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Endogenous repair mechanisms 
enhanced in Parkinson’s disease 
following stem cell therapy
Eleonora Napoli

Abstract:
This mini‑review highlights the innovative observation that transplanted human neural stem cells can 
bring about endogenous brain repair through the stimulation of multiple regenerative processes in the 
neurogenic area (i.e., subventricular zone [SVZ]) in an animal model of Parkinson’s disease (PD). 
In addition, we convey that identifying anti‑inflammatory cytokines, therapeutic proteomes, and 
neurotrophic factors within the SVZ may be essential to induce brain repair and behavioral recovery. 
This work opens up a new area of research for further understanding the pathology and treatment of 
PD. This paper is a review article. Referred literature in this paper has been listed in the references 
section. The datasets supporting the conclusions of this article are available online by searching 
various databases, including PubMed. Some original points in this article come from the laboratory 
practice in our research center and the authors’ experiences.
Keywords:
Central nervous system disorders, endogenous neurogenesis, Parkinson’s disease, regenerative 
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Introduction

Over the past 30 years, clinical trials of cell 
therapy for treatment of Parkinson’s 

disease (PD)[1] have created interest in 
the scientific community and in public.[2,3] 
Indeed, cell transplantation has emerged 
as a promising new technology within 
science largely due to its direct clinical 
application.[4-6] PD was a logical choice to 
test the safety and efficacy of cell therapy 
due to its well‑defined pathology and most 
importantly the possibility of employing 
a straightforward therapeutic approach 
through dopaminergic cell replacement.[7-11] 
A promising study in the 1980s including 
fetal dopaminergic cells transplanted into 
PD patients[12-15] resulted in the successful 
survival of the cells as well as reintegration 
with the host cells.[13] However, despite these 
initial results minimal improvements, that 

lessened over time following transplantation, 
were recorded in the transplanted PD 
patients[14-17] and a few even displayed 
significant (though debated) side effects[18,19] 
such as worsening dyskinesias.[20] Even with 
the lackluster outcomes of the treatment in 
PD, the promise of cell therapy has been 
researched in other brain diseases[21-24] 
including stroke,[25,26] traumatic brain 
injury,[27] and Huntington’s disease.[28,29] 
Undoubtedly, for cell therapy treatments for 
central nervous system disorders to reach 
the clinic, treatments should be optimized 
to ensure safety and efficacy.

Testing Stem Cells in Animal 
Models of Parkinson’s Disease

Using an animal model of PD,[1] a study 
investigated the therapeutic benefits of human 
neural stem cells (hNSCs), an alternative tissue 
source which may prove critical in bypassing 
the ethical issues surrounding fetal cells. 
Due to the cardinal pathologic feature of the 
disease, laboratory and clinical studies of PD 
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have thus far been focused on the recovery of nigrostriatal 
dopaminergic pathways following cell transplantation. 
This forward thinking group decided to parallel the study 
of the specific brain dopamine system with the assessment 
of the subventricular zone (SVZ), a major neurogenic 
area (the hippocampal subgranular zone [SGZ] being the 
other stem cell-enriched brain area). This study may have 
unearthed a possible regenerative pathway in PD with 
the discovery that the SVZ mounts an endogenous repair 
mechanism following injury. The key role of the SVZ in 
the functional recovery of dopamine-depleted animals 
that received hNSC transplants was evaluated using a 
suite of effective readouts including behavioral tests, 
imaging, immunohistochemical assays, and proteomics. 
Compared to a lesion controlled adult mouse, the group 
that received 6-hydroxydopamine (6-OHDA)-induced 
dopamine lesions followed, 7 days later, by transplantation 
of undifferentiated hNSCs performed better in motor 
and cognitive tasks. The improvement in behavior was 
coupled by changes in the proteome profile, neurotrophic 
factor secretion, and cytokine levels in the SVZ, even in 
the absence of significant proliferation of the transplanted 
hNSCs. These findings suggest that the hNSCs did 
not contribute directly to the functional improvement 
observed in transplanted parkinsonian animals, which 
was instead conceivably achieved by stimulation of the 
endogenous stem cells residing in the neurogenic SVZ.

