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Abstract

Learning to categorize objects in the world is more than just
learning the specific facts that characterize individual cate-
gories. We can also learn more abstract knowledge about how
categories in a domain tend to be organized – extending even
to categories that we’ve never seen examples of. These ab-
stractions allow us to learn and generalize examples of new
categories much more quickly than if we had to start from
scratch with each category encountered. We present a model
for “learning to learn” to categorize in this way, and demon-
strate that it predicts human behavior in a novel experimental
task. Both human and model performance suggest that higher-
order and lower-order generalizations can be equally as easy to
acquire. In addition, although both people and the model show
impaired generalization when categories have to be inferred
compared to when they don’t, human performance is more
strongly affected. We discuss the implications of these find-
ings. Keywords: overhypotheses; word learning; Bayesian
modelling; shape bias

Introduction
Learning is often thought of as acquiring knowledge, as if
it simply consists of gathering facts like pebbles scattered
on the ground. Very often, however, effective learning also
requires learninghow to learn: forming abstract inferences
about how those pebbles are scattered – how that knowledge
is organized – and using those inferences to guide one’s fu-
ture behavior. Indeed, most learning operates on many lev-
els at once. We do gather facts about specific objects and
actions, and we also learn about categories of objects and
actions. But an even more powerful form of human learn-
ing, evident throughout development, extends to even higher
levels of abstraction: learning about kinds of categories and
making inferences about what categories are like in general.
This knowledge enables us to learn entirely new categories
quickly and effectively, because it guides the generalizations
we can make about even small amounts of input.

Consider, for instance, a learner acquiring knowledge
about different kinds of animals. He might realize thatCATS

have four legs and a tail,SPIDERShave eight legs and no tail,
MONKEYS have two legs and a tail,FISH have no legs and
a tail, and so on. The knowledge supports what we call a
first-ordergeneralization: given a new animal that has eight
legs and no tail, it is more likely to be some kind of spider
rather than a cat or a monkey. However, the learner may
also have realized something more abstract: that while the
number of legs or the presence of a tail varies a lotbetween
categories, these features tend to be homogenouswithin cat-
egories. By contrast, surface colorings might vary signifi-

cantly both between and within categories. This more ab-
stract knowledge, or overhypothesis1, supportssecond-order
generalizations about categories one has never seen: upon
seeing a new animal with six legs and a tail, it is reasonable
to conclude that other examples of that animal will also have
six legs and no tail, but not necessarily the same superficial
markings. This higher-order overhypothesis is what allows
the learner to form a reasonable prototype of an entirely new
kind of animal from only one instance, as well as how to gen-
eralize to new instances.

Children as young as 24 months are able to form ab-
stract inferences about how categories are organized, realiz-
ing that categories corresponding to count nouns tend to have
a common shape, but not a common texture or color (Lan-
dau, Smith, & Jones, 1988; Soja, Carey, & Spelke, 1991),
whereas categories corresponding to foods often have a com-
mon color but not shape (e.g., Macario, 1991; Booth & Wax-
man, 2002). The advantages of acquiring this overhypothesis,
or “shape bias”, is clear: teaching children a few novel cat-
egories strongly organized by shape results in early acquisi-
tion of the shape bias as well as faster learning even of other,
non-taught words (Smith, Jones, Landau, Gershkoff-Stowe,
& Samuelson, 2002). This is a noteworthy result because it
demonstrates that overhypotheses can rapidly be acquired on
the basis of little input, but it raises questions about whaten-
ables such rapid acquisition. The work in this paper is mo-
tivated by these questions about how knowledge is acquired
on higher levels of abstraction, and how that kind of learning
interacts with lower-level learning about specific items.

In a broader sense, acquiring knowledge on a higher, more
abstract level – learning to learn – is important in many con-
texts besides categorization. In the causal domain, people
must draw general conclusions about different novel causal
typesand their characteristic interactions as well as the causal
roles fulfilled by specific objects (Kemp, Goodman, & Tenen-
baum, 2007). Children learning language must simultane-
ously acquire knowledge about specific verbs and which ar-
guments they take, as well as higher-order knowledge about
entire classes of verbs, some of which may take a certain
kind of argument (e.g., a direct object) and others of which
cannot. It is this higher-order knowledge that enables people
to make intelligent second-order generalizations about verbs
they have never seen before (Pinker, 1989).

