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ABSTRACT OF THE THESIS

Severity Prediction and Time-Series Analysis of Vehicle Accidents Using Statistical Models

by

Lisa Kaunitz

Master of Science in Applied Statistics

University of California, Los Angeles, 2022

Professor Frederic Paik Schoenberg, Chair

This study explores factors that effect vehicle accidents, predicts the severity of accidents

through logistic regression, and forecasts the number of future accidents to occur using time-

series analysis. From insights gathered during exploration, a final dataset is prepared for

the use of a logistic regression model. The final model predicts whether or not an accident

will be severe with an accuracy of 82%, and reveals the three main features that statistically

contribute to the odds of an accident having a severe impact on traffic. Finally, a time-series

analysis is run in order to model the number of accidents that can occur on a given day using

historical data. This paper evaluates the dataset in ways that have yet to be explored, and

provides a great baseline understanding of what is possible for the future of transportation.
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CHAPTER 1

Introduction

If you have been driving for the past 18 years, you will likely have experienced the ramifica-

tions of being in an automobile crash multiple times [1]. Every time a driver gets on the road,

they have a 1 in 103 chance of dying in a car crash, making it one of the riskiest decisions we

make daily. While these numbers are staggering, the automobile industry has slowly added

more safety features to cars: first starting with the introduction of backup cameras, then

self-parking capabilities, and now a level of autonomous driving. These features have been

leading up to full autonomy on the road.

In addition to the risk of safety that driving has on individuals, there is also an economic

cost of traffic accidents. The annual financial cost of motor vehicle crashes in California

alone is 19.998 billion dollars [2]. It nearly costs the United States 1 trillion dollars a year

[3]. It is estimated that three-quarters of the total costs come from insurance and medical

expenses, higher taxes, and adverse economic effects of congestion. More acutely, the severity

of accidents - for this data, meaning the impact on traffic - leaves vehicles idle on freeways,

resulting in more gas emissions and increased frequency of filling up gas.

Another impact that should not be overlooked is the effect on the environment. Vehi-

cle accidents can often result in gas and fluid leaks that emit harmful chemicals into the

atmosphere. On a graver scale, accidents that result in totaled cars leave parts that will

eventually end up in landfills. While the issue of gas emissions is actively being worked on

with the innovation seen in the electric vehicle market, there is still an environmental cost

associated until we see a majority of electric vehicles.

With the three effects of vehicle accidents highlighted being human, economic, and envi-

ronmental, we can see that it is worth finding a way to best predict the severity of accidents.
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If we can find the variables that have a statistical significance in the number of traffic acci-

dents, we can use that information to try to minimize the number of accidents seen across

the country. Additionally, by running a time-series analysis on historical daily accident data

to predict future accident data, we can have more information that will allow us to make

better-informed decisions.

In this paper, I developed two areas of research concentrating on a time-series analysis

forecasting vehicle accidents, specifically in the state of California, between the years 2016

to 2021. First, is building a model for predicting the severity of accidents, and examining

the key factors that affect the severity of an accident, which can give insight into how to

prevent accidents from occurring. Finally, an ARMA model will be created to forecast the

daily number of accidents using historical data.
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CHAPTER 2

Goals and Areas of Interest

Traffic congestion affects most of the working population worldwide. Aside from the three

effects stated above - human, economic, and environmental - congestion becomes part of

our everyday lives. The most significant growth areas in the automotive and transportation

industries have been geared towards relieving these pains two-fold: with the implementation

of electric vehicles (EVs) and autonomous vehicles (AVs).

Electric vehicles have an electric motor instead of an internal combustion engine and a

battery instead of a gasoline tank. The first fully electric car was introduced in 1890 by

William Morrison, a chemist from Des Moines, Iowa [4]. The history of EVs is extensive;

however, they made a mass reappearance at the start of the 21st century. The Prius became

the world’s first mass-produced hybrid electric vehicle, released in Japan in 1997. The sec-

ond most significant turning point was in 2006 when Tesla Motors announced it would start

producing fully electric luxury vehicles for the masses. Since then, almost all automakers

have accelerated their work on creating EVs for the newly adjusted market. EV production

by automakers is only part of the equation; there are many other moving parts, like con-

sumer adaptation, regulations, battery production, and refueling infrastructure. With many

industry forecasts, the consensus is that about half of the cars on the road will be electric

by 2050 [5], which would drive the goal in the US of being carbon neutral, alleviating much

of the environmental impact of congestion.

