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ABSTRACT OF THE DISSERTATION

Runtime, Analysis, and Tools for Reliable Management of Mobile App States

by

Umar Farooq

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021

Dr. Zhijia Zhao, Chairperson

Unlike traditional computing platforms (such as desktops and servers), mobile platforms

provide a volatile running environment for apps where the state of an app may get destroyed

and recreated frequently, either by runtime configuration changes (e.g., changing the phone

orientation) or by limited resources available on the device (e.g., low memory). When the

app state is not saved and restored appropriately, the app restarts may cause a wide range of

runtime issues, ranging from loss of user progress and poor responsiveness to malfunctioned

UI and app crashes. The goal of this thesis is to address the fundamental issue of state

management for mobile apps. To achieve the above goal, this thesis proposes a runtime

system and a novel static analysis.

First, it studies a large number of real-world mobile apps, a high percentage of

them fail to handle restarts appropriately, posing a great challenge to mobile computing. To

address the state issues caused by app restarts, this thesis explores two orthogonal directions:

(i) a system-oriented solution and (ii) an application-oriented solution.
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In the first direction, it aims to prevent apps from restarting by developing a

restart-free runtime system, called RuntimeDroid, which completely avoids the needs

of configuration-related app restarts. The purpose of restarts in the existing runtime

system is to load resources for the new configuration (e.g., a layout for the portrait mode).

RuntimeDroid achieves this by automatically identifying and “hot”-loading the resources

while the app is running.

In the other direction, this thesis approaches the state issues with a more direct

solution – first, identify the necessary app state, then automatically preserve it at runtime.

More specifically, it first uses static analysis to systematically reason about the app source

code and the associated resource files to find the critical program variables and properties

of GUI elements that are necessary to be preserved. Then, it leverages automatic code

generation techniques to insert the state saving and restoring routines to the app code. As

a result, a tool (named LiveDroid) can precisely identify and preserve the app state in

real-world Android apps, which not only ensures the state correctness during app restarts

but also makes the app restarts more responsive.

Besides the above, this thesis also proposes the static user transaction graph

(SUTG), which leverages static analysis to encode operations of interests in the form of

a graph. SUTG can serve as the basis for a variety of mobile app testing tools, such as

latency profiling and state testing in the presence of asynchronous threads. As a result, the

automated tools help developers to identify performance bottlenecks and incorrect state

handling in their apps.
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Chapter 1

Introduction

Smartphones are in wide use (there were 3.2 billion smartphone users worldwide in

2019 [150]) and mobile apps have a substantial economic impact (the mobile app market is

projected to reach $407 billion by 2026 [48]). Hence, there is an impetus for ensuring and

improving mobile app reliability. Building reliable mobile apps poses additional complications

when compared to desktop/server applications, due to the challenges imposed by rich yet

volatile mobile runtime environments.

Unlike desktop or server applications, mobile apps run in a more challenging

environment: devices are resource-limited, and the underlying OS subjects the app to a

richer set of disruptive events. Consequently, mobile apps often go through multiple lifecycles

– being destroyed and recreated – before they are explicitly dismissed. For Android apps

as shown in Figure 1.1, when a runtime configuration change occurs, like a phone rotation

(portrait ↔ landscape) or attaching a keyboard, the OS destroys the current screen instance

(a.k.a activity in Android), including both the GUI elements and (Java) class associated
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remaining memory

Scenario 2: High Memory PressureScenario 1: Runtime Config. Changes

• rotate phone
• attach keyboard
• change language
• …

Current activity is destroyed The whole app (process) is killed

Figure 1.1: Restarting scenarios for mobile apps at runtime.

with the screen, and then recreates a new screen instance. This process is known as activity

restarting. The purpose of activity restarting is to automatically reload the activity with

resources that match the new configuration (e.g., landscape mode layout after rotation) [95].

Another destructive scenario involves low resources: a running app (especially when sent to

the background) can be killed at any time by the OS when memory runs low, then relaunched

when the user comes back to the app [65, 74]. This is due to mobile OSes, including both

iOS and Android, eschewing swapping (i.e., paging out) [65, 70], to minimize flash memory

wear [73]. When an app is killed due to low memory, all its running activities are destroyed.

To avoid losing user progress, or entering into an inconsistent state, certain program

variables and properties of the GUI elements must be saved before the activity is destroyed

(or app is killed) and restored after the activity gets recreated (or app gets relaunched), as

if the activity (or app) remains running in the same lifecycle [96, 71]. Moreover, testing

apps states and measuring performance during volatile and asynchronous natures brings

additional challenges. This dissertation makes the following contributions to address the

challenges to manage app state reliably.

2



1.1 Dissertation Contributions

Chapter 2. provides a brief background to the relevant programming model, their runtime

environment and state management of mobile apps.

Chapter 3. presents, the first formative study on runtime change handling with 3,567

Android apps. The study not only reveals the current landscape of runtime change handling,

but also points out a common cause of various runtime change issues – activity restarting.

On one hand, the restarting facilitates the resource reloading for the new configuration. On

the other hand, it may slow down the app, and more critically, it requires developers to

manually preserve a set of data in order to recover the user interaction state after restarting.

Based on the findings of this study, this chapter further introduces a restarting-free

runtime change handling solution – RuntimeDroid. RuntimeDroid can completely avoid

the activity restarting, at the same time, ensure proper resource updating with user input

data preserved. These are achieved with two key components: an online resource loading

module, called HotR and a novel UI components migration technique. The former enables

proper resources loading while the activity is still live. The latter ensures that prior user

changes are carefully preserved during runtime changes.

For practical use, this chapter proposes two implementations of RuntimeDroid:

an IDE plugin and an auto-patching tool. The former allows developers to easily adopt

restarting-free runtime change handling during the app developing; The latter can patch

released app packages without source code. Finally, evaluation with a set of 72 apps shows

that RuntimeDroid successfully fixed all the 197 reported runtime change issues, meanwhile

reducing the runtime change handling delays by 9.5X on average.

3



Chapter 4. proposes a systematic solution, LiveDroid, which precisely identifies the

necessary part of the app state that needs to be preserved across app lifecycles, and

automatically saves and restores it. LiveDroid consists of: (i) a static analyzer that

reasons about app source code and resource files to pinpoint the program variables and GUI

properties that represent the necessary app state, and (ii) a runtime system that manages

the state saving and recovering. We implemented LiveDroid as a plugin in Android Studio

and a patching tool for APKs. Our evaluation shows that LiveDroid can be successfully

applied to 966 Android apps. A focused study with 36 Android apps shows that LiveDroid

identifies app state much more precisely than an existing solution that includes all mutable

program variables but ignores GUI properties. As a result, on average, LiveDroid is able

to reduce the costs of state saving and restoring by 16.6X (1.7X - 141.1X) and 9.5X (1.1X -

43.8X), respectively. Furthermore, compared with the manual state handling performed by

developers, our analysis reveals a set of 46 issues due to incomplete state saving/restoring,

all of which can be successfully eliminated by LiveDroid.

Chapter 5. introduces the concept of static user transaction graph (SUTG), which statically

captures user interface (UI) updates and the effects of the updates in form of a graph. A

SUTG can be automatically constructed based on UI updates, the causality relations among

asynchronous callbacks, with the help of static analysis. Once, a SUTG is built for a given

app, we can utilize it for a variety of applications such as instrumentation for profiling and

testing. SUTG works in two modes, developers either can annotate the app events to generate

SUTG for specific event, alternatively, our tool would consider all the user action events

defined in the app. We provide two applications of SUTG (i) an automatic latency profiling

4



tool, and (ii) an automatic state-management tool for asynchronous operations testing. We

applied our tool on 791 Android apps collected from F-Droid and Google Play stores, and

evaluations show the effectiveness and applicability of our SUTG. Furthermore, we conducted

a focused study on 44 apps to show the effectiveness of SUTG, and its applications, the

latency profiler and idling resource manager.

1.2 Dissertation Organization

This dissertation contains published work. Chapter 3 is based on a paper accepted

for publication at the International ACM International Conference on Mobile Systems,

Applications, and Services (MobiSys’18) [91]. Chapter 4 is based on a paper published in

the Proceedings of the ACM on Programming Languages (Issue OOPSLA’20) [92]. Chapter

5 is based on a to-be-submitted work which defines static user transaction graph and explores

its applications.
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Chapter 2

Background and Related Work

2.1 App Programming Model

Android apps are primarily written in Java and built around the concept of activities,

services, content providers, and broadcast receivers referred as Android components. In brief,

an activity represents a screen with UI components and the app logic behind the screen.

Activity Lifecycle. As the user interacts with an app, an activity may go through a

series of stages in its lifecycle, such as created, started, resumed, paused, stopped and

destoryed. To help the app transition among the stages, Android system provides a core

set of lifecycle callback methods that will be invoked during the transitions, as illustrated in

Figure 2.1. By overriding the lifecycle callbacks, developers can customize the responses

to lifecycle stage transitions, such as establishing server connections, initializing the data

structures, or acquiring system resources (e.g., camera).

6



onStart()

onPause()

onStop()

Started

Paused

Stopped

Resum
ed

onRestart()  (e.g., return to the activity)

onResume()
(e.g., close a dialog on screen)

Destroyed

onCreate()

Created

onRestoreInstanceState()

onSaveInstanceState()
onResume()

Enter a new lifecycle  (e.g., app is killed or configuration is changed)

new lifecycle

onResum
e()

onDestroy()

Figure 2.1: Activity Lifecycle.

Service Lifecycle. The services do not expose any interface and a Java class typically

implements its logic. Similar to activities, services go through sequence of lifecycle callbacks,

including onCreate(), onStartCommand(), onBind(), onUnbind(), and onDestory() [66].

Android provides two variants of service, bound and started (unbound) services, and a service

can be both bound and started as well. Both types have a little lifecycle difference, a bound

service invokes onBind() and onUnbind() to establish and disconnect a connection, whereas

a started service invokes onStartCommand() at the start and requires explicit stopService()

or stopSelf() call to stop a started service. The bound services stay alive as long as binding

exists, whereas started services might require explicit stop call depending on the flag. Finally,

both types invoke onDestroy() callback followed by unbind or stop request.

Broadcast receivers and content providers Lifecycle. The content providers and

broadcast receivers offer simpler lifecycle than activities and services. Typically, content

providers go though onCreate() callback to perform lightweight initialization, furthermore

7



apps implement data manipulation callbacks (e.g., query() and insert()) [54]. The broadcast

receivers offer much simple flow, there is only one method onReceive() that gets invoked

when (Android) system delivers a broadcast [53].

Inter-component control flow. All app components can invoke and communicate using

a special type of messages, called intent. For example, an activity can start another

activity using startActivity(Inent), and start a service by startService(Intent). The invoked

component starts within its own lifecycle, and component used to invoke stays within its

lifecycle, for instance when an activity A invokes an activity B, the activity A completes the

execution of current callback and calls onPause() callbacks since user moved to the activity

B. Then activity B starts its lifecycle and executes onCreate() callback and so on. When

user returns to the activity A, lifecycle continues by invoking onResume() of activity A and

making activity A available for user interaction.

Event-driven Model. Like other GUI frameworks, Android models the user-app interac-

tions as a sequence of event handling. Under the Android system, typical events include user

input events (e.g., clicks and swipes) and sensor events (e.g., GPS and orientation changes).

To respond to these events, developers need to implement corresponding handler methods.

For example, to handle long-touch clicks of a button (i.e., holding the button for one second),

developers need to first register a long-touch click listener for the button, then override the

onLongClick() handler method.

To process events, Android adopts a single-thread model. When an app is started,

a Linux process is created with a single thread, called the UI thread. The UI thread receives

event messages and dispatches them to the corresponding callback/handler methods to

8



Table 2.1: Runtime changes (API 25)

Change Description

mcc/mnc IMSI mobile country/network code
locale language

touchscreen touchscreen
keyboard keyboard type

keyboardHidden keyboard accessibility
fontScale font scaling factor

uiMode user interface mode
orientation screen orientation
screenSize available screen size

smallestScreenSize physical screen size
layoutDirection layoutDirection

respond to the events. This single-thread model requires developers to limit the workload of

UI thread to keep the app responsive.

2.2 Volatile Runtime Environments

Unlike conventional desktop applications, Android apps (and activities) may go

through multiple lifecycles (i.e., being destroyed and recreated) before they are explicitly

dismissed by the user. Depending on the cause, the lifecycle change may occur at either the

activity or the app level.

Activity Restart. An activity restart can be triggered by runtime configuration changes.

Table 2.1 lists the runtime configuration changes defined by the Android API (Level 25).

For example, when the app window dimension is changed (e.g., due to a phone rotation or

screen resizing), the system may decide to assign the activity a different layout that better

matches the new dimension. Loading the new layout requires restarting the activity, going

through the lifecycle from state resumed to destroyed, then back to resumed again (the red

9



line in Figure 2.1). During the restart, a fresh activity instance is created and used for

the subsequent user interaction. This process is known as runtime change handling [95].

Besides screen size changes, other runtime changes include changing the system language,

attaching and detaching a keyboard, among others. All these runtime configuration changes

by default result in activity restarting. Developers may overwrite the default behavior of

runtime change handling, but it requires developers to manually load resources for the new

configuration via system callback onConfigurationChanged(). According to our prior study [91],

such customized handling is not common in practice.

App Relaunch. As mobile apps run on devices with limited resources, the system may run

into low-memory situations, especially when the user has recently used memory-consuming

apps [65]. When the memory pressure becomes high enough, the system will start to kill

background apps by terminating their underlying Linux processes to reclaim memory [96].

When the app is killed, all the activities in a “task back stack” (recently visited, yet still

active) will be destroyed first, before the app process is terminated. For this reason, when the

user comes back to the killed app (e.g., from the “recent app list”), Android is responsible

for relaunching it, which will create a fresh process for the app.

Table 2.2 summarizes the causes and consequences of these two levels of restarting.

When an activity is restarted, the instance of the Activity (Java) class and the instances

of all GUI elements specified in the layout file, are first destroyed, then recreated. When

the app is relaunched, instances of the active activities are first destroyed, then recreated

when the user comes back. In either case, it is critical that activity/app state is preserved,
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Table 2.2: Restart Levels.

Activity Level App Level

Cause Runtime configuration changes High memory pressure
Effect Instance of the current activity is

destroyed
Instances of all active activities are
destroyed

such that, from the user’s perspective, it appears like no restarting or relaunching has ever

happened.

2.2.1 Preserving App State

To facilitate app state preservation, Android provides two basic methods for

developers to manage the app state during activity restart or app relaunch.

