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Abstract 
The microbiome of the built environment comprises bacterial, archaeal, fungal, and viral communities associated with human-made 
structures. Even though most of these microbes are benign, antibiotic-resistant pathogens can colonize and emerge indoors, creating 
infection risk through surface transmission or inhalation. Several studies have catalogued the microbial composition and ecology 
in different built environment types. These have informed in vitro studies that seek to replicate the physicochemical features that 
promote pathogenic survival and transmission, ultimately facilitating the development and validation of intervention techniques used 
to reduce pathogen accumulation. Such interventions include using Bacillus-based cleaning products on surfaces or integrating bacilli 
into printable materials. Though this work is in its infancy, early research suggests the potential to use microbial biocontrol to reduce 
hospital- and home-acquired multidrug-resistant infections. Although these techniques hold promise, there is an urgent need to better 
understand the microbial ecology of built environments and to determine how these biocontrol solutions alter species interactions. 
This review covers our current understanding of microbial ecology of the built environment and proposes strategies to translate that 
knowledge into effective biocontrol of antibiotic-resistant pathogens. 

Keywords: indoor microbiome, biocontrol, probiotic cleaning, bacillus, antibiotic resistance, built environment, AMR, metabolic 
modelling 

Introduction 
Cleaning and disinfection practices in homes and hospitals to 
combat bacteria, fungi, and viruses have a long history. Ancient 
civilizations used various disinfection methods to remove “pesti-
lence,” from the rudimentary practices of boiling and sunlight 
exposure to the use of natural substances like vinegar and sul-
phur [1]. However, it was not until the 19th century that the age of 
modern infection control began to take shape with targeted clean-
ing practices. For example, Ignaz Semmelweis introduced hand 
disinfection in hospitals [2], and Florence Nightingale introduced 
best practices to decrease infection rates and improve patient 
healing [3]. In the following decades, the use of carbolic acid by 
Joseph Lister for surgical instrument sterilization, in conjunc-
tion with other antiseptic methods, further enhanced pathogen 
control in clinical settings [4]. By the early-to-mid 20th century, 
the discovery of antibiotics and the development of chemical 
disinfectants, such as phenol and bleach, provided a newfound 
defence against infectious agents [5]. Though antibiotics have 
been highly successful and saved many lives, the overuse of these 
drugs has led to the emergence of antibiotic-resistant bacteria, 
such as methicillin-resistant Staphylococcus aureus (MRSA) and 
vancomycin-resistant Enterococcus, making traditional antibiotics 

less effective [6]. Additionally, pathogens are evolving resistance 
to biocidal compounds used in traditional cleaning solutions [7]. 
However, chemical treatments such as phenol and bleach remain 
effective despite providing only temporary removal of pathogens 
on surfaces. 

To reduce the risks associated with various disinfection 
cleaning agents, hospitals now more frequently use a variety 
of cleaning strategies for disinfection, including advanced 
technologies like exposure to ultraviolet (UV) light and hydrogen 
peroxide vapour [8]. Despite these powerful treatments, outbreaks 
of Clostridioides difficile [9] and other antimicrobial-resistant (AMR) 
organisms [10-14] have continued to rise within healthcare 
settings, highlighting the enduring challenge of simultaneously 
disinfecting an area while avoiding selection for traits that 
increase pathogenic potential. Reducing the spread of AMR 
pathogens is a crucial priority for global human health. In 2019, 
1.27 million deaths were directly caused by AMR pathogens 
globally [15], and they are projected to cause an additional 
10 million deaths annually by 2050 [16]. We must therefore 
bolster our defences against persistent and emerging pathogens, 
safeguarding global health and well-being amidst the evolving 
landscape of microbial threats [17].
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The inability of current hospital disinfection methods to 
fully combat these challenges emphasizes the crucial need for 
continuous research, development, and adaptation of infection 
control methods. Although traditional cleaning methods have 
helped to reduce the emergence and spread of antibiotic-resistant 
bacteria and viruses in the built environment, using microbes 
sourced from different environments to inhibit pathogen survival 
and transmission is an intriguing new tool that is posed to 
further improve the health of people indoors. Reintroducing 
specific microbes into buildings can potentially revolutionize 
how we prevent the emergence and persistence of unwanted 
microbes. However, deploying what could be called a microbial 
biocontrol product is hampered by a lack of basic understanding 
of the mechanisms of action for this ecological strategy to 
control disease. Despite this knowledge gap, cleaning products 
containing bacteria that demonstrate antimicrobial activity 
have been developed [18] and are already publicly available for 
purchase. Bacillus spores are often used because many species 
are generally recognized as safe, nonpathogenic, produce a wide 
variety of antimicrobial compounds [19], and remain viable over 
long periods of time [20]. Though it is unknown how effectively 
these spores germinate on dry, nutrient-depleted surfaces in 
built environments, it is important to determine why they are 
found to be associated with a reduction in the abundance of 
hospital-associated pathogens [21-24]. It is unclear whether there 
is an actual competitive exclusion or inhibition effect or if the 
spores occupy niches on surfaces, thereby denying this space to 
pathogens. Alternatively, the spores may mask any detectable 
signal of the pathogens, as determined via DNA sequencing 
methods. If the latter is true, this could mean that the pathogens 
remain viable and can cause infection. Answering this open 
question and moving the field towards improved public health 
objectives will require using a diverse suite of experimental and 
analytical approaches, including techniques that have been so far 
underutilized in built environment research. 