Autonomous vehicles, also known as self-driving cars, are capable of operating and trans-

porting passengers without any input from a human driver. The first autonomous capability

to hit the US market was in 1945 with the introduction of cruise control [6]. We can bucket

autonomous technology into six levels: Level 0 has no driving automation and is manually
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controlled. The data used for this study will be coming from vehicles with level 0 capa-

bilities. Level 1 is categorized as driver assistance, including adaptive cruise control and

breaking. Level 2 is partial driving automation, where the vehicle can control both steering

and accelerating/ decelerating. The most popular vehicle on the road with level two automa-

tion include the Tesla Autopilot. Level 3 is categorized as conditional driving automation,

which differs from the previous level by having the ability to make informed decisions with

environmental data. Level 4 is high driving automation, which introduces the ability for the

vehicle to intervene if things go wrong and would not require human interaction in most

circumstances; however, a human still has the option to override manually. Companies like

Waymo are introducing level four self-driving taxis to the market. The last fully autonomous

level is Level 5, where the vehicle can communicate with other vehicles, and a steering wheel

and pedals are not even included for a human driver [7]. The idea behind fully-autonomous

vehicles stems from a potential solution for decreasing traffic congestion and improving the

safety of cars. The main concerns raised with full AVs revolve around legislative, legal, and

technological fears of system failures. Studies have been conducted to investigate the effects

of the automated vehicle on driver’s behavior and traffic performance. In a conducted re-

search paper, Aria found that average travel time improved by 9 percent in an AV scenario

[8].

This study is motivated by the culmination of everyday congestion problems and the

modern-day solutions being worked on. While the dataset is not based on information

coming from EVs or AVs specifically, modeling key factors that lead to traffic congestion

and vehicle accidents will allow for better input when implementing these two features as a

means of everyday transportation. Studies like this can shed light on how much the human

factor plays a role in vehicle accidents based on exterior features and give a more substantial

level of confidence for the societal adaptation to EVs and AVs once more regulations become

implemented. For example, predicting the severity of traffic accidents will give an insight

into how much congestion is created per day and look at the key factors contributing to

accidents. Building a time-series model to forecast the number of accidents provides a new

understanding and framework of the data which has yet to be explored.

4



CHAPTER 3

The Dataset

The original dataset, formally titled “A Countrywide Traffic Accident Dataset,” was collected

by Sobhan Moosavi from The Ohio State University. The data is open source and available

via Kaggle, among other research paper databases. What makes this dataset unique is

the large-scale information and APIs used to collect several environmental and contextual

variables. As stated above, multiple APIs provide streaming traffic, environmental, and

event data. The primary forms of collecting the streaming data were from two real-time

providers, “MapQuest Traffic” [9] and “Microsoft Bing Map Traffic” [10]. The raw data is

collected over 49 states of the US, starting from February 2016 to the most updated version,

December 2021. There are about 2.8 million observations recorded in the raw dataset with

47 features.

Figure 3.1: Data Creation Process Architecture per the Countrywide Traffic Accident

Dataset

Figure 3.1 above was adapted from the original collectors of the data and included for

background and visual understanding of the data ingestion process [11].
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3.1 Obtaining the Data

The data were obtained via a comma-separated values download from the Kaggle datasets

website [12] and imported into R. Kaggle has many open-source datasets and competitions

with the purpose of solving data science challenges, being used as a tool for teaching be-

ginners, and working with other data scientists to share code and kernels. Aside from the

collaborative nature that Kaggle provides, the datasets are generally pretty clean once up-

loaded, which makes it an attractive source of data.

The original dataset contained 47 features that can be generally bucketed into four cat-

egories of variables: time, geographic, environmental factors, and point of interest road

features (POIs). Due to the number of geographic variables, I began by removing redundant

variables that did not pertain to my research questions. Generally, the number of variables

makes this dataset very usable for a wide range of research topics and many applications.

There are more than enough possibilities to explore topical or geospatial effects, given the

granularity of the data. For example, it is feasible to look at accidents within a three-mile ra-

dius of your neighborhood, given many observations and variables. However, since this paper

will be looking at the key features that contribute to vehicle accidents, severity prediction,

and time-series forecasting, my first step was to eliminate redundant variables.

3.2 Data Engineering

Since the data was downloaded via Kaggle and was created for research purposes, it was

already pretty clean in its raw format. However, to get the data in a usable form that makes

sense for this paper, I focused on these five areas of data cleaning: removing, creating,

transforming, dealing with NAs, and grouping variables.

Each of the focuses of this paper would require a different data frame. For example, it

is worth keeping as much original information as possible to understand the whole dataset

when doing general exploratory analysis. Then, when looking at the prediction of severity,

the variables of interest change depending on the model used. Finally, to do a time-series
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ARMA model, the data must be pivoted such that it is indexed by the date and has only one

column showing the number of accidents on each day. The ARMA model will not utilize any

of the explanatory variables, so the first two research questions are essential to understanding

the full scope of the dataset.

Removing: The first variables removed were ID, Country, Number, Airport Code, and

the environmental time variables such as Sunrise Sunset, Civil Twilight, Nautical Twilight,

and Astronomical Twilight. The ID variable was used as an index for the data and was

unnecessary for the analysis. I decided to remove the Country variable because all the

data came from the United States, so it did not provide any information. The Number

variable showed the street number of an address field, which I got rid of because that level of

granularity for location data is not necessary. The Airport Code variable denotes an airport-

based weather station which is the closest one to the location of the accident, and I opted to

remove this because the State variable could capture the information. After removing these

initial variables, I decided to add variables that could condense existing information.

Creating: I added the Impact Duration variable, calculated by subtracting the original

Start Date variable from the End Date in minutes. The new variable shows the length of

time the accident impacted traffic. This variable was created only for exploratory measures

because this variable will not be helpful for severity prediction since it can only be recorded

after the accident occurs.