Saving/Restoring Instance State. Before the system stops an activity, it first invokes

callback onSaveInstanceState() (see Figure 2.1) to give the activity a chance to save its state

into a Bundle object. A Bundle is a persistent key-value map, serialized to disk, that survives

app restarts or device reboots. To save data in the Bundle object, the data should be either

primitive data (like int) or serializable objects (that implement Serializable or Parcelable).

Note that, for GUI components with assigned IDs (either by android:id or View.setId()),

Android automatically saves some of their user-editable properties (e.g., text in EditText

or checking status of RadioButton). However, to save additional data, such as variables

in the Activity class, properties of customized GUI elements, or non-user-editable GUI

properties, developers need to override onSaveInstanceState() and add extra key-value pairs

into the Bundle object to preserve them across activity/app lifecycles. When an activity

instance is recreated or the app is relaunched, developers can recover the activity state by
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Table 2.3: Two Basic Methods for Preserving App State.

Saving Instance State ViewModel

Storage location Serialized to disk In memory
Runtime change Survives Survives

System killing Survives Fails

extracting the data from the Bundle object, which is accessible in both onCreate() callback

and onRestoreInstanceState() callback. Since the Bundle is persistent, the state saved via this

mechanism can survive runtime configuration changes and system-initiated process kill.

ViewModel. ViewModel[69] is part of several newly released components for Android devel-

opers to manage UI-related data in a lifecycle-aware manner. Technically, the ViewModel

is not part of the Android framework. A ViewModel can be created in association with an

activity and will be retained in memory as long as the associated process is still live. Unlike

saved instance state, a ViewModel can hold complex types of data without any serialization.

Its in-memory saving solution works well for configuration changes, but cannot preserve

data upon system-initiated killing.

In addition, developers can also leverage the fine-grained construct, Fragment, to

retain some of the data during activity restart. Similar to ViewModel, Fragments cannot

retain state in wake of system-initiated killing, where a fresh process of the app is created.

Table 2.3 summarizes the two basic methods for preserving app state. Note that, in either

method, developers need to first identify the data to preserve, then implement the preserving

methods by either overwriting the callbacks to save and restore the app state or creating a

ViewModel class that encapsulates the data. Both require a significant amount of programming

effort to ensure the right set of data is preserved correctly. Unfortunately, as surveyed by
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recent work [91], a large majority of apps do not implement the state preserving methods

appropriately. For example, 92.4% of activities allow restarting during runtime changes,

but only 27.1% of activities implement one of the state preserving mechanisms. For simple

activities, state loss upon restart may be small enough so re-creating it manually is not

burdensome. However, as UI and app logic complexity increase, restarting an activity without

sufficient data preservation makes the app vulnerable to various state issues. For instance,

172 state issues were reported in 72 popular apps [91]. In our evaluation (Section 3.4), we

reveal 46 state issues found in 21 apps from Google Play store and GitHub, including highly

popular apps. To free developers from this complex and error-prone task, this work proposes

an automatic approach for identifying the app state that is necessary to preserve and tools

for generating the state saving and restoring routines, together referred to as LiveDroid.

Next, we first give an overview of LiveDroid.

2.3 Runtime Change Handling

Unlike the traditional operating systems for desktops and laptops, Android is an

operating system targeting the mobile devices that may frequently encounter various runtime

configuration changes during its interactions with users.

Runtime Changes. Table 2.1 lists the runtime configuration changes defined by the

Android API (Level 25). There are several runtime changes related to the screen, including

screen size change, screen orientation change and touch screen change. Note that a common

device rotation will trigger both screen orientation and screen size changes (since Android

3.2) and window resizing in multi-window mode will only trigger screen size changes (since
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Android 7). Besides screen-related changes, there are also runtime changes for cellular

network, keyboard availability, language, font size, and layout direction. Among these

changes, screen orientation change, screen size change, and keyboard availability change are

commonly considered by developers (see Section 3.2).

Resources. During a runtime change, an app may need to load alternative resources based

on the new configuration. For example, when switching the screen from portrait mode

to landscape mode, an app may need to load a different layout designed for landscape

mode. In general, Android allows developers to provide alternative resources for different

configurations to enable rich user experiences. They can also specify the default resources in

cases no resources are available for the new configuration. All app resources are grouped

and placed in folder /res under the project root directory.

MyProject/
src/
MainActivity.java

res/
drawable/
graph.png
layout/
main.xml
layout-land/
main.xml
layout-port/
main.xml
values/
strings.xml
values-sp/
strings.xml

<LinearLayout … >
<TextView android:id="@+id/text1" 

android:layout_width="fill_parent" 
android:layout_height="wrap_content" 
android:text="@string/hello" /> 

<Button android:id="@+id/b1" 
android:layout_width="fill_parent" 
android:layout_height="wrap_content" 
android:text="@+string/hello" /> 

</LinearLayout>

<resources> 
<string name="hello">hello</string> 

</resources>

Figure 2.2: Example resources
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Figure 2.2 shows an example resource folder, where the sub-folder /layout contains

the default layout in XML format main.xml for the main activity, while folders /layout-land

and /layout-port contain the layouts customized for the landscape mode and portrait

mode, respectively. In addition to layouts, some other commonly used resources include

strings, drawable images, menus, colors, dimensions, and styles. Developers can also define

resources for different combinations of configurations, such as resources for Spanish language

under the landscape mode (/layout-sp-land). A complete list of available resources and

their naming conventions can be found in the Android API Guides [18].

For easy access to the resources, Android dynamically generates a resource class

R.java based on the available resources (i.e., /res). The generation may happen in two

situations: (i) when an activity is created and (ii) when a runtime change happens. The

second situation is critical to the design of RuntimeDroid (see Section 3.3).

To effectively handle various runtime changes and load needed resources accordingly,

Android offers two basic strategies: H1 - restarting-based handling (default) and H2 -

customized handling.

H1: Restarting-based Handling. By default, to handle a runtime change, Android would

first kill (deconstruct) the current activity, then restart a new activity with resources matched

to the new configuration. This process typically involves transitions of all the lifecycle stages

of an activity, from Paused all the way back to Resumed again (see Figure 2.1).

In the simplest cases, the default runtime change handling does not require any

extra programming efforts from the developers, except providing alternative resources for
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certain configurations based on the design of their app. Beyond that, the activity restarting

automatically handles and updates the resources accordingly.

However, in slightly more complex cases, an activity may carry various data, such

as articles in a news app or the state of a game. When the old activity gets killed during a

runtime change, such data is destroyed together. To avoid content reloading or losing the

user interaction state, developers need to preserve a set of critical data during the activity

restarting. There are two basic ways to preserve the data: saving/restoring activity state

and retaining objects. For easy references, we refer to them as H1.1 and H1.2, respectively.

• H1.1: saving/restoring activity state. Before deconstructing the activity, the system first

calls onSaveInstanceState() method to save the activity state into a Bundle object

as a collection of key-value pairs. In fact, by default, this method already saves some

transient information for some UI components, such as the text in an EditText or the

selection of a CheckBox. To save additional state data, developers need to override this

method and add extra key-value pairs into the Bundle object.

When an activity instance is recreated, developers can recover the activity state by

extracting data from the Bundle object, which might be performed either in onCreate()

callback or in onRestoreInstanceState() callback.

• H1.2: retaining objects. When the data to save is complex or substantial in size, a

more suitable way is retaining the data as objects. This can be achieved with fragment,

which represents a behavior or a portion of an activity. There are four basic steps:

(i) extend the Fragment class and declare references to the stateful objects; (ii) call

setRetainInstance(true) when the fragment is firstly created; (iii) attach the fragment
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to the activity; and (iv) retrieve the fragment with FragmentManager when the activity

is restarted. Despite the activity restarting, the data encapsulated by fragments remains

accessible.

Besides fragment, another solution to retain objects during activity restarting is adopting

the ViewModel and LiveData components, which are recently introduced in the Archi-

tecture Components Library [69]. In this case, developers need to create a ViewModel

class with critical data encapsulated, where the critical data is declared as LiveData.

In this way, the Android framework will retain the ViewModel object while the activity

object is recreated (i.e., activity restarting), hence the critical data will remain live after

the restarting.

Both H1.1 and H1.2 can be adopted by the default runtime change handling for

preserving critical data. However, the complexity lies in identifying the various data to

preserve. As shown later in the formative study, developers often fail to identify the critical

data or do not save/restore it correctly.

H2: Customized Handling. Instead of letting the activity to restart, developers may

choose to directly program the runtime change handling. To do this, developers first need to

set the runtime change flag android:configChanges for self-handling changes in the app

configuration file (i.e., Manifest.xml). Once flagged, a runtime change will no longer result

in any activity restarting. Instead, it will trigger onConfigurationChanged() callback. By

overriding this callback, developers can manually load the altenative resources for the new

configuration.
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However, manually updating resources for different runtime changes requires deep

understanding on the types of resources and their allocation mechanisms, thus this option

is usually beyond the reach of most Android developers. As shown later in the formative

study, few apps (7.7%) actually adopt this option in practice.

For certain runtime changes (e.g., screen orientation and screen size), developers

may opt to disable them by setting flags in an activity declaration (since API 24). Once

they are specified, users cannot change the orientation or resize the screen (in multi-window

mode) under the activity. It is obvious that this setting limits app functionalities, thus may

negatively affect the user experience. We refer to this option as H3. Note that H3 is only

available to a subset of runtime changes, rather than a general runtime change handling.

2.4 App Testing and Profiling

Android offers several tools to test and measure performance of apps, including

GUI testing using dumpsys [60], Espresso [55], Android Profiler [64], and App Crawler [58].

Profiling and Performance. dumpsys is a command line tool and offer several options to

get information about system services. One of the option is gfxinfo, which provides graphics

frame information, furthermore it can collect (using framestats option) UI performance data

for the specific apps and outputs janky or delayed frames occurred during the execution.

GUI Testing. UI Exerciser Monkey [68] is UI stress testing tool, which sends random

pseudo commands for user interaction events including device events as well. Another tool,

UI Automator [67] helps to test cross-app UI in block-box style testing, it is useful to test

whether app works correctly while interacting system and other installed apps. This tool
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can perform operations such as opening settings menu or launcher in target device. The

Espresso [55] tests user interaction as other tools, and also provides deeper understanding

about the app by allowing to test state expectations and assertions. To speed up testing,

Espresso includes a test recorder [59] to record user interaction using an emulator or device

and test recorder generates test cases code. However, state expectation and assertion

remain up to developers and to fully exploit Espresso features such as testing app state

and assertions, developers need to be familiar with codebase. More recently released App

crawler tool [58] is part of JetPack [56], which automatically explores app by sending user

interaction commands, such as click and swipe actions. As name suggests, this tool is more

focused on finding and executing all possible app UI space, and do not allow to check app

states or assertions.

Profiling Asynchronous Events. The Espresso provides profiling capabilities for Asyn-

chronous events, it has built-in synchronization at Message.Queue level, which limits synchro-

nization to Message Queue and AsyncTask constructs. Based on built-in synchronization,

Espresso checks following conditions before continuing a UI test case.

1. The message queue is empty.

2. There are no instances of AsyncTask currently executing a task.

3. All developer-defined idling resources are idle.

Idling resource helps to overcome the limitation here, and developers can rely

on idling resources to make sure subsequent UI updates have been completed. Idling

resources work like Semaphores, when starting a background task increment and when
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finished decrement [61]. However, developers are required to add code to idle resources during

testing and remove before the release.

2.5 Finding Bugs for Mobile Apps

There exist a large body of work in detecting bugs for mobile apps. AppDoctor [105]

injects a sequence of events into an app execution. One of these events is rotate, a type of

runtime changes. Though mentioning the potential issues during restarting, this work does

not offer a systematic solution. Zaeem and others [162] present a mobile app testing tool by

deriving test cases from GUI models and interactions. The tool compares the GUI states

before and after the interactions, including screen rotation, pausing and resuming, killing

and restarting and back key event. Their reported issues include the ones triggered by screen

rotations. Adamsen and others [45] inject neutral event sequences, such as pause-resume,

pause-stop-restart and pause-stop-destroy-create to test apps. Shan and others [142] propose

static and dynamic analysis to discover the Kill and Restart (KR) errors for smartphone

apps. This work focuses on discovering and verifying KR errors. In comparison, our work

focuses on runtime changes that could trigger KR errors. Also, our work offers a general

fixing solution to these issues.

Amalfitano and others [49] study the orientation changes and classes of issues due

to orientation changes. They use record & replay technique to match the GUIs after a

double-orientation event. They identify several classes of GUI state lost issues, such as

Dialog, menu, and view state loss. These findings overlap with some of findings of our work,

as orientation is a type of runtime change. Similar to the prior work, it does not provide
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fixing solutions. Existing work on app analysis, verification and refactoring mainly focus

on other types of issues, including detecting race condition and energy bugs using dynamic

analysis [103, 127, 104], uncovering bugs with network and location data [120], detecting

performance bugs [125, 121, 128, 80, 75] and memory leaks [161].

2.6 API Usage and Mobile App Refactoring

There are also empirical studies on programming languages and libraries usages [83,

85, 88, 100, 110, 131]. Buse and others [83] introduce an automatic technique for mining

and synthesizing documents for program interfaces. Kavaler and others [111] investigate

Android APIs questions on Stackoverflow [148]. Unlike prior work, this work studies the

APIs and practices of runtime change handling. Bavota and other [79] study the refactoring

activities and their impacts, including the potential of refactoring-induced faults. In addition

to functional refactoring, there is a trend in refactoring for non-functional qualities, like

refactoring built-in locks with more flexible alternatives [141], refactoring global state with

thread-local state [140], refactoring the concurrent programming constructs [129], and

refactoring for energy efficiency [137]. Unlike the objectives of prior work, this work aims

for a refactoring-based solution for addressing issues in runtime change mishandling.

2.7 Management of State in Mobile Apps

Shan et al. [142] used program analysis to discover Kill and Restart (KR) errors in

Android apps; they combined static and dynamic analysis to verify KR errors. In contrast,

our work focuses on identifying critical app data that should be preserved during the app
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restarting, followed by an automatic save/restore solution. More recently, Lebeck et al. [114]

proposed a new memory manager for Android, which swaps the apps to the external storage

instead of killing them to reclaim memory when memory runs low. However, enabling disk

swapping may shorten the lifespan of the flash drive [73]. Moreover, activity will still be

restarted during runtime configuration changes. In comparison, our work is capable of

handling app killing and activity restarting by identifying and preserving necessary instance

states.
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Chapter 3

Restarting-Free Runtime

3.1 Introduction

Nowadays, smartphone, tablets, and wearable devices are emerging as an essential

component of modern life. According to IDC [19], over 1.46 billion smartphones were shipped

in 2017. Among them, 85% are based on the Android platform.