In the last decade, there have been critical innovations in 
the methods, study approaches, and experimental designs used 
to characterize diversity, survival, distribution, transmission, and 
health risk of microbes found in our buildings. A rapid explosion 
in observational studies over the last 15 years has provided a 
baseline analysis of the microbial diversity in built environments. 
High-throughput sequencing of bacterial 16S rRNA and fungal 
internal transcribed spacer (ITS) genes has demonstrated that 
microbes colonize and spread throughout buildings in predictable 
ways [25-30]. In addition, shotgun metagenomic sequencing has 
been used to characterize the spread of AMR genes [31] and  to  
quantify the relative abundance of microbial taxa across surfaces 
and on the skin of indoor environment occupants [32]. Also, quan-
titative polymerase chain reaction (qPCR) has been employed to 
determine the absolute abundance of specific AMR genes [33, 34] 
or species of interest [35] in a diverse set of environments such 
as soil, water, air, faeces, and sediments. Further, targeted and 
untargeted metabolomics have been employed to characterize 
the distribution of chemicals around built spaces and infer the 
metabolic ecology of species interactions in experimental sys-
tems and real-world environments [36-38]. These methods can 
be enhanced using specialized DNA extraction techniques and 
internal standards to compensate for the low biomass typically 
recovered in built environment samples [32, 39, 40]. 

Investigations in real-world built spaces have led to numer-
ous new hypotheses regarding microbial survival and transmis-
sion, and the metabolic interactions that underpin these proper-
ties. Robustly testing these hypotheses has required innovations 

in experimental laboratory-based studies. Despite laboratories 
being built spaces themselves, recreating the inherent ecological 
dynamics that define the indoor microbiome has proven difficult 
and has required a reimagining of traditional microbiology tech-
niques. Microbes in the built environment are generally assumed 
to be starving, dying, or dead [41]. We are, therefore, attempt-
ing to study life on the edge of survival. Many microorganisms 
are unable to survive on surfaces, but some pathogens have 
demonstrated the ability to survive on surfaces common to the 
built environment. For example, MRSA shows robust viability 
on surfaces such as vinyl and plastic over days [42]. Traditional 
microbiology cultivates microbes using media optimized over 
decades of experimentation to encourage their growth. Such con-
ditions are unlikely to replicate microbial interactions in the built 
environment. So, it is necessary to use techniques that more 
closely reproduce the harsh conditions of most built environment 
surfaces to more accurately examine how microbes survive, grow, 
and interact in this environment. 

Observational studies and laboratory investigations inform 
intervention studies in ways that help determine the potential 
benefit of removing species of concern or introducing potentially 
beneficial microbes, both for the integrity of the building structure 
and the health of the occupants. Intervention studies have been 
performed in mock built environment microcosms, as well as 
in full-scale field trials, and are now elucidating the ecological 
dynamics of these environments. Unfortunately, due to the cost 
and added risk of conducting an intervention within buildings 
such as hospitals, only a few full-scale tests of these intervention 
techniques have been completed. This review will discuss recent 
advances in built environment microbiome research, with a focus 
on strategies related to the understanding and translation of 
biocontrol practices used to reduce antibiotic-resistant pathogens 
on surfaces in real-world clinical settings. 