Transforming: The Weather Condition variable needed the most transformation by

consolidating the 128 unique conditions into five categories: rain, snow, low visibility, clear,

and cloudy. This was necessary because the levels in the original data were collected by

various APIs with different explanations for the same weather condition. An example of

this is binning rows of “light drizzle”, “rain showers”, “heavy drizzle”, and “showers” into

the “Rain” category. This was done for all five bins and will be the most useful for the

exploratory data analysis.

Missing Variables: To prevent loss of information by removing observations with NA’s,

I imputed the NA values for continuous variables with the mean of the corresponding variable.
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For the NA categorical variables, there were only three that had NA counts, Street (1

missing), City (131 missing), and Wind Direction (17,505 missing). Unlike the imputing

method for the numeric variables, I removed all observations with the missing categorical

variables because they only made up a fraction of the total data.

Grouping: Once the entire dataset has been cleaned by removing, creating, and trans-

forming variables, the next step is to group the data to narrow the scope. While data is

provided for 49 states within the US, it would be non-trivial to make any causation claims

by means of controlling for variables by state. For this reason, the research will be conducted

in the state of California specifically. In order to do this, I filtered for all observations with

CA in the State column using the dplyr library from R. This reduced the final data set to

770,977 observations.

3.3 Final Dataset

The final cleaned dataset contained 770,977 observations and 48 variables, with no missing

data. As mentioned, these are all observations filtered explicitly to the state of California

to narrow the study’s scope. In the next chapter, there will be a graphical representation

of the number of accidents in each state within the dataset, which will show the states that

make up a majority of the data. Additionally, outside of this specific dataset, California

has been a state at the forefront of the automotive industry, fostering start-ups and research

and development teams for companies like Tesla, Waymo, Lucid, and more. Below is a

data codebook with all the final variables, with the variable structure, and a description for

reference.
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Variable Structure Description

Severity num

Shows the severity of the accident, a number between 1

and 4, where 1 indicates the least impact on traffic (i.e.,

short delay as a result of the accident) and 4 indicates

a significant impact on traffic (i.e., long delay).

Date Date The exact date the accident occurred (YYYY-MM-DD).

Time num The time the accident was recorded via API.

End Time POSIXct

Shows end time of the accident in local time zone. End

time here refers to when the impact of accident on traffic

flow.

Start Time num Shows start time of the accident in local time zone.

Start Lat num Shows latitude in GPS coordinate of the start point.

End Lat num Shows latitude in GPS coordinate of the end point.

Start Lng num Shows longitude in GPS coordinate of the start point.

End Lng num Shows longitude in GPS coordinate of the end point.

Distance num
The length of the road extent affected by the accident

(in miles).

Description chr Shows natural language description of the accident.

Street chr Shows the street name in address field.

Side chr
Shows the relative side of the street (Right/Left) in ad-

dress field

City chr Shows the city in address field.

County chr Shows the county in address field.

State chr Shows the state in address field.

Zipcode chr Shows the zipcode in address field.

Timezone chr Shows the timezone in address field.

Weather Timestamp POSIXct Shows the time when the weather data was collected.
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Variable Structure Description

Temperature num Shows the temperature (in Fahrenheit).

Wind Chill num Shows the wind chill (in Fahrenheit).

Humidity num Shows the humidity (in percentage).

Pressure num Shows the air pressure (in inches).

Visibility num Shows visibility (in miles).

Wind Direction chr Shows wind direction.

Wind Speed num Shows wind speed (in miles per hour).

Precipitation num Shows precipitation amount in inches, if there is any.

Weather Condition chr
Shows the weather condition (rain, snow, thunderstorm,

fog, etc.)

Amenity logi
A POI annotation which indicates presence of amenity

in a nearby location.

Bump logi
A POI annotation which indicates presence of speed

bump or hump in a nearby location.

Crossing logi
A POI annotation which indicates presence of crossing

in a nearby location.

Give Way logi
A POI annotation which indicates presence of give way

in a nearby location.

Junction logi
A POI annotation which indicates presence of junction

in a nearby location.

No Exit logi
A POI annotation which indicates presence of no exit in

a nearby location.

Railway logi
A POI annotation which indicates presence of railway

in a nearby location.

10



Variable Structure Description

Roundabout logi
A POI annotation which indicates presence of round-

about in a nearby location.

Station logi
A POI annotation which indicates presence of station in

a nearby location.

Stop logi
A POI annotation which indicates presence of stop in a

nearby location.

Traffic Calming logi
A POI annotation which indicates presence of traffic

calming in a nearby location.

Traffic Signal logi
A POI annotation which indicates presence of traffic sig-

nal in a nearby location.

Turning Loop logi
A POI annotation which indicates presence of turning

loop in a nearby location.

Impact Duration num

Created variable by subtracting the End Time from the

Start Time to see how long the impact of the accident

had on traffic (in minutes).

Year num
Split Date variable, indicating which Year the accident

took place.

Month num
Split Date variable, indicating which Month the accident

took place.

Day num
Split Date variable, indicating on which Day the acci-

dent took place.

Wday num
Split Date variable, indicating which Day of the Week

the accident took place.