Unlike traditional computers, such as desktops and laptops, these smart devices

are more portable and subject to higher frequency of configuration changes, such as screen

rotation, screen resizing, keyboard attachment, and languages switching. Such changes can

happen at runtime while users interact with the devices, known as runtime configuration

changes or runtime changes. Recent studies have shown that runtime changes happen

regularly as users operate their apps. For example, on average, users change the orientation

of their devices every 5 mins accumulatively over sessions of the same app [136]. For

multilingual users, changing the language setting is often needed [37] and for tablet users,

attaching an external keyboard often ease the uses of tablets [39]. As newer versions of
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Weather&Clock [9] 3-7 seconds delay

Apps Issues

ImapNote 2 [3] loss of inputs

Vlille Checker [8] overlapped GUI
Alarm Klock [1] app crash

Figure 3.1: An example runtime change and its issues.

Android system with multi-window supports getting adopted, it is projected that runtime

changes will happen more frequently in more apps in the future. Each time a user drags the

boundary between two split windows, a runtime change would be triggered [34].

Rise of Runtime Change Issues. Just as runtime changes become common to mobile

apps, issues with runtime change mishandling also increases. Our preliminary examination

of 765 repositories from GitHub shows that 342 of them had at least one issue due to runtime

change mishandling, such as slowness, losing inputs, malfunctioning user interface, and even

app crashes. All these issues can be triggered by simply rotating the device or attaching a

keyboard. Figure 3.1 lists four example issues [41, 31, 40, 21] triggered each time a runtime

change happens. In general, the runtime change issues can manifest in a variety of ways (see

Section 3).

Formative Study. To better understand the landscape of runtime change handling and

examine the root causes to various runtime change issues, this work presents, to our best

knowledge, the first formative study on runtime change handling strategies and their related

issues. The study is based on a large corpus of 3,567 Android apps with 16,160 activities

and a focused corpus of 72 apps with 197 reported runtime change issues. All the studied
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apps are selected from GitHub based on their popularities and qualities, including many

popular apps from Google Play Store (see Section 3).

The study results show that a large portion of Android apps (92.3%) rely on the

passive restarting-based runtime change handling. Basically, the system first deconstructs

the current user activity, including destroying all UI components and the internal logic data,

then reconstructs the activity with the alternative resources (e.g., layouts and drawables)

that can match to the new configuration (e.g., landscape orientation).

Though activity restarting facilitates the loading of alternative resources, the study

results indicate that it raises risks of a series of critical runtime issues. First of all, restarting

an activity invokes a sequence of callbacks (known as lifecycle methods), which may carry

expensive operations, such as network connecting, database accessing, and other blocking

operations. As a result, the app may become less responsive during runtime changes. More

critically, to recover the user interaction state after activity restarting, it often requires

developers to manually preserve a set of critical data. However, identifying such data and

properly saving and restoring it are non-trivial and error-prone, especially as the complexity

of app logic grows. When such data is not handled properly, runtime change issues as

aforementioned would appear.

State of The Art. Some recent work [142] tries to identify the proper set of the data to

save and restore during an activity restarting. However, since such data highly depends on

the app logic, a generic data analysis often fails to identify the proper set of data. As a

consequence, such approaches often produce over-conservative results – saving and restoring

data that is not necessarily needed. Even worse, it is actually more challenging to verify if
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the data is correctly saved and restored, due to the availability of a wide range of APIs used

for data saving and restoring [23, 24, 25, 22].

Solution of This Work. Unlike prior efforts, this work proposes a restarting-free runtime

change handling solution – RuntimeDroid. By preventing the activity from restarting,

RuntimeDroid ensures that all the activity data remains live after runtime changes, thus

making the data preservation a trivial task.

On the other hand, without activity restarting, the resources needed for the new

configuration will not be automatically loaded. To address this issue, RuntimeDroid

features HotR – a novel online resource loading solution that systematically loads the

resources needed for the new configuration while the activity remains live. In cases where

new UI resources are loaded, it will automatically migrate the properties of the original

UI components to the newly generated UI components. We refer to this data migration

technique as dynamic view hierarchy migration.

For easy adoption of RuntimeDroid, this work presents two alternative imple-

mentations:

• RuntimeDroid-Plugin: an Android Studio plugin that allows developers to easily

adopt the restarting-free runtime change handling into the current app development by

simply extending a customized activity class.

• RuntimeDroid-Patch: an automatic patching tool that can patch a compiled Android

app package (i.e., APK file) to enable restarting-free runtime change handling, without

source code.
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In neither implementation would RuntimeDroid require any modifications to the

existing Android framework.

We evaluated RuntimeDroid on a corpus of 72 Android apps from GitHub

and Google Play Store with 197 reported runtime change issues. The results show that,

after applying RuntimeDroid to the apps with runtime change issues, 197/197 issues

have been fixed, thanks to the adoption of restarting-free handling strategy. Furthermore,

RuntimeDroid reduces the runtime change handling time by 9.5X on average. On the

other hand, RuntimeDroid may introduce some space overhead due to the factoring or

patching, but typically less than 1% after packaging.

Contributions. This work makes a four-fold contribution.

• It provides, as far as we know, the first formative study on the landscape of runtime

change handling, and points out a type of emerging issues in mobile apps – runtime

change issues and its root cause – activity restarting.

• It proposes a versatile restarting-free runtime change handling solution – RuntimeDroid,

which mainly consists of two novel components, an online resource loading module and a

dynamic view hierarchy migration technique.

• It offers two practical implementations: RuntimeDroid-Plugin and RuntimeDroid-

Patch. They together make the adoption of restarting-free runtime change handling an

easy task both during and after the app development.

• Finally, this work evaluates RuntimeDroid and demonstrates its capability in addressing

real-world runtime change issues and improving the responsiveness in general.
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In the following sections, we will present the formative study on runtime change

handling, including its common issues (Section 3.2). After that, we will present Runtime-

Droid and its implementations (Section 3.3), followed by the evaluation (Section 3.4),

conclude this work (3.5).

3.2 Formative Study

To understand how different runtime change handling strategies (H1-H3) are

adopted in practice, we next present a formative study on real-world Android apps. Our

formative study on runtime change handling aims to address two fundamental questions:

• RQ1 (Landscape): How do developers program runtime change handling? What are

the common practices?

• RQ2 (Common Issues & Causes): What are the basic types of runtime change

issues? Are there any common causes?

For each question, we first present the corpus and methodology, then discuss the

results and implications.

3.2.1 RQ1: Landscape

First, we examine the common practices of runtime change handling in real-world

Android apps.

Corpus-L. We collected Android apps from GitHub [94], mainly for two reasons. First, as

the largest code hosting service provider, GitHub hosts a large number of industrial-grade
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Android apps, such as Telegram messenger [13], K-9 email [32], Google I/O [9], Amaze File

Manager [11], Timber player [12], and Wordpress [43], just to name a few. Many of these

apps are hosted on Google Play Store [99]. Second, with the availability of source code, our

formative study provides more precise runtime handling analysis.

To focus on popular apps, we sorted the searching results based on the number

of stars and the number of forks of each repository. That is, only the top Android apps

on GitHub are selected. To ensure the collected repositories are Android apps, we checked

the source code of every selected project to ensure the existence of an app manifest file

AndroidManifest.xml (required by Android). After searching and filtering, the corpus

contains 3,567 apps with 16,160 activities and 24.7 M lines of code, referred to as Corpus-L.

Methodology. To analyze the runtime change handling for the large volume of apps in

Corpus-L efficiently, we developed an automatic code analysis tool – RuntimeAnalyzer.

For each app in the corpus, RuntimeAnalyzer first parses its manifest file and

collects the basic runtime change configurations for each registered activity. These include

the settings for screen orientation changes (screenOrientation) and resizing changes

(resizableActivity), and the setting for self-handling runtime changes (configChanges).

If configChanges is set (i.e., H2), the analyzer will parse the activity class to examine if

the callback onConfigurationChanged() has been overridden.

To better understand the data preserving methods in the default handling (Chap-

ter 2), RuntimeAnalyzer also checks the uses of state saving callback saveInstanceState()

and the Bundle object. If saveInstanceState() is overridden and the Bundle object is

also unpacked either in onCreate() or restoreInstanceState(), then the handling is H1.1.
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Table 3.1: Uses of Runtime Change Handling.

Handling Strategies #activities #app

Activity Restarting 14,934 (92.4%) 3,293 (92.3%)
Customized Handling 1,226 (7.6%) 274 (7.7%)

Table 3.2: Uses of Restarting-based Handling (H1).

Data Preservation Method #activities #app

saveInstanceState (H1.1) 999 (7.6%) 458 (12.7%)
Object Retaining (H1.2) 223 (1.7%) 105 (3.0%)

No Data Preservation 11,792 (90.6%) 3,024 (84.3%)

Similarly, if a fragment is attached to the activity with a call to setRetainInstance(true)

or a ViewModel is declared, then the handling would be categorized as H1.2.

Results. Tables 3.1-3.3 report the statistical results of the study. As shown in Table 3.1, the

restarting-based runtime change handling (H1) absolutely dominates the handling strategies.

Among the 16,160 activities examined, 92.4% choose H1, which covers 92.3% of total apps.

This is mainly due to its lower barriers to programming than the customized handling (H2).

H2 requires solid understanding of resource loading mechanisms (see Section 2).

Among the activities with restarting-based handling, only 13.9% leverage the

callback saveInstanceState() (H1.1) to preserve the data and 15.4% adopt object retaining

(H1.2). In contrast, a large portion of the activities (68.3%) provide no mechanisms for data

preserving at all. As the activity restarting invokes lifecycle methods, such as onCreate()

and onStart(), which provide the basic UI initialization and even the data loading, in many

cases, the screen may appear the same as the one before the runtime change, especially

for simple activities. However, as the logic complexity of an activity grows, restarting the
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Table 3.3: Uses of Customized Handling (H2).

Overridden Callback #activities #app

onConfigurationChanged 155 (12.6%) 87 (31.7%)
No Overriding 1,071 (87.4%) 187 (68.3%)

activity without sufficient data preservation makes the app vulnerable to various runtime

change issues (see Section 3.2.2).

Among the activities that choose the customized handling (H2), only about one

third (31.7%) actually override the callback method onConfigurationChanged(). For the

other two thirds, developers do not provide alternative resources for different configurations,

thus there would be no need to override the callback. These results indicates that manually

resources updating is only practiced in a limited way, due to its complexity.

Table 3.4 lists the statistics of runtime changes that are flagged for self-handling

(i.e., listed in configChanges). Among them, the most popular ones include orientation,

keyboardHidden, and screenSize. Ironically, despite the flagging, as just mentioned in

Table 3.3, very few activities actually implement the “self-handling”. They simply use the

flags to prevent activities from restarting under certain runtime changes.

Another interesting finding is a gap between screenSize (22.9%) and orientation

(32%). Actually, to handle orientation changes, developers need to specify both screenSize

and orientation (since Android 3.2). This gap implies that there exist many misuses of

the runtime change configurations configChanges.

Finally, the study shows that a small ratio of activities (15.5%) are set with a fixed

orientation (either landscape or portrait) and only 4.3% apps have fixed orientation for all

31



Table 3.4: Uses of Configuration Changes Properties.

Changes #activities #app

keyboard 326 (8.8%) 69 (25.2%)
mnc 17 (0.5%) 12 (4.4%)
mcc 16 (0.4%) 11 (4.0%)

locale 71 (1.9%) 20 (7.3%)
navigation 29 (0.8%) 18 (6.6%)

fontScale 22 (0.6%) 10 (3.6%)
layoutDirection 10 (0.3%) 6 (2.2%)

keyboardHidden 986 (26.8%) 225 (82.1%)
orientation 1,178 (32.0%) 271 (98.9%)

screenLayout 129 (3.5%) 20 (7.3%)
uiMode 20 (0.5%) 15 (5.5%)

screenSize 844 (22.9%) 198 (72.3%)
smallestScreenSize 37 (1.0%) 10 (3.6%)

the activities. Moreover, it shows no activities actually disable the resizing in multi-window

mode. The results indicate that for most apps, developers would not like to limit the

functionalities by disabling the runtime changes.

3.2.2 RQ2: Common Issues and Causes

Corpus-S. To examine the issues in runtime change handling, we collected another corpus

with apps actually suffering from runtime change issues, named as Corpus-S.

Corpus-S consists of 72 Android apps collected from GitHub, for the same reasons

as Corpus-L (see Section 3.2.1). 36 out of the 72 apps are also hosted on Google Play

Store [99], including quite a few highly popular ones, such as Loop - Habit Tracker [10]

with 1M installs, WiFiAnalyzer [15] with 1M installs, Barcode Scanner [8] with over 100M

installs, and among others. Another reason that we choose GitHub is for its availability of

issue reports. The traceable issue reports on GitHub allows us to easily identify specific
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apps with runtime change issues. Together, Corpus-S composes of 507 activities with a total

of 1.5M SLOC and 197 runtime change issues.

Methodology. We manually examine the runtime change issues one by one and categorize

them based on their manifestation. Overall, there are four basic types: T1 - poor respon-

siveness, T2 - lost state, T3 - malfunctioning UI, and T4 - app crash. Together, they reflect

the common issues that apps encounter during runtime changes.

T1: Poor Responsiveness. This type of issues causes significant delays during runtime

changes. The app Weather&Clock shown in the introduction (Figure 3.1) falls into this

category. In addition, the study found three other apps reported with unexpected delays

during runtime changes.

Note that, poor responsiveness, despite often appearing with runtime change

mishandling, is less likely to be reported. First, as a non-functional issue, some users and

developers often choose not to report it as “an actual issue”. Second, due to the lack of

expertise in runtime change handling, some developers consider the issues as “how it is

supposed to be” or ”the issue of Android”.

Causes: There are two basic conditions jointly contributing to the occurrences of poor

responsiveness during runtime changes: (i) the use of restarting-based handling H1 and (ii)

the existence of blocking operations in the lifecycle callbacks.

