam pattern, as

illustrated in Figure 2.4, the results show that there is only a couple of decibel difference

among the proposed approach and DIA. However, such gap is less than the performance

fluctuation of DIA with difference codebooks. The rationale behind this result is that the

proposed scheme collects signal energy spread over all M SSB which in fact gives equivalent

energy measurement as directional approach where energy collection occurs only when a

sector beam aligns with true propagation direction.

The beam training performance of the proposed BF training algorithm in LOS is pre-

sented in Figure 2.6. The performance metrics are the residual root mean square error

(RMSE) defined by RMSEAoA =

√
E|φ̂1 − φ1|2 and RMSEAoD =

√
E|θ̂1 − θ1|2. The simu-

lations are conducted with Assumption 2. The same pseudorandom setting is used in both

simulation and theoretical CRLB evaluation. The refinement steps are forced to terminate

in up to 100 iterations. We have the following findings. Firstly, when the off-grid refinement

are used, the proposed algorithm reaches CRLB in high SNR regime. Secondly, the coarse

estimation in high SNR has a compromised performance as compared to CRLB. However

coarse estimation (without refinement) has adequate accuracy for beam steering since RMSE

is order of magnitude lower than 3 dB beam-width in steering, i.e., 102◦/NT and 102◦/NR.

Finally, Figure 2.5 and 2.6 reveal that in SNR region between −15 dB and −7.5 dB reli-

able detection occurs but beam training performance is poor. Admittedly, this implies a

compromised experience for UEs at the cell edge, which is worth further investigation.
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Figure 2.5: Simulated (Sim.) and theoretical (Theo.) results of the miss detection rate

of the proposed initial discovery with various synchronization errors. The discovery rate

of the directional initial access is also included as benchmark and both least square based

sector beam (LS-Sec) and frequency sampling method based sector beams (FSM-Sec). The

base station and user equipment have NT = 128 and NR = 32 uniform linear array and

Saleh-Valenzuela channel has L = 2 multi-paths.
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Figure 2.6: Simulated results of the proposed algorithm, with and without refinement steps,

and theoretical bound of root mean square error of angle-of-arrival estimation in line-of-sight

environment. System with different size of uniform linear arrays are evaluated. Firstly,

base station and user equipment have {NT, NR} = {32, 8} antennas. Secondly, they have

{NT, NR} = {128, 32} antennas. System has 5ppm carrier frequency offset (CFO).
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2.8.3 Performance in QuaDRiGa channel simulator

Figure 2.7 (a) illustrates the network setting implemented in QuaDRiGa. We simulate the

performance of typical UEs distributed in two planes, with different distance towards the

pico-cell mmW BS. We present the following findings based on Figure 2.7 (b), which shows

the cumulative distribution function (CDF) of post-training beam steering SNR. Firstly,

the proposed approach provides comparable performance to DIA with Ntrain = 2 CSI-RS.

In fact, in LOS, both approaches closely achieve beam steering towards true LOS path.

Although the SNR seems excessively high in LOS, this implies that the transmit power can

be reduced to save power. Secondly,DIA with less than Ntrain = 2 CSI-RS has compromised

SNR performance. This drawback is intuitive because wide sounding sector beam fails to

extract precise angle information. The SNR improvement of using higher Ntrain is more

significant in LOS. Thirdly, although the proposed approach is tailored for sparse channels

and presence of phase measurement error due to CFO, it is robust in NLOS scenarios where

channel sparsity is compromised and practical phase noise occurs. Admittedly, the algorithm

has a certain chance to completely fail when NLOS UEs are distributed in the second plane.

However, in these cases the counterparts based on DIA and CSI-RS training cannot do much

better job either. In fact, they have lower probability to reach post-training beam steering

SNR above 0 dB compared to the proposed approach.

The overhead and initial access latency savings of the proposed approach are significant,

since it does not require CSI-RS, as shown in Figure 2.7 (c). As explained in Section 2.7, for

DIA based approaches when number of UEs in the network increases, the latency increases

dramatically due to CSI-RS scheduling. Increasing the density of CSI-RS effectively reduces

latency, but it results in increased overhead. The proposed approach relies on advanced

signal processing to digitally conduct beam training and avoids requesting CSI-RS after

initial access. In summary, up to two order of magnitudes saving in initial access latency is

reached as compared to DIA.
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(b) The cumulative distributed function of post-training beam

steering signal-to-noise ratio in the data phase. For the direc-

tional initial access (DIA), different number of channel state in-

formation reference signal (CSI-RS) Ntrain are considered. The

proposed compressive initial access (CSIA) does not required

CSI-RS. The signal-to-noise ratio distribution corresponding to

beam steering towards true line-of-sight path (when existing)

is also included as benchmark. The miss detection rates are

included in each plots.
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Figure 2.7: Initial access and beam training of proposed and directional beam training evalu-

ated in 3D outdoor urban micro (UMi) network using 28 GHz mmMAGIC channel model [9].

The trade off between post-training signal-to-noise ratio in the data phase, required overhead,

and access latency are also studied.
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2.8.4 Performance under beam squint phenomenon

Figure 2.8 shows the AoD estimation accuracy as a function of beam training channel band-

width. The proposed approach retains non-compromised accuracy throughout an entire

range of bandwidths since the squint tailored dictionary is accounted in the processing.

The squint non-aware method (benchmark training 2) has increased error when bandwidth

increases.

The post training BF gain in data phase is also important performance indicator. To

better understand the impact of AoD estimation accuracy, we evaluate two beam design

candidates in the transmitter, wide beams and pencil beams, that steer the beam in direc-

tion reported by corresponding beam training algorithm. The training occurs over 2 GHz

bandwidth, and its AoD estimation accuracy can be inferred from Figure 2.8. We assume

analog architecture, therefore a single precoding vector is applied to all subcarriers. The

wide beam precoder is designed with critical beam width based on Section 2.6, with vector

coefficients as in [125, Chapt 23.4]. The pencil beam uses conventional steering vector. The

beamforming gain across a wideband range is presented in Figure 2.9. We have the following

findings. First, utilizing the beam squint non-aware CS approach, the pointing direction of

beams could be completely mis-aligned with the true propagation angle, thus resulting in

significant loss of beamforming gain, for both pencil and wide beams. Second, by utilizing

the wide beam width, our proposed squint aware algorithm achieves almost constant BF gain

across 1500 MHz bandwidth. Lastly, RMSE of AoD < 0.1◦ is sufficient to achieve broadband

BF gain when wide beams are used.

2.8.5 Baseband processing requirements

Using the simulation parameters in Table 2.3 to evaluate required operations in Table 2.2,

the baseband resource of the proposed method are in the same order of magnitude with

DIA, i.e., (PNB + PGd + 3MGTGR)/(PNB) ≈ 7.2. There are two reasons for this finding.

Firstly, exhaustive PSS correlation filter (2.3) is extreme computational demanding in IA.
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Figure 2.8: Angle-of-departure (AoD) estimation accuracy of the proposed squint robust

training and the benchmark beam training method 2 for different training bandwidths.
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training.
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This filter is required by IA regardless of sounding beam design. Secondly, the proposed

approach sequentially estimates parameters and avoids multi-dimensional grid search. This

feature is particularly appealing in wideband operation since the savings as compared to the

benchmark training method 2 whose complexity scales with P , number of subcarriers.

2.9 Discussion on open issues

In this section, we discuss relevant issues in practical implementation of compressive IA and

beam training.

Required a priori knowledge: Firstly, this work assumes coarse timing is available. It

would be also important to study the case when timing is completely unknown, i.e., there

is no a priori information about the range of εT in (2.1), which could cause SSB index

misalignment to occur. Secondly, the compressive approach requires precise information

about the sounding beam pattern ãk in (2.21). As a results, array geometry and sounding

codebooks of both BS and UE need to be known a priori. This raises new challenges in

communication protocol design to effectively incorporate this information. It also requires

an increase in baseband operations if all dictionaries need to be computed on-the-fly. Further,

mmW testbed experiments in [150] showed that the measured beam patterns commonly have

mismatches with patterns predicted by codebook and array geometry model. Future research

should address these impairments.

Channel sparsity: The efficacy of compressive approach is affected by the sparsity level

in AoAs, AoDs, and multipath delays. Sparsity is endorsed by various mmW channel mea-

surement campaigns, and urban NLOS, which is known with unfavorable sparsity, is tested

in this work. However, severely rich scattering situation are modeled from standard per-

spective [6]. It is important for system that utilize CS-based approach to flexibly handle

situation when channel sparsity disappears.

Array architecture: This work focuses on the scenario where UE uses a single RF-chain

to process a single stream of IA signals. This allows other RF-chains, if available at BS
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or UE, to operate in the band of data communication during IA. Since [30] shows that the

hybrid analog/digital array and fully digital array are advantageous for DIA, it would be

interesting to investigate benefits of compressive IA and beam training algorithm when they

are adapted to utilize multiple RF-chain.

MIMO Multiplexing: The proposed beam training is compatible with multi-user mul-

tiplexing. In fact, multiplexing designs [16, 198] rely on each RF–chain and corresponding

analog beamformer to provide adequate post-BF SNR, and use the digital baseband process-

ing to handle multi-beam interference. However, as mentioned in Remark 1, the comparison

with channel estimation based approaches, i.e., estimation of the entire wideband channel

or its covariance during CSI-RS for optimal MIMO processing, is rarely investigated.

Phase coherency: To date, there is no coherent CS-based beam training prototype re-

ported in mmW band. The only notable prototype [31] operates at 8 GHz with two phased

arrays synchronized by cabled reference clock. Prototype [26] utilizes channel emulator

to avoid issue of phase coherency. In addition to CFO, as emphasized in this work, the

phase noise can also severely degrade coherency among channel observations. The phase

noise detrimental impact becomes more severe with increased carrier frequency and shall be

properly modeled and incorporated in signal processing techniques for mmW [190]. Proper

phase noise compensation as well as non-coherent CS-based beam training [81, 141,142] are

naturally immune to phase error and are worth investigation.

2.10 Conclusions

In this work, quasi-omni pseudorandom sounding beam is proposed for the mmW initial

access, synchronization, and beam training. We design associated signal processing algo-

rithm based on the proposed sounding beam structure that is compatible with 5G-NR frame

format. We provide theoretical analysis of cell discovery rate and CRLB of beam training

performance, and evaluate them via simulations using the mmW hardware and urban chan-

nel models from the literature that are supported by measurements. The results show that
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the proposed approach provides comparable performance to the state-of-the-art directional

cell search for initial discovery, but achieves significantly more accurate angle estimation

during initial beam training. This advantage holds true across different propagation con-

dition (LOS/NLOS) and UE-BS distance at 28 GHz band. Due to the saving of additional

radio resource, i.e., CSI-RS, for beam refinement, the proposed approach reduces up to two

order of magnitude access latency compared to the directional initial access when the same

signaling overhead and post-training beam steering SNR are targeted. An enhanced beam

training algorithm that is robust to beam squint is proposed for future mobile network evo-

lution when increased IA channel bandwidth is considered. The proposed squint robust CS

based beam training algorithm is able to retain non-compromised AoD estimation accuracy

and beamforming gain across a wide range of beam training bandwidths.

All numerical results are reproducible with scripts in [178].
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CHAPTER 3

Implementation of Machine Learning Assisted

Compressive Beam Alignment

3.1 Introduction

The mmW communication is a promising technology for future wireless networks, includ-

ing 5G-NR and 60 GHz Wi-Fi. Due to abundant spectrum, mmW networks are expected

to support ultra-fast data rates. As shown in both theory and prototypes, mmW systems

requires BF with large antenna arrays and narrow beams at both the transmitter (Tx) and

receiver (Rx) to combat severe propagation loss. Before data communication, directional

beams must probe the channel to select a beam pair with adequate beamforming gain. This

procedure is referred as beam alignment1. Existing mmW systems use analog phased arrays

with beam sweeping, an exhaustive search approach, for beam alignment. However, this

method introduces high communication overhead. Further, the required number of channel

measurements linearly scales with number of antenna elements, a design parameter expected

to increase with the evolution of mmW networks. In this work, we present the design and

implementation of compressive beam alignment, a framework that accelerates beam align-

ment by allowing channel probing to logarithmicly scale with antenna array size. A neural

network assisted design addresses the challenge of non-trivial model mismatch due to ar-

ray hardware impairment. Our implementation achieves near perfect beam alignment in

our experiment with a 60 GHz testbed and reduces 92.2% of the overhead as compared to

exhaustive beam sweeps. To the authors’ best knowledge, this is the first work to demon-

1It is also referred as beam training. However, we reserve training as a machine learning terminology in
this chapter.
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strate machine learning based beam alignment using a 60 GHz phased array testbed and real

measurement data.

The rest of the chapter is organized as follows. Section 3.2 surveys mmW fast beam

alignment designs and proofs-of-concept. In Section 3.3, we present the problem statement

and the reasoning behind using machine learning to solve it. The proposed design is presented

in Section 3.4 followed by the implementation details with our 60 GHz testbed in Section 3.5.

The experimental results are presented in Section 3.6. Finally, Section 3.7 concludes the

chapter.

Scalars, vectors, and matrices are denoted by non-bold, bold lower-case, and bold upper-

case letters, respectively. The (i, j)-th element of A is denoted by [A]i,j. Similarly, The i-th

element of a set A is denoted by [A]i. Conjugate, transpose, and Hermitian transpose are

denoted by (.)∗, (.)T, and (.)H respectively. Inner product between vector a and b is denoted

as 〈a,b〉. |a| returns vector with magnitude of each element of a.

3.2 Related works

Beam alignment for mmW is an active research area. While one direction is to focus on

hardware innovations, e.g., fully-digital array and novel antenna design [69], others rely on

signal processing.

Model-based signal processing algorithms for beam alignment mainly rely on the sparsity

of mmW channels and a phased array model. From this class of algorithms, hierarchical

beam alignment and compressive sensing based beam alignment each have overheads that

logarithmically scale with array size. The former uses sounding beams that adapt with

previous measurement, bisecting the beam width to reduce the search space [53]. The latter is

based on either CS, i.e., with coherent complex sample measurements, or compressive sensing

phase retrieval (CPR), i.e., with noncoherent RSS measurements, that exploit sparsity of

mmW propagation [83, 141, 183]. However, the model mismatch due to channel and radio

hardware impairments introduces non-trivial challenges.
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Data-driven signal processing learns from extensive data to infer the best beam from vari-

ous low-overhead, in-band measurements and/or out-of-band information. In-band measure-

ments include channel impulse response estimated by omni-directionally received pilots [14]

and a proportion of exhaustive beam search results [40, 107, 166]. Out-of-band information

can be the terminal’s geo-location [84,166]. To date, these works either use a statistic channel

model [40, 107] or ray tracing simulations [84,166] to generate data.

With the increased availability of mmW testbeds, there are many proofs-of-concept.

Work [26] reports a chip-level demonstration of CS based beam alignment with a channel

emulator. Works [141,196] showcase fast alignment by solving CPR problems. Works [24,81]

design and demonstrate fast beam alignment using multi-lobe sounding beams and combi-

natorics inspired algorithms. Work [67] reports experimental work that effectively reduces

overhead when more than one spatial streams is used in a hybrid array. Finally, some pro-

totypes also rely on the side information, e.g., sub-6 GHz [124, 162] and visible light [76]

measurements, for mmW beam alignment.

3.3 Noncoherent compressive beam alignment

In this section, we start with the mathematical model and problem of non-coherent fast

beam alignment. Next, we describe the state-of-the-art model-based solutions and their

limitations.

3.3.1 System model and problem statement

We consider mmW communication between an BS Tx and a UE Rx. The BS and UE

are each equipped with an analog linear array with NT and NR elements. The channel

between them follows L-path geometric model H =
∑L

l=1 glaR(φl)a
H
T(φl), where aT(θ) ∈ CNT ,

aR(φ) ∈ CNR , and gl ∈ C are the array responses in BS and mobile terminal (MS), and

gain of the l-th path, respectively. Array responses are defined by their n-th element, i.e.,

[aR(φ)]n = exp(j2π(n−1)d/λ sin(φ)) and [aT(θ)]n = exp(j2π(n−1)d/λ sin(θ)), where d, λ, φ
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and θ are the element spacing, carrier wavelength, AoA and angle of departure, respectively.

We focus on the UE Rx side by assuming the the BS Tx AWV v = aT(θ1)/
√
NR is pre-

designed. Thus, the channel model in the rest of the chapter is

h =
L∑
l=1

αlaR(φl) ≈ α1aR(φ1) , αaR(φ?), (3.1)

where αl = αla
H
T(θl)v is the post-Tx-beam channel gain. The selection of Tx beam leads to

|α1| � |αl|, l > 1 and it results in the approximation sign in (3.1). We defined φ? as the true

AoA of the channel. When the Rx uses AWV w, the received symbol is

y = wHhs+ n, (3.2)

where s is the Tx symbol and n is the post-combining thermal noise which is modeled as

additive white Gaussian noise with variance σ2
n. Without loss of generality, we let s = 1 and

define SNR = |α|2/σ2
n.

We consider a codebook based communication protocol which consists of two phases: a

beam alignment phase and a data communication phase. The channel is unknown to UE

Rx but can be assumed invariant between these two phases. During beam alignment, the

UE Rx uses a sounding codebook, WS (with |WS| = M codewords), to probe the channel.

The associated measurements are processed to select the best beam from a fixed directional

codebook WD (with |WD| = K codewords), which is then used in the data communication.

Each codeword of directional codebook is a steering vector, i.e., [WD]k = aR(θk)/
√
NR, and

these directions {θk}Kk=1 cover an angular region of interest.