Hour num
Split Time variable, indicating which Hour of the day

the accident took place.

Severity Binary num
Binary indicator of whether or not an accident was se-

vere (0 = Not Severe, and 1 = Severe).

11



CHAPTER 4

Exploratory Data Analysis

Due to the many directions this dataset can be explored, it is essential to keep a narrow

roadmap of critical areas of discovery for the purposes of my two research questions. Since

the data is cleaned and filtered for California, a majority of the exploratory analysis included

will be specific to the state of California, as opposed to the whole dataset. Doing this will give

more distinct insights and intuition for modeling within the scope of research. First, I decided

to take a preliminary look at the distribution of accidents by each state. Then, I began to look

at which attributes would give interesting findings that supported the motivation behind the

research by exploring where most accidents were taking place. The next sections focused on

the time aspect of the data - seeing the distribution of accidents per year and at which times

most accidents occur. Finally, I decided a time-series visualization of when most accidents

occur would create more areas of investigation before modeling.

4.1 Number of Accidents by State

First, I looked at the distribution of accidents grouped by state using the whole dataset.

The distribution gave me an insight into where the majority of data was coming from and

justified the decision to focus on the state of California, which contains about a third of the

full data (770,977 observations).

Aside from California being the state with the most accidents, Figure 4.1 also reveals that

the top 5 states with the most accidents come from California, Florida, Texas, Oregon, and

New York. These five states account for about 56 percent of the full dataset, which is not

surprising when considering that California, Texas, Florida, and New York are the top four

12



Figure 4.1: Distribution of the Number of Accidents by State in the Full Dataset.

states that make up the entire US population. The state with the least amount of accidents

in this dataset turned out to be South Dakota, which currently has a total population that

makes up about 0.27 percent of the total US population and ranks 46th out of 50, according

to the 2020 census [13]. This information will be used in the context of only exploring and

modeling the data specific to California.

13



4.2 Number of Accidents by Accident Signals in CA

The next area I wanted to explore was where the specific accidents occurred on the road

regarding the points of interest. There are twelve accident signals in the cleaned dataset:

roundabouts, bumps, traffic calming, no exit, give way, amenity, railway, station, stop signs,

crossing, traffic signal, and junctions.

Figure 4.2: Distribution of the Number of Accidents by Accident Signals in the State of CA.

The results from Figure 4.2 show that the overwhelming majority of accidents occurred

at road Junctions in California. This differs from what was observed in the whole dataset,

as Traffic Signals showed up as having the most accidents. While this observation can not

be said to be a direct effect of traffic accidents, it is important to note specific signals that

produce the most accidents. Junctions are defined as locations where two or more roads

meet. Most commonly, this would be an interchange or an intersection. This information

can be dissected further when looking to apply safety features in autonomous vehicles. It is

important to note which factors may contribute to making road junctions so dangerous; for

example, the physical factors that may obstruct the driver’s attention, inattention, poorly

14



timing a merge, or poor judgment on the speed at which another car is approaching. The

following two areas that contribute most to accidents are Traffic Signals and Crossings, which

always include a second party or pedestrian. These observations can give better insight into

image recognition algorithms used in AVs that need to distinguish objects on the road, i.e.,

the difference between a biker, a bus, and a poster of a biker on the side of a bus.

4.3 Number of Accidents per Year in CA

Looking at the number of accidents recorded each year over the lifetime of the dataset reveals

a note about the data quality. Table 4.1 shows a striking increase in the number of accidents

after 2018, which continues to stay constant until another spike in 2021.

Table 4.1: Count of the Number of Accidents per Year in the State of CA.

The table indicates there must have been a change in how the data was collected after

2018. When further researching how the data was collected, there were no conclusive results

on why this increase came to be. What may be even more compelling about this information

is that there seemed to be a large spike in the number of accidents during and after the peak

times that COVID-19 affected the state of CA. Intuition would lead me to hypothesize

an observed decrease in the number of accidents during these final two years due to the

decreasing number of cars on the road, commuters, and travelers. This observation leads to

another possible application of the data into further research on the APIs used by MapQuest
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and Bing Traffic, how they collect data, or even how they define an accident. In terms of

using this information for time-series modeling, it will introduce an extra element of variance

in the data.

4.4 Number of Accidents per Hour in CA

Going along with the previously explored accidents per year, is the accidents per hour. Before

plotting the data, I was expecting to see a bimodal histogram, peaking at the two rush hours

of 8 am and 5 pm, given the nature of commuting times and personal experience with traffic.

Figure 4.3: Distribution of the Aggregate Number of Accidents per Hour in the State of CA.

Figure 4.3 follows that intuition with a caveat: there is a minor spike in accidents around

midnight. Most accidents, in aggregate, seem to occur between 3 pm to 5 pm, which is

typically the end of the workday for most Americans. There is also a spike in the number of

accidents around 6 am to 8 am, when most people would be commuting to work. One factor

that could lead to increased accidents towards the end of the day is fatigue. While there may

be an influx of vehicles on the road during the morning and afternoon, the major difference
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between these hours is the human factor. Another interesting point this figure reveals is

the spike in accidents seen at midnight. This observation may not seem like a significant

difference; however, to read the graph correctly, we should take into account the number

of cars on the road at these hours and then have a percentage of accidents in relation. It

would also be interesting to see the data on how fatal the accidents were at these times. It

is reported that while the most common times for accidents may be during peak commuter

times, fatal accidents occur between 8 pm to midnight [14]. While the dataset contains a

“Severity” variable, it does not indicate the severity level regarding safety or injury.