Techniques for investigating the 
microbiome of the built environment 
Observational studies have investigated microbial dynamics in 
the built environment, detecting broad trends in the microbial 
composition and indoor ecological dynamics. For example, these 
studies describe how the diversity, composition, and functional 
potential of communities change over time and how occupants 
and building operations influence these interactions. Many 
built environments have been explored in this way, including 
workplaces [43-45], homes [46-49], and public transportation 
[50, 51]. Of critical importance to understanding the interaction 
between surface-associated microbial ecology and pathogenic 
activity, hospital environments have been well characterized 
[25, 26, 52], providing some of the most compelling results to 
justify further intervention studies. For example, one investi-
gation demonstrated that surfaces in a newly built hospital 
were inoculated with microbes that closely resembled the 
outside environment [25]. However, when that hospital became 
operational and therefore densely populated with patients and 
healthcare workers, the surface-associated microbiome began 
to resemble that of the occupants’ skin and respiratory tract. 
In addition, following the start of operational activity, hospital 
custodians cleaned surfaces with defined periodic frequency, 
which also influences microbial dynamics [25]. Similar trends 
have been observed in studies that focused on closed hospital 
wards that were renovated and reopened for use [27]. Using 
metagenomic reconstruction of bacterial genomes in hospitals 
over dense time series has demonstrated that bacteria in the
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hospital environment have increased selection pressure for the 
acquisition and accumulation of antimicrobial resistance genes 
[25]. Although the mechanism of action has not been elucidated, 
bacterial adaptation and resistance to disinfectants (such as those 
used to clean the hospital) is well known [53], and we hypothesize 
that genetic adaptation to survival against such disinfection may 
also be concomitant with other genetic survival strategies, such 
as antimicrobial resistance. However, further research is needed 
to uncover the explicit relationship between these phenomena. 

Over the last 15 years, observational studies have generally 
applied relatively affordable microbiome analysis techniques, 
such as 16S rRNA or ITS gene sequencing, to characterize 
the diversity and taxonomic composition of bacterial and 
fungal communities, and qPCR of targeted genes to determine 
absolute abundances of microbial community members [54-58]. 
Although approaches such as metagenomics, metatranscrip-
tomics, metabolomics, and application of qPCR to quantify a 
variety of genes and microbial activity (e.g. the abundance of 
antibiotic resistance genes) can dramatically increase experi-
mental costs, they can significantly improve our understanding 
of microbial interactions in these settings [59-61]. These methods 
can be implemented to identify patterns of microbial metabolism 
in complex systems [62], or when observed over time, these data 
can reveal temporal dynamics. However, the implementation 
of these other ‘omics approaches is challenging due to the low 
microbial biomass found on surfaces in buildings, especially 
where resources such as water, carbon, nitrogen, and other 
essential nutrients to sustain life are limited and there is frequent 
cleaning [41, 45]. Additionally, although observing spatial or 
temporal trends in microbiome composition or metabolism is 
useful, it is hard to identify the features that influence these 
dynamics due to our inability to control for every factor in a 
real-world environment. Targeted interventions or manipulations 
of the environment and the subsequent measurement of the 
magnitude of effect are needed to better understand how to 
optimize beneficial change. Even in an observational study such 
as the Hospital Microbiome Project [25], where we can observe a 
pseudo-intervention, in this case a change in occupancy status 
in real-time, it is not possible to explicitly track the movement 
of individual microbes or infer microbial metabolic interactions 
and competitive dynamics. However, it is possible to predict how 
microbes interact with each other and model their behaviour in 
these environments using metabolic models [63]. 

Modelling microbial metabolism 
To improve our understanding of microbial activity and ecology 
in these extreme environments, it is necessary to fundamentally 
understand their metabolic potential. Genome-scale metabolic 
models (GSMMs) are mathematical models of metabolic networks 
reconstructed from the organism’s annotated genome [63, 64]. 
Genome-scale metabolic modelling can help facilitate a clear 
understanding of the mechanisms that microbes deploy to sur-
vive, germinate, and compete for resources. These models predict 
growth rates in a simulated medium and determine what reac-
tion rates are needed to support growth. Pairs or larger groups 
of models can be connected to determine which metabolites 
are being readily exchanged (commensally or symbiotically) and 
which limited nutrients drive competition between the organisms 
[65, 66]. These models can make predictions for hundreds of 
conditions within seconds, allowing for the rapid identification of 
important nutrients, uptakes, and secretions, thereby rationally 
informing the design of subsequent experiments. In an iterative 
process, experimental data can be incorporated into GSMMs, 

contextualizing the data and further refining their predictions. 
Transcriptomics can also be used to detect reactions associated 
with low-transcription genes, increasing the specificity of the 
model to the environment of interest [67]. The refined model 
then yields insights into the biological relevance of transcriptional 
changes by identifying how they affect the expression of larger 
metabolic pathways. These models can also facilitate the analysis 
of multiomics data, by integrating them into an interpretable 
scaffold, which can then be used to predict how changes in the 
genome or to the environment influence survival or competitive 
outcomes. Using these modelling techniques on samples from 
the International Space Station, an extreme built environment 
revealed beneficial interactions between the pathogen Klebsiella 
pneumoniae and bacterial species of the genus Pantoea and the 
family Enterobacteriaceae [68]. The model also predicted K. pneumo-
niae is parasitic towards the fungal genus Aspergillus, which was 
confirmed experimentally via co-culture [68]. Predicting microbial 
interactions in built environments via modelling is a powerful 
technique to inform efficacious biocontrol strategies by identi-
fying novel species interactions and predicting their differential 
effect in a range of scenarios. This information can be generated 
based solely on ‘omics data and subsequently confirmed in labo-
ratory studies. 