There are three additional assumptions from our implementation perspective. Firstly, the

codebookWS is loaded into hardware in advance, and each codeword is called in a sequential

manner. Adaption that uses on-the-fly measurements to change either the codebook or the

codeword selection order, e.g., a hierarchy search, is not desired. In fact, we focus on pseudo-

random sounding codebooks WS, a well adopted design from compressive sensing literature

when the Rx does not have prior knowledge of the channel [83, 141, 142, 183]. Specifically,

the magnitude of each AWV inWS is 1/
√
NR and the phase is randomly picked from a set of

{0, π/2, π, 2π/3}. These are referred to as pseudorandom noise (PN) beams in the remainder
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of the chapter. Secondly, the received symbols in (3.2) are not directly observable. Instead,

each channel measurement is taken from the preamble of a package, a sequence of pilot

symbols, in the form of RSS. Lastly, the phased array experiences hardware impairment. An

optimistic assumption is to model them as phase offset, i.e., multiplicative error e ∈ CNR

irrelevant to codeword selection [196]. With the above assumptions, the M channel probings

give RSS p = [p1, · · · , pM ]T where the m-th probing is

pm = |w̃H
mh|+ nm. (3.3)

In the equation, w̃m = diag(e)[WS]m is the receiver combiner with hardware impairment,

and nm is the error in RSS measurement. To that end, the compressive noncoherent beam

alignment problem is:

Problem Design a signal processing algorithm that uses the noncoherent measurements

p from (3.3) to infer the best directional beam for data communication, i.e., ŵ ∈ WD.

The performance metrics are the required number of measurements M and the post-

alignment gain, i.e., normalized BF gain in data communication phaseG = |hHdiag(e)ŵ|2/‖h‖2.

Note that an exhaustive search uses the same codebook for both alignment and communi-

cation, i.e., WS =WD. It is straightforward to find the optimal codeword w? = maxw∈WD
G

with overhead cost M = K. The goal is to reduce M while introducing marginal impact to

post-alignment gain as compared to an exhaustive search2.

3.3.2 Model based solution and its limitation

The beam alignment with measurement (3.3) can be formulated as a CPR problem when

the error e is assumed to be negligible, i.e.,

p = |WHh|+ n = |WHARg|+ n , |Ψg|+ n. (3.4)

In the above equation, [AR]k = aR(θk), θk is the steering directions in DFT codebook (the

AoA hypothesis), and g ∈ CK is a sparse vector with all-zero elements except the k?-th being

2With increased DFT codebook size K, beam steering with AWV w? is asymptotically the same as the
steering towards ground truth AoA φ?. Thus, we do not directly compare with the latter in this work.
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α (i.e. associated with true AoA k? = {k|θk = φ?}). The error vector is n = [n1, · · · , nM ]T.

The sensing matrix Wm is from error-free sounding AWVs [W]m = wm. The solution to

a general CPR model is guaranteed with an adequate number of measurements M , which

linearly scales with the sparsity level, i.e., non-zero elements in g, and logarithmic scales with

K [153]. Solutions to a general CPR can use convex optimizations [141,196] or approximate

massage passing [153]. Solving CPR in this work, or finding the sparsity level 1 vector g

from p, directly leads to a solution of beam alignment since the non-zero element, say k̂-th,

can simply be used to select the best beam from DFT codebook ŵ = [WD]k̂. In this special

case, the heuristic approach of received signal strength matching pursuit (RSS-MP) [142]

also applies, where k̂ = arg maxk〈p, |[Ψ]k|〉/‖[Ψ]k‖.

The key concern of existing CPR solutions is the required knowledge of Ψ in (3.4). With

hardware impairment, the sensing matrix Wm in (3.4) is composed of distorted sounding

AWVs [W]m = diag(e)wm. This can be problematic in a practical radio for three reasons.

Firstly, in the production of radio hardware, the phase offsets e are due to a common offset

among all devices and an additional device dependent offset. The former comes from phase

rotation in the printed circuit board (PCB) routing between phase shifters and antenna

ports. The latter is due to PCB fabrication variation. It is cost-effective to only calibrate

and compensate the common offset and leave device-dependent ones untreated. Secondly, the

mainlobe of DFT pencil beam is not sensitive to phase offset. Although sidelobes are more

vulnerable to distortion, they are not directly used in the mmW system with beam sweep

and beam steering. Thus, leaving a device-dependent array phase offset can be acceptable.

Lastly, the beam patterns of PN AWVs are sensitive to phase offset. Hence, using a CPR

model to directly design beam alignment is likely to experience model mismatch and degraded

performance.

The above argument is quantitatively studied in Appendix B.1. In actual radios, modeling

e is more challenging, as errors can also be associated with other array-inherent defects. An

empirical evaluation of this concern is shown in Section 3.6.
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3.4 Neural network assisted compressive beam alignment

To address the model mismatch in solving CPR due to hardware impairment, we propose a

data driven approach for beam alignment.

3.4.1 Main idea

The key insight of our approach is that, although analytically solving the noncoherent beam

alignment problem using model (3.4) is difficult, its solution can be easily found by exhaustive

beam sweep. Therefore, we can resort to a data driven approach to learn how to solve the

CPR problem (3.4) with unknown deterministic offset. The proposed system contains two

stages, each covering a much longer time scale than the beam alignment or communication

phases. We refer the first stage as the learning stage, where the radio uses a concatenated

codebook W = WD ∪ WS for multiple beam alignment phases. Specifically, the sounding

results from exhaustive search (WD) provides the solution to the beam alignment problem;

the labels in machine learning terminology. The sounding results fromWS are treated as the

features, whose statistical relationship with the labels can be extracted by machine learning

tools, e.g., neural network (NN) or support vector machine. Admittedly, the beam alignment

overhead increases by M/K as compared to exhaustive search in this stage. The beam

alignment features and labels must be collected in various environments to reliably generalize

their relationship. In a practical system, this would arise from randomness in physical

position and orientation of the MS, e.g., a phone held by a human with different posture in

different places. In fact, the learning stage can be completely ambient and does not require

dedicated interaction from the user [14]. We refer the second stage as the operation stage,

where UE only uses codebook WS for beam alignment, compressing the overhead by M/K.

The algorithm then only uses the feature to predict the label, i.e., the best beam w?.
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3.4.2 Neural network design

In this work, we designed a dense NN to classify the optimal gain DFT beam for a given

antenna position, based on PN beam RSS measurements. The network used 3 fully connected

(FC) layers, each using rectified linear unit (ReLU) activation functions. For all values of

M tested, we used the same network architecture, with 64, 128, and K units in the first

through third FC layers respectively.

Input data RSS data was expressed in linear scale and normalized by the maximum value.

These feature transformations limit the data to the range [0, 1], prevent activation function

saturation, and improve the learning performance. Batch normalization layers were also used

just before the ReLU activations in first and second FC layers as feature regularization to

improve training efficiency.

Our design used a sparse categorical cross entropy loss function to produce our clas-

sification results over the K possible DFT beam physical angle labels. For training, we

used the RMSprop optimizer with this loss function. The network architecture was imple-

mented and trained in in Keras/Tensorflow. The total number of trainable parameters in

this network depends on the input feature dimension (M) and the label dimension (K):

64M + 129K + 8768.

3.5 Implementation with millimeter-wave testbed

In this section, we start with a brief introduction to the mmW testbed, including the ca-

pability of the hardware and software. Next, we describe our implementation of NN based

beam alignment.

3.5.1 Millimeter-wave testbed

Our testbed is the Facebook Terragraph (TG) channel sounder, a pair of TG nodes cus-

tomized for measurements of 60 GHz channels. Although the testbed is designed for model-
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Table 3.1: Summary of millimeter-wave testbed

Parameters Values

RF channel IEEE802.11ad (58.32/60.48/62.64 GHz)

Array geometry Planar array (36 by 8 elements)

Array control (az) Individual phase (6 bits) & on-off control

Array control (el) Fixed beam (bore-sight)

Scan region (az) −45◦ to 45◦ (due to element gain pattern)

Beam-width (az) 2.8◦ (with directional codebook)

Max EIRP 45 dBm

Figure 3.1: Overview of the experimental testbed. (a) testbed environment. (b) receiver

setup. (c) testbed data capture procedure.

ing the channel characteristics such as the path loss, angular-power profile, and delay-power

profile, e.g., [32], its capability adequately supports the compressive beam alignment exper-

iments. The key hardware specifications of the testbed are listed in Table 3.1.

The testbed has an application programmable interface (API) that allow a host computer

to customize AWVs when transmitting or receiving packets. The API also provides measure-

ments from the received IEEE 802.11ad preamble, e.g., received signal strength indicator,

short-training field specified SNR, and long-training field specific channel impulse response

estimation. Note that although multiple automatic gain control amplifiers are involved in
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preamble measurements, a look-up table is used to make the impact of automatic gain con-

troller amplifier transparent, which indicates the fidelity of model (3.3). The array phase

offset was calibrated and compensated using a golden design instead of in a device-by-device

manner.

3.5.2 Data capture automation

As mentioned in Section 3.4, it is desired for the NN to learn from beam alignment data

collected in various of locations and physical orientations of radios. To automate this pro-

cedure, we used a programmable motor underneath the testbed receiver. We designed a 3D

printed bracket to attach the receiver to a motorized turntable kit (Servocity Gear Drive Pan

Kit) controlled by a USB motor controller (Basicmicro Motion Control Roboclaw 2x30A), as

shown in Figure 3.1b. While this design is capable of full rotational positioning, we steered

the receiver between −45◦ and 45◦ from the transmitter boresight. Figure 3.1c demonstrates

how the receiver collects different physical AoAs using the automated turntable. We coarsely

programmed the motor positions for data collection, achieving pseudo random beam align-

ment positions. Note that the motor is only used to emulate physical random movement and

holding posture of UE used by human users. No such motor is required when generalizing

this approach to actual scenarios.

3.6 Experiment and results

In this section, we describe the experiment details, including the environment and data

collection. Then, we present results from the proposed method and compare with state-of-

the-art methods.

3.6.1 Experiment details

We conducted the experiment in a LOS, suburban outdoor environment, shown in Fig-

ure 3.1a. The radios were mounted on tripods separated by approximately 14 m (91 dB
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pathloss). Although the motor changed the azimuth AoA, the elevation angle was perfectly

aligned and never changed. Similarly, the Tx directional beam was pointed towards the Rx

at all time.

During each collection period, we collected 2,000 points. Each point consisted of 100

RSS measurements using the sounding codebook W , i.e., K = 64 DFT beams such that

adjacent pencil beams overlap by a half beamwidth and M0 = 36 PN beams. Each data

capture spent3 7 s when the Rx was static, and adjacent data capture had another 2 s gap

for the motor movement to create a new LOS propagation direction. Although we collected

data for M0 = 36 PN beams, only the first M beams were used for training and testing with

compressive beam alignment algorithms. A total of 3 collection periods from three different

days were included in this chapter’s results, each with a different SNR. We changed the

SNR by modifying the transmit equivalent isotropically radiated power (EIRP) to be 31,

34, and 40 dBm, translating to median PN beam STF-SNRs of 10, 12, and 10 dB, whose

physical meaning is consistent with SNR defined in (3.2). Note that the highest EIRP data

had a low STF-SNR likely due to transmitter beam misalignment during the experiment.

After data collection, AoAs with insufficient training data (at least 20 points per SNR) were

eliminated, leaving K = 51 remaining labels. Of the data associated with the K = 51 DFT

beam labels, a total of 3,060 data points were used for training and the rest were used for

evaluation. During evaluation, the DFT sounding results were used as the ground truth to

measure beam prediction performance from compressive PN probing.

For fair comparison, the training data was also available to the solution that analytically

solves CPR. Note that when using Ψk in (3.4) as collected labels of training data, the system

can estimate |w̃H
maR(θk)|, i.e., the magnitude of dictionary Ψk. Although such estimates

cannot be directly used in CPR as phase information of Ψ are missing, they help the RSS-

MP algorithm. Hence, we refer to the vanilla RSS-MP as one that uses only the model

predicted dictionary, and dictionary refined RSS-MP as the one enhanced by training data.

3Since the latency of testbed API is not optimized, our goal is to achieve beam alignment with a com-
pressed number of channel probings instead of high speed.
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Figure 3.2: Measured and model predicted beam pattern of a discrete Fourier transform

pencil beam and a pseudorandom sounding beam.

Also, note that our best efforts in applying the convex optimization based CPR solution led

to unsatisfactory performance, likely due to the imperfect knowledge of the sensing matrix

Ψ when the PN sounding codebook is used. [196] reported a similar finding.

3.6.2 Experiment results

The captured data allowed us to coarsely evaluate the beam pattern of the testbed. The

beam pattern |w̃HaR(θ)|2 at angle θ is measured by training data whose DFT beam exhaus-

tive search gives θ. The pattern at each θ is statistically evaluated with 20 data points. A

comparison between the measured pattern and model predicted pattern |wHaR(θ)|2 is pre-

sented in Figure 3.2, showing an example DFT pencil beam and an example PN beam. The

results verify the arguments in Section 3.3.2. Although the hardware impairment causes

little distortion in the mainlobe of DFT pencil beam, DFT sidelobes and lobes of the PN

beam are susceptible to larger distortion.

Using the neural network described in Section 3.4.2 with the experimental data, we
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Figure 3.3: Test accuracy as a function of the number of pseudorandom beam measurements

M for 3 training set sizes.

achieved very good accuracy for most desired numbers of measurements M . Figure 3.3

shows the classification accuracy of the K = 51 DFT beams used for 4 ≤ M ≤ 6. When

using M ≥ 6, the test accuracy saturates around 89% for the full training set. Figure 3.3

also shows the network performance with three training set sizes. Performance does improve

with more training data, but the benefit saturates with increasing training set size.

The post-alignment BF gain loss is presented in Figure 3.4 with a comparison of three

algorithms using PN sounding results to predict best DFT beam for data communication.

Vanilla RSS-MP suffered from the mismatched dictionary information and thus had the poor

performance. Even with M = 20 channel probings, vanilla RSS-MP had more than 8 dB

gain loss at the 90th percentile. Dictionary refinement improved RSS-MP. With M = 15

measurements (76.6% overhead savings), it sacrificed less than 2 dB BF gain in 90 percent

of test cases. The proposed NN based approach provided further savings, requiring only

M = 5 measurements (92.2% overhead saving) for comparable post-alignment gain. In fact,

we observed 0 dB gain loss for 50 percent of test cases because the NN classification accuracy

is above 50 percent for M ≥ 4.

In Figure 3.5, we compare the required number of measurements as a function of array

size for the dictionary refinement improved RSS-MP and proposed algorithms using exper-
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Figure 3.4: The post-alignment beamforming gain loss (as compared to a full exhaustive

search with K = 64 measurements) as function the number of pseudorandom beam probings

M . The best 50th percentile and 90th percentile are shown.

imental and simulation data. The simulation used the same PN sounding AWV realization

as in the experiment, but did not include array hardware impairment. By comparing these

two scenarios, we found the following three conclusions. Firstly, the required overhead of

compressive beam alignment scaled logarithmically with array size, an appealing property

for future mmW systems. Secondly, the proposed method effectively learned how to solve

CPR and provided more accurate beam alignment than RSS-MP even in the simulations

without model mismatch. This indicates RSS-MP is a sub-optimal solution of CPR, un-

surprising as it is a heuristic algorithm. Lastly, the NN had no performance loss in the

experimental implementation, unlike RSS-MP, because the data driven approach is immune

to model mismatch due to array imperfection.
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3.7 Conclusion and future works

In this chapter, we present a compressive beam alignment scheme that utilizes machine

learning to address implementation challenges due to hardware impairment. The results

demonstrate that compressive beam alignment has potential to significantly reduce the re-

quired number of channel probings. Our implementation on a 60 GHz testbed demonstrates

an order of magnitude overhead savings with marginal post-alignment beamforming gain

loss, as compared to exhaustive beam sweeps. It also outperforms purely model-based com-

pressive beam alignment in the experiment.

There are open questions in this area. The approach and results of this chapter have yet

to be generalized to more sophisticated mmW channels, e.g., non-line-of-sight. Further, the

use of compressed channel probing to predict more information like an exhaustive search,

e.g., multiple steering directions in multipath environments, has yet to be studied. Finally,

a comparative study of different sounding codebooks, e.g., multi-lobe beams [24, 81], with

consideration to array impairment and joint design of the codebook and beam alignment
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algorithm with other machine learning tools are of interest.
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CHAPTER 4

Rainbow Beam based Single-Shot Beam Training using

True-Time-Delay Array

4.1 Introduction

The mmW communication is a promising technology for the future cellular network including

5G-NR. Due to abundant spectrum, it is expected that the mmW network will support ultra-

fast data rates. As shown in both theory and prototypes, mmW systems requires BF with

large antenna arrays at both BS and UE to combat severe propagation loss. The directional

beam requires angular channel information for steering direction of analog beams. Such

information is typically acquired by beam training in standardized mmW systems, including

IEEE 802.11ad/ay [65] and 5G-NR [48]. However, with increased array size and reduced

beam width, the training overhead increases. The challenge of overhead becomes more

severe in the future mmW and sub-terahertz systems where the array size is expected to

further increase due to carrier frequency increase [140].

The mmW beam training is an active research area. In the exhaustive sounding scheme,

transceivers use one pair of pencil beams at a time. This approach has prohibitive overhead

with increased array size. In the multi-stage sounding based scheme, transceivers adapt

their beamwidth and pointing angle based on the training results of the previous stage [160].

However, its performance degrades with larger path number or user number. In the pseu-

dorandom sounding based scheme, transceivers use pseudorandom beams and compressive

sensing to exploit the sparse scattering nature of mmW propagation. Although promis-

ing results are reported, this approach faces implementation challenges [83]. The above
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schemes use a single analog beam at a time. Steering multiple beams simultaneously can

accelerate beam training. Existing approaches either require to use multiple RF-chains [51],

fully digital architecture [29], or utilize leaky wave antenna [93], which introduce additional

hardware complexity. Meanwhile, the TTD array architecture is an emerging array design

for wireless communication systems, particularly in mmW and sub-terahertz bands [104].

Recent research of TTD arrays focus on mitigating squint distortion in beam steering of

ultra-wideband signals [80, 147]. The frequency-controlled beam steering capability of this

architecture [123] is overlooked and the beam training tailored for TTD array is rarely in-

vestigated.

In this work, we present the theory and signal processing algorithm of an one-shot beam

training scheme using TTD array. Firstly, we derive the TTD array based mmW wideband

system model with CP based OFDM waveforms. We show that TTD arrays can apply unique

AWV to different subcarriers with a single RF-chain. Such beam is referred as rainbow beam.

Secondly, we analyze the TTD array based rainbow beam steering and derive the relationship

between subcarrier frequencies and the corresponding steering directions in the closed form.