4.5 Time-Series Visualization

The final exploratory figure is a time-series visualization of the number of accidents that

occur each month and the aggregate over each day of the week.

Figure 4.4 shows the two stacked trends of accidents by month and by days of the week.

The line chart shows an increase in accidents towards the later months of October through

December, met with a steep decline in January. These trends are aggregated throughout the

whole dataset, not controlling for a particular year. Generally, this visualization would follow

the intuition of accidents occurring more towards the holidays, when traveling increases, i.e.,

Thanksgiving, Christmas, and New Year. Additionally, if this data were representative of

the United States as a whole, it may lead to further investigation of the relationship with

weather conditions during these times; however, because this is only representative of data

in California, the “clear” and “cloudy” weather conditions make up almost 90 percent of the

data, and have insufficient evidence to make any causal claims.

The bottom plot is an extension of the top and provides more details regarding the

number of accidents by the specific day of the week. The overall trend follows the above

monthly plot; however, it is interesting to note the specific spikes seen on recurring days

of the week, such as Thursdays. The data shows that Thursdays in December are when

most accidents occur. Generally, most accidents happen on Fridays, and the weekends see a

consistent decrease in the number of accidents. This differs from the data reported by the
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Figure 4.4: Time-Series Visualization of Accident Trends in the State of CA by Month and

by Days of the Week.

National Highway Traffic Safety Administration data, which reports that the most dangerous

day of the week to drive is Saturdays [15]. Even though this data may not follow the national

reports, it is still instrumental in the time-series analysis. One exciting application of this

information is it follows poisson data over the count of accidents. While that is not a primary

focus of this paper, it is an interesting application that can be explored for future work.
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CHAPTER 5

The Models

5.1 Logistic Regression for Severity Prediction

In order to predict the severity of accidents in our data, the definition of what is “severe”

must be clear. The Severity variable is indicative of the impact an accident had on traffic,

represented by an integer between one and four. One indicates the least impact on traffic,

and four indicates a long delay in traffic. The first step in building the model is to evaluate

the response variable. When tabling the four severity levels, it becomes apparent that the

levels are unbalanced, as revealed by Table 5.1.

Table 5.1: Count of the Number of Accidents per Severity Level in the State of CA.

To remedy the unbalanced levels, a solution would be to bucket the values as “not severe”

and “severe”. In order to do this, a new variable Severity Binary is created by labeling all

severity = 1 or 2 as a 0, indicating “not severe”; and labeling all severity = 3 or 4, indicating

“severe”. When this step was done, the new Severity Binary variable was split into 742,360

“not severe” labels and 28,617 “severe” labels. While this is indeed more balanced than the

four split levels, it is still not optimally balanced. The next step in building the model is

splitting the data into a training set and a testing set.
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Train-Test-Split: There is a 70/30 split of the data, creating a training dataset of

539,683 observations and a testing dataset with 231,294 observations. While there are many

different splits the data can take on, for example, an 80/20 split, the reason it was split

by 70/30 was to allow for enough testing observations given the large amount of data.

Additionally, upon the first iteration of modeling on 80 percent of the training data, the

results were unable to be produced because of a lack of computing power. When the split

was done more modestly, it required less computation power to generate the model.

Resampling: Resampling is a method used in order to remedy imbalanced data, in

this case, the unbalanced response variable Severity Binary. Generally, an imbalance in

training data leads to bias that can influence the model due to the skewness of the majority

vs minority class. Randomly resampling the training data can be done by under-sampling,

deleting examples from the majority class; or by oversampling, duplicating examples from

the minority class [16]. For this case, resampling involves a new transformed version of the

training data in which there is a combination of over- and under-sampling using the function

ovum.sample() in the R library ROSE [17] specifying the method argument as “both”. After

applying this function, the response variable on the new training data is 270,142 “not severe”

and 269,541 “severe” cases.

Logistic Regression: Once the data has been properly cleaned, transformed, and split,

it is time to build the logistic model. Because the response variable is binary, the baseline

model for severity prediction is logistic regression. Logistic regression is a predictive analysis

appropriate to conduct when the dependent variable is binary. It uses nominal, ordinal, or

ratio level independent variables to explain the relationship between one dependent binary

variable [18]. The function used to create the baseline model in R is the glm() function. First,

a full model was created to include all relevant variables in the resampled training dataset.