Interpreting metabolic ecology 
Studies in controlled laboratory settings typically, but not 
always [69], use microcosms that contain small pieces of 
construction materials relevant to the built environment of 
interest, and conditions (e.g. humidity and temperature) are 
varied to determine whether they have an effect on microbial 
activity and survival. To mimic realistic microbial community 
interactions and successional dynamics, studies have seeded 
surface materials with microbes by leaving them exposed within 
built environments prior to initiating challenge studies. In a study 
of microbial metabolic dynamics [60], coupons of oriented strand 
board, medium-density fibreboard, regular gypsum wallboard, 
and mould-resistant gypsum were naturally inoculated by passive 
colonization in homes and in a laboratory. Following this seeding, 
the coupons were either soaked in water to simulate a water 
leak or kept dry and then all coupons were incubated for an 
additional 30 days within a high humidity (∼94%) chamber. 
Swabs of the coupons were collected every 5 days and analysed 
with 16S/ITS rRNA gene amplicon sequencing and metabolomics 
to determine how these communities changed taxonomically 
and metabolically in response to wetting. Wetted coupons 
were dominated by the bacterial genera Bacillus, Erwinia, and  
Pseudomonas and the fungal genera Eurotium and Penicillium. 
When coupons had been wetted, Bacillus and Pseudomonas species 
were almost always negatively correlated in relative abundance, 
suggesting competitive exclusion. Even though Bacillus species are 
known to produce antifungal compounds [70-72], only the mould-
resistant gypsum was dominated by Bacillus. The antibacterial 
compounds nigragillin and fumigaclavine C were found in high 
abundance. They were positively correlated with the presence 
of Aspergillus and negatively correlated with the abundance of 
Bacillus and Pseudomonas [60]. These results suggest that the 
presence of Bacillus is not sufficient to prevent fungal growth on 
built environment surfaces. Although they did not purposefully 
inoculate surfaces with Bacillus, this study suggests that this genus 
did proliferate when coupons were wetted, but it only dominated 
on mould-resistant gypsum, which inherently inhibits fungal 
growth, and as such, the naturally occurring Bacillus species may 
not have antifungal activity.
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Semi-in vitro investigations are effective at discovering novel 
microbial interactions, but ecological dynamics can also be 
inferred from applying multiomic techniques to controlled 
building environments. For example, one study characterized 
the chemical and microbial compositions of two frequently wet 
surfaces in a residential setting, specifically the kitchen sink and 
bathroom shower [73]. This study used a combination of culture-
dependent and independent techniques, including transcriptional 
analysis of the 16S rRNA gene to determine which bacteria were 
active at the time of sampling, and assessment of both volatile 
and soluble chemicals to explore the links between the observed 
microbiota and chemical exudates. This study showed that 
microbes play a critical role in structuring the chemical profiles of 
surfaces in built environments, particularly in kitchen sinks and 
shower stalls. The microbial volatile organic compounds (mVOCs) 
were predominantly associated with fatty acid processing, and the 
composition of these mVOCs appeared more stable than that of 
the microbial communities themselves, which showed variations 
in response to changing environmental conditions. A second 
example demonstrated microbial colonization, succession, and 
viability in a tightly controlled restroom environment [61]. This 
study focused on the ecological succession and viability of 
human-associated microbiota on restroom surfaces, including 
floors, toilet seats, and soap dispensers. The study demonstrated 
that a late-successional microbial community develops on 
restroom surfaces within 5 to 8 hours of decontamination. 
This community showed remarkable stability over weeks to 
months, indicating a quick establishment and persistence of 
specific microbial assemblages. The authors also showed that 
faecal taxa, particularly those able to enter a dormant phase, 
can persist for extended periods on restroom surfaces. This 
insight into microbial survival strategies in dry and nutrient-poor 
environments of built environments is crucial for understanding 
disease transmission, ecology, and environmental health. This 
study also found a significant positive correlation between 
bacterial and viral abundances, but with an unexpectedly low 
virus-to-bacterium ratio of nearly 1:1. This suggests that many 
bacteria on restroom surfaces are in a dormant state, influencing 
the dynamics of phages in these environments. Understanding 
microbial ecological dynamics in these systems is essential if 
we are able to control the survival, emergence, and persistence 
of pathogens. Next, we explore how biocontrol may be applied 
to manipulate these ecosystems to reduce the persistence of 
pathogens in the built environment. 