The required delay tap spacing of TTD arrays and number of subcarriers to simultaneously

scan the entire angular space are also analytically determined. Thirdly, we design a novel

low-complexity signal processing algorithm to exploit the TTD array for beam training. We

conduct numerical evaluation using mmMAGIC channel model at 28 GHz for both LOS and

NLOS [9]. The results show that the proposed approach can achieve accurate beam training

using a single OFDM training symbol.

The rest of the chapter is organized as follows. In Section 4.2, we present the TTD array

architecture and the mathematical system model for wideband beam training. Section 4.3.1

includes the analysis and design of TTD array sounding beams for simultaneous angle scan,

followed by beam training algorithm in Section 4.3.2. The numerical results are presented in

Section 4.4. Finally, Section 4.5 concludes the chapter and highlights open research questions.

Scalars, vectors, and matrices are denoted by non-bold, bold lower-case, and bold upper-

case letters, respectively. The (i, j)-th element of A is denoted by [A]i,j. Conjugate, trans-
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Figure 4.1: Illustration of the transceiver and channel model.

pose, Hermitian transpose, and pseudoinverse are denoted by (.)∗, (.)T, (.)H, and (.)† respec-

tively.

4.2 System model

This section introduces the system model of wideband beam training and problem formula-

tion.

Consider a 5G-like single cell system with a BS equipped with NT antennas. The system

utilizes CP-OFDM with sampling duration Ts (bandwidth BW = 1/Ts, M subcarriers, and

cyclic prefix length Ncp). The beam training pilots are denoted as X[m], where m is the index

of subcarrier. The beam training occurs in the downlink where BS transmits beamformed

signal over mmW sparse multipath channel to UEs. We focus on the design where UE is

equipped with TTD array with single RF-chain and NR antennas. We assume a single stream

of the training signal transmitted by the BS, that can use any array architecture1. During

sounding, the BS transmitter use AWV v ∈ CNT .

We consider the geometric multipath channel. The time domain channel between the

1Typically BS is equipped with multiple RF-chains. We assume they are used for other purposes, e.g.,
serving other users.
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q-th transmitter antenna and the n-th receiver antenna is denoted as

hq,n(t) = ρ

L∑
l=1

glpc (t− Γl,q,n) (4.1)

where ρ =
√
NTNR/L is the normalization factor, L is the number of multipath component

(MPC)2. Function pc(t) is the time domain response filter due to limited hardware band-

width. Scalars gl and Γl,q,n are the complex gain of the l-th MPC and propagation delay from

the q-th transmitter element to the n-th receiver element via the l-th MPC, respectively. In

this work, we focus on system where antenna array is linearly arranged with half wavelength

spacing (corresponding to center frequency fc). Thus, the delay Γl,q,n is modeled as

Γl,q,n = τl −
(q − 1)λc sin

(
φ

(T)
l

)
2c

+
(n− 1)λc sin

(
φ

(R)
l

)
2c

.

As illustrated in Figure 4.1, τl is delay between the first transmitter and the first receiver

array element due to the l-th MPC. φ
(T)
l , φ

(R)
l , λc = c/fc and c are the AoD and AoA of the l-

th MPC, wavelength of carrier, and the speed of light, respectively. At the UE receiver, each

element introduces time domain thermal noise which is modeled as additive white Gaussian

noise n(t) with zero mean and spectral density N0/2.

In principle, the TTD circuit block introduces constant group delay3 to the received

signal. Denoting this delay as τTTD,n in the n-th array element, such module has impulse

response

hTTD,n(t) = δ(t− τTTD,n). (4.2)

Based on the above model, the received OFDM symbol after analog TTD array is determined

by the following proposition.

2In the realistic mmW channel model, e.g., mmMAGIC [9], the number of MPC L is in the order of
dozens to hundreds. Although some existing works exploit the clustering nature of MPC and deliberately
reduce L, this work does not require assumption of sparsity.

3Delays can be introduced by transmission line [123]. But a more promising approach is to use digitally
controlled analog circuits to apply delay either in RF [43] or baseband [64].
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Proposition 3. The received OFDM symbol of the m-th subcarrier is

Y [m] = wH
TTD[m]H[m]vX[m] +N [m], (4.3)

The combiner specified by TTD arrays wTTD[m] ∈ CNR is frequency dependent, i.e., its n-th

element as

[wTTD[m]]n = exp (j2πfmτTTD,n) . (4.4)

where the RF frequency of the m-th subcarrier is denoted as fm, i.e.,

fm =


fc + m

M
BW, 0 ≤ m < M

2

fc − BW
2

+
(m−M2 )

M
BW, M

2
≤ m < M

. (4.5)

The channel at the m-th subcarrier H[m] ∈ CNR×NT is

H[m] = ρ

[
L∑
l=1

g̃l

(
M−1∑
i=0

e−j
2πim
M pc(iTs − τl)

)

· aR

(
θ

(R)
l , fm

)
aH
T

(
θ

(T)
l , fm

)]
.

(4.6)

In the above equation, g̃l = glexp(−j2πfcτl) is the channel gain. The array responses

aR(φ
(R)
l , fm) and aT(φ

(T)
l , fm) are defined by their n-th and q-th element as[

aR

(
φ

(R)
l , fm

)]
n

=exp
[
−jπ(n− 1)(fm/fc) sin

(
φ

(R)
l

)]
,[

aT

(
φ

(T)
l , fm

)]
q

=exp
[
−jπ(q − 1)(fm/fc) sin

(
φ

(T)
l

)]
.

This model holds true so long as the CP is longer than the cumulative delay of both MPC

and TTD circuits, i.e.,

NcpTs > max
l,q,n

Γl,q,n + max
n

τTTD,n, (4.7)

The frequency domain noise N [m] is Gaussian distributed with zero mean and variance

E|N [m]|2 = N0BW/(2M).

Proof. See Appendix. C.1
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Remark1: Following the derivation in Appendix C.1, it is straightforward to generalize

Proposition 1 to system where transmitter also uses TTD array.

In this work, we focus on the system design where TTD array introduces uniformly spaced

delay taps during beam training, i.e., τTTD,n = (n−1)∆τ where ∆τ denotes the delay spacing

and it meets condition ∆τ > 1/(2fc). With straightforward mathematical manipulation,

the receiver beamforming gain at direction α for the subcarrier with frequency fm can be

expressed G(α, fm) = N−1
R |wH

TTD[m]aR(α, fm)|2

G(θ, fm) =
1

NR

∣∣∣∣∣sin
[
NRπ

2
(2fm∆τ + (fm/fc) sin(θ))

]
sin
[
π
2

(2fm∆τ + (fm/fc) sin(θ))
] ∣∣∣∣∣

2

. (4.8)

In this work, we assume that pilots subcarrier have non-zero power when subcarrier

indices are in set M, i.e., X[m] 6= 0,m ∈ M. Further, the transmit pilots have unit power

constraint as
∑M−1

m=0 |X[m]|2 = M .

We address two problems in TTD array based beam training.

Problem 1 (TTD sounding beams design): The objective is to design delay tap spacing

∆τ and number of subcarriers M such that the sounding beams of subcarriers scan the

entire angular region. In other words, for arbitrary AoA θ, there is at least one subcarrier

which has sufficient beamforming gain in its direction. Mathematically, our goal is to find

the feasible set S of design parameters such that sounding beamforming gain does not drop

below (1− ε)NR for the least favorable AoA θ:

S =
{

(∆τ,M)
∣∣min

θ
max
m

G(θ, fm) ≥ (1− ε)NR

}
. (4.9)

Problem 2 (TTD array based beam training): Using the design parameters from S, the

objective is to design beam training pilots M and signal processing algorithm to estimate

dominant propagation directions from a single received symbol Y [m]. In this work, we focus

on the receiver beam training and assume transmitter beamformer v has been aligned with

AoD.
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4.3 True-time-delay array based beam training design

In this section, we present the TTD based rainbow sounding beam design and beam training

algorithm.

4.3.1 Analysis and design of rainbow sounding beams

We first analyze the frequency dependent receiver gain function (4.8). Denote Ψ = 2fm∆τ +

(fm/fc) sin(θ), the following observations are made [164, Chapt 7.2.4].

• G(Ψ) has a peak at Ψ = 0.

• G(Ψ) is a periodic function of Ψ with period 2.

Based on the above properties, the center of the sounding beam corresponding to subcarrier

fm, i.e., θ?m = arg maxθG(θ, fm), is given in the following proposition.

Proposition 4. Given delay tap spacing ∆τ , an approximation of the pointing direction of

sounding beam that corresponds to the m-th subcarrier is

θ?m ≈ sin−1 (mod(2fm∆τ + 1, 2)− 1) , (4.10)

where mod() is the modulo operation.

Proof. This is by solving Ψ = 2z, z ∈ Z with given ∆τ and fm. The closed form solution

(4.10) is available by using the approximation fm/fc ≈ 1,∀m in Ψ.

Next, we discuss the design of delay tap spacing ∆τ and number of subcarriers M for a

given BW in problem 1. For this purpose, we define ε-beamwidth as Ω(ε,NR) such that

G(Ψ) ≥ (1− ε)NR, Ψ ∈ [−Ω(ε,NR),Ω(ε,NR)] (4.11)

for a given required sounding gain factor 1 − ε and receiver array size NR. Note that the

specific value of Ω(ε,NR) can be found numerically, e.g., 3dB-beamwidth is Ω(0.5, NR) =

0.886/NR [125, Chapt 22.7]. Note that directly solving problem 1 is challenging. In the

following proposition, we show a subset of the solution of problem 1.
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Proposition 5. A subset of S, denoted as Ss, is

Ss =

{
(∆τ,M)

∣∣∣∣∆τ ≥ 1

BW
+

1

2fc
,M ≥

BW∆τ + BW
2fc

Ω(ε,NR)

}
. (4.12)

Proof. See Appendix C.2.

In the system where BW � fc, the condition on delay tap spacing ∆τ can be relaxed

and the critical value is ∆τ = 1/BW. With such delay tap spacing, the critical value of

required number of subcarriers is M = d1/Ω(ε,NR)e where ceiling operator dae gives the

smallest integer that is greater than a.

4.3.2 Rainbow beam based beam training

Using the proposed TTD rainbow sounding beams, the beam training is greatly simplified.

Effectively, UE receiver only needs to configure TTD array based on predefined delay tap

spacing ∆τ during the scheduled time slot for beam training. A lookup table (LUT) can

be constructed based on (4.10), which contains the pointing direction of all training pilots

m ∈ M and sounding directions. During training, the UE measures the reference signal

received power (RSRP) of the pilots, i.e.,

mbest = arg max
m

|Y [m]|2 (4.13)

and use the index of subcarrier that has highest RSRP mbest and LUT (4.10) to estimate

AoA, i.e.,

φ̂(R) = θ?mbest
. (4.14)

The proposed TTD array beam training approach has an interesting relationship with

PAA receiver beam training, when TTD delay tap spacing ∆τ = 1/BW and fc∆τ ∈ Z.

In fact, the proposed simultaneous multi-beam can exactly represent DFT and oversampled

DFT sounding beams, which is commonly used by PAA receiver. In the DFT beam based

training procedure, the PAA receiver uses AWV

[wPAA,k]n = exp[j2π(n− 1)k/K] (4.15)
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for the k-th training symbol, and it requires a total K OFDM training symbols (usually K

is greater than NR and it is power of 2). Comparing (4.4) and (4.15), it is straightforward

that the TTD receiver can mimic this procedure by utilizing M = K subcarriers in a single

OFDM training symbol.

It is worth noting that the total number of subcarriers M is in the order of magnitude

of receiver array size NR when system intends to obey minimum condition in proposition 3

or mimic PAA beam training. However, the total number of subcarrier in practical mmW

system needs also accommodate coherent bandwidth, and therefore it can be much larger

than NR. As such, the TTD array based system needs to use subcarrier selection scheme.

Based on (4.4), the following two TTD systems are identical: 1) system has a total number

of subcarrier M and training utilizes all subcarriers m < M ; 2) system has a total number

of subcarrier MR for some R ∈ Z and training utilizes subcarriers within setM = {mR|0 ≤

m < M}. With this feature, the proposed system is directly extendable to existing mmW

protocols.

4.4 Numerical results

This section presents the numerical results of the beam pattern and the performance of the

proposed beam training.

Figure 4.2 shows an example of the TTD array based simultaneous multi-beam and design

parameters that follow Proposition 3. The simulation utilizes carrier frequency fc =28 GHz,

bandwidth 400 MHz, delay tap spacing ∆τ =2.5 ns, and NR = 8 receiver antennas. The

number of subcarrier M = 8 is designed based on constraint 1 − ε = 0.4 (4 dB loss), the

corresponding δ(ε,NR) = 0.1266, and M = d1/δ(ε,N)e. The figure shows that the gain of

sounding beams meet the constraint for the least favorable AoA. It also verifies the relation-

ship between subcarrier frequencies and the center of sounding beams in (4.10).

The beam training performance of the proposed BF training algorithm in a pure LOS

channel, i.e., number of MPC is L = 1, is presented in Figure 4.3. The simulation parameters
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Figure 4.2: Example of true-time-delay (TTD) array based frequency dependent beam pat-

tern in the logarithmic scale. In the left figure, different colored curves show beam patterns

G(θ, fm) for subcarriers fm. In the right figure, the purple curve, the red circle, and the black

dashed curve illustrate the function maxmG(θ, fm), minθ maxmG(θ, fm), and gain constraint

1− ε, respectively.
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are identical to previous case, except the system has NT = 64 transmitter antennas and

NR = 16 receiver antennas. Furthermore, a total of M = 2048 subcarriers are used. The

SNR is defined as post-transmitter-beam SNR across all band, i.e.,

SNR =

∑
m ‖H[m]v‖2∑
m E|N [m]|2

.

The simulation follows the concept of frequency resource block in cellular systems [48].

Namely, when a subcarrier is used as the pilot, the 12 neighbor subcarriers are also used.

The beam training utilizes only a single OFDM symbol. We use normalized post training

beamforming gain as a metric, i.e., N−2
R |aH

R(φ̂(R))aR(φ
(R)
1 )|2. The figure shows that a smaller

number of used subcarriers provides improvement in the low SNR regime, because more

power is loaded in the corresponding pilots. However, it limits the training resolution of

the proposed algorithm, and therefore the post training gain saturates in high SNR regime.

Using an increased number of subcarriers improves performance in the high SNR regime,

but the benefit saturates when the sounding beam number is more than 2NR.

The post-beam-training spectral efficiency is shown in Figure 4.4. Particularly, the evalu-

ation utilizes QuaDRiGa simulator [90] with mmMAGIC 28GHz channel model [9] in urban

micro (UMi) LOS and NLOS environments. The number of MPC L in these two scenarios

are 41 and 79, respectively. In the TTD array based system, 32 frequency resource blocks

and 1 OFDM symbol are used for beam training. A benchmark system that uses a PAA

receiver with same array geometry is used for comparison. The PAA receiver utilizes beam

training AWV from sampled columns of a 32 by 32 DFT matrix when receiving the training

symbols. The same frequency resources and power are used in the training pilots for both

systems. In the LOS environment, the proposed system is equivalent to the benchmark using

2NR training symbols. Severe performance degradation is observed in the PAA with small

number of training symbols, since the DFT beams fail to scan entire angular domain. In

the NLOS environment, the proposed TTD array beam training method is outperformed by

the PAA with the same angular coverage, i.e., using 32 symbols, by a small margin. This is

because PAA provides robustness to the frequency selective channel gain when conducting

wideband power measurement during beam training. In summary, the evaluation in realistic
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Figure 4.3: Post-beam-training gain of the proposed true-time-delay array rainbow beam

training algorithm in pure line-of-sight environment.

mmW propagation channels reveals that the proposed method can use order of magnitude

smaller number of training symbols as compared to PAA with DFT sounding beams.

4.5 Conclusions and future works

In this chapter, we present a fast beam training scheme that utilizes true-time-delay based

millimeter-wave array. Exploiting the frequency dependence of this array architecture’s

antenna weight vector, the system can simultaneously scan multiple angles via frequency

resources, and thus greatly accelerate the beam training procedure. We derive the condition

for delay tap spacing and the required number of subcarriers. Based on these novel sounding

beams, a one-shot, low-complex beam training algorithm is developed. The simulation results

reveal that the proposed method utilizes a single training symbol to complete beam training.

Such feature is appealing in the future mmW systems where conventional phased array based

beam training meet increased training overhead due to increased array size.

78



-30 -20 -10 0 10

SNR [dB]

0

2

4

6

8

S
p
e
c
tr

a
l 
E

ff
ic

ie
n
c
y
 [
b
p
s
/H

z
]

TTD, 1 symbol

PAA, 32 symbols

PAA, 16 symbols

PAA, 8 symbols

PAA, 4 symbols

-30 -20 -10 0 10

SNR [dB]

0

2

4

6

8

S
p
e
c
tr

a
l 
E

ff
ic

ie
n
c
y
 [
b
p
s
/H

z
]

QuaDRiGa UMi LOS

QuaDRiGa UMi NLOS

Figure 4.4: Post-training spectral efficiency comparison between the proposed true-time-de-

lay array based system and system with the phased antenna array (PAA) and discrete Fourier

transform (DFT) sounding beams.
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There are many open questions in TTD array based signal processing and transceiver

design. Firstly, the feasibility of TTD array based simultaneous multi-beam in 3D environ-

ment with planar array remains unknown. Secondly, it is of interest to exploit the frequency

dependent AWV of TTD arrays to develop algorithms for super-resolution beam training,

channel estimation, and covariance estimation in mmW wideband system. Lastly, it is of

critical importance to understand the impact and required specification of hardware in RF

and mixed signal domain for power efficient operation of TTD arrays.
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CHAPTER 5

Comparative Study of Millimeter-wave Transmitter

Array Architecture

5.1 Introduction

The mmW communications is a promising technology for the future 5G-NR cellular network

[35,131]. In the United States, the Federal Communications Commission has voted to adopt

a new Upper Microwave Flexible Use service in the licensed bands, namely 28 GHz (27.5-

28.35GHz band), 37 GHz (37-38.6GHz band), 39 GHz (38.6-40GHz) with a total 3.85 GHz

bandwidth [57]. The abundant spectrum facilitates key performance indicators (KPI) of

5G, including 10Gbps peak rate, 1000 times higher traffic throughput than the current

cellular system [21]. As shown in theory and measurements, mmW signals suffer higher free-

space transmission loss [70], and is vulnerable to blockage [137]. As a consequence, radios

require BF with large antenna arrays at both BS and UE to combat severe propagation

loss [139]. This makes reliable communication range short and as a consequence, mmW BSs

will be deployed in an ultra-dense manner with inter-site distance in the order of hundreds

of meters [27, 33]. Due to these facts, performance, energy, and cost efficiency in the future

mmW BS radios become more important than ever before.