The first condition causes an activity to restart, going through the whole sequence

of lifecycle stages (see Figure 2.1). Meanwhile, the lifecycle methods are invoked one by one,

from onPause() to onResume(). If any of these lifecycle methods performs some blocking

operations, such as I/O operations, network connections or Bitmap manipulations, there will
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be substantial extra delay(s) for the runtime change handling. When the total delay becomes

significant, the user would observe it. In the weather app example (Weather&Clock), the

activity restarting triggers re-connecting to the server and re-downloading the map and

weather data. Together, they contribute a delay of 3-7 seconds.

T2: Lost State. This is the most common type of issues triggered by runtime changes –

losing user interaction state. Note that runtime changes may happen at any point during

a user-app interaction session. At the time a runtime change occurs, the user may have

already performed some actions and changed the state of some UI components, such as

entering some text, selecting an item, or opening a dialog. With lost state issues, such user

inputs will be lost during runtime changes. In more serious cases, the users may even lose

their login state. Consequences like these frustrate users, undermining the overall impression

of the app qualities.

Causes: The study shows that most lost state issues are due to the missing or insufficient

data preservation with the use of restarting-based handling (H1). As the activity is restarted,

the associated UI components will be destroyed together with their attributes, like text,

selection, and position. For built-in UI components with assigned IDs, the system can

automatically save/restore certain editable attributes (e.g., text in EditText). However,

this may not cover all critical attributes of all UI components, not to mention the internal

logic data. Furthermore, the study shows that despite the saving/restoring, the data may

be reset with initial values during runtime changes (e.g., by the onCreate() callback). The

results indicate that many developers who adopted the restarting-based handling (H1) are
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not prepared for such detailed data handling requirements, thus their apps may suffer from

the loss of the user interaction state at runtime changes.

T3: Malfunctioning UI. In some use scenarios, the study shows that runtime changes

can result in malfunctioning user interface, such as overlapped views, stretched images, and

mispositioned menus. For example, in the setting view of Vlille Checker [40], an app for

self-service biking, runtime changes result in two layers of GUIs overlapped with each other.

Causes: The issue happened in Vlille Checker is due to the misuse of fragments in

restarting-based handling (H1). When a runtime change occurs, a new activity is restarted

with a new fragment attached. Meanwhile, the old fragment is still retained by the system,

thus overlapped with the new one. In general, the malfunctioning UI issues are often caused

by the improper ad-hoc handling of UI components during the activity restarting.

T4: App Crash. In some cases, a simple runtime change, like screen rotation, can cause

an app to crash. When it happens, a message “Unfortunately your app has stopped ” pops

to the screen. This class of issues is of the most severe type.

Causes: The study shows that a few Java and Android exceptions commonly contribute to the

app crashes, including NullPointer, WindowLeaked, IndexOutofBound, and Instantiation.

Among them, NullPointer and WindowLeaked are the most common ones, which are of-

ten triggered by the misuse of asynchronous function calls (e.g., AsyncTask) with the

restarting-based runtime change handling H1. Figure 3.2 illustrates a common app crash

scenario.

Before the runtime change, an AsyncTask instance was created by the activity

instance A. Some time after the runtime change, the AsyncTask instance finished and
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Button btn

runtime
change

AsyncTask
btn.setText() // NullPointer

activity instance A’activity instance A

Dialog dlg dlg.dismiss() // WindowLeaked

Figure 3.2: A common app crash scenario, caused by the misuse AsyncTask during activity

restarting.

attempted to update a UI component and dismiss a dialog. However, after the restarting, the

activity instance had become A′. Thus, neither the dialog or the GUI component is available.

Accesses to these components would result in a NullPointer exception and WindowLeaked

exception, respectively, causing the app to crash.

Discussion on Common Causes. On one hand, runtime change issues exhibit a variety

of consequences, from the loss of an input to brutal app crashes. On the other hand, based

on the cause analysis, the study results indicate that they share a common condition – the

adoption of the restarting-based runtime change handling (H1).

In general, activity restarting requires developers to take special care of the of

lifecycle method design (T1), the GUI attributes (T2 and T3), the state of activity logic

objects (T2), as well as use of asynchronous function calls (T4). These strong requirements

make the runtime change handling a tedious and error-prone task.

Instead of trying to fulfill all the requirements as mentioned above, a clean solution

is to avoid the activity restarting (H1) during runtime changes. This will remove a necessary

condition for most runtime change issues (T1-T4). However, as mentioned earlier, the other

strategies (H2 and H3) are either beyond the reach of developers or limit the functionalities
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of the apps. To bridge this gap, this work proposes RuntimeDroid – a restarting-free

runtime change handling solution that can be easily adopted by developers.

3.3 RuntimeDroid

In this section, we introduce a restarting-free runtime handling solution – Runtime-

Droid. We first describe its basic ideas, then elaborate its key components, which consists

of an online resource loading module – HotR and a dynamic view hierarchy migration

technique. Finally, we discuss two alternative implementations of RuntimeDroid for easy

adoption.

3.3.1 Challenges

As mentioned earlier, to prevent activities from restarting during runtime changes,

developers can set the configChanges flag in the activity configuration (i.e., customized

handling H2). However, this requires developers to manually load resources for the new

configuration, which, unfortunately, is very challenging for many Android developers, due to

three reasons:

• Complexity of Resource Types. In the latest API (API 27) of Android, there are 16 types

of resources for mobile apps, each requiring a specific loading mechanism.

• Complexity of Resource Uses. Resources can be statically bound to other resources, like

layout, or dynamically referred in the callbacks of the activity class.
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• Dynamic Nature of UI Components. As the user interacts with an activity, the properties

of some UI components might be changed dynamically. Such changes need to be preserved

while the resources are loaded. Even more complex, there might be UI components added

or deleted during the user interaction.

The above three complexities involved in resource loading make the customized

runtime change handling beyond the reach of most Android developers. To address this

challenge, we next present an automatic online resource loading module – HotR. HotR

is able to load resources for the new configuration while the current activity remains live.

Moreover, it does not depend on the app logic.

3.3.2 HotR

The purpose of HotR is to load resources needed for the new configuration without

restarting the activity. In the following, we first define the concept of alternative resources,

then present the major components of HotR. Depending on the design, an activity may

have different versions of resources that are defined for different configurations. For easy

references, we define alternative resources as follows.

Definition 1 During a runtime change, an alternative resource is a resource designed for

the configuration after the runtime change, but not used by the configuration before the

runtime change.

We now present the major components in HotR following the order that they are

employed in actual resource loading. When a runtime change occurs, HotR first examines
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the needs for resource loading. To achieve this, HotR constructs two hashmaps for recording

resources used before and after the runtime change.

C1: Resource Hashmap Construction. For a given configuration C, a resource hashmap

(RH) contains an entry for each resource declared in C, except the layouts. Unlike a typical

hashmap, the key in RH is the “content” of a resource, represented as a string, such as text

“Enter” in a string resource. For non-string resources, such as drawable (e.g., bitmaps),

color, or dimension, they will be either hashed or serialized into strings. The value in RH

is the resource ID, which is uniquely assigned by the system. Both the “contents” and the

IDs of resources for the current configuration can be accessed from the built-in class R.

For example, the following resources for the portrait mode will be compiled into

the R.class, then built into the resource hashmaps RHport. After the screen orientation,

the process happens again to form the resource hashmaps RHland.

/res/values-port/res.xml

<string name="enter">Enter</string>

<color name="yellow">0xffffff00</color>

/res/values-land/res.xml

<string name="enter">Enter Name</string>

<color name="yellow">0xffffff00</color>
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RHport :

Key Value

”Enter” 134
”0xffffff00” 152

RHland :

Key Value

”Enter Name” 134
”0xffffff00” 152

Note that both ”Enter” and ”Enter Name” have the same resource ID (134). This

is because they are given the same name (“enter”) in the declarations, hence system yields

the same ID for them.

As we will explain shortly, layouts play a special role in resource loading, thus

HotR treats them separately.

C2: Alternative Resource Identification. Given a runtime change, HotR determines

the needs for resource loading by calculating the difference resource hashmap RHdiff between

the old resource hashmap RHold with the new one RHnew in terms of the key set.

RHdiff = RHold −RHnew (3.1)

If RHdiff is non-empty, then HotR would consider the existence of alternative

resources, hence the needs for loading resources. Following the example in C1, the difference

would be:

RHdiff :

Key Value

”Enter” 134

Thus, there exists an alternative resource (“Enter Name”) to load.

Note that the above process for determining resource loading may yield false

positives, that is, there might be no actual needs for resource loading despite a non-empty
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RHdiff. This is because the R class consists of the resources for all the activities, not only for

the current activity. Such false alarms could be avoided with static analysis or activity-level

R class supports from Android runtime. In fact, even in the presence of false alarms, our

evaluation shows that the online resource loading by HotR is still much faster than the

restarting-based mechanism.

For the layout, HotR can obtain its resource ID for the current activity (via

setContentView(layoutID)), hence it can directly compare the new layout Lnew with the

old one Lold to determine the existence of an alternative resource (i.e., Ldiff = Lold − Lnew).

In this case, there will be no false positives.

If RHdiff and Ldiff are both empty, HotR will skip the resource loading and

terminate – the runtime change handling is completed.

C3: Property-Resource Mapping. In Android apps, resources are mainly used for

defining the view properties. For example, a string resource can be used as the text property

of a EditText, a color resource can be the background of a LinearLayout, and a drawable

can be linked to the resource of an ImageView.

Knowing the mapping between the view properties and their corresponding resources

can help locate the uses of resources, hence facilitating the loading process. For this

purpose, HotR constructs the property-resource mapping MPR based on the programming

conventions. For example, the text property of view EditText is mapped to the string

resource. Note that the mapping MPR can pre-constructed offline.

MPR :

View Property Resource Type

EditText.setText( ) string
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C4: Resource Loading. All the components from C1 to C3 are the preparation for the

actual resource loading – C4. When a runtime change occurs and the outcome of C2 is

positive (i.e., at least one of RHdiff and Ldiff is non-empty), then HotR will initiate the

actual resource loading process.

Note that during the user-app interactions, the properties of some views might be

modified (e.g., text property of EditText). Moreover, some views might be even removed

or added dynamically (by event handlers). HotR treats these cases differently.

For easy references, we categorize the views into two classes: static views and

dynamic views, defined as follows.

Definition 2 For a given activity, its views that are declared in the layout file are re-

ferred to as static views. Correspondingly, the resource loading for static views is called

static resource loading.

Definition 3 For a given activity, its views that are added or deleted at runtime are referred

to as dynamic views. The resource loading for dynamic views are called dynamic resource loading.

Note that a view that was originally declared in the layout may be deleted at

runtime. In this case, we say that a static view turns into a dynamic view after it is deleted.

So whether a view is static or dynamic depends on when we refer to it.

Next, we first discuss the static resource loading. For dynamic resource loading,

which is more complex, we leave it to Section 4.3 when we discuss the dynamic view hierarchy

migration.

To perform static resource loading, HotR leverages a handy callback from the

system setContentView(). Though the callback is used for loading layout resources, it
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actually also loads other types of resources implicitly. This is because the layout consists of

all the static views (see Definition 2). After the layout is loaded, all the static views will

also have their properties loaded with alternative resources, automatically ensured by the

system.

However, note that the properties of static views may be updated at runtime by

some callbacks. Thus, simply loading the alternative resources for static views may lead to

inconsistent view properties. In addition, as mentioned earlier, some static views may turn

into dynamic views (i.e., being deleted). We will address these issues with dynamic view

hierarchy migration. Before that, let us first finish the last component of HotR.

C5: Resource Reference Updating. The last component of HotR is about the resources

that are referred in the callbacks of the activity class. For example, the following statements

access a string resource or a view resource from some callback:

String hello = getString(R.string.hello);

TextView name = findViewById(R.id.nameview);

When the alternative resources are loaded, we need to make sure that the corre-

sponding references point to the newly loaded resources, instead of the original ones. We

separate this discussion into two cases based on locations where the resources are referred:

• Local Resource References. When resources are referred locally in a callback method,

the reference updating will be naturally ensured, thanks to the automatic updating of R

class. When a runtime change happens, the system would automatically recompile the R
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class for the new configuration (see Chapter 2). Hence, when a callback is invoked after

the runtime change, its resource references (through the R class) will automatically point

to the alternative resources.

• Global Resource References. However, the same situation does not apply to the cases

where resource references are declared globally (i.e., the activity class level). This is

due to the fact that global resource references may not be reassigned after a runtime

change. For example, String str is first declared at the activity level, then initialized

in onCreate() with

str = getString(R.string.hello);

Even though the R class has been updated with references to the alternative resources,

the assignment to str will not be invoked again without activity restarting, therefore it

will remain pointing to the original resource.

To address the stale global resource references issue, HotR performs a resource ref-

erence localization procedure for each global resource reference. Basically, given a

global resource reference p, HotR first traces where p is used, then inserts an as-

signment with the corresponding reference in the R class right before p is used (e.g.,

p=getString(R.string.hello)). By adding the “assignment” for global resource refer-

ences, this reference localization ensures the accesses to the correct references, just like

accessing local resource references.
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Figure 3.3: High-level Workflow of HotR.

Summary. Figure 3.3 summarizes the major components in HotR with a high-level

workflow. Components C1 to C3 prepare for the actual resource loading C4. If no alternative

resources are found in C2, HotR will stop after C2; otherwise, it will finish C4 and C5.

So far, we have introduced the static resource loading in C4. Next, we discuss the

other part of C4 – dynamic resource loading, as well as how to address the view properties

that are updated at runtime. We address the two problems together with a novel dynamic

view hierarchy migration technique.

3.3.3 Dynamic View Hierarchy Migration

Before presenting the technique, we first introduce a couple core concepts that are

used in our design. The UI components (i.e., views in Android’s term) of an activity forms a

hierarchical structure, typically with a type of layout view as the root (e.g., LinearLayout).

Depending on when the view hierarchy is referred to, we define static view hierarchy and

dynamic view hierarchy as follows.
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Definition 4 A static view hierarchy, denoted as V, is the initial view hierarchy that is

derived from the activity layout (XML file).

Definition 5 A dynamic view hierarchy, denoted as Ṽ, is the view hierarchy that is referred

to while the user interacts with the activity. Ṽ may evolve over the interaction. When the

layout of an activity is just loaded, Ṽ equals to the static view hierarchy V.

The static resource loading described in component C5 of HotR (see Section 4.2)

essentially builds a static view hierarchy for the new configuration. However, during user

interactions, some views’ properties might be changed and others might even be added

or deleted (i.e., dynamic views). Preserving such changes is critical to the UI consistency.