Then, the full model is taken in by the step() function, to select a formula-based model by

AIC in a stepwise algorithm [19]. The step() function has the ability to perform forward or

backward stepwise regression, as well as both. Forward stepwise begins with a null model,

then starts adding the most significant variables one after the other until all variables under

consideration are included in the model. Conversely, backward stepwise begins with the
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full mode, the starts removing the least significant variables until all statistically significant

variables are included in the model [20]. Because the model being used for stepwise regression

is the full model, backward stepwise is the preferred method for variable selection. After

applying the step function on the model, the Akaike Information Criterion (AIC) selection

criterion recommended to remove Start Lng and Precipitation variables from the model. The

fitted logistic regression model can by explained by the following equation:

θ̂(x) =
1

1 + exp(−(β̂′x))

Where θ̂(x) denotes the binary response variable and β′ = (β1, β2, ...., β15)
′ predictor

variables.

Table 5.2 shows the R output of the final logistic regression model. The estimates of

the predictor variables are representative of the log of odds for an accident being severe or

not severe. However, the log of odds is not easy to interpret, which is why we exponentiate

it to get the odds ratio. The results on Table 5.2 are helpful in noting which variables

are statistically significant in relation to the severity of an accident. Variables with at

least one asterisk indicate there is evidence of a real associate between the predictor and

response variable, at a p-value of less than 0.05. For example, the negative coefficient from

the Temperature variable indicates with all else held constant, one unit increase in the

temperature, means it is less likely for the accident to be highly severe.

Interpretations are best made from the odds-ratios, seen in Figure 5.3. Generally, the way

to interpret odds-ratios are that if the estimate is less than 1, then the odds are decreased for

an outcome; and if the odds are greater than one, then the odds are increased. In contrast

to the results seen from Table 5.2, if the odds-ratio is 1, it means there is no association

between the predictor and the response variable, meaning the results are not statistically

significant. Figure 5.3 shows that Temperature, Day, and Hour are not statistically signifiant

to predicting severity.

For variables with different levels, such as Weather Condition, the results are all in

comparison to a reference group, in this case, clear weather. Interpretations of significant
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Table 5.2: Final Logistic Model Output for Binary Severity Prediction

predictors from Figure 5.3 include:

· All else held constant, if an accident occurs at a Traffic Signal, there is a 5% decrease

in the odds of it being severe.

· All else held constant, if an accident occurs at a Junction, there is a 33% increase in

the odds of the it being severe.
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· All else held constant, there is a 79% and 35% increase in the odds of a severe accident

if it is respectively snowing or windy outside, as opposed to the weather being clear.

Additionally, there is a 4% and 11% decrease in the odds of a highly severe accident if

the conditions show low visibility or rain.

Table 5.3: Odds Ratio Estimates and Confidence Intervals of Logistic Regression Model.
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5.1.1 Results

Once the final model has been established on the training data, it is used to make predictions

and evaluate the testing data. The predict() function in R can be used to predict the

probability of an accident being categorized as not severe, or severe, given the predictors.

After storing the predicted probabilities, there is a selection criteria set for what would be

categorized as Severe vs. Not Severe. In this case, the selection criteria is a prediction over

50% will be categorized as 1=Severe, and less than 50% will be categorized as 0=Not Severe.

The results on the testing data are then evaluated using a confusion matrix.

A Confusion Matrix is a performance metric for a machine learning problem where

output can be two or more classes. Labels on the horizontal represent the actual values,

and labels on the vertical axis represent the predicted values. A perfect confusion matrix

will have zeros on the off-diagonals, indicating that the predicted values are equal to the

actual values, however, this would likely also lead to a model that is overfitting [21]. The

1 values in Table 5.4 represent a Severe response, and the 0 values represent a Not Severe

response. The top left quadrant represents the True Positive values, meaning accidents

that were predicted to be severe, were indeed. The bottom right quadrant represents the

True Negative values, showcasing all accidents that were not categorized as severe. The

off-diagonals show the areas of improvement of the model. The top right quadrant indicates

a False Positive: the model falsely predicted the accident to be severe. Finally, the bottom

left quadrant indicates a False Negative: the model incorrectly predicted an accident to not

be severe, when it actually was.

Table 5.4: Confusion Matrix of Actual vs. Predicted Severity.

The confusion matrix in Table 5.4 is useful for measuring other key performance metrics

of the model such as Precision, Recall, Accuracy, and ROC curves. The focus is mainly on
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model Accuracy, which reveals the general percentage accurately predicted for both severe

and not severe accidents.

Accuracy = 6460+183360
Total

= 82% of all classes (Severe and Not Severe) have been predicted

correctly.

Finally, the Receiver Operating Characteristic (ROC) curve is used to diagnose

the ability of the model to accurately classify the response. The ROC curve places the false

positive rate vs the true positive rate, meaning that the closer the curve is to the top left

corner indicates better performance; whereas a curve that is closer to the dashed 45-degree

diagonal indicates less accuracy (False Positive = True Positive). Figure 5.1 shows that the

final model generally does a good job of predictive accuracy.

Figure 5.1: Receiver Operating Characteristic (ROC) Curve for the Final Logistic Regression

Model.