Implementation and deployment of transceiver arrays in sub-6GHz have shown great

success. In the 4G-LTE system, BS supports up to 8 antennas [1] and arrays with even larger

size are being actively prototyped [156] and will be soon available in the LTE-A PRO (the pre-

5G standard). Those systems exclusively have digital array architecture based on a dedicated

radio-frequency transceiver chain, with data converter and up/down-conversion, per each
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antenna, and rely on digital baseband for array processing. Many implementation challenges

arise in scaling up array size [148] by an order of magnitude or more required for mmW

bands. System designers are also concerned about the high cost and power consumption

in digital array architecture with massive number of RF-chains and ultra-wide processing

bandwidth [163].

Recently, an emerging concept of hybrid array has been proposed. A hybrid array uses two

stage array processing. The analog beamforming implemented with variable phase shifter

(PS) provides beamforming gain and the digital beamforming in the baseband provides

flexibility for multiplexing multiple user streams [17,78]. As a result, hybrid arrays support

an RF transceiver count which is smaller than the array size. Such an architecture intends to

reduce the power and cost penalty due to numerous transceivers. Based on the connectivity

between RF-chain and antenna, there are two major variations, fully-connected hybrid array

and partially connected hybrid array. Although both architectures were used for radar

application [85] and were introduced for telecommunication application as early as a decade

ago [195], they have recently gained much attention for mmW radios. Signal processing

techniques, including channel estimation and beamforming, using hybrid architecture have

been comprehensively studied [83]. Proposals for using hybrid architectures in mmW 5G

have been considered in standardization organizations [176].

A handful comparative analyses exists for different mmW array architectures, with an

emphasis on the signal process algorithms [11, 100, 116, 176]. Authors in [134] discussed

circuits design challenges in implementing energy-efficient digital arrays. The relationship

between spectral efficiency (SE) and energy efficiency in partially-connected hybrid architec-

ture is studied in [62,78,82]. Works [116,165] provided comparison among array architectures

and concluded that hybrid architecture can achieve higher energy efficiency than fully digital

ones in the regime of point-to-point communication. Future 5G system, however, will cer-

tainly use multi-user multiplexing to provide higher network throughput. Moreover, existing

works did not study trade-offs among array size, transmit power, and specifications of key

circuit blocks in the three architectures. However, system designers need to understand these
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trade-offs and hardware implications to develop energy and cost efficient mmW systems [34].

This work aims to fulfill this gap. We intend to compare different array architectures

in a comprehensive manner by considering trade-offs among capacity, energy and area effi-

ciency. Specifically, we compare array architectures based on the criterion of achieving same

capacity. All design trade-offs are carefully considered in reaching most efficient design in

all architectures which meets the requirement of typical 5G use cases. Power consumption,

including analog processing energy and digital computation energy, and integrated circuits

(IC) area are then compared based on state-of-the-art circuits. We provide several design

insights on scaling laws and the bottlenecks in each architecture which allow us to predict a

trend for future wireless demands and technology scaling.

The chapter is organized as follows. In Section 5.2, we briefly introduce emerging mmW

array architectures and typical 5G use cases. In Section 5.3, we discuss design trade-offs

in all array architectures and the designs used for comparison. In Section 5.4, we study

implementation issues in antenna arrays and their impact on different architectures. In

Section 5.5, we present the state-of-the-art specifications of mmW beamforming circuits

blocks and system level power consumption and IC area of the three architectures. Numerical

results and open research questions are presented in Section 5.6 and Section 5.7, respectively.

This leads us to the general conclusions in Section 5.8.

5.2 Comparative framework

In this work, we focus on the comparison of transmitter antenna array architectures in a 5G

mmW BS . We first introduce three commonly considered array architectures and summarize

recent silicon implementations. Then, we describe the metrics used for comparison of the

three architectures.
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Figure 5.1: Three transmitter array architectures that are considered in this work.
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5.2.1 Array architectures

There are three transmitter array architectures that are considered for adoption in 5G mmW

system. Figure 5.1 depicts block diagrams of digital array and two variations of hybrid array,

partially-connected hybrid array (we denote it as sub-array in this work), and fully-connected

hybrid array. Key design parameters for each architecture are:

• Transmit power in all array elements: P (out)

• Number of antennas: N

• Number of RF-chains: M

• Number of simultaneous streams: U (U ≤M).

• Number of bits in DAC: B

• Number of bits in phase shifter: Q. This only applies to hybrid arrays.

In the rest of the chapter, we use digital array (DA), sub-array (SA) and fully-connected

hybrid array (FH) when referring to digital array architecture, sub-array and fully-connected

hybrid array architecture, respectively. Mathematical symbols with subscript indicate pa-

rameters associated with the specific architecture, e.g., NDA represents number of antennas

in digital array. The main differences among three array architecture are:

• Digital Array: As shown in Figure 5.1(a), NDA antennas in DA are connected to MDA

RF-chains, i.e., NDA = MDA. The beamformer precoding occurs in the baseband (BB)

digital signal processor (DSP).

• Sub-Array: The SA consists of multiple phased arrays. As shown in Figure 5.1(b),

NSA antennas are partitioned into MSA group, each of which has one dedicated RF-

chain, KSA PS, variable gain amplifiers/attenuators (VGA), and power amplifier (PA)s.

The array size, group number, and number of elements in a group follows relationship

NSA = MSAKSA. Using phase shifters, each group can transmit a beam towards specific
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direction and SA is capable of transmitting/multiplexing up to MSA simultaneous

beams. When the required number of beams USA is smaller than MSA, multiple array

groups can form a virtual group. The increased array size for that specific beam

provides better beamforming performance, e.g., higher gain and narrower beam-width.

DSP facilitates precoding multiple beams in the baseband.

• Fully-Connected Hybrid Array: This architecture is also known as overlapped sub-array

[85], multibeam active phased array [108], and high definition active antenna system

[28]. Similar to SA, the FH architecture uses phase shifters for analog beamforming

and DSP for digital beamforming. However, FH has different connecting structures

between RF-chains and phase shifters. As shown in Figure 5.1(c), each of MFH RF-

chains connects with all NFH antennas via NFH phase shifters. Combiner networks

are used to add MFH RF signals before passing through the PAs. As a consequence,

a total of MFHNFH phase shifters are required in this architecture. FH is capable of

transmitting up to MFH simultaneous streams.

Recent IC implementations of all three architectures are summarized in Table 5.1, in-

cluding complementary metal–oxide–semiconductor (CMOS) and other technology. Apart

from array in 28 GHz band, Table 5.1 includes implementation in 60 GHz band for mmW

indoor access, mmW backhaul and radar, because they share the same array architectures.

Directly comparing array architectures from the table is difficult, because they use different

silicon technology, and not all circuits components, e.g., local oscillator (LO) and associated

up/down-conversion circuits, low-noise amplifier (LNA), and PA, are integrated. It is worth

noting that SA and FH architectures in Table 5.1 implement phase shifters in the RF do-

main. A comprehensive survey of phase shifter implementations is covered in [133], including

phase shifters in analog baseband, LO, and RF domain. Moreover, system level prototyping

of 28 GHz arrays together with field test can be found in [176,188].

There are other architectures that have been recently proposed, e.g., switch based antenna

array [120] and lens antenna array [39]. Due to the lack of implementation details available

in the literature, we do not include quantitative analysis of them in this work.
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Table 5.1: Silicon implementations of millimeter-wave array architectures
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5.2.2 Comparison metrics under 5G use cases

5G is characterized by a wide variety of use cases having different environments, communica-

tion distances, and performance requirements. Performance, in turn depends on connectivity

density (defined as number of simultaneous connections for one wireless service operator in

an given area), peak rate, and network traffic throughout. It is our vision that the mmW

BS should be capable of using the same radio front-end arrays to handle various use cases

and meet their demands.

We choose three representative use cases [10]: Dense Urban enhanced mobile broard

band (eMBB), 50+Mbps Everywhere, and Self-Backhauling. They cover different MIMO

processing schemes of transmitter array.

• Dense Urban eMBB: In dense urban area, large number of UEs require high-speed

connections for applications like streaming, high-definition videos, and downloading

files. According to 5G KPI requirement [10], the connection density is expected to

be 150,000 connections per square kilometer, while the traffic throughput is up to

3.75Tbps/km2 in such scenario. A typical 5G mmW BS deployment setting has inter-

site distance of 200 m and each BS has 3 radio sectors [2]. With 850 MHz spectrum at

28 GHz band, the required SE in this use case is up to 58.8bps/Hz. Such a scenario often

involves LOS environment and relatively good SNR is expected for each UEs so that

SE greatly benefit from high multiplexing. We anticipate that at least 8 simultaneous

streams are required1.

• 50+Mbps Everywhere: mmW electromagnetic waves are extremely vulnerable to block-

age. Despite this, BS in the 5G mmW network need to sustain baseline performance

(up to 100Mbps data rate [10]), even for those UEs under unfavorable propagation con-

ditions. The 5G KPI requirement [10] also indicated that the connection density is up

to 2,500 connections per square kilometer. With the same BS deployment assumption

1Till the time of writing, there is no specification for multiplexing in 5G mmW system. However, 8
streams are commonly used as assumption in the literature [173, 198]. Meanwhile, the next generation of
60 GHz indoor wireless system also targets to use 8 spatial streams [66].
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as discussed in the previous use case, the required SE is 4.7bps/Hz. Due to a NLOS

environment, severe propagation loss exists and more than 20 dB beamforming gain is

required to close the link budget. Due to the requirement of high beamforming gain,

we anticipated up to 8 simultaneous streams are adopted in this use case.

• Self-Backhauling: To facilitate ultra-dense mmW BS deployment, BSs are required

to connect to core network through a backhaul link. Since the large array allows

interference isolation in the spatial domain, it is expected that 5G BS is capable of

using the same spectrum for both access and backhauling, which is refereed as self-

backhauling. Self-backhauling using radio for 5G access significantly reduces cost of

setting up high-speed fiber. We consider a scenario where mmW BS transmits uplink

data of its local network to a macro-BS receiver which connects to core network. With

assumption of one macro-BS deployed in every square kilometer, the self-backhauling

link has up to 707m communication distance [130]. In this use case, LOS environment

is assumed and 10Gbps rate is targeted by single data stream.

For fair comparison of power consumption and area among array architectures, each

array architecture has to deliver the same target SE. In Table 5.2, the system parameters

and link budgets are summarized, with a set of possible data streams number U and the

corresponding signal-to-interference-plus-noise ratio (SINR) that reach SE objectives are also

listed. In the Section 5.3, we study on the impact of design parameters on SE performance of

different architectures and mainly focus on number of streams U , array size N and required

transmit power P (out). The power consumption and hardware resources comparison are then

presented based on state-of-the-art device specifications.

5.3 Transmitter array design parameters

In this section, we discuss the impact of array design parameters on the SE performance of

mmW multi-user MIMO system. We provide the design specification of components in array

architectures to meet the SE requirement for each use case.
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Table 5.2: Link Budget Estimation in Typical 5G Use Cases

Use Case Dense 50+Mbps Self-

Urban Everywhere Backhauling

Channel Situation Umi-LOS Umi-NLOS Uma-LOS

Freq. [GHz] 28 28 28

BW [MHz] 850 850 850

Distance [m] 100 100 707

Tx Power [dBm] 46.0 46.0 46.0

Tx Element Gain [dBi] 3.0 3.0 3.0

Pathlossa [dB] 104.4 125.1 118.3

Other Lossb [dB] 12.7 25.3 17.0

Rx Gain [dB] 12.0c 12.0c 27.1d

Rx Noise Figure [dB] 10.0 10.0 10.0

Rx Noise Power [dBm] -74.7 -74.7 -74.7

SNR w/o Tx Array [dB] 18.7 -14.7 15.5

Target SE [bps/Hz] 58.8 4.7 11.8

Design Objective Examples

Simultaneous {8, 16, 32} {2, 4, 8} 1

Streams (U)

Per-UE {22.1, 10.7, 4.1} {6.2, 1.0,−3.0} 35.5

SINR [dB]

a. Based on 3GPP model for above-6GHz band. [6].

b. Includes 3σ shadowing and 25mm/h rain absorption [25].

c. Based on 8 receiver antennas and 3dBi antenna gain.

d. Based on 256 receiver antennas and 3dBi antenna gain.

e. Based on equation SE = U log2(1 + SINRu).
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5.3.1 System model of millimeter-wave multi-user MIMO

We consider a mmW system where a BS of interest transmits data to multiple UEs in mmW

access or a hub in mmW self-backhauling. Both transmitter and receiver are equipped with

antenna array. Linear precoding techniques over flat fading channel are considered. In case

of frequency selective channel, the precoding can be extended using OFDM by considering

per sub-carrier precoding. In the baseband equivalent model, the received symbol at the uth

UE is denoted as

yu = wH
uHuR(Bs + zT) + wH

u zR. (5.1)

In the above equation, vector s = [s1 · · · , sU ] contains the U symbols. Matrix Hu is the

MIMO channel between transmitter and uth UE receiver. Vector wu represent the combining

beamforming at the uth receiver. B and R denote the precoding scheme in the baseband

and RF domain on the transmitter side, respectively. The transmit noise due to DAC

quantization error is denoted as zT and thermal noise at the receiver is zR. Operation aH is

the Hermitian transpose of a.

In DA architecture, the precoding occurs entirely in digital baseband and therefore there

is no analog processing, i.e., RDA = I. The digital precoder BDA has dimension NDA × U .

In SA architecture, the digital precoder BSA has dimensionMSA×U due toMSA RFchains.

The RF precoder RSA has dimension NSA ×MSA. Due to the fact that every KSA of phase

shifters connect to one RF-chain, RSA is a block diagonal matrix

RSA = diag (rSA,1, · · · , rSA,M) , (5.2)

where column vector rSA,m with length KSA represents KSA phase shifters that connect to

the mth RF-chain. Each element of rSA,m has unit magnitude2. We define the set Sm =

{(m− 1)KSA + 1, · · · ,mKSA} that contains indices of array elements in the mth group.

In FH architecture, the digital precoder BFH has dimension MFH × U . The analog

precoder matrix RFH has dimension NFH ×MFH and its mth column rFH,m represents the

2In fact, analog precoding can be designed with both phase and magnitude tuning capability, which
relaxes this constraint. The hardware aspect of phase shifter is discussed in Section V-C.

91



phase shifting from NFH phase shifters connected to the mth RF-chain, i.e.,

RHF =
[
rHF,1 rHF,2 · · · rHF,MFH

]
. (5.3)

each element in RFH has unit magnitude.

We make the following assumptions. Firstly, the channel information Hu is known to

both transmitter and receivers. A practical way of channel estimation can be found in [83].

Secondly, each UE receiver is equipped with a phased array with only one RF-chain. As a

consequence, BS assigns one data stream to each UE receiver. Thirdly, all receivers have

the same pre-beamforming SNR and BS assigns equal power among data streams. Fourthly,

the combining vector of each receiver wu is chosen as the primary left eigenvector of channel

matrix Hu after magnitude normalization in each element.

The SINR at the uth receiver array is denoted as

SINRu =
‖gu‖2

σ2
n,rx + σ2

n,tx + σ2
int

(5.4)

where the signal power gain gu is given by gu = arg ming E‖yu − gsu‖2. All signal, noise,

and interference powers are relative powers, referenced to 46dBm transmit power based on

Table 5.2. As a consequence, receiver thermal noise power E‖wH
u zR‖2 = σ2

n,rx is treated as

constant in each use case. The multi-user interference is σ2
int = E‖yu − gusu‖2.

In the remaining of the sections, we discuss how to design array parameters for each

architecture to reach targeted SINR for three use cases.

5.3.2 Array size and transmit power gain

In principle, increased transmit power P (out) and array size N both improve signal power

gain gu in (5.4). Effectively, they provide higher EIRP and help achieve target SINR from

Table 5.2.

In DA and FH, output power of each PA P (out)/N is split into U parts due to multiplexing

and even power allocation. Thus each stream in each PA has output power P (out)/(NU).

The coherent summation of N -elements via beamforming provides N2 times increased power.
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In SA, however, PAs are partitioned into groups to amplify different streams. For each

stream, each PA element outputs P
(out)
SA /NSA, while the beamforming gain is N2

SA/U
2. As a

consequence, maximum output signal power after beamforming in each architectures is

GDA =
P

(out)
DA NDA

U
,GSA =

P
(out)
SA NSA

U2
, GFH =

P
(out)
FH NFH

U
. (5.5)

It is clear that SA is in an disadvantage in terms of signal power gain. SA requires to

use more array elements, output power, or both for the comparable output power to DA and

FH architectures.

5.3.3 Precoder design

Given maximum signal output power G, the the precoder determines the actual signal power

gu and multi-user interference σ2
int in (5.4). In this subsection, we discuss precoding tech-

niques for three architectures.

In DA architecture, maximum ratio transmission (MRT) and zero-forcing (ZF) are two

commonly used linear precoding approaches. The former maximizes the signal strength

at destination and approaches maximum gain discussed in Section 5.2.1, while the latter

eliminates multi-user interference. It is commonly believed that because mmW signals suffer

from severe propagation loss, the interference is generally less troublesome than sub-6GHz

systems. However, the interference from transmitted sidelobes, if not properly handled, can

still affect the achievable rate at receivers. In this work, we propose to use regularized ZF

beamforming [129], where the introduced regularization coefficient αDA facilitates controlling

both signal strength and interference at the receiver.

BDA = κDAGH
DA(GDAGH

DA + αDAI)−1, (5.6)

In the above equation, GDA is the post-combining multi-user channel with the uth row as

{GDA}u = wH
uHu. The regularization coefficient αDA controls the behavior of the precoder,

i.e., MRT when it approaches positive infinity and ZF when it approaches zero. One can

expect SINR maximization when αDA is selected to be the largest with constraint that σ2
int �
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Figure 5.2: Two-stage precoding in sub-array and fully-connected hybrid array architectures.

The analog precoder steers spatial beams towards intended receivers. The digital precoder

uses regularized zero-forcing over effective channel to handle interference.