1This terminology is borrowed from Goodman (1955).
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For computational theories of learning, the ability to learn
on multiple levels at once poses something of a chicken-and-
egg problem: the learner cannot acquire overhypotheses with-
out having attained some specific item-level knowledge first,
but acquiring specific item-level knowledge would be greatly
facilitated by already having a correct overhypothesis about
how that knowledge might be structured. Often it is simply
presumed that acquiring knowledge on the higher (overhy-
pothesis) level must always follow the acquisition of more
specific knowledge.

Recently, a computational framework called hierarchical
Bayesian modelling has emerged which can help to explain
how learning on multiple levels might be possible. This
framework has been applied to domains as disparate as causal
reasoning (Kemp, Goodman, & Tenenbaum, 2007), the ac-
quisition of abstract syntactic principles (Perfors, Tenen-
baum, & Regier, 2006), and learning about feature variability
(Kemp, Perfors, & Tenenbaum, 2007). In the hierarchical
Bayesian framework, inferences about data are made on mul-
tiple levels: the lower level, corresponding to specific item-
based information, and the overhypothesis level, correspond-
ing to abstract inferences about the lower-level knowledge.

In this paper we present a model of category learning which
acquires knowledge about how specific items should be cat-
egorized as well as higher-order overhypotheses about how
categories in general are organized. It is an extension of
an earlier model by Kemp, Perfors, and Tenenbaum (2007),
which was capable of making inferences at the overhypothe-
sis level but required specific items to be grouped into basic-
level categories as part of the input. Our new model can dis-
cover how to cluster items at the category level on the basis
of their featural similarity, at the same time that it makes in-
ferences about higher-level parameters (or overhypotheses)
indicating which features are most important for organizing
items into basic-level categories. We show that both first-
and second-order generalizations can emerge in tandem, even
when category information is not given; it is not necessary for
the lower-level knowledge to be acquired first. We compare
model predictions with human performance on a novel cate-
gorization task with second-order generalization, and demon-
strate that human learners follow the same pattern.

Our model is also capable of performing both supervised
and unsupervised category learning, which enables us to ad-
dress the question of how useful category labels are to an ideal
learner that can form generalizations on multiple levels. This
is a topic of some debate in the infant word learning literature
(Xu, 2002; Smith, Jones, Yoshida, & Colunga, 2003). We
demonstrate that both human and ideal learners benefit from
receiving category information, but human learners benefit
more; this may suggest that humans differ from the ideal in
their ability to infer the correct category assignments when no
category information is given. Both types of learners make
stronger generalizations on the basis of highly coherent cat-
egories. We discuss the implications and limitations of these
findings.

Figure 1: Our hierarchical Bayesian model. Each setting of (α,β)
is an overhypothesis:β represents the distribution of features across
items within categories, andα represents the variability/uniformity
of features within categories (i.e., the degree to which each category
tends to be coherently organized with respect to a given feature, or
not). The model is given data consisting of the featuresyi corre-
sponding to individual itemsi, depicted here as a sequence of digits
(although representing features as digits implies that order matters;
this is not the case for the actual data). Learning categories corre-
sponds to identifying the correct assignmentz of items to categories.

Model
Computational details
Our hierarchical Bayesian model supports the acquisition of
two kinds of knowledge: the ability to put uncatgorized items
into sensible categories on the basis of their featural similar-
ity, and the ability to acquire more abstract knowledge about
the formation of categories in general. An example of the for-
mer would be the realization that two entities that share many
features (e.g., eat bananas, have two legs, have long tails)are
examples of the same category (say,MONKEYS); an example
of the latter would be the realization that categories in gen-
eral tend to be coherent with respect to some features (like
number of legs) and not others. The former ability is realized
in our model by performing Bayesian inference over possible
category assignments; the latter by performing inference over
the hyperparameters governing the overhypotheses.

We depict this type of learning graphically in Figure 1 and
formalize it more precisely as follows. Each itemi is associ-
ated with a vector of feature countsyi , which are drawn from
categoryj = zi . Giving the model category information con-
sists of presenting the model with a partition of items into
possible categories, represented by a vectorz; if the model is
not given category information, it tries to find the best possi-
ble z.2 The prior distribution onz is induced by the Chinese
Restaurant Process, which can be defined recursively by ex-
tending a partition over items 1 throughk−1 to a new item
k:

P(zk = c|z1, . . . ,zk−1) =

{

n j

k−1+γ n j > 0
γ

k−1+γ k is a new category

2Throughout the paper boldfacedz and y refer to the entire
dataset – the full set ofyi andzi for every itemi.
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Heren j is the number of items previously assigned to cat-
egory j andγ is a hyperparameter which captures the degree
to which the process favors simpler category assignments (we
setγ = 1, consistent with previous work with this model). The
Chinese Restaurant Process prefers to assign items to cate-
gories that already have many members, and therefore tends
to prefer partitions with fewer categories.