To achieve this, RuntimeDroid needs to update the static view hierarchy and generate

another dynamic view hierarchy that is consistent with the one before the runtime change,

meanwhile ensuring its compliance with the resource loading. We refer to this process as

dynamic view hierarchy migration.

To distinguish view properties that might be changed during the user interactions,

we introduce mutable properties.

Definition 6 A view property p is mutable if and only if there exists at least a write

operation to the property in at least one callback method of the activity class.

Next, we explain the basic procedure of dynamic view hierarchy migration. For

easy references, we use Vold and Ṽold to represent the old static and dynamic view hierarchies

before a runtime change. Correspondingly, we use Vnew and Ṽnew to represent the new static

and dynamic view hierarchies after the runtime change.
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Algorithm 1 Dynamic View Hierarchy Migration

1: Vold: the static view hierarchy before runtime change

2: Ṽold: the dynamic view hierarchy before runtime change

3: Vnew: the static view hierarchy after runtime change

4: Ṽnew: the dynamic view hierarchy after runtime change

5: /* preparation */

6: Vdyn = compare(Vold, Ṽold); . identify dynamic views

7: Vstatic = derive(Vold); . derive static views

8: Pmut = find(Activity.class); . identify mutable properties

9: /* migrate static views */

10: for each view v in Vstatic do

11: for each property p of v do

12: if p ∈ Pmut then

13: if p has RHdiff then . RHdiff: res. w/ alternatives

14: loadResource(p, RHdiff);

15: copy(p, Vnew(v)); . Vnew(v) returns the view w/ same id

16: /* migrate dynamic views */

17: for each view v in Vdyn do

18: if v was deleted from Vold then

19: detach(v, Vnew); . detach v from Vnew

20: else . v was attached to the Ṽold

21: for each property p of v do

22: if p ∈ Pmut && p has RHdiff then

23: loadResource(p, RHdiff);

24: attach(v, Vnew); . attach v to Vnew

25: Ṽnew = Vnew; . after updating Vnew, it becomes Ṽnew

26: return Ṽnew;
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Figure 3.4: Illustration of Dynamic View Hierarchy Migration.

Algorithm 1 illustrates the procedure of dynamic view hierarchy migration. At

high level, it has three steps: (i) preparation, (ii) static view migration, and (iii) dynamic

view migration. The preparation step identifies the sets of dynamic views, static views, and

mutable properties, respectively. In the second step, it migrates the mutable properties

of static views from the old static view hierarchy Vold to the new static view hierarchy

Vnew. If a mutable property has a resource in RHdiff (existence of alternative resource),

then a resource loading is performed before the property copying. The third step migrates

dynamic views from the old dynamic view hierarchy Ṽold to the new static view hierarchy

Vnew. When a view was deleted from old static view hierarchy (Vold), it also needs to be

detached from the new static view hierarchy (Vnew). Similarly, a newly added view needs to

be attached to the new static view hierarchy as well. When attaching a dynamic view, it

examines if any of its properties are mutable meanwhile has alternative resources (checking

RHdiff), if so, it first loads the resources before attaching the view.

In practice, the identification of mutable properties (Line 9 in Algorithm 1) can

effectively leverage the existence of view IDs. When a view is declared without any assigned

ID, then it will not be accessible anywhere from the source code, hence all of its properties

become immutable. For event listeners, the dynamic view hierarchy migration treats them

as the properties of corresponding views where the listeners are declared. Like other view
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properties, the event listeners can be mutable, which means they can be attached, detached,

or changed by some callbacks.

Figure 3.4 illustrates the dynamic view hierarchy migration with a simple example,

including two dynamically deleted views (c and d), one added view (f), and one mutable

property migration (b.text). The final result is a new dynamic view hierarchy (the right

most).

3.3.4 Implementations

For easy adoption, we developed two versions of RuntimeDroid: an Android

Studio plugin – RuntimeDroid-Plugin and an automatic patching tool – RuntimeDroid-

Patch. The former can be used during the app development, while the latter works for

compiled Android APK packages.

The implementation of RuntimeDroid follows a modular design with a customized

activity class RActivity, from which the existing activities in an app can extend. For

example, if a developer-defined activity A extends from another activity B

A
extends−−−−→ B

then RuntimeDroid would refactor it to

A
extends−−−−→ RActivity RActivity

extends−−−−→ B

Here, some common cases ofB include built-in activities, like Activity, AppCompatActivity,

and FragmentActivity. Inside RActivity, we implement HotR with the dynamic view hi-

erarchy migration technique mainly by overriding the callback onConfigurationChanged().

This design has two major benefits. First, by extending from the class RActivity,

all the existing implementation of callback onConfigurationChanged() can be preserved
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by the compiler as the method of a subclass. Second, the class extension provides a modular

design which clearly isolates the newly added runtime change handling from the existing

implementation of an activity.

Besides introducing the RActivity class, RuntimeDroid also parses the man-

ifest file AndroidManifest.xml to insert the flag for each type of runtime change into

configChanges to suspend the activity restarting for all the corresponding runtime changes.

Next, we briefly explain the two implementations.

RuntimeDroid-Plugin. The plugin is implemented on Android Studio 3.0. Developers

can use the plugin to refactor a selected activity. The refactoring process automatically

insert the RActivity into the inheritance hierarchy of the selected activity and injects all

the runtime change flags. One challenge for this implementation is that the set of resources

may be changed after the refactoring. To address this, the plugin leverages the reflection of

R class to postpone the identification of available resources to runtime.

RuntimeDroid-Patch. In some situations, one may want to avoid any modifications to

the source code or to apply RuntimeDroid without the app source code. For such purpose,

we implemented RuntimeDroid also as a patching tool. The tool directly takes a compiled

Android APK file and injects the customized activity class along with other necessary code

into the APK file. More specifically, we leverage Soot [144] and APKtool [20] for reverse

engineering and recompilation, and zipalign [44] and Jarsigner [17] to align and sign the

processed APK file. The key step – code refactoring – was implemented by ourselves.
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Table 3.5: Results of applying RuntimeDroid to the activities in Android projects – 1/2.

A: # of activities, As: # of activities successfully processed, str: # of string resources, V : number of static

views, I: # of issues, If : # of fixed issues, Al: # of activities requiring resource reference localization

# App Project A As str V I If Al

1 0xbb/otp-authenticator 2 1 14 7 2 2 1
2 Amabyte/vtu-cs-lab-manual 5 5 3 26 1 1 3
3 AntennaPod/AntennaPod 19 19 115 109 5 5 14
4 arnowelzel/periodical 5 5 61 141 2 2 4
5 artemnikitin/tts-test-app 1 1 4 9 1 1 1
6 awaken/sanity 28 28 147 8 9 9 18
7 balau/fakedawn 3 3 1 39 2 2 3
8 basil2style/getid 2 2 0 34 1 1 2
9 benjaminaigner/aiproute 3 3 28 20 3 3 2

10 blanyal/Remindly 4 4 23 83 2 2 4
11 blaztriglav/did-i 2 2 6 9 3 3 2
12 cbeyls/fosdem-companion-android 8 8 21 24 5 5 7
13 charbgr/Anagram-Solver 1 1 0 1 2 2 1
14 charlieCollins/and-bookworm 10 10 113 81 4 4 9
15 conchyliculture/wikipoff 8 8 58 79 2 2 7
16 DF1E/SimpleExplorer 4 4 6 14 1 1 3
17 enricocid/Color-picker-library 2 2 4 8 1 1 2
18 erickok/transdroid-search 3 3 0 0 1 1 2
19 EvanRespaut/Equate 2 2 18 3 2 2 2
20 farmerbb/Taskbar 24 24 65 22 3 3 9
21 fr3ts0n/StageFever 2 2 1 3 1 1 2
22 gateship-one/malp 5 5 34 51 5 5 4
23 gateship-one/odyssey 4 4 67 25 4 4 3
24 gianluca-nitti/android-expr-eval 2 2 14 14 1 1 2
25 google/google-authenticator-android 12 12 85 50 3 3 11
26 grmpl/StepandHeightcounter 2 2 20 5 2 2 2
27 grzegorznittner/chanu 22 22 114 105 2 2 9
28 hoihei/Silectric 5 5 9 38 2 2 5
29 HoraApps/LeafPic 9 9 206 188 2 2 8
30 HugoGresse/Anecdote 1 1 7 3 1 1 1
31 icasdri/Mather 2 2 5 5 1 1 2
32 iSoron/uhabits 8 7 6 5 6 6 1
33 JamesFrost/SimpleDo 6 6 26 70 6 6 6
34 jiro-aqua/aGrep 6 6 31 25 3 3 5
35 jparkie/Aizoban 4 4 26 21 1 1 4
36 jpriebe/hotdeath 3 3 5 5 5 5 3
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Table 3.6: Results of applying RuntimeDroid to the activities in Android projects – 2/2.

A: # of activities, As: # of activities successfully processed, str: # of string resources, V : number of static

views, I: # of issues, If : # of fixed issues, Al: # of activities requiring resource reference localization

# App Project A As str V I If Al

37 jufickel/rdt 1 1 10 25 1 1 1
38 julian-klode/dns66 3 3 27 21 1 1 3
39 knirirr/BeeCount 8 8 85 53 2 2 8
40 kraigs-android/kraigsandroid 2 2 15 17 5 5 2
41 liato/android-bankdroid 12 12 69 97 3 3 9
42 LonamiWebs/Stringlate 10 10 117 73 5 5 9
43 mikifus/padland 10 10 59 33 3 3 5
44 nathan-osman/chronosnap 2 2 16 16 1 1 2
45 nbenm/ImapNote2 4 4 0 37 3 3 3
46 netmackan/ATimeTracker 5 5 70 21 15 15 4
47 ojacquemart/vlilleChecker 5 4 9 41 1 1 1
48 olejon/mdapp 42 42 392 284 2 2 39
49 PaperAirplane-Dev-Team/GigaGet 4 4 13 44 1 1 4
50 peoxnen/GitHubPresenter 1 1 1 3 2 2 1
51 phikal/ReGeX 4 4 33 54 3 3 4
52 phora/AeonDroid 5 5 0 44 4 4 2
53 phora/AndroPTPB 6 6 0 43 1 1 4
54 pilot51/voicenotify 2 2 41 5 1 1 1
55 quaap/Primary 11 11 52 67 4 4 10
56 RomanGolovanov/ametro 6 6 22 34 1 1 6
57 rubenwardy/mtmods4android 7 7 54 51 1 1 6
58 scoute-dich/PDFCreator 8 8 32 22 4 4 7
59 scoute-dich/Sieben 32 32 677 112 2 2 30
60 scoute-dich/Weather 8 8 108 33 3 3 8
61 SecUSo/privacy-friendly-ruler 6 6 22 47 2 2 4
62 shkcodes/Lyrically 2 2 11 21 2 2 2
63 SteamGifts/SteamGifts 11 10 20 33 3 3 7
64 tarunisrani/InstaHack 2 2 0 13 1 1 2
65 TeamNewPipe/NewPipe 13 13 39 74 6 6 7
66 TobiasBielefeld/Simple-Solitaire 6 6 27 48 1 1 5
67 ukanth/afwall 14 14 248 101 4 4 13
68 vIiRuS/Omnomagon 4 4 32 71 1 1 2
69 VREMSoftwareDevelopment/WiFiAnalyzer 3 3 20 36 2 2 3
70 wentam/DefCol 5 5 0 18 1 1 5
71 xargsgrep/PortKnocker 5 5 24 15 4 4 4
72 zxing/zxing 9 9 41 50 4 4 6
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3.4 Evaluation

This section evaluates RuntimeDroid on its applicability, issue fixing effectiveness,

and its impacts in terms of time and space.

3.4.1 Methodology

The evaluation is performed using Corpus-S, which consists of 72 projects, 507

activity instances and 1.5M lines of code. 36/72 apps (i.e., 50%) are also hosted on Google

Play Store[99], including some highly popular ones (see Section 3.2.2 for more details).

For each project, we applied RuntimeDroid to each activity that is registered in the

AndroidManifest.xml file.

In the evaluation, we tested both RuntimeDroid-Plugin and RuntimeDroid-

Patch. In order to test RuntimeDroid-Patch, we manually compiled each Android

app project in Corpus-S with Android Studio 3.0 and generated the APK package. To

evaluate RuntimeDroid-Plugin, we loaded each project into an Android Studio IDE with

RuntimeDroid-Plugin installed. In order to verify the correctness, we manually checked

all the processed activities and examined the app behaviors by deploying the app on a real

device – a Nexus 5x smartphone with Android 8.0 installed. The platform for measuring the

performance of RuntimeDroid is a Macbook Pro laptop with 2.0 GHz Core i5 processor

and 8 GB RAM.
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3.4.2 Applicability

Tables 3.5 and 3.6 summarize the results of applying RuntimeDroid to the apps

in Corpus-S. In total, RuntimeDroid was applied to all the 507 activities from 72 projects.

Among them, there are 503 activities successfully refactored by RuntimeDroid-Plugin.

Only 4 activities (i.e., less than 1%) failed. The reason for that is the 4 activities are

from some third-party libraries, in which case the source code of them are not available

to RuntimeDroid-Plugin. In comparison, when processing the compiled APK packages

with RuntimeDroid-Patch, all the 507 activities are successfully patched. The reason is

that RuntimeDroid-Patch does not require accesses to the source code. In fact, the APK

package already contains all the compiled code, including the ones of third-party libraries.

Despite the success of processing all the activities, there are a few special cases

worth mentioning here. For example, ListActivity or PreferenceActivity, which do not

expose setContentView() to developers. In this case, there will be no layout resources or

static view hierarchies available. But dynamic views may still be used, which can be detected

by HotR (no layout ID found) and handled by the dynamic view hierarchy migration.

Another special activity is the NativeActivity, which is used mainly for the development

of graphics-intensive game apps. Due to the high-performance requirements, these apps

often implement their own UI components and event handling mechanisms in C/C++

language, which are not part of Android framework. Though RuntimeDroid can disable

the NativeActivity from restarting, it will not be able to load resources automatically for

any C/C++ defined UI components. In fact, even within the Android framework, developers

may define new UI components (views). However, these customized views can still be
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handled by RuntimeDroid, as long as the property-resource mapping (MPR) for these

views are supplemented.

In addition, Tables 3.5 and 3.6 also report the number of static views in each app V

and the number of string resources str. The numbers, to certain extent, reflect the size the

view hierarchy and the amount of available resources for some common type of resource. As

shown later, these factors may affect the runtime cost of RuntimeDroid. The last column

of Tables 3.5 and 3.6 indicate that a large ratio of activities (86%) require resource reference

localization, due to global-level declarations of certain resources (see Section 4.2).