σ2
n,rx. Power scaling parameter κDA is used to guarantee total transmit power constraint

‖BSA‖2 = P
(out)
DA .

Precoding approaches with SA and FH architectures are currently actively investigated

by researchers and are mostly for systems where analog beamformer has phase-only tun-

ing capability. The optimal hybrid precoding is a mixed integer programming problem and

its optimal solution must be solved via potentially exhaustive search. Many sub-optimal

methods have been proposed for near optimal performance, e.g., works in [16] for FH archi-

tecture. In [16], the analog precoder is selected to point beams towards directions of intended
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receivers. The digital precoder is then used to handle associated interference among beams

synthesized by phase shifters. In the following paragraphs regarding precoding algorithm for

SA and FH, we adopt assumption of phase-only analog precoder.

In SA architecture, we propose to use the following approach as a modification of FH

beamforming in [16] and the scheme is illustrated in Figure 5.2(a). We first merge adjacent

MSA/U phase shifter groups in SA into one virtual group. It leads to NSA/U array elements

within each virtual group in an ideal scenario3. The input signal of RF-chains within a

virtual group are exactly the same. Let us denote set Vu as one that contains index of

physical array groups within the uth virtual group. The analog beamformer is chosen to

synthesize beams towards primary propagation direction to U receivers

rSA,m = exp
[
j∠
(
{HH

uwu}Sm
)]
,m ∈ Vu. (5.7)

In the above equation, ∠({a}Sm) selects elements from vector a according to indices from set

Sm and finds phases of selected elements. Let us denote the effective channel as GSA which

contains the effect of receiver combiner and RF precoder in multi-user channel. The mth row

is defined as {GSA}m = wH
mHmRSA. Note the effective channel GSA is the channel between

digitally precoded stream and UEs . As a consequence, the digital precoding problem in SA

can be solved in the regularized-ZF framework

BSA = κSAGH
SA(GSAGH

SA + αSAI)−1 (5.8)

The power scaling coefficient κSA is used to meet total output power constraint, i.e.,

‖RSABSA‖2 = P
(out)
SA .

Similar to precoding in the digital array, the regularization coefficient αSA is chosen to

maximize SINR.

The precoding scheme in FH architecture is illustrated in Figure 5.2(b). Only U out of

MFH RF-chains are turned-on to provides U streams. Without loss of generality, the first U

3Ideal scenario is defined when the ratio MSA/U is an integer. Using a reduced number of arrays can be
used when it is not valid, but this scenario is not considered for simplicity.
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RF-chains are active and the analog precoder is

rFH,u = exp
[
j∠(HH

uwu)
]
, u ≤ U. (5.9)

The digital precoder in FH is a regularized ZF over GFH, the effective channel that contains

the receiver combining and RF precoding in the multi-user channel

BFH = κFHGH
FH(GFHGH

FH + αFHI)−1. (5.10)

The uth row is defined as {GFH}u = wH
uHuRFH. Similar to precoding in the SA architecture,

κFH is the power scaling coefficient for ‖RFHBFH‖2 = P
(out)
FH and αFH is the regularization

coefficient.

5.3.4 Digital-to-analog converter precision

The transmit noise in (5.4) comes from the quantization error due to DACs with finite

precision. A practical system design uses sufficient quantization precision such that the

transmission noise level stays well below the receiver thermal noise. Different architectures

require different values of effective number of bits (ENOB) for such goal. The required

ENOB in three architectures are

B̃DA =

PAPR− 1.76 +D + 10 log10

(
P

(out)
DA

σ2
n,rx

)
6

B̃SA =

PAPR− 1.76 +D + 10 log10

(
P

(out)
SA

σ2
n,rx

NSA

U2

)
6

B̃FH =

PAPR− 1.76 +D + 10 log10

(
P

(out)
FH

σ2
n,rx

NFH

U

)
6

(5.11)

for transmit noise to be D dB lower than AWGN. In the above equation, peak-to-average

power ratio (PAPR) represents the PAPR of the input signal of each DAC. Note that these

expressions are accurate when DAC quantization errors are uncorrelated, which may not be

valid with small number of bits, e.g., B = 1 bits. Derivations of (5.11) are provided in the

Appendix D.1.
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Figure 5.3: The required total transmit power P (out) with different number of array elements

(N) to reach spectral efficiency target in three typical 5G use cases.

Equation (5.11) together with (5.5) indicates following facts. Firstly, with fixed signal

power gain GDA, DACs precision in DA architecture can be reduced by increasing array

size and decreasing transmit power. For SA and FH, however, the transmit noise remain

constant regardless of the source of signal power gain. Secondly, with the same signal power

gain and transmit power, DA architecture has lower requirement in DAC quantization as

compared to SA and FH.

5.3.5 Phase shifter precision

In both SA and FH architectures, finite resolution of phase shifters leads to a changed power

level of sidelobes and shifted location of nulls, as compared to system using ideal devices.

More importantly, the locations of main lobe varies and associated signal gain drops. One

might expect highly precise phase shifters are required to accurately control beams. In

this subsection, we discuss the impact of finite resolution of phase shifters on SA and FH

architectures.

The former issue regarding the distorted sidelobes is less troublesome in both SA or FH

transmitter array architecture. Sidelobes lead to multi-user interference as seen from the off-

diagonal elements in the effective channel GSA and GFH. When system is aware of potential

interference, digital precoding stage can be used to effectively suppress them. A practical way
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Figure 5.4: Spectral efficiency performance with quantization on the baseband precoding and

digital-to-analog converter (DAC). Three architectures use 256 array elements and output

power is adjusted according to Figure 5.3. The baseband precoding uses fixed point operation

with precision 2 bits greater than associated DAC quantization which ensures negligible

degradation as compared to baseband precoding with floating point operation.

to acquire the information of effective channel is via a training procedure where BS and UE

use quantized analog beamformer to exchange pilot symbols and estimate effective channel

GSA and GFH. This training procedure is similar to the multi-beam scheme proposed for the

next generation of mmW indoor system [66]. Meanwhile, the gain reduction due to finite

phase shifter resolution is not severe either. In fact, the gain degradation is lower bounded

by 0.68 dB, 0.16 dB and 0.04 dB with Q = 3, 4, 5 bits quantization of phase shifters and does

not scale with the array size or multiplexing level. An analysis that supports these numbers

is provided in the Appendix D.2. Equivalently, the gain degradation is bounded by 0.16 dB

so long as angle error of phase shifters are no larger than 11.25◦. Such specifications are not

difficult to meet in state-of-the-art devices as it will be discussed in Section 5.5.3.

5.3.6 Simulation results

In this subsection, simulation results are presented to show the required design parameters

to reach SE target in three array architectures.

In the simulation, 3D mmW MIMO channel between BS and U UEs are generated accord-

ing to mmW sparse scattering model [16]. The channel between BS and each UE consists
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of 20 multi-path rays in 3 multipath cluster and LOS cluster, if exists, is 10 dB stronger

than the rest. AoA and AoD of clusters are uniform random variables within azimuth range

[−60◦, 60◦] and elevation range [−30◦, 30◦]. Azimuth and elevation AoA and AoD of rays

within a cluster have random deviations from the cluster specific AoA and AoD, and they

follow zero mean Laplacian distribution with 10◦ standard deviation. In dense urban eMBB,

a scheduler is assumed such that the LOS paths of all target receivers are unique [68]. The

mean SE is evaluated by taking average of SINR in (5.4) over U UEs and use Shannon

capacity formula, i.e., SE =
∑U

u=1 log2(1 + SINRu). The data streams used in the simulation

are Gaussian distributed and their magnitudes are truncated such that PAPR is 10 dB.

With ideal hardware, the required transmit power P (out) to reach SE target with various

antenna size N and number of data streams U in three architectures are shown in Figure 5.3.

We first focus on how transmit power changes with parameter N and U . Increasing array

size N is effective in reducing transmit power in all scenarios since it helps improve both

signal gain and interference control from narrow beams. When interference from multi-beam

is negligible, the transmit power saving from increasing U depends on difference between the

SINR target reduction in Table 5.2 and signal gain dropping in (5.5). For example, when the

number of spatial streams U increases from 2 to 4 and 4 to 8 in eMBB, the SINR requirement

reduces by 5.2 dB and 4 dB. Meanwhile, the signal gain changes by 3 dB, 6 dB and 3 dB in

DA, SA, and FH, respectively. Therefore DA and FH save around 2.2 dB and 1 dB P (out) and

SA is forced to use around 0.8 dB and 2 dB higher P (out). It is also true in high-N regime of

DA and FH in the Dense Urban eMBB. When the number of spatial steams U increases from

8 to 16 and 16 to 32, the SINR requirement reduces by 11.4 dB and 6.6 dB. Therefore the

power saving at N = 1024 is around 8.4 dB and 3.3 dB for both DA and FH. Power saving

is more difficult to predict when system needs to trade power gain for interference control.

Therefore the transmit power saving from increasing U with smaller antenna N and large

multiplexing U is less accurately using the above analysis.

Then we focus on the comparison between array architectures. There is one universal

conclusion that holds true for DA and FH in all scenarios. DA and FH have the same
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maximum signal gain when P (out) and N are the same according to (5.5). In simulation, FH

actually requires near 1 dB higher P (out) than DA in all scenarios. This gap is due to the

loss from the two-stage precoding of FH. Further exploiting hardware capability, e.g., using

phase-and-magnitude analog precoders, and designing better hybrid precoding algorithm in

FH would reduce this gap.

Next, we compare array architectures in each use case. In self-backhauling where data

stream number U is constraint by point-to-point environment, SA has the same performance

as FH as both architectures become the same in model (5.1). They both require 1 dB

higher transmit power than DA. Secondly, the difference of required transmit power between

architecture can by analyzed by (5.5) in 50+Mbps Everywhere. Equation (5.5) reveals that

SA has U times lower power gain than other architectures and it is shown in the figure that

that SA requires U times higher P (out) than FH for the same performance. Equation (5.5)

predicts the gap between curves well in the since there is negligible interference with small

number of beams. Thirdly, in eMBB use case the required transmit power gap between SA

and FH in Dense Urban eMBB meet (5.5) when N is large, i.e., SA requires to use 9, 12, 15dB

higher P (out) than FH when U = 8, 16, 32 beams are used. However, the transmit power gap

between SA and FH deviates from what (5.5) predicts when N is small. This deviation is

due to power gain and interference control trade-off. Dense Urban eMBB features a large

number of simultaneous data streams and the mutual interference among streams becomes

system bottleneck when beam-width is not small enough.

With U = 8, the transmit power gap between SA and FH increases from 9 dB to 13 dB

when N reduces from 1024 to 64. The additional 4 dB gap is the cost of controlling inter-

ference in SA, because the SA uses nearly U times wider beam to carry each data stream

as compared to FH. Further, the BB precoding of SA is forced to sacrifice more gain for

interference control. With U = 32, the gap reduces from 9 dB to 6 dB when N reduces from

1024 to 64. One may expect each data stream in SA is carried by wide beams with N/U = 2

antennas and conclude the opposite results. However, with U = 32 data streams, each RF-

chain is connected with at most N/U = 2 antennas and such architecture is effectively a
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Figure 5.5: Spectral efficiency performance with quantization on radio frequency phase

shifter of sub-array and fully-connected hybrid array. Both architectures use 256 array

elements without baseband and digital-to-analog converter quantization error and output

power is adjusted according to Figure 5.3. for target spectral efficiency.

digital array. In fact, the BB precoding stage in SA facilitates each stream to be transmitted

by nearly all antenna elements and improves the signal gain. In fact, the intuition of hybrid

precoding approach [16] may not be true and a better hybrid precoding scheme tailored for

this regime would provide more additional power saving for SA.

With finite precision in the baseband precoding, DAC and phase shifters, the SE per-

formance is shown in Figure 5.4 and Figure 5.5. For clarity, all array architectures use 256

antenna elements and the transmit power P (out) in each architecture is chosen such that it

delivers the same SE performance as in quantization free cases. Figure 5.4 shows the required

quantization bits in BB precoding and DAC and it matches with the analysis. According

to (5.11), the required ENOB for transmit noise to be D = 15 dB lower than AWGN in the
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Dense Urban eMBB with U = 8 streams are 5.1, 8.0, and 7.7 in DA, SA, and FH architec-

tures, respectively. The SE improvement in Figure. 5.4 is saturated once DAC quantization

bits are beyond these values. Equation (5.11) also precisely matches with Self-backhauling

use case where DA, SA, and FH requires 5.8, 10.0, and 10.0 ENOB, respectively. It is worth

noting that the additive quantization error model becomes inaccuracy when the analytical

ENOB from (5.11) is significantly small. For example, equation (5.11) estimates that system

requires 1 to 4bits for the most scenarios in 50+Mbps Everywhere, while the required ENOB

from simulation is close to 5bits. A rule-of-thumb is to use at least 5 bits. Note that this

inaccuracy regime of (5.11) does not affect power consumption estimation of the system,

because the direct current (DC) power of DAC does not effectively reduce by using less than

5 bits due to the fixed hardware overhead and it is discussed in details in Section. 5.5.1.

Moreover, the precision requirement in BB precoding and DAC of DA is in general lower

than hybrid architectures throughout all scenarios and it suggests a system level power

consumption saving. Last, Figure 5.5 shows that with the hybrid precoding approach in

Section 5.3.3, the SE performance is negligibly affected by phase shifter quantization and it

matches with our analysis in Section 5.3.5.

In summary, for the same target SE performance, DA requires a reduced transmit power

or number of array elements as compared to SA and FH. Besides, the DAC quality of DA

is relaxed as compared to the hybrid architecture. A fair comparison among architectures

cannot overlook these factors by restricting architectures to use the same transmit power,

number of array elements, or specification of hardware components. The design parameter

trade-off analyzed in this section leads to a more practical comparison in Section 5.6.

5.4 Hardware design challenges of transmitter array

In this section, we discuss practical hardware design of mmW arrays with different archi-

tectures. We first introduce the distributed array processor module. Then, the necessary

circuits blocks for BB signal and RF signals distribution are discussed.
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Figure 5.6: The proposed millimeter-wave antenna array circuits layout plan of three archi-

tectures. The functionality of transceivers arrays are divided into a centralized processing

integrated circuits (Central Proc. IC), multiple distributed processing integrated circuits

(Distr. Proc. IC) and power amplifiers which are close to patch antenna elements to re-

duce millimeter-wave signal Loss. Other abbreviations used in the figure include baseband

modulation (BB Mod.), anti-aliasing low-pass filters (LPF), transmitter/receiver multiplexer

(mux), reference clock (Ref CLK), amplifiers (Amp.), and repetitions of elements (reps).

5.4.1 Distributed array module

The conventional MIMO system integrates array processing module in an IC and delivers

RF signal to antennas. Such centralized design may not be practical in mmW system with

massive number of antennas. With a compact and centralized IC, mmW signals routed to

hundreds of array elements suffer severe insertion loss4. Besides, the heat dissipation becomes

a concerns for a centralized solution. Moreover, array size scalability becomes challenging

since adding more elements requires completely new processing module.

A practical solution is to implemented processing hardware for antenna arrays in a dis-

4The wavelength at 28 GHz band is 10.7 mm, 256 antennas in a square alignment with half-wavelength
require at least 7327mm2.
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tributed manner [134]. In DA and SA, each IC in a processing module integrates the pro-

cessing circuits for KDA and KSA antennas and is located close to these antennas. Although

a centralized digital processor is still necessary for some baseband functionality, e.g., symbol

mapping and channel coding, the digital baseband precoding can be implemented in each

distributed module. With such design, the system needs to deliver U digital signal streams

rather than M digitally precoded signal streams to the processing modules [134]. It offers

a significant saving of baseband signal distribution throughput given M � U in DA and

SA. The DAC, up-converter and RF signal processing are also included in the processing

module. The digital signals from central processor are routed and recovered through Serial-

izer/Deserializer (SerDes) sub-system in each of the processing modules. Note that the exact

value of elements integrated in an IC affects system area and energy. But the discussion of

that is beyond the scope of this work. The patch antenna is directly attached on the PCB.

The illustration of distributed DA hardware implementation is shown in Figure 5.6. In

the remaining of the chapter, power consumption and cost estimation of DA system is based

on design where each module contains KDA = 8 antenna elements and associated processing

circuits. Each DA module contains SerDes, voltage-controlled oscillator (VCO) within a

phase-locked loop (PLL), and RF-chains and T/Rx multiplexers. The power amplifiers

for 5G mmW applications are expected to be built in non-silicon material, as shown in

Section 5.5.4 and they are placed next of DA processing IC.

The illustration of SA implementation is illustrated in Figure 5.6. In SA, each module

has processing circuits for KSA antenna elements. Each of them contains SerDes, VCO and

phase shifter networks.

There is no priori work on FH implementation with larger than 8 antennas. The RF

signal routing is a challenging task in FH architecture, because the input signal for each

antenna element is a combination of signals from all RF-chains. The most viable approach

we could anticipate is illustrated in Figure 5.6. Opposite of DA and SA architectures, routing

loss cannot be reduced by distributing RF-chains into a closer position, since their outputs

are required to be delivered to entire PCB board. In the proposed design, each array module
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integrates a combining network and delivers the combined signal to nearby antenna elements.

It also contains RF amplifiers to compensate for insertion loss during the RF signal routing

and combining.

In all array architectures, routing digital baseband signal and RF signals plays a critical

roles. We discuss associated challenge and solutions in the next subsections.

5.4.2 Baseband signal distribution

The digitally precoded sample streams require to be routed into each processing module

by serial-link transceivers in all array architectures. The state-of-the-art SerDes supports

data rates over 50Gb/s using PAM-4 signaling in wireline chip-to-chip communication. The

specific design of SerDes system is beyond the scope of this work. In Section 5.5, we use the

specifications of ultra-high-speed transceivers.

5.4.3 Radio-frequency signal distribution

Multiple circuit components introduce non-negligible insertion losses that need to be carefully

handled by system designers.

• PCB and Inter-Connectors Loss: RF signal suffers from interconnect loss between the

silicon chip RF ports and the antenna elements. The low-loss PCB board, such as RO

3000 series and 4000 series, 28 GHz signal have 1.25dB/inch insertion. Besides, each

IC chip require to be placed on organic or ceramic substrate (interposer) to distribute

the chip ports to a ball-grid array and it has an additional 1 to 2 dB distribution loss.