At the same time that the model is attempting to identify
the best category assignments, it is also performing inference
about the nature of those categories and the overhypotheses
that govern them. Level 1 knowledge about the features and
items associated with a specific categoryj is represented by
θ j , which can be understood as the parameters of multinomi-
als that govern how the featuresyi of itemsi in that category
are distributed. This knowledge is acquired with respect toa
more abstract both of knowledge, Level 2 knowledge, which
in this case is knowledge about the distribution of features
across categories in general. It is represented in our modelby
two parameters,α andβ: roughly speaking,α captures the
extent to which each individual category is organized by a
given feature (or not), andβ captures the average distribution
of features across all categories in the world.3

Level 2 knowledge depends on knowledge at a higher level,
Level 3, which is represented in our model by two hyper-
parametersλ andµ. They capture prior knowledge aboutα
andβ, respectively: the range of values expected about the
uniformity of features within a category(λ), and the range of
values of the expected distribution of features in the world(µ).
Our model learnsλ andµ in addition toα andβ, and assumes
that knowledge at the next highest level is given.4 Inferences
aboutλ, µ, α, andβ – in conjunction with inferences about the
category assignmentsz – can be made by drawing a sample
from P(α,β,λ,µ,z|y), which is given by:

P(α,β,λ,µ,z|y) ∝ P(y|α,β,z)P(α|λ)P(β|µ)P(λ)P(µ)P(z)

Inferences about the category-specific distributionsθ j are
computed by integrating outα,β,λ,µ, andz:

P(θ j |y)=
Z

α,β,λ,µ
∑
z

P(θ j |α,β,λ,µ,z)P(α,β,λ,µ,z|y)dαdβdλdµ

Inference is performed by performing a standard numeri-
cal stochastic integration technique known as Markov Chain
Monte Carlo (Gilks, Richardson, & Spiegelhalter, 1996).

3One way of thinking about the relationship betweenθ, α, and
β is thatα captures how close, on average, each individualθ is to β
(i.e., how close each individual category’s feature distribution is to
the overall distribution across all categories). Lowα would indicate
that each item in a category tends to share a certain feature value,
but does not say anything aboutwhatvalue that might be: if a cat-
egory had lowα for the shape feature, one would know that it was
organized by shape, but not know precisely what shape it was.

4We also evaluated performance of a model that assumed that
knowledge aboutλ and µ is given (λ = µ = 1, as in Kemp, Per-
fors, and Tenenbaum (2007); results were qualitatively similar in all
cases, but learning at Level 3 as well as Level 2 resulted in a quanti-
tatively better match to human data.

Whenz is not given, the process of inference alternates be-
tween fixing the category assignmentsz and sampling the
space of hyperparametersα,β,λ, andµ, vs. fixing the hyper-
parameters and sampling from category assignments. Learn-
ing in an HBM thus corresponds to making inferences about
category assignmentsz, as well as the parameters and hy-
perparameters, based on the input data. First- and second-
order generalization are calculated by computingp(zk = zi |y),
which is the likelihood of a new itemk being in the same cat-
egory as some itemi, given their observed feature vectors
yk,yi , and all the other observed data iny. This can be calcu-
lated5 by integrating over all of the hyperparameters and all
possible category assignmentsz:

P(zk = zi |y) =

Z

α,β,λ,µ
∑
z

P(α,β,λ,µ,z|y)δzk=zi dαdβdλdµ

The difference between first and second order generaliza-
tion is whether itemi is already represented in the training set
y, or is a new item altogether. All results represent averages
across 4 runs of the model.

Datasets
As the category-learning experiments of Smith et al. (2002)
demonstrated, it is possible for children to acquire an overhy-
pothesis about the role of shape in categorization after being
taught only a few novel nouns; however, it is not clear pre-
cisely what aspects of the input enabled such rapid acquisi-
tion. Was it the fact that the categories were organized on the
basis of highly coherent features, or because the individual
items were consistently labelled, effectively providing strong
evidence about category assignments? Was it because a cer-
tain number of items or categories is required to effectively
form overhypotheses, and the children were at the precise
critical point in development? Or perhaps people are biased
to form overhypotheses about salient features, such as shape,
implying that it would be more difficult to acquire overhy-
potheses about less salient features.