The main takeaways from the final model of severity prediction is that the data can be

used for risk severity prediction with a high accuracy. The variables that play the largest

role in the statistical significance of predicting the severity of an accident, according to

this model, are whether or not the the accident occurred at a traffic signal, junction, or is

dependent on the weather condition.
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5.2 ARMA Model for Time-Series

The final area of research is a time-series analysis of the number of accidents. Similar to the

steps taken to build the severity prediction model, it is necessary to prepare the data. The

data frame I begin with is the previously created clean data filtered for California. However,

because the time-series model will only be looking at the number of accidents, the data must

be pivoted such that there are two columns: a Date column that contains one observation for

each day of the year and a column representing the total number of accidents corresponding

to the specific date. For the next step, I grouped the data by Date and summarized it by the,

n(), number of accidents. This created a data frame of 2005 observations and two variables.

Once the data have been pivoted, the final step is to convert it to a time series. To do this, I

used the xts to ts() function in R and set the frequency argument to 365 to work with daily

counts. After this final step had been completed, I checked if the data was ready to be used

for analysis by running the is.ts() function, which tests if an object is a time series, in this

case, the output was true, and the data was ready for use.

The two models for time-series forecasting studied for the research question are Auto Re-

gressive Moving Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA).

The difference between the two is the integrated distinction, which measures how many non-

seasonal differences are needed to achieve stationarity [22]. The data is stationary in a time

series when it does not depend on the time at which the series is observed, meaning there is

not a strong trend or seasonality observed. To fit a stationary model, such as an ARMA, the

first step is to detect the stationarity of the data and remove any trend or seasonality effect.

At first glance, Figure 5.2 shows a clear upward trend in the number of accidents as time

goes on. This was expected after the exploratory analysis was done in Table 4.1, showing

a rapid increase in the number of accidents between 2018 and 2019, then again from 2020

to 2021. While the data documentation does not comment on this, we can assume it stems

from a change in how the APIs collected data. While there is a noticeable trend, there is no

clear seasonality seen in the data at first glance.

Since there is a trend in the data, removing the trend before modeling is necessary. One
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Figure 5.2: Time-Series Representation of Accidents in CA from 2016 to 2021.

method of seeing the number of differences that need to be taken on the data is looking at the

Auto Correlation Function, or ACF. ACF shows the correlation between observations at

the current time and previous time spots, otherwise denoted as the Lag. The purpose of the

ACF plot is to reveal if the time series is random, identify seasonality, and uncover hidden

patterns in the data. In addition to looking at the ACF plots, we can do a more formal test

for autocorrelation using the Box-Pierce test. The Box-Pierce test statistic examines the

null hypothesis of independence in a given time series. A p-value less than 0.05 means that

we reject the null hypothesis and indicate that the time series contains autocorrelation. The

function to execute this in R is the Box.test() function, which, when run on the time series

object, outputs a p-value < 2.2e− 16, which is well under 0.05, justifying the results seen in

the ACF plots.

Figure 5.3 shows the ACF plots on zero to third-order differences in the data. The raw

data shows a slow and steady decline towards zero above the threshold, indicated by the

horizontal blue line. The First Differences plot removes a lot of the autocorrelations from
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what is seen in the raw data; however, the second and third-order plots do not show much

change after. The issue with taking the first-order difference to remove the linear trend is

the significant loss of information, and the interpretation becomes near impossible due to

the data transformation.

Figure 5.3: Auto Correlation Function (ACF) Plot of full Time-Series data in CA.

An alternative method to remove the trend is to model the trend. This is done by taking

the vector of observations, known as our original time-series object, and subtracting the

fitted trend vector, fitted by kernel smoothing. This results in the residuals. The next step

is to treat the residuals like they are the data and model on the residuals.

Figure 5.4 shows three plots related to the residual’s time-series object. The three graph-

ics included are the time plot (top), the ACF plot (bottom left), and a histogram of the
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Figure 5.4: Residuals Diagnostic Plots: Time-Series, ACF, and Distribution.

residuals with an overlaid normal distribution for comparison (bottom right). The main

areas of focus from this output are the bottom two plots. Ideally, we are looking for no au-

tocorrelation and normally distributed residuals. The ACF plot shows that we still see some

autocorrelation; however, the ACF of the series is decaying to zero much quicker than in the

original series. The residuals show that they are normally distributed, which is ideal moving

forward. In order to do the modeling, there are two methods primarily used. The first is a

manual model, which uses information gathered from the diagnostic plots, and the second is

an automatic model. For this paper, the most efficient option is the automatic model. To do

this, I use the auto.arima() function in R, that comes from the forecast package [23]. The

auto.arima() function returns the best ARIMA model according to the lowest AIC value.

The function searches for the best possible models within the order constraints provided.
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5.2.1 Results

The final model produced by the auto.arima() function was an ARMA model of the order:

ARMA(5, 0, 5)

This output can be broken into two parts, the Auto-Regressive model and the Moving

Average model. As previously stated, the ARMA comprises the two separate AR and MA

models. It is possible to build a model of solely one or the other; however, in this case, the

final model works together to produce ARMA. The order of the auto.arima() function takes

in three parameters. First is the AR parameter, which tells how much yesterday’s value

influences today. Second is the Integrated term, described as the order of differences. Lastly

is the MA parameter, which accounts for some other unobserved noise and how that affects

the data. The AR and MA values are chosen by minimizing the AIC after differencing the

data d times. In this case, AR(5) means the current value is based on the previous five

values. Additionally, MA(5) means the five lagged values have a significant direct effect on

the present-day number of accidents. Finally, the zero middle term indicates that the data

is stationary.