3.4.3 Issue Fixing

We manually examined each reported runtime change issue for each app after apply-

ing RuntimeDroid. Both implementations RuntimeDroid-Plugin and RuntimeDroid-

Patch are able to fix all the 197 runtime change issues, thanks to the adoption of restarting-

free runtime change handling. As discussed earlier (see Section 3.2.2), activity restarting is

the common contributor to the triggering of a variety of runtime change issues. In addition,

we did not observe any new issues introduced by the RuntimeDroid, thanks to the HotR

and dynamic view hierarchy migration which together preserve UI-resource consistency and

the activity state.

Though RuntimeDroid provides a complete coverage of issue fixing for Corpus-S,

it may not fix all runtime change issues. This is because not all runtime change issues are

caused by activity restarting. For example, Firefox browser displays context menus when

long clicking an website icon. However, after a rotation, the context menu gets mispositioned

in the screen. This is because after the rotation, both the screen size and the position of
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icons are changed, while the position setting of the menu is not updated accordingly. Issues

like this would still appear even the activity is not restarted.

Note that, alternatively, developers may opt to use data saving and restoring

mechanisms (H1.1) or object retaining techniques (H1.2) (see Chapter 2) to fix the issues.

However, these solutions often require significant efforts to manually refactor the app. For

example, ViewModel and LiveData require a redesign of the app to separate the data from

the activities. Moreover, they only help address a subset of runtime change issues that are

caused by the unsaved data. There are also many problems due to other reasons, which

can still be triggered by activity restarting (e.g., menu closing, dialog disappearing, GUI

distorting, and asynchronous call caused app crashes). Since the ViewModel and LiveData

do not prevent the activity from restarting, these issues will still occur.

3.4.4 Handling Efficiency Improvement

Besides fixing runtime change issues, a more general benefit of applying Runtime-

Droid is the improvement of runtime change handling efficiency. Due to the invocation

of lifecycle callbacks, the conventional restarting-based runtime change handling is often

unnecessarily inefficient, not to mention the potential presence of blocking operations in

some of the lifecycle callbacks.

The first two columns of Table 4.7 show the runtime costs for handling a runtime

change before and after applying RuntimeDroid. The data clearly shows that the runtime

cost is dramatically reduced, 9.5X on average. This is mainly due to the elimination of

activity restarting. In fact, for some apps with significant runtime change delays, such as
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Table 3.7: Handling efficiency and time cost

Runtime (ms) Plugin (ms)
before after 1st 2nd patch (ms)

mdapp 364 57 2291 360 161,598
Remindly 109 21 936 196 43,215
AlarmKlock 117 18 1376 168 12,867
Weather 157 22 1676 543 51,822
PDF Creator 360 10 852 148 94,866
Sieben 126 16 951 155 53,149
AndroPTPB 215 19 627 433 26,708
vlilleChecker 240 21 876 167 56,563

geomean 190 20 1,104 239 49,400

weather&clock [41](5-sec delay), weather (#60, 3-sec delay), and GitHubPresenter (#50,

1-sec delay), the delays would also be dropped to around 20 ms.

In addition, we compared the runtime memory consumption for apps with and

without applying RuntimeDroid, with the help of Android Studio Memory Profiler [14].

The measurement injects a series of runtime changes to the apps and collects the memory

footprints over a session of 10 minutes, on the tested Nexus 5x smartphone. The results

show no observable differences.

3.4.5 Time and Space Costs

Time Costs. Table 4.7 reports different kinds of time costs related to RuntimeDroid.

The two columns under “Plugin” report the time spent for refactoring the first and second

activities using the RuntimeDroid-Plugin. On average, the time costs are 1,104 ms

and 239 ms. The reason that the first activity takes longer time is because it inserts the

RActivity class and related utility classes for the first time. Note that the utility classes

can be shared among all activities of an app. The “patch” column reports the time costs
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Table 3.8: Space cost of RuntimeDroid

Plugin (SLoC) Patch (bytes)
before after before after

mdapp 26,342 28,419 8,575,378 9,129,420
Remindly 6,966 7,820 1,317,186 1,530,807
AlarmKlock 2,838 3,610 113,037 141,893
Weather 10,949 12,208 3,850,671 4,058,323
PDF Creator 19,624 20,895 10,660,503 10,856,795
Sieben 20,518 22,123 3,945,791 4,203,960
AndroPTPB 3,405 5,127 564,722 596,647
vlilleChecker 12,083 12,843 2,323,633 2,616,449

geomean 9,929 11,463 2,014,635 2,212,115

for applying a patch to the whole app APK. This takes from 12 seconds to 2 minutes. The

dominate time in applying the patching is the reverse engineering part performed by the

Soot.

Space Costs. Table 4.8 reports the space costs for eight apps from Corpus-S. The sec-

ond and third columns report the source lines of code (SLoC) before and after applying

RuntimeDroid-Plugin, respectively. They do not include any library code or non-Java

code. On average, the SLoC increases by about 15%. In general, the cost ratio decreases as

the app size increases. This is because if multiple activities share the same parent activity,

only one copy of RActivity is inserted. This amortizes the space cost as the more activities

with the same parent activity added.

The last two columns show the sizes of APK files before and after applying

RuntimeDroid-Patch. On average, the SLoC increases by about increases by about 10%.

For fair comparisons, we recompiled the original apps with our compilation tool chain (see

Section 3.3.4).
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3.5 Conclusion

Unlike traditional desktop applications, mobile apps experience more frequent

runtime changes. When handled inappropriately, such simple runtime changes may cause

critical issues. In this work, we present, to our best knowledge, the first formative study

on the runtime change handling for Android apps. The study not only reveals the current

landscape of runtime change handling, but also identifies a common cause for a variety of

runtime change issues – activity restarting. With this insight, it introduces a restarting-free

runtime change handling solution, named RuntimeDroid, which can load resources without

restarting the activity. It achieves with this with an online resource loading module called

HotR. More critically, it can preserve prior UI changes with a novel dynamic view hierarchy

migration technique.

For easy adoption, this work provides two implementations, RuntimeDroid-

Plugin and RuntimeDroid-Patch, to cover both in-development and post-development

uses for Android apps. The evaluation shows that RuntimeDroid can successfully refactor

503/507 activities and fix 197/197 real-world runtime change issues, meanwhile reducing the

handling delays by 9.5X on average.
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Chapter 4

Identifying and Preserving State

4.1 Introduction

Smartphones are in wide use (there were 3.2 billion smartphone users worldwide in

2019 [150]) and mobile apps have a substantial economic impact (the mobile app market is

projected to reach $407 billion by 2026 [48]). Hence, there is an impetus for ensuring and

improving mobile app reliability. Building reliable mobile apps poses additional complications

when compared to desktop/server applications, due to the challenges imposed by rich yet

volatile mobile runtime environments.

Volatile Runtime Environment. Unlike desktop or server applications, mobile apps run

in a more challenging environment: devices are resource-limited, and the underlying OS

subjects the app to a richer set of disruptive events. Consequently, mobile apps often go

through multiple lifecycles – being destroyed and recreated – before they are explicitly

dismissed. For Android apps, when a runtime configuration change occurs, like a phone

rotation (portrait ↔ landscape) or attaching a keyboard, the OS destroys the current screen
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instance (a.k.a activity in Android), including both the GUI elements and (Java) class

associated with the screen, and then recreates a new screen instance. This process is known

as activity restarting. The purpose of activity restarting is to automatically reload the

activity with resources that match the new configuration (e.g., landscape mode layout after

rotation) [95]. Another destructive scenario involves low resources: a running app (especially

when sent to the background) can be killed at any time by the OS when memory runs low,

then relaunched when the user comes back to the app [65, 74]. This is due to mobile OSes,

including both iOS and Android, eschewing swapping (i.e., paging out) [65, 70], to minimize

flash memory wear [73]. When an app is killed due to low memory, all its running activities

are destroyed.

To avoid losing user progress, or entering into an inconsistent state, certain program

variables and properties of the GUI elements must be saved before the activity is destroyed

(or app is killed) and restored after the activity gets recreated (or app gets relaunched), as if

the activity (or app) remains running in the same lifecycle [96, 71]. We refer to this set of

data, that is necessary to preserve in order to maintain the illusion that the activity or app

is always running, as necessary instance state.

State of The Art. Currently, while the Android system saves and reinstates some GUI

state upon restart, developers still have to explicitly perform a substantial amount of data

saving and restoring using system callbacks upon activity restarts [97]. For many real-world

apps, it is non-trivial to manually reason about necessary instance state, as it depends on

how user interaction and system events affect the program variables and GUI properties,

which is loosely defined in various callbacks. This challenge is further compounded by the
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Table 4.1: Example State Issues Triggered by Volatile Runtime Environments.

GitHub Repo Issue ID Issue Description

WordPress [43] 12223 Rotate the device (either from portrait to landscape or
vice versa) while the tag editor is open in Post Settings,
the tags are removed.

K9 Mail [32] 4519 Open General settings, click on the search icon, enter
some text, then change screen orientation, the app
crashes.

K9 Mail [32] 4936 Create Unread widget, click on Account and select user
mail-box, then rotate the device, the selected account
is lost.

OpenMF [35] 829 Run the app, generate a collection sheet, select office
from the drop-down, change the orientation. The state
gets refreshed.

TileView [38] 535 Put TileView in layout, set layout as content view in
Activity, put the app to background, kill the process
(either from system or logcat), then bring the app to
foreground, the app crashes.

MapBox [33] 3517 Open Press for marker activity, long press to add a
marker, click the marker to open infowindow, then ro-
tate the device (infowindow is closed; marker is visible),
clicking marker results in a crash.

Glucosio [30] 431 Open the app, fill user information such as language,
gender and age, then change the orientation by rotating,
the user inputs are lost.

complex lifecycle stage transitions. For example, a StackOverFlow question [36] on how

to deal with initialization in the presence of activity restarting received 1394 thumbs-up.1

Recent studies [142, 91] have shown that when handled improperly, Android apps may suffer

from various runtime issues, ranging from data loss to unresponsiveness, UI distortion, and

app crashes. In this work, we refer to these runtime issues that are caused by failing to

save and restore the data in the necessary instance state as state issues. Table 4.1 lists a

few example state issues found in several very popular GitHub repositories, including K-9

Mail [32], MapBox [33], WordPress [43], TileView [38], OpenMF [35], and Glucosio [30].

1As of September 9th, 2020.
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Before After

(a) Lost account binding in K-9 Mail [32]

Before After

(b) Lost user inputs in Glucosio [30]

Figure 4.1: Example State Issues of Two Popular Android Apps.

Take K-9 Mail and Glucosio as examples: after a configuration change (e.g., screen rotation),

K-9 loses its binding to the Gmail account, as shown in Figure 4.1-(a); Glucosio loses user

inputs, such as country, language, and gender, as shown in Figure 4.1-(b). Such unexpected

app behavior negatively affects user experience.

To mitigate the aforementioned challenges, prior efforts have focused on either

detecting [142] or preventing [91] state inconsistency. Shan et. al [142] focus on detecting

the control-flow disparity in saving and restoring of mutable activity fields – whether a

conditionally saved variable is restored under the same condition, and vice versa. However,

as we will show later, not all mutable activity fields are part of the necessary instance state.

Serious over-saving may lead to observable delays that negatively impact the user experience,

as both saving and restoring usually occur while the user interacts with the app (e.g., during

a phone rotation). Additionally, Shan et al.’s work does not take into account GUI elements

declared in resource files, which may also carry the past user interaction. In contrast, The

approach in RuntimeDroidc̃iteruntimeDroid is to prevent the activity from restarting at
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Pre-Interaction
onCreate(), onStart(), onResume()

Interaction
onClick(), onCheckedChanged(), 
onLocationChanged(), ...

Post Interaction
onPause(), onStop(), onDestroy()

skip

MOD and LIVE

LIVE

(a) lifecycle (b) callback modeling (c) static analysis

Figure 4.2: Callback Modeling and Static Analysis.

all, by overwriting the default configuration change handling, thus eliminating the needs

for data saving and restoring. However, this approach cannot handle system-initiated app

killing – activities will still be forced to restart once memory runs low, in which case apps

can still lose their states. More critically, no prior work has systematically addressed the

fundamental question – how to identify the necessary instance state of mobile apps?

Overview of This Work. The goal of this work is to leverage static analysis to answer

the above question – statically identifying the necessary instance state of mobile apps and

automatically generating the state saving and restoring routines, thus freeing developers

from this tedious and error-prone task. Similar to prior work, we focus this work on the

Android platform due to the platform’s popularity (75% market share as of July 2020 [149])

and open-source ecosystem. To achieve our goal, we propose (i) a three-phase model to

characterize the callbacks based on their potential impacts on app state, (ii) a combination of

static analyses that reason about the app source code and resource files to identify program

variables and GUI properties that belong to the necessary instance state, and (iii) tools for

developers to generate state-saving/restoring routines.
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Android apps consist of many different callbacks (i.e., event handlers) to respond

to various events, including those generated from user interactions (e.g., clicking, scrolling,

and typing), as well as those triggered by system updates (e.g., battery status and location

changes). To capture the impact of different callbacks on app state, we break down the activity

lifecycle into three phases – (i) pre-interaction, (ii) interaction, and (iii) post-interaction –

and group the callbacks accordingly, as shown in Figure 4.2-(a-b). Then, for callbacks of

different categories, we perform a suite of analyses to find out which access paths of variables

(like this.account.user.addr) and properties of GUI elements (like this.mEditText.text) are

part of the necessary instance state. Informally, there are two basic requirements for an

access path to be in the necessary instance state:

• Live: Any future “use” of the access path after the activity restart or app relaunch

should yield the same result as if the the restart or relaunch had not happened;

• Modified: The access path should be modified (written) at least once by a callback

during the interaction phase (note that this excludes the initialization in the pre-

interaction phase).

The first requirement captures the fact that the necessary instance state to be

preserved must be sufficient to guarantee correctness, by including all the access paths

that may be used (i.e., live) for future interactions. To fulfill this requirement, we conduct

an interprocedural entry-liveness analysis on callbacks belonging to the interaction and

post-interaction phases. We exclude the pre-interaction phase as it belongs to “the past” –

activity restart or app relaunch only happens after this phase. Let the result of this analysis

be LIVE.
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The second requirement reveals the fact that the necessary instance state should

reflect the past user interaction and system updates. It excludes the access paths that cannot

be modified during the interaction, or callbacks invoked before or after the interaction. Since

they either remain unchanged after the activity restart or app relaunch, or carry no effects of

user interaction or system updates. To fulfill this requirement, we perform an interprocedural

may-modify analysis on callbacks belonging to the interaction phase. Let the result of this

analysis be MOD.