To address these questions we design datasets that vary sys-
tematically in terms of (a) coherence of category features;
(b) the number of items and categories to be learned; and
(c) whether category information is given (theSUPERVISED

condition) or must be inferred (theUNSUPERVISEDcondi-
tion). How do these factors affect first-order and second-order
generalization? Our goal is to obtain predictions from our
model about what an ideal Bayesian learner would do when
presented with this sort of input, and then to present human
learners with datasets with precisely the same characteristics.

In all datasets, items are associated with eight indepen-
dent features, four of which have values that are randomly as-
signed (these are denotedfR), and four of which are coherent
with respect to category membership (fC). A coherence level
of c means that a feature value has a (100− c)% chance of
being random. By systematically varying the factors of inter-
est, we obtain datasets that correspond to a particular factorial

5δ is the Kronecker delta function, equal to 1 ifzk = zi , 0 if not.
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Figure 2: A schematic depiction of the nature of different datasets
presented to both humans and our model. Items are associatedwith
four coherent features (fC) and four random ones (fR); here we de-
pict each feature as a digit, and its value as the digit value.(a) An
example dataset in theSUPERVISEDcondition with 16 items four of
whosefC features are 100% coherent (all items in the category share
the same feature value). (b) As an illustration, we show an example
dataset whose fourfC features are 75% coherent: for each feature
and item, there is 25% probability that its value will differfrom the
value shared by most members in the category. (c) The same dataset
as in (b), but in theUNSUPERVISEDcondition. Here the model must
learn both the proper categorization as well as the higher-order in-
ference about which features are coherent. (d) A sample first-order
generalization task: given an item seen already, which of the test
items are in the same category, the one sharing featuresfC or the
one sharing featuresfR? (e) Second-order generalization, which is
the same except that the model is presented with entirely newitems
and feature values.

experimental design: 2 (SUPERVISEDor UNSUPERVISED) x
3 (coherence level of 60%, 80%, or 100%) x 2 (containing
8 or 16 items total) x 3 (categories made of 2, 4, or 8 items),
slightly complicated by the constraint that each category must
have at least two items. As a result of this constraint, the last
two factors, when crossed, lead to 5 possible category struc-
tures at each coherence level, once in theSUPERVISEDand
once in theUNSUPERVISEDcondition.

We assess model performance by examining first-order and
second-order generalization. First-order generalization cor-
responds to presenting the model with an item that occurs
in the dataset and querying whether it is more likely to be
in the same category as an item that shares coherent fea-
tures fC (a “correct” generalization) or random featuresfR?
Second-order generalization is identical, except the model is
presented with an item and features that have not occurred
before. Figure 2 contains further details.

Results
Figure 3 shows the model’s probability of correct generaliza-
tion as a function of three factors – whether categories were
given for the training data or had to be inferred (SUPERVISED

versusUNSUPERVISED), whether the generalization was first-
order or second-order, and the coherence level of the train-
ing dataset – averaged across all trials with the same levels
of these factors.6 Interestingly, there is no difference be-

6We also examined effects of the number of categories and num-
ber of items per category, but for space reasons these analyses will

tween first-order and second-order generalization in either
condition (p > 0.05, n.s., two-tailed). This result may seem
counterintuitive, but further reflection suggests that it is sen-
sible: second-order generalization occurs on the basis of in-
ferences about the overhypothesis, and these inferences ef-
fectively have more data bearing on them (all datapoints, not
just the specific ones).

Generalization is better in theSUPERVISEDcondition than
in theUNSUPERVISEDcondition (p= 0.0006, two-tailed), al-
though the size of the effect is not large: though category in-
formation helps somewhat, especially when the features are
less coherent, the fairly high performance of the model in the
UNSUPERVISEDcondition suggests that to the extent that the
features of a category are coherent enough to support general-
ization, they also support categorization, and an ideal learner
can take advantage of this. Since there will always be un-
certainty about which categories are most appropriate there is
some benefit to being given category information, but it is not
huge. The affect of coherence on generalization in the model
is significant7, which is sensible: if categories are more inco-
herent, less generalization is appropriate.

To what extent do humans look like our learner? Do people
also find first-order and second-order generalization equiv-
alently easy? Is category information useful? Do they too
show differential performance based on how coherent the cat-
egories are? We address these questions in the next section.

Experiment
Our experiment is designed to present participants with the
exact task and dataset presented to our model, in order to most
closely compare performance between the two.