This implementation loss needs to be pre-compensated before the RF signal is fed into

antenna.

• Intra-Chip Transmission Lines Losses: RF signal loss in silicon is significant at mmW

band. According to [200], there is up to 0.6dB/mm transmission line loss at 28 GHz.

The length of transmission line is proportional to the IC size but exact value is deter-

mined by actual IC design. According to a 60 GHz array design [199], phase shifter
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and Wilkinson RF splitter take most of the IC area. The intra-chip routing loss can be

roughly estimated by taking into account the required area of those components. With

the practical components size in Section 5.5, the loss in an SA module with KSA = 32

phase shifters is less than 1 dB but up to 3 to 4 dB for FH since each RF-chain dis-

tributes signals into hundreds of phase shifters that require dozens of millimeters square

area.

• Power Splitters and Combiners Loss: In the analog beamforming stage of SA and

FH architectures, output signals of RF-chains need to be fed into phase shifter net-

work for phase rotation. The Wilkinson power splitters are commonly used for such

purpose [97, 117, 199]. Moreover, the fully-connected hybrid architecture uses same

Wilkinson structure to combine multiple RF signals before power amplification. An

ideal power splitter/combiner introduces 3 dB insertion loss in each of the one-to-two

splitter (1:2) or two-to-one combiner (2:1) unit. Practical design often has an additional

1 dB implementation loss. It results in a 4 log2(KSA) dB power drop in the SA architec-

ture. For FH architecture, the splitters and combiners introduce total 4 log2(NFHMFH)

dB loss.

All the above RF insertion losses lead to an reduced EIRP at the antenna and therefore

need to be properly compensated. The detailed distribution budget in all architectures is

discussed in Section. 5.5.4.

5.5 Hardware power and cost modeling

In this section, we first provide the power and cost model of necessary circuits blocks based

on a survey of the state-of-the-art circuits design and measurement. The power consumption

contains DSP module for precoding, SerDes, mixed signal components, and RF components.

Note that other hardware blocks such as power supply, active cooling may consume consid-

erable power [22]. We omit them in this work since these are constant hardware overhead.

Then, examples are provided for signal distribution budgets calculation in order to determine
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necessary RF amplifiers to compensate insertion loss. Finally, we summarize the total power

and cost calculating formula for all architectures operating with different design parameters.

5.5.1 Digital signal processing power

Due to large bandwidth, the array processing in the digital baseband needs to support such

high throughput. The DSP for array processing mainly consumes power for digital precoding

and digital signal routing. Note that tasks such as channel coding, higher layer processing in

the communication standard stack are not included since they have equal power consumption

for all architectures. Channel estimation and precoder computation are also omitted since

they occur at time scale that is several orders of magnitude longer than symbol duration.

The DSP power estimation contains linear precoding and 4096 point inverse DFT5. The

precoding requires multiplication of M × U complex matrix with U × 1 complex vector.

It has 6UM fixed points operations. Note that the number of operation does not change

with different design choices of NFFT, because the number of precoder slices in sub-carriers

and symbol duration change. The latter consists of log2(NFFT) = 12 complex multiplication

per sample per RF-chain, and it results in 6 × 12M × BW operations per second. We use

the figure-of-merit (FOM) of digital backend FOMDSP = 13GOPS/mW in 40 nm CMOS as

state-of-the-art fixed point digital computation efficiency [194]. As a consequence, the power

consumption in the digital precoding is

PPrecoding =
(6UM + 72M)× BW

FOMDSP

(5.12)

where BW is the signal bandwidth. The power consumption PPrecoding has unit Watt.

The power of SerDes system is modeled in the following equation

PSerDes = FOMSerDes × BWOS × ENOB× U (5.13)

In the above, ENOB is the required precision in the digital precoding and DAC of mmW

transmitter and its value is determined according to the analysis in (5.11) and Figure 5.4.

5We assume NFFT = 4096 point inverse-DFT for 850 MHz signal bandwidth to achieve subcarrier spacing
240 kHz [4]
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PSerDes scales with the number of independent data stream U due to the distributed digital

precoding. The figure-of-merit of SerDes is adopted as FOMSerDes = 10mW/(Gb/s) [47] in

this work. Note here we use BWOS as the oversampled data rate after considering a factor

of 2 oversampling ratio, i.e., BWOS = 1.7GS/s.

5.5.2 Power model of mixed signal components

In Section 5.3.4, we analyze the impact of DAC quantization in different array architecture.

The DAC power consumption is mainly determined by the sampling frequency and effective

number of bits. The total power consumption in each DAC is computed using the following

equation

PDAC = FOMDAC ×
(
2ENOB × BWOS

)
+ Pbuffer (5.14)

where PDAC has unit. BWOS and are similarly define in (5.13). The state-of-the-art speci-

fication of DAC is FOMDAC = 0.08pJ/conversion [121]. A constant hardware overhead for

signal amplification is modeled as Pbuffer = 10mW for −14dBm output signal power. There-

fore further reducing precision has limited power saving benefits when Pbuffer dominates.

5.5.3 Power model of radio-frequency circuit components

In this section, we estimate the required power consumption in the RF IC, including the

power for signal amplification and analog array processing for hybrid architecture. The

components are phase shifter, LO using PLL, mixer, RF amplifier for gain compensation,

and the power amplifier for transmission.

• LO and mixer: The phase noise of an oscillator is inversely proportional to the power

dissipated [134]. The state-of-the-art VCO design [54,55,58,59] facilitates phase noise

lower than -110dBc/Hz at 1MHz by using less than 30mW DC power consumption,

and system performance is not affected by such noise specification [98]. Considering

the required buffer at the output, the power consumption of VCO block can be PVCO =

60mW for each element. Mixer can be made by active or passive devices. Practically,
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passive mixers are easier to implement and have better linearity and noise. Mixers

require enough LO signal power to be driven. In this work, we select the input LO

power to be at least -5dBm and the power consumption of mixer is PMixer = 10mW.

The total power consumption of LO is PLO = 70mW

• Phase shifter: RF phase shifting can be implemented in various ways, see [133] for

a comprehensive survey. The state-of-the-art work uses reflective-type phase shifter

(RTPS) and switch-type phase shifter (STPS) as main approaches of passive PS [63,77,

97,113,157]. Such approaches use delay line with controllable length to generate desired

phase shifting. Although nearly zero DC power consumption is required, passive PS

often has high insertion loss and large IC area due to the delay line. The active approach

uses vector modulator (VM), which consists of variable gain amplifier in both In-Phase

and Quadratic RF path to generate a complex gain as magnitude adjustment and phase

shifting coefficient. VM requires active devices and has higher power consumption than

STPS or RTPS. Meanwhile, VM requires less IC area [117,158, 199]. In this work, we

use VM for building block of hybrid architecture and the power model is PPS = 10mW

with 2 dB gain.

5.5.4 RF signal amplification power

The RF signals amplification has two categories: gain compensation amplifier and power

amplifier.

• RF amplifier: Gain compensation amplifiers are used to compensate insertion loss in

the analog beamforming for hybrid architectures. As discussed in Section 5.4, hybrid

architectures require to distribute up-converted RF signal into phase shifter networks.

During this procedure, insertion loss is introduced in power splitter, transmission line

and power combiner. These losses need to be properly compensated in order to deliver

sufficient radiated signal power at the antenna. From the cost perspective, it is better

to provide the gain before power splitting occurs since it requires fewer number of
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amplifiers. However, it raises the linearity concern of CMOS amplifier. As it is shown

in the next subsection, a large hybrid array has more than 20 dB insertion loss in

the distribution route and in order to pre-compensate such loss immediately after up-

conversion leads to a severe nonlinear distortion in RF signals. A practical design

typically places amplifiers in a hierarchical manner along RF signal distribution route

[199]. Besides, the gain compensation amplifiers need to be carefully designed and

their power consumption cannot be overlooked. The power model adopted in this work

considers gain compensation amplifier design from [200], where each amplifier has up to

15 dB gain with PAmp = 40mW power consumption. Note that active combining [117]

is an alternative approach that combines RF signal in current mode using low-noise

amplifiers. Although insertion loss can be avoided, there is power consumption in each

combiner. We do not discuss this approach in details.

(a) Distribution Budget in DA  Architecture (b) Distribution Budget in SA  Architecture

(c) Distribution Budget in FH Architecture
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Figure 5.8: The signal distribution budget example of three array architectures.

• Power amplifier: Power amplifiers consume large amount of power in current base-

stations operating in sub-6GHz band. In the mmW BS system design there are two

conflicting scaling direction. On one hand, the transmit power of each PA is relaxed
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due to the use of massive antenna array for similar total power. On the other hand,

the power amplifier efficiency is lower than those designed for sub-6GHz band. In

Figure 5.7, specifications of the state-of-the-art mmW power amplifier at 28 GHz are

shown. Specifically, the power-added-efficiency (PAE) at saturated output power and

associated saturated output power are presented. Different semiconductor technologies,

e.g., CMOS, BiCMOS, Gallium Arsenide (GaAS), and Gallium Nitride (GaN) are

included. The state-of-the-art CMOS or SiGe BiCMOS PAs are not suitable due

to the low saturated output power. Assuming 10 dB PAPR margin, even with an

extremely large array of 1024 elements, the 46dBm total transmitter power leads to

16 dBm output power for each element. Thus the PA is likely to require a saturation

point of 26dBm and this is a challenging target for PAs suitable for deployment in

arrays. GaAs PAs are generally cheaper than GaN PAs and are expected for 5G

array applications without operating in strongly nonlinear region. In the proposed PA

power consumption model, a PA efficiency is ηPA = 0.185 is adopted. Specifically, the

calculation of PA efficiency is based on 0.3 peak PAE, 10 dB power back-off, and a

Doherty PA architecture6. Accordingly, the power consumption in each PA element is

PPA =
P (out)

NηPA

, (5.15)

where the number of array elements N and output power P (out) are from Figure 5.3 in

each architecture.

5.5.5 Summary of specifications of circuits blocks for transmitter array

In Figure 5.8, we present the signal distribution budget example of three array architectures

with 64 elements. Specifically, we focus on the insertion loss in PCB, silicon, and RF devices

6In Doherty PA, the PAE remain constant when the instantaneous output magnitude a is no more than
3 dB weaker than the peak magnitude amax, i.e., PAE(a) = PAEmax, a ≥ amax/2. Otherwise, the PAE
drops as a linear function of instantaneous output magnitude, i.e., PAE(a) = 2a

amax
PAEmax, a < amax/2.

Thus, the average efficiency is ηPA =
∫
a
fA(a)PAE(a)da, where fA(a) is the probability distribution of signal

magnitude. When PAEmax = 0.3 and the signal magnitude is Rayleigh distributed with average power 10 dB
below the peak, PA efficiency is ηPA = 0.185.
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as modeled as in Section 5.4. There is more than 10 dB loss for every two stages of Wilkinson

splitters/combiners plus associated transmission line. As a consequence, RF amplifiers can

be placed to compensate such loss in SA as shown in Figure 5.8(b). For FH, multi-stage

compensation is required to avoid saturation as shown in Figure 5.8(c). Such design is

commonly adopted in implementation of phased array [199]. Moreover, a combining network

in FH also needs similar design. For a splitting or combining network with Nwilk ports, we use

an approximation number of
∑∞

n=1Nwilk/4
n ≈ Nwilk/3 amplifiers for simplicity. Therefore,

FH requires a total UNFH/3 amplifiers in both splitting and combining network. Moreover,

for all architectures, we assume a 5dBm signal strength is required at the input of PA [20,135].

The output of each mixer is -6dBm. For a Wilkinson splitter or combiner with Nwilk ports,

a total Nwilk− 1 splitting (1:2) or combining (2:1) units are required. As a consequence, the

required number of Wilkinson units are (KSA − 1)NSA/KSA and U(NFH − 1) +NFH(U − 1)

in the SA and FH architectures, respectively. A summary of specifications of circuits blocks,

total number of blocks in each architectures, and required number of blocks per antenna

element are summarized in Table 5.3.

5.6 Comparison results

In this section, we present the power and hardware cost comparison among three architec-

tures. Then, we discuss the scalability of these architectures for future trends. Specifically,

we focus on the impact of increased throughput requirements and improved energy efficiency

in digital computation due to silicon scaling.

5.6.1 Power consumption of millimeter-wave array architectures

The required power consumption in three use cases is presented in Figure 5.9 to Figure 5.11.

All designs meet the SE requirement and the quantizations in DSP, SerDes, DAC, and PS

are optimized. We observe that the system power consumption is a concave function of

array size except few exceptions that will be discussed in later paragraphs. The concavity
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Table 5.3: Summary of circuits blocks in array architectures
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Figure 5.9: Total power consumption for three architectures operating in the Dense Urban

enhanced mobile broadband use case. For each array architecture with varying array size,

other design parameters are chosen according the analysis in Section 5.3 and 58.8bps/Hz

spectral efficiency target demands are guaranteed in the corresponding line-of-sight environ-

ment listed in Table 5.2.

comes from the trade-off between PA power and processing power in other circuits blocks for

different antenna array sizes. In the figures, the range of antenna element number N for all

scenarios is chosen to be close to green point, one that minimizes system power consumption.

Taking a closer look at Dense Urban eMBB use case in Figure 5.9, we have the following

conclusions. Firstly, DA and FH have similar green point of array size when the same number

of streams U is used, while green point of SA is much larger. This is due to the inefficiency

of array gain (5.5) when SA splits antenna with sub-groups. The exception occurs in SA

with U = 32 streams. When SA uses small antenna number and high multiplexing level,

it effectively becomes a digital array. In fact, the green point for SA with U = 32 streams

occurs at N = 32. It requires RF-chain to be connected to one antenna which makes SA a

fully digital array. In the rest of comparison discussion, we focus on regime where each RF-

chain is connected to KSA = 8 antennas and do not further consider regime for N < 256 with

U = 32 streams. Secondly, increasing U reduces system power consumption in DA and SA.

With the fixed N , increasing U reduces required transmit power and thus saves DC power of

PA. Besides, increasing U does not require additional hardware resources except baseband
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Figure 5.10: Total power consumption for three architectures operating in the 50+Mbps

Everywhere use case. For each array architecture with varying array size, other design

parameters are chosen according the analysis in Section 5.3 and 4.7bps/Hz spectral efficiency

target demands are guaranteed in the corresponding non-line-of-sight environment listed in

Table 5.2.

precoding and SerDes throughput. With the benefits of quantization requirement reduction

from Figure 5.4 and high DSP efficiency, the negative impact of additional hardware resources

is marginal. Thirdly, the transmit power and power consumption of PA reduces when FH

uses higher U , but the system does not necessarily benefits. Part of the reason is that

power in other circuits blocks linearly scales with stream number and they become system

bottleneck in high-U regime. Another important fact is that a power efficient design tends

to reduce N to save processing power when U is increased. It implies FH needs to deal

with higher interference from the increased beam-width. In fact, FH with N = 16 antennas

cannot meet SE requirement when using U = 32 beams. At last, comparing with the best

designs of all architectures, we conclude that DA is the most power efficient architecture.

The best design of SA becomes DA and the best design of FH still requires 240% more power

than DA.

The system power consumption in 50+Mbps Everywhere is shown in Figure 5.10. We

have the following findings. Firstly, the benefits of using higher multiplexing are not as

prominent as in eMBB case. According to Figure 5.3 and corresponding analysis, it is mainly
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Figure 5.11: Total power consumption for three architectures operating in the Self-backhaul-

ing use case. For each array architecture with varying array size, other design parameters

are chosen according the analysis in Section 5.3 and 11.8bps/Hz spectral efficiency target

demands are guaranteed in the corresponding line-of-sight environment listed in Table 5.2.
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Figure 5.12: System power consumption with different digital signal processing energy effi-

ciency in the unit of mW/GOPS. In all cases, optimal design parameters that reach spectral

efficiency target with lowest power consumption are chosen. The optimal antenna num-

ber N of multiplexing level U are labeled insider brackets {N,U} which are adjacent to

corresponding data markers of system power consumption.

caused by smaller target SINR relaxation by reducing U. In fact, SA requires to use higher

transmit power and thus DC power of PA. Secondly, large array size N is required for power

efficient system. Overall, system requires more hardware and power consumption than in

Dense Urban eMBB and it implies the intrinsic disadvantage of mmW to provide ubiquitous

connection even in small cell size. At last, DA remains the most efficient architecture while

the best design of hybrid architecture requires nearly 50% more power. This is a surprising

result. One may expects that hybrid architecture outperforms DA when system is optimized

for beamforming rather than multiplexing in this NLOS environment. With U = 2, we

do observe comparable power consumption. However, DA further reduces its power by

levering on increasing U with negligible additional processing power consumption. Hybrid

architectures either require higher transmit power, e.g., SA, or excessive processing power,

e.g., FH, to increase U .

The only use case in our survey that hybrid architectures outperform DA is Self-backhauling

where multiplexing level is limited due to point-to-point communication environment of LOS

channel. In Figure 5.10, the DA requires 18% more power as compared to hybrid architec-
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tures. This small power margin is due to the fact that the DA requires nearly 4 bits smaller

quantization than hybrid architectures according to Figure 5.4 and it prevents excessive

power consumption in BB precoding, SerDes and DAC. Overall in this use case, the SA

and FH have similar power consumption. In fact, SA and FH have the same the number of

phase shifters when using same number of antenna elements. The difference between them

lies in the power consumption of signal routing. The SA has more RF-chains than FH and

therefore SA requires more power in high precision DAC and VCOs. The FH has only one

RF-chain but it requires more power for RF signal distribution than SA.

In Figure 5.9 to 5.11, DAC and BB precoding power has small proportion in the DA

system, even when high multiplexing or large array size is used. Part of the reason is the

ENOB requirement relaxation according to Section 5.3. A more important factor is the

DSP energy efficiency. Our study is based on the assumption that baseband processing

is implemented on application-specific integrated circuits (ASIC). In deploying mmW DA,

programmable DSP or Field-Programmable Gate Array (FPGA) based BB processor provide

flexibility of reconfiguring BB precoding scheme, with the cost of order-of-magnitude more

power consumption [193]. In Figure 5.12, the system power of all architectures are compared

when different DSP efficiencies are used. Throughout all cases, all design parameters are

optimized such that lowest power consumed in reaches SE target, and the required array size

N and multiplexing level U is labeled in the figure. We have the following findings. Firstly,

DA is most sensitive to the decreased DSP efficiency. An efficient design would use smaller

array size when BB precoding becomes bottleneck since it effectively reduces DSP burden.