The final model is visualized in Figure 5.5 zoomed in from a window of time that starts

in 2019, and forecasts the number of accidents until 2023. The window of time that begins in

2019 was to visually eliminate data from 2016-2018 when there were fewer accidents. While

this model can be quickly optimized simply by having uniform data, it does a pretty good job

of showing a prediction of the number of accidents. The goal of this paper was to perform a

time-series analysis on the data, which has yet to be done, and this result is a great starting

place and baseline for research moving forward.
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Figure 5.5: Time-Series Forecast (window from 2019 to 2023)
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CHAPTER 6

Conclusion

This paper attempted to explain and predict the severity of an accident by using a logistic

regression model with a binary indication of severity as the response variable, and conduct

a time-series analysis that forecasts the number of accidents based on historical data. In

addition to the trained severity prediction model that performed with 82% accuracy on the

testing data, the model revealed three key features that significantly affected severity. Acci-

dents at a traffic signal were 5% less likely to have a severe impact on traffic, while accidents

taking place at junctions saw a 33% increase in the odds of it being severe. Regarding

weather conditions, in California, the model reveals a 79% increase in the odds of a severe

accident if it is snowing outside and a 35% increase if it is windy. Both of these odds are

in relation to the baseline of clear weather. These results follow a general intuition of what

would affect traffic; however, it is always worth noting when the data gives evidence to a

general hypothesis.

The second objective of the paper focused on a time-series analysis of the number of

accidents. Time-series analysis has yet to be explored on the specific dataset and gives new

insights into various data applications. The greatest challenge in producing the time-series

analysis and model was the inconsistency seen in the data. The unexplained variations in

the number of recorded accidents per year introduce extra noise in the data that may not

be necessary if the data was uniform. Since there was no specific remedy for this, modeling

continued by taking the necessary precautions and evaluating the assumptions. The key to

modeling the data was to eliminate the trend by fitting the trend and being left with the

residuals. Once the output graphics of the residuals showed that the data was ready to be

modeled, the best model selected was an ARMA(5,0,5), which produced the lowest AIC from
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various combinations. This model did a fine job forecasting the number of accidents for a

set time frame; however, it could continually be optimized. The results seen are helpful to

get the ball rolling for future work using this dataset.
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CHAPTER 7

Limitations and Future Work

This paper explored a large dataset with close to three million observations spanning almost

six-year with forty-seven measurements that pertained to accident data across the United

States. The greatest strength of this dataset is the many applications it can be used for. This

paper focused explicitly on severity prediction regarding how much impact an accident has

on traffic, and on a time-series analysis of the number of accidents. The most considerable

weakness of the data came from the inconsistent APIs and sources for data collection. There

is a noticeable and unexplained jump in the number of accidents recorded between 2018

to 2019 and 2020 to 2021. This discrepancy came up most in the time-series analysis and

modeling of unexplained variation in the data. With this weakness aside, the two research

questions were explored and executed using statistical methods and techniques related to

logistic regression and autoregressive moving average prediction models.

The other three main identified limitations in addition to the data collection were the

imbalanced data for the POIs, a lack of more descriptive variables, and the availability on

the type of vehicles for which the data was obtained. First, the exploratory data analysis

showed that several POI variables were very unbalanced, which could introduce bias to the

final model if not dealt with properly. In addition, an analysis of “severity” in this specific

study means the severity of impact on traffic. Suppose there was an additional variable

that shows the severity of the accident regarding safety, such as a measurement of fatality

or measurement of injury from the accident. This information could be used to do further

research on risk severity prediction for the safety of road vehicles rather than just the impact

on traffic. Finally, the last limitation of this dataset is that it does not come from AVs. The

motivation behind this study was to use the insights found as a basis for future research
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on EVs and AVs for the means of more efficient and safe transportation. However, it is

understandable that this is not available because most companies in the space are currently

still developing the Level 5 autonomous technology, so the data is harder to obtain via open

source.

Due to the scope and potential, this data has many future applications. For example,

future work can be done by getting Census data to control for various population statistics.

Similarly, the data can be narrowed down for each County in a state or widened to seek

a broad generalization of all accidents within the United States. A potential area that

can be explored is to create a dashboard that allows any user to customize the scope for

general research. Regarding time-series analysis, the models built can be further developed to

model real-time accident prediction in combination with a real-time impact of an accident on

traffic. Finally, another exciting area that can be explored is policy implications concerning

the future of EVs and AVs. One of the pain points for EV/AV adaptation is the unknown

about liability and regulations.

This topic can not be ignored as it is the future of transportation. The role of autonomy is

increasing in society in almost every industry, and it will be the future of how communities

run. Future research should be done on how autonomous vehicles and infrastructure can

prevent overall traffic and create a continuous flow. Eventually, a perfect traffic flow would

mean that no one would ever have to drive a car themselves or even own one. There are

ideas that allude to various companies owning all cars, and passengers would call their ride

on an app and input their destination. Regardless of the rate at which the future is evolving;

research like this is essential to ensure the highest possible safety and to use prediction

models to prevent randomness.
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