Biocontrol in the built environment 
In agriculture, biocontrol has been rigorously investigated as a 
replacement for pesticidal, antimicrobial, and antifungal com-
pounds used to eliminate disease-causing organisms [74, 75]. 
As many plant-associated microbes are naturally antagonistic 
towards human-associated pathogens [76], the adaptation of this 
method in built environments has become an emerging area of 
research. The Bacillus species used in probiotic cleaning products 
are also often associated with plants and soil [77]. Addition-
ally, Priestia megaterium (previously Bacillus megaterium) is often 
included in these formulations due to its biocontrol activity in 
agriculture [78]. Some Bacillus species are also part of the healthy 
human microbiome and can confer health benefits when admin-
istered as an oral probiotic. For example, consuming B. subtilis 
spores can decolonize S. aureus from the human gut [79]. Staphylo-
coccus aureus is an opportunistic pathogen and present in approx-
imately one-third of the human population [80-82], suggesting 
that decolonization can lower the overall risk of developing future 

S. aureus infections, although we also concede that removal of 
beneficial Staphylococcus species and strains may have negative 
health impacts. 

Bacillus species form spores when starved for nutrients, making 
them resistant to damage by heat, UV, chemicals, and desiccation. 
Spores remain in this dormant state until conditions improve and 
then germinate upon exposure to certain amino acids, such as 
l-alanine, l-valine, and l-asparagine [83]. This makes them ideal 
for inclusion in cleaning solutions because unlike probiotics that 
contains vegetative cells (which must be refrigerated), a spore-
containing solution can be stored at room temperature indefi-
nitely. Additionally, Bacillus spores will remain viable on built envi-
ronment surfaces for at least 72 hours [84], can be incorporated 
into materials [85] where they can repair microfractures [86], and 
facilitate changes to a material’s shape in response to changes 
in humidity [87]. In the future, building materials might contain 
spores for the purpose of maintaining structural integrity and 
improving the health of occupants via biocontrol mechanisms 
and immune stimulation [88, 89], although research in this area 
is still in the very early stages. 

We posit that there are two potential mechanisms by which 
biocontrol bacteria, such as Bacillus spp., may regulate pathogen 
exposure in built environments: (A) competitive exclusion, 
either through competition for nutrients or through antibiotic 
production and (B) enhancing the ecological stability and 
pathogen exclusion potential of the native surface microbiome 
(Fig. 1). Additionally, as outlined below, studies have shown 
that Bacillus administration in hospitals leads to a significant 
reduction in the abundance of known pathogens on surfaces 
[22-24, 84, 90, 91]. This could be due to competitive exclusion or 
by influencing the ecological stability of the native community; 
another possibility is that the application of billions of Bacillus 
spores leads to overwhelming numerical dominance (iii) that 
results in a decrease in the ability to detect pathogens and maybe 
diminished likelihood of occupant exposure due to a reduction in 
the probability of encountering a pathogenic cell (Fig. 1). Below 
we explore specific examples that may help elucidate which 
mechanism or mechanisms is most likely. 

Bacillus species can competitively exclude other organisms 
through the preferential uptake of nutrients from their surround-
ing environment. For example, iron, an important element for 
all life due to its frequent use as a cofactor in enzymes, can 
be sequestered by siderophores secreted by Bacillus species [92]. 
These molecules bind tightly to individual iron atoms and require 
specialized membrane transport proteins for uptake and utiliza-
tion by a cell. Cells without the proper transportation proteins are 
unable to import and use the iron, thereby inhibiting their growth 
[93]. Competitive inhibition of pathogens can also occur via the 
direct production of antagonistic compounds by Bacillus species, 
including surfactin, iturin, fengycin/plipastatin, bacillomycin, 
and bacilysin (Fig. 2; [94]), although the effectiveness of these 
compounds has not specifically been demonstrated in the built 
environment. Several studies have demonstrated that Bacillus 
intervention enhances the pathogen exclusion properties of 
the extant surface microbiome [95, 96]. However, the lack of a 
defined mechanism of action behind such biocontrol suggests an 
urgent need to perform new studies aimed at elucidating these 
modalities. This is especially important due to the proliferation 
of commercial probiotic cleaners, whose efficacy should be 
validated against traditional cleaning methods and any impact 
on material integrity or human health assessed. However, studies 
that seek to demonstrate the effectiveness of an intervention 
against pathogen reduction cannot introduce pathogens into the
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Figure 1. Potential pathogens can be deposited on surfaces by infected occupants, but their survival and transmission capability are dependent on 
many environmental factors, including temperature, light, humidity, occupant density, air flow, cleaning methods, and surface material type 
[43 , 101-105 ]. However, this rate of accumulation and transmission can also be altered through manipulation of surface ecology by introducing 
bacteria into the environment. Here, we propose three potential modes of action for how probiotics can decrease pathogen exposure and infection risk. 
(A) Bacterial spores germinate and exclude pathogenic bacteria through direct consumption of resources or by inhibiting pathogen growth via the 
production of inhibitory molecules, such as bacilysin [106 ]. (B) Germinated probiotic bacteria alter microbial community interactions through 
metabolic exchange, leading to the inhibition of pathogens [96 ]. (C) Cleaner-associated bacterial cells outnumber cells of potential pathogens, resulting 
in numerical dominance. We hypothesize this could then reduce the rate of occupant interaction, or it may reduce the detection of pathogens by 
sequencing techniques. 