Items. Because the model was presented with items that
each had eight independently-generated features, four ran-
dom (fR) and four more coherent (fC), we designed items
with the same characteristics for the experiment. They con-
sisted of a square with four characters (one in each quadrant)
surrounded by circles at the corner, each containing a charac-
ter of its own. The characters corresponded to the features of
the items in the model datasets, and were designed to ensure
that they were salient and discrete, as in the model. Which of
the four features varied coherently changed from trial to trial
and participant to participant, to eliminate order or saliency
effects of any particular feature or feature combination.

Trial structure. Each trial had several phases. In the
first phase, participants were shown a set of novel objects
on a computer screen and either asked to sort them by mov-
ing them around the screen with a mouse and drawing boxes
around the ones they thought would be in the same category
(in the UNSUPERVISEDtrials) or were shown the objects al-
ready sorted with boxes drawn around them (in theSUPER-
VISED trials.

After the first phase, each participant was asked two gen-
eralization questions, presented in random order. In the first-

be deferred to a longer report.
7One-way ANOVA,p < 0.0001,F = 7.19.
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Figure 3: (a) Model generalization averaged across all datasets based
on the nature of the category information given. There is no sig-
nificant difference between first- and second-order generalization.
Although category information aids in generalization, theeffect is
small. (b) Coherence affects generalization, especially in theUNSU-
PERVISEDcondition.

order generalization questions, they were shown an item cor-
responding to one of the items they had already seen, and
asked which of two other novel items were most likely to
belong in the same category as that one. The second-order
generalization questions were identical except that the partic-
ipants were presented with items and feature values they had
not seen before. All of the sorted items were visible to par-
ticipants throughout the task. To maintain interest in the task,
after completing both questions participants were told how
many of the two they got correct, but not which ones.

Procedure. Each participant was shown 30 trials, halfSU-
PERVISED and halfUNSUPERVISED, in random order. The
factorial design of the experiment corresponded preciselyto
the design of the datasets presented to the model.

Participants. 18 subjects were recruited from a paid par-
ticipant pool largely consisting of undergraduate psychology
students and their acquaintances. The experiment took 1 hour
to complete and participants were paid $12 for their time.

Results

Figure 4(a) demonstrates that, as predicted by the model,
first-order and second-order generalization do not signifi-
cantly differ for human learners. This may be somewhat con-
trary to intuition, but the fact that this is evident for bothhu-
man learners as well as the model lends further support to the
notion that higher-order generalization need not be more dif-
ficult than lower-order. Learning to learn is not only useful,
but apparently not too difficult either.

Figure 4(b) shows that people’s generalizations depend on
coherence, although this result is far noisier than shown by
the model. We also see that humans, like the model, were
aided by being given category information; however, people’s
generalizations deteriorated substantially more in theUNSU-
PERVISEDcondition. Why do humans have poorer general-
ization when the categories were not given? One possibility
is that they simply fail to identify the correct categories,and
in these cases generalize incorrectly. Another possibility is
that they succeed in identifying the correct categories most of
the time, but are less confident in those categories or less able
to make generalizations on the basis of them.

To decide between these hypotheses, we evaluate the cor-

Figure 4: (a) Subject performance on categorization task bycon-
dition. Like the model, participants performed equally well for
both first- and second-order generalization (SUPERVISEDcondition,
p = 0.1176, n.s.;UNSUPERVISEDcondition,p = 0.7551, n.s., both
two-tailed). However, they did worse without category information
than with it (p = 0.0001, one-tailed). (b) Subject generalization,
like in the model, was affected by coherence (one-way repeated
measures (within-subject) ANOVA:UNSUPERVISEDcondition,p =
0.0081,F = 5.16; SUPERVISEDcondition,p = 0.0446,F = 3.25).

rectness of category assignments using the adjusted rand in-
dex adjR (Hubert & Arabie, 1985), a measure of similarity
between two clusterings (in this case, the correct categories
vs. the category assignments made by the participants). Most
trials (67%) in theUNSUPERVISEDcondition had highadjR
values (over 0.5), indicating substantial agreement between
the correct categories and the category assignments made;
a full 92% were better than chance. Figure 5(a) suggests
that people’s relatively poorer performance in theUNSUPER-
VISED condition is carried by the minority of situations in
which they were unable to find the correct categories, since
when they found the correct ones their generalization perfor-
mance was quite high. As Figure 5(b) shows, the effect of
coherence disappears when considering only those trials in
which people found the correct categories; they look more
like the model in theSUPERVISEDcondition.