This scenario advances the idea that transplanted hNSCs, 
or stem cells, could interact with the SVZ through 
a bystander mechanism that promotes therapeutic 
effects. Going against the tide of PD research, this 
concept challenges the conventional dopaminergic cell 
replacement strategy. Naturally, due to the recognition 
of the nigrostriatal dopaminergic pathway as the one 
affected in PD,[6-10] most studies examining the effects of 
stem cell therapy have been focusing on this system[4-6] 
as a therapeutic target. Functional outcomes for PD 
cell therapy have thus far relied on the assessment 
of dopamine-sensitive tasks and shifted the focus to 
the reconstruction of dopaminergic circuitry as the 
goal for cell therapy in PD. Thus, dopamine-induced 
circling behavior has been the main behavioral testing 
in cell therapy studies of PD animals.[7,8-10,30,31] The 
over-reliance on the dopamine depletion pathology 
and its accompanying symptoms have consequently 
limited the research area on experimental treatments for 
PD. When contemplating experimental models of PD, 
the well-established unilateral 6-OHDA nigrostriatal 
dopaminergic lesion model has focused the field to a 
specific and direct cell replacement concept.

Therapeutic Modalities of Stem Cells

Deviating from this long-held dogma of reconstructing 
the nigrostriatal dopaminergic system, transplanted 

stem cells have been shown propel the long-neglected 
neurogenic niche, notably the SVZ, to assist in the brain 
repair process, and its high responsivity to cell therapy.[1] 
Compelling evidence shows that transplantation of the 
stem cells led to the restoration of the SVZ proteome 
profile and induced the SVZ to carry out multi‑pronged 
regenerative processes, including the secretion of 
anti‑inflammatory cytokines and a specific set of putative 
reparative growth factors.[1]

Based on these paradigm‑shifting findings,[1] many new 
observations may serve as the basis for future mechanism 
and optimization studies. An important insight is that 
undifferentiated hNSCs were comparably effective 
in lessening PD symptoms as the fetal dopaminergic 
cells classically used for transplantation in PD. This is 
of importance, as a major hurdle encountered in the 
clinical trials of fetal dopaminergic cells is the need to 
harvest 3–6 fetuses at about 6–9 weeks gestation,[16,32,33] 
requirement that cripples the feasibility of large 
clinical trials. Similarly, challenging is the possibility to 
generate a substantial supply of neural stem cells with 
dopaminergic phenotype from embryonic and induced 
pluripotent stem cells. The observation that naive, 
unmanipulated, nondopaminergic hNSCs could create 
robust functional recovery in PD dodges the requirement 
of differentiating stem cells into dopaminergic cells.

Another remarkable observation entails the improvement 
of cognitive performance linked to the hippocampus, 
the area of the brain responsible for learning and 
memory,[34-36] broadening the field of research beyond the 
SVZ. In this regard, a disrupted communication between 
the hippocampus and the dopaminergic system has 
been associated with the cognitive impairment related 
to PD.[37,38] The hypothesis is that dopamine segregation 
in the striatum,[39] and possibly in the substantia 
nigra, likely does not fully encompass the synaptic 
plasticity dysfunctions in PD. Thus, the extension of 
neurodegeneration to areas beyond the nigrostriatal 
dopamine pathway, such as the hippocampus, presents 
a possible new avenue for PD treatment. Due to its 
hippocampal location, a study that aims at the evaluation 
of endogenous stem cell fate, proteome, neurotrophic 
factor, and cytokine profiling in the SGZ has the potential 
to unveil the mechanism underlying the contribution 
of the host neurogenic niches to the bystander effects 
of cell therapy in PD, as previously tried in rat[40] and 
primate[41] models of PD. Altogether, these studies not 
only highlight the role of the SVZ in the brain repair 
process in PD but also showed that the reconstruction 
of the damaged dopaminergic neuronal circuitry is 
likely crucial for long-term recovery. In this regard, 
the concept of a cellular biobridge has been advanced 
as an extracellular matrix formed by the transplanted 
cells that can transfer the endogenous stem cells from 
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the SVZ to injured areas separated from the neurogenic 
region.[42] Along with the discussed SVZ repair, there 
is the possibility that the transplanted hNSCs may also 
utilize a biobridge, which could allow the endogenous 
SVZ-derived stem cells to be shepherded to the 
neighboring dopamine-denervated striatum, resulting 
in the re-establishment of the dopamine-depleted 
nigrostriatal pathway. In-depth proteomic examination 
of stem cells and their exosomes,[43] and the following 
manipulation of identified lead proteomes, growth 
factors, and anti-inflammatory cytokines through 
silencing RNAs or viral vector overexpression may show 
their fully therapeutic potential in functional recovery 
of PD.

Conclusion

Transplantation of exogenous stem cells can trigger 
endogenous brain repair through a myriad of regenerative 
processes in the host neurogenic niches, including the 
secretion of anti‑inflammatory cytokines, proteomes, and 
neurotrophic factors.[44,45] The mechanism underlying 
the role of these therapeutic molecules and the extent 
to which they reach the striatum and substantia nigra 
after the hNSC-mediated SVZ stem cell propagation is 
paramount in optimizing stem cell-based therapy for 
targeting the neurogenic niche in treating PD.
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