environment to start the experiment and instead must rely on 
already existing exposure events, such as those occurring in 
hospitals. Additionally, there is a lack of control for complex 
factors such as occupancy rates, sunlight, and seasonality, which 
makes these studies susceptible to misleading conclusions ( Fig. 1). 

A recent study showed that it was possible to impregnate mate-
rials with a bacterial spore-containing medium, either through 
direct inoculation [97] or through embedding spores in 3D-printed 
materials [85]. Spores of genetically modified Bacillus have been 
printed into soft hydrogel materials, where they remain viable 
and become metabolically reactive in response to a pathogen 
(e.g. S. aureus), resulting in the biocidal activity of those agents 
[85]. Using sprays, materials can also be seeded with microbial 
spores. To test the activity of these spore sprays, a commercially 
available cleaner containing either Bacillus spp. spores or a spore-
free version of the cleaner was applied to steel coupons; then, 
the coupons were inoculated with either Acinetobacter baumannii 
or K. pneumoniae [95]. The coupons were sampled at 3, 24, and 
72 hours for colony-forming unit (CFU) enumeration to determine 
whether the presence of the cleaner, with or without Bacillus 
spores, decreased the survival rate of the pathogens compared to 

cleaner-free controls [95]. However, there was no significant dif-
ference in A. baumannii survival rates in the presence or absence 
of the cleaner, with or without Bacillus. Klebsiella pneumoniae sur-
vival was significantly reduced when exposed to any cleaner, and 
the presence of  Bacillus did not enhance this effect. In partial 
explanation for this finding, metatranscriptomic sequencing data 
suggested a low (∼1% of reads) recovery of Bacillus when in spore 
form, whereas samples with vegetative cells had ∼40% of reads 
identified as Bacillus. The absence of any impact of Bacillus on 
pathogen survival, coupled with the lack of vegetative transcrip-
tional activity, suggests that most of the spores failed to germinate 
and hence had no inhibitory effect on the pathogens. Another 
study tested the natural seeding of blocks of ceramic, linoleum, 
and stainless steel in both indoor and outdoor environments 
that were periodically cleaned over 8 months using either bleach, 
tap water, soap, or a Bacillus-containing probiotic cleaner [96]. 
Following this seeding period, clinical E. coli and S. aureus strains 
were deposited on the blocks and desiccated. Their survival was 
then assessed after 24 hours via CFU enumeration. Blocks cleaned 
with either soap or the probiotic cleaner had almost no viable 
pathogens after 24 hours; however, pathogen abundance on the
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Figure 2. The germination of Bacillus spores is triggered by either (A) L-alanine/L-valine or (B) a combination of L-asparagine, glucose, fructose, and 
potassium ions [107 ]. Vegetative Bacillus cells can generate different compounds that can exclude pathogens, including (C) the siderophore 
bacillibactin, which binds iron and is involved in competitive exclusion of nearby microbes [108 ]; (D) surfactin, which has antimicrobial properties and 
also aids in movement across surfaces [109]; (E) bacillomycin, which has potent antibacterial activity [110]; (F) bacilysin [106]; and (G) fengycin [111 ], 
which are both antifungal compounds. 