Finally, we take the intersection between LIVE and MOD to obtain a static

over-approximation of the internal2 necessary instance state, denoted as NISTATEin (i.e.,

NISTATEin = LIVE ∩ MOD). Note that even though we leverage a series of techniques to

improve the precision of the static analyses, including field-sensitivity and alias-awareness,

over-approximation in general is often unavoidable due to the nature of static analysis.

Besides analyzing the activity (Java) classes, we also perform a UI property analysis on

activity resource files to find out the external necessary instance state NISTATEex regarding

the GUI elements that are directly visible to users. The design of UI property analysis also

follows the two basic requirements (live and modified). Putting them together, we have the

necessary instance state NISTATE = NISTATEin ∪ NISTATEex.

Based on the formalization above, we implemented our static analyzer, on top of

the Soot analysis framework [144]. Furthermore, to facilitate the use of the analysis results,

we also designed and developed: (i) an Android Studio plugin that interactively guides

developers to generate the state-saving and restoring routines, and (ii) an APK patching

2It is internal in the sense that they are not GUI elements, though they may include GUI element
references.
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tool that automatically inserts state-saving and restoring routines into the app binary code

to preserve the NISTATE. Together, we refer to the entire app state handling solution as

LiveDroid.

We evaluated LiveDroid on both a large corpus of 966 apps and a focused corpus

of 36 apps collected from F-Droid [89], Google Play [99], and GitHub. The evaluation

shows that LiveDroid can be successfully applied to the apps in the large corpus, and can

correctly and precisely identify the necessary instance states of apps in the focused corpus.

On one hand, compared to the state-of-the-art app state identification approach [142] which

includes all mutable fields of the activity but ignores the GUI properties, LiveDroid yields

much smaller app states to preserve, decreasing the delay for state saving and restoring by

16.6X (1.7X - 141.1X) and 9.5X (1.1X - 43.8X), respectively. On the other hand, compared

to manual state handling performed by developers, the static analysis of LiveDroid reveals

a set of 46 app state issues due to insufficient state saving/restoring, all of which can be

successfully eliminated after applying LiveDroid. Artifacts related to this evaluation are

available via https://github.com/ucr-riple/LiveDroid.

In summary, this work makes the following contributions:

• We introduce necessary instance state based on liveness and modification to capture the

essential data that need to be preserved during activity restarting and app relaunching.

• We model and categorize the callbacks based on their invocation orders relatively to

the user interaction such that their impacts on the app state can be more precisely

analyzed.
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Figure 4.3: Overview of LiveDroid.

• We present static analyses (inter-procedural entry-liveness, may-modify, etc.) to

automatically compute the necessary instance state for a given app.

• To handle aliasing, we combine points-to analysis, an access path abstraction, and

dynamic checking to achieve the required precision and scalability.

4.2 Overview

Figure 4.3 shows LiveDroid’s architecture. At the high level, it follows a hybrid

design consisting a static analyzer (the upper part) and a runtime module (the lower part).

The static analysis is applied to each app activity offline (only once) to identify the necessary

instance state (NISTATE); the runtime part verifies certain properties of NISTATE and
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performs saving and restoring. There are two main reasons for this hybrid design. First, the

aliasing relationships among references may change at runtime; it is impossible for a static

analysis to determine them. As we will show later, failing to preserve the exact aliasing

relationship may compromise correctness. On the other hand, a purely runtime solution that

tracks the actually changed state could minimize the necessary instance state, but requires

monitoring every update to the entire app state, which may only work well for apps with

small-sized app state and limited dynamic features.

In the first component of the static analyzer, callback modeling, all the registered

callbacks in the activity are grouped into three basic categories based on the phases in

which they may occur: pre-interaction callbacks, interaction callbacks, and post-interaction

callbacks. Note that the interaction callbacks include both the system callbacks and the UI

callbacks (see Chapter 2). The categorized callbacks (except those in the first category) are

then fed into two major static analysis components: entry-liveness analysis and may-modify

analysis. The former reports the access paths of the activity that are live (i.e., used before

they are defined) at the callback entries (i.e., LIVE). The latter identifies the access paths

of the activity that may be modified during the interaction phase (i.e., MOD). Note that

the above analyses only capture “internal” state in Java code but not the “external” state –

properties of GUI components declared in the layout files (“resources” in Android parlance).

The layout files of the activity are fed into the UI property analysis component, which

extracts editable properties of declared GUI components (i.e., EUI) and also properties

that may be modified by the interaction callbacks (i.e., MUI). Finally, results of the above

analyses are integrated by the data integration component and the necessary instance state,
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NISTATE, is produced. To ensure correctness in the presence of reference comparisons

and to avoid duplicate object saving and restoring, the data integration also yield a set of

statically found aliases.

The runtime module has three components which run with the app; they are

integrated as parts of the app through code generation. The first component, alias grounding,

checks which statically-identified aliases are the actual aliases when the activity is destroyed,

such that only these actual ones are preserved (for correctness purposes). The alias grounding

can also ensure that the object pointed to by one alias class is saved and restored only

once. Next, the state saving module saves the access paths in the NISTATE. For references,

we first serialize the corresponding objects, then add them along with the primitive access

paths into the Bundle object. These first two components are automatically invoked by

onSaveInstanceState() before the activity or the app gets destroyed. Once the restarting/re-

launching process is completed, the third component, state restoring is invoked by callback

onRestoreInstanceState(), which extracts data from the Bundle object and deserializes it into

the corresponding access paths. One complexity in the design of the runtime module lies in

the handling of private and partial objects, which we will address in Section 4.4.

In the following two sections, we describe these modules in detail.

4.3 Static Analyses

Given an Android activity, the domain of our static analyses include all the access

paths in the activity class (a Java class) and the access paths in the GUI elements declared

in the layout files. Here, an access path is a sequence of fields rooted in the activity class
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(e.g., Activity.user.name) or rooted in a GUI element instance declared in one of the layout

files for this activity (e.g., TextViewId.text). The goal of the static analyses is to discover

those access paths that must be preserved to make activity restarts and app relaunches

transparent to the user. To achieve this, we next discuss two key access path properties:

liveness and modification.

• Liveness. First, for correctness, after an activity restart or app relaunch, any “use”

of an access path should yield the same result as it would have without the restart or

relaunch. The set of access paths that our technique automatically saves and restores

must be sufficient to guarantee this property. Note that if an access path is always

defined (written) within a callback before it is used (read), there is no need to preserve

the access path. Hence, following the data-flow analysis terminology, an access path

must be live right after the activity restart or app relaunch to be a candidate for saving

and restoring.

• Modification. Second, from another perspective, if any “use” of an access path is

already guaranteed to yield the same result before and after an activity restart or app

relaunch, there is no need to save and restore the access path. In other words, we only

need to save and restore the access paths that may be modified by the user interaction

or system updates.

The above two properties form the core design principles for our approach. Based

on them, we design three static analyses: entry-liveness analysis, may-modify analysis,

and UI property analysis. The first two are for the “internal” access paths defined in the

Activity class while the third is for the “external” access paths – the GUI elements and their
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properties declared in the layout files (and Activity class3). To find out the appropriate

targets (codes) for each static analysis, we model the callbacks, including all UI, system, and

lifecycle callbacks, based on their timing constraints and impacts on the app state. Next, we

first present the callback modeling.

4.3.1 Callback Modeling

Note that specific callbacks are attached to specific lifecycle stages of an activity,

which leads to different impacts on the activity state. For example, UI and system callbacks

can only be invoked when the activity is in the resumed stage. Before that, the callbacks

mainly initialize the activity and allocate resources. Based on this observation, we partition

the activity lifecycle into three phases based on the availability of the activity for user and

system interaction: (i) pre-interaction phase, (ii) interaction phase, and (iii) post-interaction

phase. Then, according to the phases where the callbacks may be invoked, we group the

callbacks of each activity into three categories:

Definition 7 Pre-interaction callbacks invoked before the activity becomes available for user

and system interaction (i.e., resumed), including onCreate(), onStart(), and onResume().

Definition 8 Interaction callbacks that may be invoked after the activity becomes ready for

user and system interaction – the activity is resumed. These include all registered UI and

system callbacks, such as onClick() and onLocationChanged() (among others).

Definition 9 Post-interaction callbacks executed when the activity is no longer available

for user and system interaction, including onPause(), onStop(), and onDestroy().

3A GUI element can also be dynamically declared in Java class; more details will be given later.
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Besides the above, there is also one lifecycle callback that we deliberately ignore –

onRestart(), which is used for handling restarts. Since our goal is to automate the restart

handling process, there is no need to include it in the following analyses. In addition, there

are also callbacks related to asynchronous tasks (i.e., AsyncTask [52]), which can be launched

in the interaction phase. Hence, these callbacks also belong to the interaction callbacks.

However, they are treated slightly differently than others due to the unrecoverable nature of

asynchronous tasks (more details in Section 4.4). Specifically, LiveDroid only analyzes the

onPostExecute() callback, triggered when the asynchronous task is fully completed. Other

related callbacks, such as onProgressUpdate() (for handling progress updates), will not be

analyzed for state saving/restoring under the assumption that their impacts on the activity

instance state are temporary and can be recreated when the asynchronous task is relaunched

(see Section 4.4). Based on the callback modeling, the analyses will become more focused,

as we will show next.

4.3.2 Entry-Liveness Analysis

According to the liveness property, we need to find all the access paths that are live

right after activity restart or app relaunch. Because that is the moment when the activity

comes back to the resumed stage, only interaction and post-interaction callbacks may access

them in the future.4 Therefore, we only need to perform static analysis on these callbacks.

Moreover, as an activity is never restarted (and an app is never relaunched) in the middle of

a callback execution, we only need to find the access paths that are live at the entry of the

4Pre-interaction callbacks execute during a restart before instance state is restored
(onRestoreInstanceState() in Figure 2.1), hence they cannot rely on saved instance state.
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callbacks, hence the name entry-liveness analysis. Next, we formally define the concept of

liveness, then present its analysis.

Liveness is a well-known compiler concept that has been used for register alloca-

tion [46], garbage collection [47], etc. In this work, we use it for identifying the app state to

preserve. Formally, the liveness of a variable can be defined as follows.

Definition 10 A variable v is live at program point p, if and only if there is an execution

path from p to a use of v, along which v is not redefined.

Code 4.1 lists the LIVE set for each statement in the callback onClick(), which

contains the access paths that are live right before the statement. For example, at line 7,

LIVE = {this.tView, this.d, this.dView}, because access paths this.tView and this.dView will

be used at line 12 and 13 and access path this.d will be used in line 8. Note that though

this.t will also be used in line 8, it will be first redefined (killed) in line 7. Therefore, it is

not live right before line 7.

As a classical analysis, liveness analysis is typically solved iteratively backwards [46].

Initially, at the exit of a callback, no access path is live (see line 9 in Code 4.1). As

the analysis traverses backwards, depending on whether the statement is a reference copy

statement (like the one in line 4), different rules (i.e., transfer functions) are applied. For

a non-reference-copy statement, the analysis first removes the access paths it defines/kills

(denoted as DEF) from LIVE, then adds the access paths it uses (denoted as USE) to LIVE.

For a reference copy statement, if its left-hand side reference (LHS) appears as the prefix

of some access paths in LIVE, we substitute the prefix with its right-hand side reference

(RHS). At line 4, we substitute the prefix of this.f.b with this.a.f. As a result, this.a.f.b
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1 class FooActivity extends Activity{

2 ...

3 void onClick() {

4 this.f = this.a.f; //LIVE = {this.a.f.b, this.tView, this.d, this.dView}

5 if(this.f.b == true) //LIVE = {this.f.b, this.tView, this.d, this.dView}

6 this.d = this.d * 9 / 5 + 32; //LIVE = {this.tView, this.d, this.dView}

7 this.t = Calendar.getInstance().getTime(); //LIVE = {this.tView, this.d,

this.dView}

8 updateViews(this.t, this.d); //LIVE = {this.t, this.tView, this.d, this.dView}

9 //LIVE = { }

10 }

11 void updateViews(Time t, Degree d) {

12 this.tView.setText(t); //LIVE = {t, this.tView, d, this.dView}

13 this.dView.setText(d); //LIVE = {d, this.dView}

14 }

15 }

Code 4.1: Example of liveness analysis.
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replaces this.f.b in the LIVE. When (backward) control flow edges are joined, the LIVE

sets of different edges will be merged with a union operation. The data-flow equations are

formally summarized by Equation 4.1.



LIV EOUT [i] =
⋃

s∈succ[i]

LIV EIN [s]

LIV EIN [i] =


LIV EOUT [i].prefixsub(LHS[i], RHS[i]) if i is a ref copy

USE[i] ∪ (LIV EOUT [i]−DEF [i]) otherwise

(4.1)

where LIVEIN[i] and LIVEOUT[i] define the sets of live access paths before and after

statement i, respectively, and succ[i] consists of the successor statements of i. By solving the

above data-flow equations iteratively and inter-procedurally, the LIVEIN sets will converge

to a fix-point. Finally, the analysis outputs the LIVEIN at the entry as the LIVE for this

callback (i.e., LIVEIN at line 4).

A couple of details of the above static analysis are worth mentioning. First, it

does not analyze any methods that are not rooted in the activity instance itself (i.e., this),

such as the method getTime() at line 7 or any constructor like new A(), because they are out

of the scope of the activity instance state. Second, it is possible that an access path gets

killed via some alias that we are not tracking, in which case a must-alias analysis could

be incorporated if imprecision is observed to be excessive; we did not observe this in our

experiments.

In practice, there could be complexities that prevent the analysis from being fully

field-sensitive, in which cases we may have to conservatively save and restore their ancestor

objects. Next, we discuss some of these cases. First, when we discover a repeating access
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path for a recursive type, we bound the access path and retain the prefix of the access

path before the cycle, to ensure the entire data structure is retained for soundness. Second,

accesses to collections (such as List and Set) or arrays are treated index-insensitively. Finally,

for Android APIs whose implementations are not part of the application package (APK file),

we conservatively mark the base access path and the parameters with “USE”. For example,

at line 12 in Code 4.1, the analysis marks this.tView and this.t with “USE”. For third-party

APIs, the analysis, by default, enters into their implementations to reason about the liveness

as long as they are accessible as Java bytecode in the APK file.