SA is less sensitive due to a much smaller number of RF-chains except in Dense Urban

eMBB where SA effective behaves as a digital array. FH is least sensitive to DSP efficiency.

Secondly, with 3.2mW/GOPS, a FOM that can be reached by reconfigurable digital processor

using 90 to 130 nm process [193], DA remains the best architecture in Dense Urban eMBB.

In the rest use cases, DA becomes less competitive in terms of power consumption.
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Figure 5.13: Integrated circuits area breakdown of three architectures.

5.6.2 Intergrated circuits areas of millimeter-wave array architectures

In Figure 5.13, the required IC area is presented as a function of array size. Note that

increasing the multiplexing capability forces DA to have more powerful and larger DSP,

and it also forces FH to have more RF-chain and complicated distribution network. Since

maximum multiplexing of U = 16 does not significantly affect the optimal design for power

consumption, we use U = 16 for DA and FH while U = 32 for SA. As shown in the figure, the

largest contributor in DA area is the DSP, which is expected to be further reduced so long

as Moore Law reduces silicon area. SA remains competitive in IC area with DA. However,

the cost of PAs, which is likely to be fabricated with other material, is likely to require

additional cost for SA due to the requirement of larger antenna number for power efficiency.

FH requires the largest IC area due to the full connection nature between RF-chains and

large number of antenna elements.
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5.7 Discussions on open research challenges

Admittedly, the power and IC area analysis for three array architectures provided are prelim-

inary estimates based on the surveyed literature. In particular, the effect of the extra digital

processing on power consumption and area depends on actual design and is hard to analyze

at this point. Besides, some open research questions remain and were not covered in this

chapter. First one is the issues of synchronization among large number of array elements.

In the centralized LO distribution architecture, each element re-generates clock from the

same references but global LO distribution may not be area and energy efficient [86]. Under

distributed LO scheme, independent LOs help reduce impact of phase noise [132] but system

needs to be calibrated periodically to avoid loss of coherency across elements. Second issue

is related to compensation of PA nonlinearity. Digital predistortion (DPD) is important in

massive transmitter array design. Conventionally, DPD is designed for DA where DSP is

implemented for each pair of transmitter chain and PA. Due to increased processing and

power of DPD, the overall gains in power efficiency for large number antenna arrays need

to be analyzed and optimized. DPD for SA [13, 106] and FH [182] are actively investigated

by researchers. Thirdly, other design variations, including phase-and-magnitude analog pre-

coder and active RF splitter and combiner [192] can help reduce the complexity and power

consumption of the hybrid arrays. Lastly, our survey reveals the benefits of using high multi-

plexing level for power saving in the hardware. However, high multiplexing brings additional

burden in higher layers of system, e.g., network layer faces more challenges to schedule users

with non-overlapping propagation paths, and their impact needs to be incorporated in more

comprehensive study.

In this work, we reveal that the conventional belief that hybrid array architecture is more

cost and energy efficient than digital architecture is not necessarily true when comprehensive

hardware block is modeled and system adopts optimized design parameters. Similar findings

were reported for the receiver array during the period when this work is written [12,146]. It

is worth noting that these works, including ours, focus on the additive uniformly distributed

quantization error model and linear MIMO processing model. However, such quantization
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error model becomes less precise when data samples and quantization error are correlated,

which occurs when data converters have significantly small number of bits. Besides, linear

MIMO processing is not optimal. In fact, in the receiver array a variety of nonlinear com-

bining and decoding algorithms are proposed, e.g., successive interference cancellation based

combining [62], approximate message passing [174]. Besides, the precision requirement of

DAC and analog-to-digital converter (ADC) devices are strongly dependent on processing

algorithms, e.g., algorithm tailored for 1-bit ADC [115]. It remains open research question

how to use advanced signal processing to further reduce power consumption and cost of

mmW array.

The Matlab code for simulation and data for system level power comparison is released

in [177] for readers that are interested in results with different design choices and hardware

specifications.

5.8 Conclusion

Implementation of energy and cost efficient massive antenna array transmitters is one of

the major challenges in deploying mmW networks in the 5G era. In this work, we study

and compare three array architecture candidates, digital architecture and two variation of

analog-digital hybrid architectures, and discuss various hardware design trade-offs in their

implementation. The analysis and comparison are based on the modeling of required power

and IC area of circuits blocks, derived from the state-of-the-art mmW circuits design and

measurement results. We compare three array architectures when their design parameters

are optimized to meet the spectral efficiency targets in three representative 5G-NR use

cases. The results show that digital architecture is the most efficient in terms of power

and IC area. The key intuition behind this finding is that digital array architecture can

effectively save system power and area by levering high multiplexing gains due to digital

precoding of multiple spatial streams, which effectively reduces requirements for array size,

transmit power, and hardware specifications of the RF-chains. On the other hand, the

hybrid architectures require additional power to support more simultaneous spatial beams.
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We reveal that the bottleneck of hybrid architectures is the RF signal distribution network

in RF beamforming stage. Furthermore, additional transmit power is required in sub-array

architecture to compensate for the array splitting loss.
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CHAPTER 6

Conclusion

6.1 Summary of contributions

In this dissertation, we focus on a key physical layer procedure of the millimeter-wave cellular

system: initial access and beam alignment. We have designed and analyzed novel signal

processing algorithm to enable fast and scalable initial access and beam alignment, and

implemented one approach in the mmW testbed. Further, we have studied the performance,

power, and cost trade-off in millimeter-wave array architecture for beamforming and MIMO

multiplexing.

In Chapter 2, we focus on the initial cell discovery, synchronization, and beam alignment

problem. We propose to use the novel quasi-omni pseudorandom sounding beam during

this procedure to accelerate the initial access. We have designed signal processing algorithm

based on the proposed sounding beam structure that is compatible with 5G-NR frame for-

mat. The cell detection and integer timing synchronization algorithm have been designed

and thoroughly analyzed. The results showed that the pseudorandom sounding beam only

marginally sacrifice detection sensitivity. Further, compressive sensing based signal process-

ing algorithm has been designed for initial beam alignment by reusing the received pilots.

The proposed approach precisely estimates the angular channel information of the sparse

millimeter-wave channel, and is robust to frequency synchronization error during this pro-

cedure. The approach also achieves CRLB in high signal-to-noise radio regime. We have

evaluated the approaches via simulations using the 5G-compliant frame structure practical

synchronization offset in cellular system, and measurement endorsed urban channel models

at 28 GHz. The results show that the proposed approach provides comparable performance
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to the state-of-the-art directional cell search for initial discovery, but achieves significantly

more accurate angle estimation during initial beam training. This advantage holds true

across different propagation condition (LOS/NLOS) and UE-BS distance. Due to the saving

of additional radio resource, i.e., CSI-RS, for beam refinement, the proposed approach re-

duces up to two order of magnitude access latency compared to the directional initial access

when the same signaling overhead and post-training beam steering SNR are targeted.

When the bandwidth and array size increase as millimeter-wave cellular system evolves,

the array response of different frequency components cannot be treated as the same. Such

phenomenon is referred as beam squint. An enhanced beam training algorithm that is robust

to beam squint. The proposed squint robust CS based beam training algorithm is able to

retain non-compromised AoD estimation accuracy and beamforming gain across a wide range

of beam training bandwidths.

In Chapter 3, we continue investigating the compressive beam alignment in mmW sys-

tem using pseudorandom sounding beams. We have identified that practical mmW radios

commonly suffers from hardware impairments in the form of array phase offset. Such imper-

fection can greatly degrades the performance of compressive beam alignment algorithm as

precise knowledge of sensing dictionary is required. Further, radios may only provide signal

strength of the pilots instead of providing complex sample outputs. We have designed a

novel noncoherent compressive beam alignment scheme that utilizes machine learning to ad-

dress implementation challenges. Further, we have implemented the algorithm in a 60 GHz

as proof-of-concept. The experiments in a suburban line-of-sight environment showed that

an order of magnitude overhead savings with marginal post-alignment beamforming gain

loss is achievable, as compared to exhaustive beam sweeps. The proposed approach also

outperforms purely model-based compressive beam alignment in the experiment.

In Chapter 4, we design a fast beam training approach based on the emerging true-time-

delay based analog millimeter-wave array. We have theoretically proved that by designing

proper delay taps, the array can steer different subcarrier of an OFDM waveform into dif-

ferent direction. Such scheme is referred as rainbow beam. Exploiting the frequency de-
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pendence nature of rainbow beam, the system can scan multiple angles simultaneously, and

thus greatly accelerate the beam training procedure. We derive the condition for delay tap

spacing and the required number of subcarriers. Based on these novel sounding beams, a

single-shot, low-complex, and noncoherent beam training algorithm is developed. The simu-

lation results in realistic urban channel model at 28GHz reveal that the proposed method is

capable to use a single training symbol to complete beam training in both LOS and NLOS

environment. Such feature is appealing in the future mmW systems as the required beam

alignment overhead and latency does not further increases with the increased array size.

In Chapter 5, we study the Implementation of energy and cost efficient massive antenna

array transmitters is one of the major challenges in deploying mmW networks in the 5G era.

In this chapter, we study and compare three array architecture candidates, digital architec-

ture and two variation of analog-digital hybrid architectures, and discuss various hardware

design trade-offs in their implementation. The analysis and comparison are based on the

modeling of required power and IC area of circuits blocks, derived from the state-of-the-art

mmW circuits design and measurement results. We compare three array architectures when

their design parameters are optimized to meet the spectral efficiency targets in three repre-

sentative 5G-NR use cases. The results show that digital architecture is the most efficient

in terms of power and IC area. The key intuition behind this finding is that digital array

architecture can effectively save system power and area by levering high multiplexing gains

due to digital precoding of multiple spatial streams, which effectively reduces requirements

for array size, transmit power, and hardware specifications of the RF-chains. On the other

hand, the hybrid architectures require additional power to support more simultaneous spatial

beams. We reveal that the bottleneck of hybrid architectures is the RF signal distribution

network in RF beamforming stage. Furthermore, additional transmit power is required in

sub-array architecture to compensate for the array splitting loss.

6.2 Future works

There are many open research problem in the topics that this dissertation covers.

126



In Chapter 2 and 3, our design intends to identify the best beam steering directions and

our evaluation occurs in a LOS channel. The approach can be further generalized to identify

one or more paths in mmW NLOS channels. Another feature of the proposed approach is

that only 2 bits phase shifter resolution is required. It is of interest to design a system where

both beam alignment and beam steering in data communication use 2 bits phase shifter.

As such, the RF phase shifter design and associated insertion loss can be greatly reduced,

which potentially provides additional power saving. The practical system design and proof-

of-concept is left as future work. Lastly, the machine learning assisted beam alignment

that utilize prior knowledge of beam steering direction in dynamic environment, i.e., beam

tracking [37,179,184], is a promising direction.

In Chapter 4, we designed receiver beam alignment approach in a 2D environment. Ex-

tending this approach in 3D environment, i.e., by joint design delay taps of antenna element

in the azimuth and elevation plane is an interesting direction. Further, joint transmitter

and receiver beam alignment design using TTD array is also of interest. Further, this work

did not discuss hardware aspects of TTD array. It is importance to understand the impact

and required specification of hardware in RF and mixed signal domain for power efficient

operation of TTD arrays [38].

In Chapter 5, we focus on the transmitter side. Similar methodology can be applied to

receiver side of the base station. The advanced signal processing technique can be applied

to further enhance the performance of fully-digital array with low resolution DACs/DACs.

Further, the impact of hardware nonlinearity [185] and power saving scheme by reducing

phase shifter quantization can be investigated.
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APPENDIX A

Appendix for Chapter 2

A.1 Initial discovery performance

The noise after correlation

z̃[n] =
1

P

P−1∑
k=0

(wH[n+ k]z[n+ k])s∗zc[k]

follows distribution NC(0, σ2
n/P ). Thus |z̃[n]|2 is Chi-Square distributed with degree-of-

freedom 2, mean σ2
n/P , and variance σ4

n/P
2. We denote detection statistic in PT and NT

scenario under H0 and H1 as denoted as γPT,0, γPT,1, γNT,0, γNT,1, respectively, and find their

distribution.

γPT,0 is the sum of squared NcM realizations of z̃[n] divided by M , thus central limit

theory (CLT) applies. The distribution of γPT,0 is N (µPT,0, σPT,0), where µPT,0 = Ncσ
2
n/P

and σPT,0 =
√
Ncσ4

n/(P
2M), respectively. As a result, the optimal detection threshold that

reaches target false alarm rate P ?
FA is given by (2.7). Similarly, the detection statistic under

H0 with TO is denoted as γNT,0. It is the maximum operation with degrees of freedom εT,max

of γPT,0. With large εT,max, γNT,0 follows extreme value distribution, Gumbel Distribution,

where the mean and standard deviation are µNT,0 = µPT,0 + σPT,0Q−1 (1/εT,max) and and

σNT,0 = σPT,0/Q
−1 (1/εT,max), respectively. Using its inverse cumulative distribution func-

tion, the optimal detection threshold is η?NT = µNT,0 − (
√

6π)σNT,0 ln (− ln (1− P ?
FA)). It

gives (2.7) using expressions of µNT,0, σNT,0 and
√

6/π ≈ 0.78.

Detection statistic γPT,1 is the sum of noise energy and signal energy, i.e.,

γPT,1 = γPT,0 + (
M∑
m=1

L∑
l=0

|g̃m,l
P∑
n=1

|szc[n]|2ejεFn|2)/(PMNTNR),
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where g̃m,l is defined in Section 2.5.1. Using the fact |szc[n]| = 1, definition κ(0, εF) ,

|
∑P

n=1 e
jεFn|2 in (2.10), and approximation that different multipaths are resolvable, i.e.,

pc(dTs − τl) = 1, d ∈ Sd where Sd has L integers in range [0, Nc − 1], the above equation be-

comes γPT,1 = κ(0, εF)
∑M

m=1 ζm/M+γPT,0 where ζm =
∑L

l=0 |glwH
maR(φl)a

H
T(θl)vm|2/(NTNR).

Using the fact that ζm are mutually independent due to independent vm and wm, the mean

and variance of ζm are

E(ζm) =
L∑
l=1

|gl|2 E
∣∣wH

maR(φl)
∣∣2 E ∣∣aH

T(θl)vm
∣∣2 /(NTNR) = σ2

g

and

var(ζm) =(NTNR)−2

L∑
l=1

|gl|4 E
∣∣wH

maR(φl)
∣∣4 E ∣∣aH

T(θl)vm
∣∣4 − σ4

g

=σ4
g

(
2− 1

NT

)(
2− 1

NR

)
− σ4

g ≈ 3σ4
g,

respectively. The above approximation holds true with typical antenna array sizes NR and

NT in mmW. Therefore, according to CLT γPT,1 ∼ CN (κ(0, εF)σ2
g +µPT,0, 3κ

2(0, εF)σ4
g/M +

σ2
PT,0), which gives the miss detection probability PMD,PT = Q[(E(γPT,1)−η?PT)/

√
var(γPT,1)],

and it equals to (2.9).

In NT scenario, we make the following approximations: 1) the detection statistic γNT,1

corresponds to the correlation peaks for the correct timing εT; 2) the abrupt beamformer

changes during m-th PSS reception, when present, result in an independent realization of

sounding beam w̃m. Although the former is not valid with low SNR, the MD rate with typical

threshold in such SNR regime already approaches 1. Therefore, impact of such loose approxi-

mation is negligible. Based on these assumptions, we evaluate distribution of γNT,1 as γNT,1 =

γPT,0 + 1
PMLNTNR

(
∑M

m=1

∑L
l=0 |g̃

(1)
m,l

∑K−1
n1=1 |szc[n1]|2ejεFn1 + g̃

(2)
m,l

∑P
n2=K |szc[n2]|2ejεFn2|2) where

g̃
(1)
m,l = glw

H
maR(φl)a

H
T(θl)vm and g̃

(2)
m,l = glw̃

H
maR(φl)a

H
T(θl)vm are the post-BF channel gain

due to partially overlapped burst window in BS and UE. In other words, K follows (2.11)

and n1 ∈ [1, K − 1] and n2 ∈ [K,P ] are the sample window where K represents the abrupt

change in BF. The independent wm and w̃m lead to uncorrelated g̃
(1)
m,l and g̃

(2)
m,l. For no-

tational convenience of finding statistic of γNT,1, we define ζm,l as ζm,l , (|g̃(1)
m,l

1−ejKεF
1−ejεF +
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g̃
(2)
m,l

1−ej(P−K)εF

1−ejεF |2)/(NTNR) in γNT,1 after simplification with the fact |szc[n]|2 = 1, ∀n ∈ S as

well as
∑K

n=1 e
jεTn = (1 − ejKεF)/(1 − ejεF). The mean and variance of ζm,l are E (ζm,l) =

κ(εF, εT)σ2
g, and var (ζm,l) ≈ 3σ4

gζ
2(εF, εT) after plugging in definition of κ(εF, εT) from (2.10).

Using CLT and statistic of ζm,l, γNT,1 ∼ CN (µPT,0 + κ(εF, εT)σ2
g, σ

2
PT,0 + 3σ4

gκ
2(εF, εT)/M .

The MD rate PMD,NT = Q[(E(γNT,1)− η?NT)/
√

var(γNT,1)] reduces to (2.9).

A.2 Cramer-Rao lower bound of joint estimation problem

The FIM has the following form

J =
1

σ2
n



ΦεF,εF ΦεF,θ ΦεF,φ ΦεF,τ ΦεF,α ΦεF,β

Φθ,εF Φθ,θ Φθ,φ Φθ,τ Φθ,α Φθ,β

Φφ,εF Φφ,θ Φφ,φ Φφ,τ Φφ,α Φφ,β

Φτ,εF Φτ,θ Φτ,φ Φτ,τ Φτ,α Φτ,β

Φα,εF Φα,θ Φα,φ Φα,τ Φα,α 0

Φβ,εF Φβ,θ Φβ,φ Φβ,τ 0 Φβ,β


where Φx,x denotes for Φx,x = ∂2L(y; ξ)/∂x∂y = (∂L(x(ξ)/∂x)H(∂L(x(ξ))/∂y). The exact

expressions of each elements in FIM are summarized in Table A.1, where for notational con-

venience the following matrices are defined. The derivative over CFO matrix is a diagonal

matrix whose p-th diagonal element is [Q̇m]p,p = j[(m − 1)NB + (p − 1)]ejεF[(m−1)NB+(p−1)].