tap water and bleach-cleaned blocks was significantly higher. 
Additional linoleum blocks were seeded and cleaned as before and 
then inoculated with a fluorescently labelled P. aeruginosa strain. 
Following a 48-hour incubation within a flow cell with tryptic 
soy broth, the blocks were imaged to assess the extent of surface 
colonization by P. aeruginosa. Almost no growth was observed 
for the blocks cleaned with tap water or soap, but there was 
extensive colonization by P. aeruginosa on the bleach and probiotic 
cleaner blocks. These lab-based studies shed light on how Bacillus, 
the primary biocontrol bacteria used in commercial probiotic 
cleaning products, behaves in different environments and varied 
microbial communities. However, some lab studies show that 
Bacillus mostly fails to germinate and has a limited impact on 
the survival of pathogens like A. baumannii and K. pneumoniae [ 95]. 
Conversely, using a probiotic cleaner appears to establish a micro-
bial ecosystem that effectively kills or inhibits pathogens, but that 
cleaning with soap also leads to a microbial community that is 
just as effective at pathogen inhibition [96]. However, the Bacillus 
cleaner did not appear to prevent the accumulation of P. aeruginosa 
when inoculated in a rich media, suggesting that environmental 
conditions are important for metabolic ecology. Although each 
study used different methods and conditions, they together reveal 
that Bacillus species do not automatically thrive and effectively 
compete with other microbes on surfaces. There appear to be only 
specific situations where Bacillus can effectively compete against 
other microbes in the built environment, which highlights the 
need for detailed investigation of biocontrol microbes on varied 
surface types before wide-scale deployment. 

An important early study on the effectiveness of biocontrol 
cleaning methods used a solution containing B. subtilis, B. pumilus, 

and P. megaterium spores [21] over 24 weeks. These spores reduced 
the CFUs recovered from coliforms, S. aureus, C. difficile, and  Can-
dida albicans on surfaces by 50%–89% after 3–4 weeks of appli-
cation as compared to surfaces cleaned using standard cleaning 
methods. The observed reduction remained steady throughout 
the remaining 4 months of the study, but pathogen abundance 
rebounded when traditional cleaning was reintroduced. A subse-
quent study focused on the resistance of the surface microbial 
community to antibiotics when a probiotic cleaning solution was 
used, as well as whether patients were colonized by the Bacillus 
species in the cleaner and if the Bacillus germinated on the sur-
faces [84]. Spores were found to germinate on the dry, relatively 
nutrient-deficient surfaces but were not found in samples of 
blood and urine from patients. Again, a decrease in pathogen 
abundance was observed on surfaces, as well as a reduction in 
the abundance of genes associated with antibiotic resistance. The 
study found no evidence that the Bacillus spp. were acquiring 
antibiotic resistance genes from the native microbial community. 

These results prompted a large multicentre study focused 
on investigating whether Bacillus-based cleaning products could 
reduce the resistome of hospital-associated pathogens [98]. A pre-
vious study demonstrated that healthcare-associated pathogens 
tended to acquire additional antibiotic resistance and virulence 
genes over time in the hospital [25]. The internal medicine wards 
of five Italian hospitals were enrolled and samples were collected 
for an initial 6-month period, during which traditional cleaning 
methods were continued. Following this baseline period, a 6-
month intervention was carried out using a Probiotic Cleaning 
Hygiene System (PCHS) that consisted of B. subtilis, B. pumilus, 
and P. megaterium spores, after which there was a 6-month



Biocontrol in the built environment | 7

postintervention period. The use of PCHS was associated with 
an up to 99% reduction in AMR genes contained in the hospital 
microbiome, with a 33%–100% decrease in the presence of 
resistant strains. The use of PCHS was also associated with 
a 60% decrease in the consumption of antimicrobial drugs by 
patients, leading to a 75% reduction in the costs associated with 
treating AMR infections. The cumulative incidence of healthcare-
associated infections decreased significantly in the post-PCHS 
treatment period compared to the conventional treatment phase, 
from 4.8% to 2.3% (p < .0001). These results are promising, but 
replication by other research teams is necessary to increase 
confidence in this approach, as well as further investigations into 
mechanisms of action. Lacking this knowledge severely limits 
our ability to refine the process and to understand the ecological 
dynamics that underpin the observations. 