Discussion
One interesting finding of our work is that both the model and
our participants show that first-order and second-order learn-
ing – learning to learn – can occur at the same time as each
other; it need not be harder to perform second-order general-
ization than it is to perform first-order generalizations. Our
model predicted this result, and we confirmed it empirically
in human performance as well. The fact that higher-order
generalization may at times be easier (or at least equivalently
easy) to lower-order generalization has interesting implica-
tions for questions of innateness: although we generally infer
that higher-order generalizations must be innate if they are
observed early in development, this result implies that such
an inference may not always be valid.

Another interesting aspect of this work is the comparison
of model and human performance when given category infor-
mation and when not. For both humans and the model, gen-
eralization worsened when not given the category informa-
tion, but human performance worsened substantially more.
This is probably because people had a harder time identifying
the correct categories than the model, perhaps due to capac-
ity limitations. It may be possible to model such limitation
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Figure 5: (a) Subject performance on categorization task based on
categorization success. TheHIGHEST group succeeded in finding
the correct categories (hadadjR scores above 0.5); theMIDDLE
group hadadjRscores above chance, but not substantially; and the
LOWESTgroup were below chance performance in sorting items into
categories. Participants who succeeded in finding the correct cate-
gories had high generalization performance, indicating that people’s
relatively poorer performance in theUNSUPERVISEDcondition was
probably due to a difficulty in identifying the correct categories. (b)
Among trials in which the correct categories were found (i.e., the
HIGHESTadjRgroup), overall generalization (collapsed across first-
and second-order) was uniformly high, regardless of coherence.

through the use of particle filters, a limited MCMC process,
or memory constraints captured by dropping data. In future
work we aim to explore this in more detail.

Although hierarchical Bayesian models have been applied
in many other domains, the essential insight – that learning
proceeds on multiple levels of inference at once – is rarely
explicitly incorporated into models of category learning.Our
model can be seen as a version of the hierarchical Dirich-
let Process framework introduced by Griffiths, Canini, San-
born, and Navarro (2007), but with one crucial difference.
Our model infers the higher-level parameters describing over-
hypotheses directly from the data subjects observe, as part
of modeling their learning process8; in contrast, Griffiths et
al. (2007) fit these parameters directly to subjects’ behavioral
data, without modeling how subjects might infer them. It is
the inference of higher-level parameters that supports “learn-
ing to learn.” In this sense, our model is perhaps most similar
to the hierarchical model proposed by Navarro (2006). How-
ever, like the original overhypothesis model of which this
work is an extension, Navarro’s model does not learn to cate-
gorize specific items in addition to performing more abstract
inferences.

More abstractly, the notion that part of category learning
consists of making inferences about which features “matter”
is widespread, but is typically framed as the learning of at-
tentional weights rather than as an inference about the ab-
stract principles underlying categorization in a domain (see
Kruschke (2008) for an overview). Most models of catego-
rization with learned attentional weights adjust those weights
through a process of supervised learning (Kruschke, 2008),
and thus do not explain how people learn what features mat-
ter in an unsupervised situation as in our experiment. An un-
supervised version of SUSTAIN would perhaps be closest
to our models’ ability to simultaneously discover a system of
categories as well as the inductive biases that constrain those

8In HDP terms, it infers the parameters of the base distribution.

categories (Love, Medin, & Gureckis, 2004). Although SUS-
TAIN and other unsupervised category learning models have
not (to our knowledge) been applied to problems of “learning
to learn”, they could be. Our framework would still offer dis-
tinctive insights stemming from its rational basis and the few
free parameters.

In the real world, unlike in our experiments or our mod-
els, knowledge about which features matter for categorizing
is usually restricted to just a certain domain of categories.
For instance, children’s strong shape bias applies only to cat-
egories of solid artifacts, not to living kinds or non-solid
substances. An extension of our model can simultaneously
discover categories and multiple overhypotheses, as well as
which overhypotheses are applicable to which subsets of cat-
egories. It incorporates a higher-level nonparametric clus-
tering of categories into ‘ontological types’ (Kemp, Perfors,
& Tenenbaum, 2007), in addition to clustering objects into
categories; overhypotheses about categories are shared only
within these ontological types. Testing the predictions ofthis
extended model is an important avenue for future work.

This paper presents a computational framework capturing
“learning to learn” in categorization and shows that it predicts
human performance. The ability to learn on multiple levels at
once is a fundamental aspect of human cognition, and our
results serve as a step toward understanding that ability.
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