The vector ḟ = ∂f(τ)/∂τ whose p-th element is [ḟ ]p = j2π(p − 1)Tse
j2π(p−1)εFTs Other

expression in Table A.1 include fH(τ)FHQH
mQmFf(τ) = P, ∀m, Cdf =

∑P−1
p=0 2πpTs =

(P − 2)(P − 1)πTs , Cdq,m , fH(τ)FHQ̇H
mQmFf(τ) = (m − 1)TB + (P−2)(P−1)Ts

2
, , and

Cd2q,m =
∑P−1

p=0 [(m− 1)TB + pTs]
2.
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Table A.1: Elements of fisher information matrix

Symb. Expressions

ΦεF,εF

∑M
m=1(Cd2qg)

∣∣wH
maR(φ)

∣∣2 ∣∣vH
maT(θ)

∣∣2
ΦεF,θ

∑M
m=1(Cmg)

∣∣wH
maR(φ)

∣∣2<{[vH
mȧT(θ)

] [
vH
maT(θ)

]}
ΦεF,τ <

{∑M
m=1 g

∣∣wH
maR(φ)

∣∣2 ∣∣vH
maT(θ)

∣∣2 fH(τ)FQ̇H
mQmF

Hḟ(τ)
}

ΦεF,α
∑M

m=1 [Cdq,m< (g)]
∣∣wH

maR(φ)
∣∣2 ∣∣vH

maT(θ)
∣∣2

ΦεF,β
∑M

m=1 [Cdq,m= (g)]
∣∣wH

maR(φ)
∣∣2 ∣∣vH

maT(θ)
∣∣2

Φθ,θ
∑M

m=1(P |g|2)
∣∣wH

maR(φ)
∣∣2 ∣∣vH

mȧT(θ)
∣∣2

Φφ,φ
∑M

m=1(P |g|2)
∣∣wH

mȧR(φ)
∣∣2 ∣∣vH

maT(θ)
∣∣2

Φφ,θ <
{∑M

m=1 P |g|2[wH
maR(φ)][wH

mȧR(φ)][vH
mȧT(θ)][vH

maT(θ)]
}

Φφ,τ
∑M

m=1Cdf,m|g|2<
{

[wH
mȧR(φ)][wH

maR(φ)]
} ∣∣vH

maT(θ)
∣∣2

Φφ,α <
{∑M

m=1 Pg[wH
mȧR(φ)][wH

maR(φ)]|vH
maT(θ)|2

}
Φθ,α <

{∑M
m=1 Pg|wH

maR(φ)|2[vH
mȧT(θ)][vH

maT(θ)]
}

Φφ,β <
{∑M

m=1 jgP [wH
mȧR(φ)][wH

maR(φ)]|vH
maT(θ)|2

}
Φθ,β <

{∑M
m=1 jPg|wH

maR(φ)|2[vH
mȧT(θ)][vH

maT(θ)]
}

Φτ,τ <
{∑M

m=1 |g|2|wH
maR(φ)|2|vH

maT(θ)|2
[
ḟH(τ)QH

mQmḟ(τ)
]}

Φτ,α <
{∑M

m=1 g|wH
maR(φ)|2|vH

maT(θ)|2
[
ḟH(τ)QH

mQmf(τ)
]}

Φτ,β <
{∑M

m=1 jg|wH
maR(φ)|2|vH

maT(θ)|2
[
ḟH(τ)QH

mQmf(τ)
]}

Φα,α
∑M

m=1 P |wH
maR(φ)|2|vH

maT(θ)|2

Φβ,β −
∑M

m=1 P |wH
maR(φ)|2|vH

maT(θ)|2
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APPENDIX B

Appendix for Chapter 3

B.1 Pattern and dictionary mismatch

We evaluate the pattern distortion due to array phase offset. We assume each element of e has

unit modulus and its phase is uniform randomly distributed with boundary |∠[e]n| ≤ ψmax.

Further, we define angular region of interest B(θ0, δ) = {ε|θ0− δ ≤ ε ≤ θ0 + δ}, i.e., centered

at θ0 with span 2δ. Hence, the beam pattern distortions of AWV w in such region is

E(w,B(θ0, δ), ψmax) =

∫
B(θ0,δ)

|G[diag(e)w, ε]−G(w, ε)|2 dε∫
B(θ0,δ)

|G(w, ε)|2 dε

where the beam pattern of AWV w at angle ε is defined as G(w, ε) = |aH
R(ε)w|. We further

define B(0, π/2) as the entire angular region of linear array. Hence, the distortion in the

mainlobe and sidelobes of a DFT pencil beam towards θ0 are E0 = E(aR(θ0),B(θ0, δ),Ψmax)

and E1 = E(aR(θ0),B\B(θ0, δ),Ψmax), respectively. Further, the PN beam distortion across

all angular region is defined as E2 = E(wPN,B,Ψmax), where wPN is a random AWV. In

Figure B.1, all the error metrics are numerically evaluated as function of ψmax using a setup

with θ0 = 0, δ = 0.89/NR rad, i.e., half 3dB beamwidth, NR = 36, and a single realization of

random AWV. The distortion in DFT mainlobe is least sensitive to phase offset ψmax, which

implies a ±20◦ offset marginally affects a system using beam sweep and steering. On the

other hand, the sidelobes of DFT beam and lobes of PN beams are more vulnerable to the

phase error in the array.
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Figure B.1: Simulated beam pattern distortion metrics of different beam type as function of

phase offset.

133



APPENDIX C

Appendix for Chapter 4

C.1 Proof of received signal mode with true-time-delay array

Consider the continuous time channel between the q-th transmitter and n-th receiver el-

ement due to the l-th MPC before and after the TTD circuits as h̃
(RF)
l,q,n (t) and h

(RF)
l,q,n (t),

respectively. These two systems are modeled as h̃
(RF)
l,q,n (t) = glpc (t− Γl,q,n) and h

(RF)
l,q,n (t) =

h̃l,q,n(t)∗hTTD,n(t) = glpc(t−τl,q,n), where ∗ is the convolution operator. For notation clarity,

we denote τl,q,n = Γl,q,n + τ̃n and τ̃n , τTTD,n.

For a real pass-band signal x(t) = <[s(t)ej2πft], the complex baseband equivalent model

of the impulse response is written as

hl,q,n(t) = glpc(t− τl,q,n)ejθl,q,n , (C.1)

where θl,q,n , −2πfcτl,q,n + θq and θq = ∠[v]q is the phase shift value introduced by the q-th

transmitter circuit.

The discrete time channel with sampling duration Ts is denoted as

hl,q,n[i] =hl,q,n(iTs) = glpc(iTs − τl,q,n)ejθl,q,n . (C.2)

The overall channel response is then written in vector form by hl,n ∈ CNcip where [hl,n]i =

hl,n[i]. Note that NcipTs ≥ maxl,q,n Γl,q,n + maxn τTTD,n.

The time domain OFDM sample sequence after sampling of combined NR antenna signals

can be written as matrix form

y =

NR∑
n=1

L∑
l=1

Hl,nx̃ (C.3)
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where y = [y[M−1], y[M−2], · · · , y[0]]T ∈ CM is the received signal in the time domain that

corresponds to one OFDM symbol. x̃ = [x[M − 1], · · · , x[0], x[−1], · · · , x[−Ncp]]T ∈ CM+Ncp

is the transmits time domain signal after both CP and signal. Channel Hl,n ∈ CM×(M+Ncp)

is a cyclic matrix for 1 ≤ n ≤ NR according to the linear convolution of channel [73,

Chapt 12.22]. The specific expression of this channel matrix for the n-th antenna element

(1 ≤ n ≤ NR) by its k-th row (1 ≤ k ≤M) as

[Hl,n]k,: = [0T
k−1,h

T
l,n,0

T
M+Ncp−Ncip−k+1]. (C.4)

Note that we generalized the definition of all-zero vector 0n ∈ Cn such that 00 is empty. Fur-

ther, for valid dimension to exist in above equation, the CP length needs to follow condition

Ncp ≥ Ncip, i.e., (4.7).

Next, we discuss the the effective channel after CP removal. Due to the fact that both

TTD analog combining and CP removal are linear operations, the cyclic matrix that corre-

sponds digital baseband after CP-removal is denoted as Ȟ ∈ CM×M . This cyclic matrix is

defined by its first row ȟT as

ȟT = [Ȟ]1,: =

[
NR∑
n=1

L∑
l=1

hl,n,0
T
M−Ncip

]
(C.5)

Note that the frequency domain channel that takes account analog precoder and com-

biner is the eigenvalues of Ȟ. Due to the property of cyclic matrix, it can be achieved by

taking discrete Fourier transform F() of the row vector ȟT. Particularly, its m-th compo-

nent is denoted as in (C.6), where the second equality sign is due to the sampling theorem

and relationship between discrete time Fourier transform and discrete Fourier transform.

Therefore (C.6) shows the post-beamformer channel is wH
TTD[m]H[m]v as in (4.3).

Further, the TTD operation hTTD,n(t) does not change power spectral density of thermal

noise in each element, and therefore the noise term is N [m] defined in (4.3).
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C.2 Requried delay tap and subcarrier number

Let define set P = {Ψ|G(Ψ) > (1 − ε)NR}. From properties of function (4.8), this set is

equivalent to P = {Ψ|minz∈Z |Ψ − 2z| ≤ δ(ε,NR)}. Thus, the set in terms of f and θ such

that P = {(fm, θ)|G(θ, fm) > NR(1− ε)} can be written as

P =

{
(fm, θ)

∣∣∣∣min
z∈Z

∣∣∣∣2z + 2fm∆τ +
fm sin(θ)

fc

∣∣∣∣ ≤ δ(ε,NR)

}
.

Therefore, problem 1 becomes to find set S such that

S =

{
(∆τ,M)

∣∣∣∣max
θ

min
z∈Z,m<M

∣∣∣∣z +
mξ

M
− Cθ

∣∣∣∣ ≤ δ(ε,NR)

2

}
,

where we define parameter Cθ = −fc∆τ−sin(θ)/2 and ξ = BW[∆τ+sin(θ)/(2fc)] for clarity.

Due to the degree of freedom of integer z, the condition function in the previous set is

equivalent to

max
θ

min
m<M

∣∣∣m
M
ξ − C̃θ

∣∣∣ ≤ δ(ε,NR)

2
(C.7)

where C̃θ ∈ [0, 1). Denote fquan(m) = mξ/M as a quantifier with range ξ and granularity

ξ/M . A sufficient condition for (C.7) to be valid is that fquan(m) has its range greater than

1 and its granularity less than δ(ε,NR), i.e.,

ξ ≥ 1,∀θ and ξ/M ≤ δ(ε,NR),∀θ (C.8)

which leads to Ss of (4.12).
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APPENDIX D

Appendix for Chapter 5

D.1 Required digital-to-analog converter quantization bits

In this subsection, we provide analysis of transmit noise σ2
n,tx in each architecture.

For each DAC, the quantization error is uniformly distributed in [−A/2B, A/2B] where

A is the largest quantization level. Without signal cropping, A depends on the peak-to-

average-power-ratio (PAPR), i.e., PAPR = A2 with unit signal power. The power of DAC

quantization noise is

εDAC(B) = 10 log10

[
(2A)2

12(2B)2

]
= 10 log10(A2/3)− 6B [dB]. (D.1)

Note that the above power is normalized with the input signal power of each DAC.

In DA architecture, the input signal power of DAC is amplified to P
(out)
DA /NDA. As a conse-

quence, the transmitter noise power at output of each PA is P
(out)
DA εDAC(BDA)/NSA. With the

uncorrelated1 quantization errors in each DAC, transmit noise is σ2
n,tx = P

(out)
DA εDAC(BDA).

In SA architecture, due to the identical input signal of DACs in a virtual group, quanti-

zation noise remains the same as well. The quantization noises are coherent at the outputs

of NSA/U PAs within a virtual group and each has power P
(out)
SA εDAC(BSA)/NSA. As a con-

sequence, the transmit noise is σ2
n,tx = P

(out)
SA NSAεDAC(BDA)/U2.

In FH architecture, the quantization noise from each DAC is amplified to P
(out)
FH /(NU)

in each PA. As a result, the total transmitter noise power is σ2
n,tx = P

(out)
FH NFHσ

2
DAC(BFH)/U .

1Correlation among quantization errors of DACs become non-negligible when quantization level is signif-
icantly small, e.g., one bit. Dithering is a technique to de-correlate them but is beyond the scope of this
work.
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D.2 Impact of phase shifter quantization and random error on

beamforming gain

Consider a linear phased array system with N antenna elements that steers a beam towards

direction γ in a 2D plane. Beamforming vector is given by [ejφ1 , · · · , ejφN ], where φn =

(n− 1)π sin(γ). In the next, we derive beamforming gain at the main lobe for system with

ideal and non-ideal phase shifters.

Let us denote the signal at the nth elements as wn with |wn| = 1/
√
N, ∀n when all

phase shifters are ideal. Clearly, the phase shifter needs to be set such that signals are

constructively added in the intended direction, i.e., wne
φn = 1/

√
N , and the beamforming

gain is

G =

∣∣∣∣∣
N∑
n=1

wne
jφn

∣∣∣∣∣
2

= N

When all phase shifters are non-ideal, the signal at the nth element is denoted as w′n =

wnexp(jψn), where ψn is the phase error due to quantization and random implementation

impairment. With Q bits quantization, the phase error ψn is bounded as |ψn| ≤ ε where

ε = π/2Q. The corresponding beamforming gain is

G′ =

∣∣∣∣∣
N∑
n=1

(w′ne
jφn)

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
n=1

(wne
jψn)ejφn

∣∣∣∣∣
2

=
1

N

∣∣∣∣∣
N∑
n=1

ejψn

∣∣∣∣∣
2

=
1

N

∣∣∣∣∣
N∑
n=1

cos(ψn) + j
N∑
n=1

sin(ψn)

∣∣∣∣∣
2

=
1

N

[
N∑
n=1

cos(ψn)

]2

+
1

N

[
N∑
n=1

sin(ψn)

]2

≥ 1

N

[
N∑
n=1

cos (ψn)

]2

≥N cos2 (ε)

where the second inequality is valid so long as Q ≥ 1, i.e., |ψn| ≤ π/2,∀n.
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Therefore the gain reduction is bounded by

10 log10

[
G

G′

]
≤ −20 log10

[
cos
( π

2Q

)]
[dB]

The above derivation shows that the gain drop in the main lobe is less than 0.68dB, 0.16dB

and 0.04dB with Q = 3 to 5 bits quantization. Besides, these values are independent from

the antenna size N . Equivalently, when phase shifter implementation error is less than

ε = 22.5◦, 11.25◦, and 5.625◦, gain drop is also bounded by 0.68dB, 0.16dB and 0.04dB,

respectively.
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[120] R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, and R. W. Heath. Hybrid
MIMO architectures for millimeter wave communications: Phase shifters or switches?
IEEE Access, 4:247–267, 2016.

[121] A. Nazemi, K. Hu, B. Catli, D. Cui, U. Singh, T. He, Z. Huang, B. Zhang, A. Momtaz,
and J. Cao. A 36Gb/s PAM4 transmitter using an 8b 18Gs/s DAC in 28nm CMOS. In
2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical
Papers, pages 1–3, February 2015.

[122] D. P. Nguyen, B. L. Pham, and A. V. Pham. A compact 29% PAE at 6 dB power back-
off E-mode GaAs pHEMT MMIC doherty power amplifier at Ka-band. In 2017 IEEE
MTT-S International Microwave Symposium (IMS), pages 1683–1686, June 2017.

[123] T. Nishio, Y. Wang, Y. Qian, and T. Itoh. A novel K-band frequency-controlled beam-
steering quasi-Yagi array with mixing frequency compensation. In 2002 IEEE MTT-S
International Microwave Symposium Digest (Cat. No.02CH37278), volume 2, pages
1345–1348 vol.2, June 2002.

[124] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer. Steering with eyes closed:
Mm-wave beam steering without in-band measurement. In 2015 IEEE Conference on
Computer Communications (INFOCOM), pages 2416–2424, 2015.

150



[125] S. J. Orfinidas. Electromagnetic Waves and Antennas, (accessed in Dec 1, 2019).

[126] M. Pajovic, P. Wang, T. Koike-Akino, and P. Orlik. Estimation of frequency unsyn-
chronized millimeter-wave channels. In 2017 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 1205–1209, November 2017.

[127] B. Park, S. Jin, D. Jeong, J. Kim, Y. Cho, K. Moon, and B. Kim. Highly linear mm-
Wave CMOS power amplifier. IEEE Trans. Microw. Theory Tech., 64(12):4535–4544,
December 2016.

[128] S. Park and R. W. Heath. Spatial channel covariance estimation for the hybrid MIMO
architecture: A compressive sensing-based approach. IEEE Trans. Wireless Commun.,
17(12):8047–8062, December 2018.

[129] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst. A vector-perturbation technique
for near-capacity multiantenna multiuser communication-part I: channel inversion and
regularization. IEEE Trans. Commun., 53(1):195–202, January 2005.

[130] Z. Pi, J. Choi, and R. Heath. Millimeter-wave gigabit broadband evolution toward 5G:
fixed access and backhaul. IEEE Commun. Mag., 54(4):138–144, April 2016.

[131] Z. Pi and F. Khan. An introduction to millimeter-wave mobile broadband systems.
IEEE Commun. Mag., 49(6):101–107, June 2011.

[132] A. Pitarokoilis, E. Björnson, and E. G. Larsson. Performance of the massive MIMO
uplink with OFDM and phase noise. IEEE Commun. Lett., 20(8):1595–1598, August
2016.

[133] A. S. Y. Poon and M. Taghivand. Supporting and enabling circuits for antenna arrays
in wireless communications. Proc. IEEE, 100(7):2207–2218, July 2012.

[134] A. Puglielli, A. Townley, G. LaCaille, V. Milovanović, P. Lu, K. Trotskovsky, A. Whit-
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