Additional follow-up studies have confirmed the effectiveness 
of probiotic surface treatments in reducing the abundance of 
AMR genes and the potential pathogens that often harbour them. 
For example, bacteriophages are an attractive fast-acting alterna-
tive to spores. In a study using the PCHS combined with phage 
targeting Staphylococcus in hospital bathrooms, an 87% reduc-
tion in Staphylococcus species (including nonpathogenic strains) 
was observed after only 1 day of phage treatment [90]. After 
six additional days, there was a 97% reduction in Staphylococcus 
observed, but there was a return to preintervention levels after 
4 days of treatment cessation. Resuming the treatment for 7 
days resulted in a reduction similar to that observed in the first 
treatment period. A larger follow-up study at two hospitals using 
the combined PCHS+Phage treatment had mixed results. One 
hospital showed a significant reduction in Staphylococcus, but  the  
other did not [24]. This study was performed during the COVID-
19 pandemic, which led to the use of emergency applications 
of 3% NaClO disinfectant. One hospital used a greater number 
of NaClO applications, and this increase was correlated with an 
order of magnitude reduction in Bacillus and phage abundance, 
likely leading to a reduction in the effectiveness of the probiotic 
intervention [24]. These results support an earlier study, also 
performed during the COVID-19 pandemic, that found a reduc-
tion in pathogen load through the use of PCHS was reversed 
when emergency 5% NaClO was implemented [91]. These recent 
studies highlight the importance of understanding the dynamic 
nature of real-world applications, the limits of using phage as 
a treatment, and how probiotic cleaning methods might be ren-
dered ineffective when harsh bleach cleaning agents are used in 
tandem. 

Conclusions and future directions 
Probiotic intervention studies in hospitals [22-24, 99, 100] have  
demonstrated the potential to revolutionize cleaning approaches 
in healthcare facilities. However, much is still unknown about 
their mechanism of action, as well as how additional factors 
could influence their efficaciousness in situ. Further investiga-
tion of how spores germinate and competitively exclude other 
microbes in these dry, nutrient-depleted environments is needed 
for the successful development and broad deployment of probi-
otic cleaners. To answer these questions, we must use a variety 
of experimental strategies, including varied application methods 
(i.e. how the cleaner is applied and at what concentration is 
the cleaner most effective), inclusion of taxonomically diverse 
pathogenic microbes at varied concentrations, and a character-
ization of whole community dynamics in response to cleaner 
application. These experiments will require highly controlled and 

easily manipulatable conditions, and therefore, laboratory testing 
will be essential for determining the relative importance of factors 
associated with method of use, humidity, nutrient availability, 
surface material type, and cleaning regimes. Further, simulating 
transmission events of microbes from surfaces to humans will be 
needed to more fully understand how probiotic cleaners influence 
transmission rates of taxa of interest. 

Differential use patterns of healthcare facilities might alter 
best practices for probiotic cleaner use. For example, it is unknown 
how the magnitude of response might vary between different 
wards or rooms. Patient rooms and bathrooms have been the pri-
mary focus of intervention studies; however, other shared spaces, 
such as hallways or visitor areas, also carry the potential for 
pathogen accumulation and transmission risk. Additionally, long-
term monitoring is crucial to detect whether the pathogens in 
these environments begin to adapt to this new cleaning method 
and therefore become resistant to biocontrol. Such a situation 
could start an evolutionary “arms race” with unknown outcomes. 
It is crucial to consider the health and emotional impacts on the 
patients and staff. Sociological studies on healthcare workers and 
patients are necessary to understand the perception that patients, 
staff, and the public have about the use of these novel products 
and to involve their feedback in product design and applica-
tion. The popularity of probiotics in popular foods and drinks 
could help alleviate concerns, but deploying them in hospitals, 
especially around high-risk patients, will likely be controversial. 
Understanding the perception of these products, and explain-
ing how and why they work, will aid in successful widespread 
adoption across healthcare systems. As seen in studies conducted 
during the COVID-19 pandemic, harsh cleaning treatments using 
bleach may inhibit the probiotic and phage cleaners, so it will be 
imperative that staff are trained in how to properly treat surfaces 
cleaned with probiotics. 

Beyond direct application to the engineering of probiotic mate-
rials [85], 3D printing is primed to be the future of microbial 
biocontrol in built environments. Recent advances in 3D printing 
have resulted in materials that can be printed at low enough 
temperatures that spores and even live bacteria are not harmed 
during the assembly process. Unlike previous efforts, which used 
hydrogels [85], these new approaches can enable the printing 
of ceramics or hard plastics with improved utility as building 
materials. Using genome-enabled metabolic modelling to select 
bacteria that are optimized for these printing processes presents 
unique opportunities for built environment-specific designs that 
could be used to manipulate the ecology of these environments 
in prescribed ways. If this trend continues, we may soon be able 
to print tiles, furniture, or even entire structures out of sustain-
ably produced microbially active materials [97]. Establishing the 
efficacy of these products through well-designed field interven-
tion studies that are informed by lab-based experiments is an 
exciting subfield of built environment microbiome research and 
will ultimately lead to better products, building materials, and 
design techniques in buildings to improve occupant health and 
well-being. 
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