As discussed earlier, we only need to perform the entry-liveness analysis on the

interaction and post-interaction callbacks. After that, the analysis results of these individual

callbacks are aggregated with a union: LIVE =
⋃

LIVEi, where LIVEi is the result of

entry-liveness analysis on the interaction or post-interaction callback i. In fact, our analysis

can directly produce the aggregated LIVE by creating a pseudo-callback root() that calls all

relevant callbacks one by one.

4.3.3 May-Modify Analysis

According to the modification property (mentioned at the beginning of Section 4.3),

we only need to save and restore the access paths that may be modified by some UI or

system callbacks. As discussed in the callback modeling, UI and system callbacks can only be

invoked during the interaction phase. Therefore, we need to perform a may-modify analysis

on the interaction callbacks.
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1 class FooActivity extends Activity{

2 ...

3 void onClick() {

4 if(mCheckBox.isSet() == true) { //MOD = {this.pView, this.u.name, this.p}

5 this.u.name = mEditText.getText(); //MOD = {this.pView, this.u.name,

this.p}

6 this.p = this.u; //MOD = {this.pView, this.p}

7 this.pView.setText(this.p.name); //MOD = {this.pView}

8 }

9 //MOD = { }

10 }

11 }

Code 4.2: Example of may-modify analysis.
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Code 4.2 shows an intuitive example of the may-modify analysis on callback

onClick(). We perform may-modify analysis as a backward analysis. Given a callback,

may-modify analysis starts from the exit of the callback with an empty MOD set (see line 9

in Code 4.2). Going backwards, for each statement that modifies a field, the analysis adds

the statement’s DEF access path to the current MOD. For a local variable write x = RHS, we

substitute the RHS access path for all occurrences of x in MOD. When (backward) control

flow edges are joined, the MOD sets of different edges will be merged with a union operation.

Data-flow Equation 4.2 formally captures this analysis.



MODOUT [i] =
⋃

s∈succ[i]

MODIN [s]

MODIN [i] =


MODOUT [i].prefixsub(DEF [i], RHS[i]) if DEF [i] is a local var

MODOUT [i] ∪DEF [i] if DEF [i] is a field

(4.2)

Here MODIN[i] and MODOUT[i] define the sets of may-modify access paths before and

after statement i. By solving the above data-flow equations inter-procedurally, the analysis

finally outputs the MODIN at the entry of this callback (i.e., the MODIN set at line 4).

Similar treatments for the complexities discussed in entry-liveness analysis are also

applied here. In particular, an assignment to a local access path with value unreachable

from the activity removes all the descendants of this local access path in MOD, as it is not

part of the activity’s instance state. Additionally, if at any point a MOD set contains access

paths ai and aj such that ai is a prefix of aj , aj can be removed, since the analysis treats

the presence of ai in MOD as meaning that all state reachable from ai (including aj) may
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be modified. Assuming the may-modify analysis result for callback i is MODi, then the

aggregated analysis result would be MOD =
⋃
MODi.

So far, we have introduced the internal state identification in Java Activity class.

Next, we will discuss the external state identification regarding the GUI elements. Note that

while GUI element references in the Activity class are part of the internal state, the actual

objects are usually declared in XML files. As we will elaborate next, the above analyses

cannot cover the all GUI elements.

4.3.4 UI Property Analysis

As mentioned in Chapter 2, besides a Java class, an activity also contains layout files

(in XML) for declaring and organizing the GUI elements. Android compiles the layout files at

runtime and provides APIs (typically findViewById()) for accessing their GUI elements. Once

the GUI elements are referenced in the Activity class, our previous analyses (entry-liveness

and may-modify analyses) can determine whether their references should be preserved. But

they are insufficient to cover all the GUI elements that should be preserved. First, unlike a

Java object which becomes useless if its last reference is “killed”, a GUI element is still useful

(“read” by users) even when all its references in the Activity class are “killed.” Second,

for GUI elements that are never referred in the Activity class, their properties may still be

modified by the user directly. Essentially, GUI elements can be “read” and “modified” via a

non-programmatic channel – direct user interaction. For the above reasons, we developed a

separate analysis, called UI property analysis, to find the properties of GUI elements that

are necessary to preserve during activity restarts and app relaunches. Note that, besides

those statically declared in the XML layout files, some GUI elements may also be declared
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in the Activity class, referred to as dynamic GUI elements. The UI property analysis covers

both kinds of GUI elements.

The output of UI property analysis is called the external state. For the liveness

aspect of external state, we assume all the GUI elements are live as they are visually “read”

by users. In the following, we focus on the modification aspect of external state. First, like

the internal state, only modifications to the external state during the interaction phase

should be analyzed. However, unlike the internal state, the external state can be either

directly modified by the user or programmatically updated by UI and system callbacks

through references. Thus, we separate the “MOD” of the external state into two parts: (i)

EUI – the (user) editable properties of all the declared GUI elements; and (ii) MUI – the

GUI properties (including the non-editable ones) that may be modified by UI and system

callbacks. For EUI, we first list the editable properties for each type of GUI element in

Android.5 Given this list, the analysis scans the layout files and the Activity class to identify

all the statically and dynamically declared GUI elements, and then outputs their editable

properties. For MUI, the analysis first searches the UI and system callbacks transitively for

GUI element access APIs that modify GUI properties, and then marks such properties of all

declared GUI elements of the same type as MUI. For example, a call to tempTextView.setText()

puts the property text of all declared TextView elements to MUI.

In summary, similar to the internal state analysis, UI property analysis finds

the corresponding “LIVE” and “MOD” for the external state, where “LIVE” includes all

properties of declared GUI elements while “MOD” is the union between EUI and MUI.

5Note that this is manual effort once for the Android library.
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4.3.5 Data Integration

Finally, we can integrate the results from all the prior static analyses to compute

the overall necessary instance state to preserve, which can be summarized by the following

equations. 

NISTATEin = MOD ∩alias,field LIVE

NISTATEex = EUI ∪MUI

NISTATE = NISTATEin ∪NISTATEex

[NISTATE, aliases] = aliasing(NISTATE,LIVE)

(4.3)

where NISTATEin and NISTATEex represent the internal and external necessary instance

state, respectively. Operation aliasing(NISTATE, LIVE) finds aliasing relations of the access

paths between NISTATE and LIVE. We elaborate these equations next.

Complexities in Data Integration. For the external state, the union operation EUI ∪

MUI simply combines the two sets together. However, for the internal state, the intersection

MOD ∩ LIVE needs to be both alias-aware and field-sensitive to be safe and precise.

• First, consider two access paths this.a.b and this.b, where this.a.b ∈ MOD but this.a.b

/∈ LIVE and this.b ∈ LIVE but this.b /∈ MOD. A conventional intersection MOD ∩

LIVE will exclude both this.a.b and this.b. However, this may be unsafe as this.a.b

and this.b might be aliases, in which case both of them should be included in MOD ∩

LIVE. To address this hazard, we perform may-alias analysis over the two sets MOD

and LIVE, and make the intersection alias-aware. However, it is well-known [145] that

may-alias analysis may suffer from over-approximation. As a result, the intersection
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may be unnecessarily large. We will address the issues related to aliases in NISTATE in

detail shortly.

• Second, the intersection MOD ∩ LIVE should also be field-sensitive to preserve precision.

For example, if this.a ∈ MOD and this.a.b ∈ LIVE (or vice versa), the intersection

should include this.a.b, but not this.a. In fact, this.a is safe but this.a.b is optimal,

reducing the amount of data saved and restored (as shown later, our runtime can save

and restore partial objects). To achieve field sensitivity, the intersection requires checking

for prefixes in the access paths.

Addressing Aliases. Besides the access paths in NISTATE, some aliasing relations, in

particular, those related to reference comparisons (e.g., if (this.a == this.b)), may also

need to be preserved to ensure correctness. In fact, not all references involved in reference

comparisons need to be preserved. Considering two references in a comparison, say this.a

and this.b, their aliasing relation needs to be preserved only if one of the references is in

NISTATE and the other is in LIVE, because (i) both references need to be live so that

the comparison will be useful; (ii) at least one of the references may be modified so that

the comparison is non-trivial (i.e., the boolean value may be changed). The operation

aliasing(NISTATE, LIVE) shown in Equation 4.3 finds the aliasing relations satisfying the

conditions. Besides correctness, an additional benefit of finding such aliasing relations is to

avoid duplicate saving and restoring. Consider two access paths this.a and this.b in the

NISTATE; if they are known as aliases, only one of them needs to be saved and restored,

while the other can be simply redirected to the restored one. However, as aliasing analysis

might be imprecise, we cannot completely rely on it for correctness. To remedy the precision
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limitation, we will leverage the runtime module to dynamically check (ground) the aliasing

relations.

In summary, with the above integration, the static analysis module finally produces

the state to preserve NISTATE and the associated potential aliasing relations aliases.

4.4 Runtime Module

LiveDroid’s runtime module carries out two tasks: (i) grounding potential aliases

and (ii) managing the state saving/restoring, including data serialization and deserialization.

4.4.1 Alias Grounding

The task of alias grounding is to verify the statically identified aliases among access

paths as in [NISTATE, aliases] in Equation 4.3 are actual or not at the time the activity

is about to get destroyed. As discussed earlier, the main reason for alias grounding is for

correctness – precisely preserving the exact aliasing relations is critical for preserving the

values of reference comparisons. Moreover, finding out the actual aliasing relations can avoid

duplicated saving of objects.

To implement the alias grounding, LiveDroid saves and restores the actual alias

relations as boolean values, along with access paths in NISTATE. Furthermore, LiveDroid

inserts condition checks right before saving references in each alias class. If some of these

references are actual aliases, only one copy of the object they point to is saved. Later, to

restore the activity instance state, LiveDroid restores the objects and references based on
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the recovered alias relations, such that aliased references remain aliases. An example will be

provided shortly in the next section.

4.4.2 State Saving and Recovering

As mentioned in Chapter 2, there are two basic approaches for preserving data: (i)

saving/restoring the instance state, and (ii) using the ViewModel. We choose the first approach,

because ViewModel requires significant refactoring to adopt and it cannot survive system-

initiated killing. Code 4.3 shows an implementation of the first approach by overwriting the

saving and restoring callbacks.

Saving/Restoring Internal State. For primitive variables (e.g., this.x of type int),

saving and restoring is intuitive, as shown at lines 3 and 11. A unique key is used for saving

and retrieving the variable in the Bundle object with APIs matched with its primitive type.

For non-primitive types, if the references point to GUI elements (like this.dView), we handle

them together with the external state; otherwise, we serialize their corresponding objects

to strings before saving (line 4) and deserialize the strings back to objects after restoring

(lines 12–13). For serialization and deserialization, we leverage the widely used Gson [98]

library to convert Java objects to JSON strings and vice versa. The example also shows

the alias grounding, which checks potential aliases at runtime and only save and restore

one copy of the corresponding object (lines 5–8 and 15–19). For access paths with levels

deeper than the Activity fields (e.g, this.a.b), there are a couple of complexities for saving

and restoring, which we discuss and address next.
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1 class FooActivity extends Activity{

2 void onSaveInstanceState(Bundle state) { ...

3 state.putInt("int_x", this.x); //primitive

4 state.putString("obj_b", gson.toJson(this.b)); //object

5 if(this.a.b == this.b)

6 state.putBoolean("a_b=b", true); //save the alias relation

7 else //field

8 state.putString("obj_a_b", gson.toJson(this.a.b));

9 }

10 void onRestoreInstanceState(Bundle savedState) { ...

11 this.x = savedState.getInt("int_x");

12 String str = savedState.getString("obj_b");

13 this.b = gson.fromJson(str, B.class);

14 is_alias = savedState.getBoolean("a_b=b", false);

15 if(is_alias)

16 this.a.b = this.b;

17 else {

18 String str = savedState.getString("obj_a_b");

19 this.a.b = gson.fromJson(str, B.class);

20 }

21 }

22 }

Code 4.3: Saving and restoring internal state.
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• Handling Private Fields. Private fields are not accessible outside their class. For

example, assume this.a.b is in NISTATE but b is a private field of a. In this case,

we cannot access the private field as in the serialization call gson.toJson(this.a.b).

Instead, we have to call a getter method like getB() that returns the private field b,

as in gson.toJson(this.a.getB()). Similarly, to restore a private field, we need to call

its setter method (e.g., this.a.setB()). For private fields without getter and setter

methods, LiveDroid offers automatic generations of such methods under the direction

of developers. Alternatively, we can move up along the access path (e.g., this.a.b.c

→ this.a.b), until we reach a publicly accessible field or a field that developers are

comfortable to add setter/getter methods. In the worst case, the Activity field (e.g.,

this.a.b.c → this.a) can be saved and restored. In general, this option compromises

the precision of the app state, thus may increase the cost of state saving/restoring.

• Handling Subfields. During the reconstruction of access paths, the parent objects

need to be constructed before the construction of their child objects. For example,

before this.a.b is restored, this.a must be constructed first; otherwise a null pointer

exception will be thrown when this.a.b is accessed (e.g., at lines 16 and 19 in Code 4.3).

There are two scenarios for the parent object construction. If the default constructor

of the parent (e.g., A()) is available, we simply invoke it before constructing the child

object; Otherwise, if the parent object has an overridden constructor (like A(B b)),

then we can generate a “default” constructor that carries no parameters (i.e., A()) and

use it for constructing the parent object. After the construction of the parent object,

we can construct the child object and assign it to the corresponding field of the parent
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object (like this.a.b = this.b). If the corresponding field is private, then we can solve

it using the solution just mentioned in the prior paragraph – either generating a setter

method for the private field or moving up in the access path to save an ancestor object.

Note that saving and restoring a subset of the app state (i.e., the NISTATE)

can potentially violate object invariants [117]. Recall the two groups of access paths that

LiveDroid does not save and restore: (i) access paths that remain unchanged during

interaction and (ii) access paths that will be redefined before they get used. The first

category clearly will not violate object invariants. For the second category, failing to restore

these access paths may break some object invariants. However, this violation is temporary

and inconsequential because the analysis ensures that the values of these access paths

will not be read until they are redefined. After the redefinition, the object invariants are

re-established. Hence app semantics are unchanged.

Saving/Restoring External State. For the external state (EUI ∪ MUI), saving and

restoring fall into two cases: First, for editable properties of built-in GUI elements (e.g.,

text of EditText), Android offers automatic saving and restoring as long as their instances

are declared with IDs. For those without IDs, we assign IDs in the places where the GUI

elements are declared. Second, for editable properties of customized GUI elements (defined

by developers) and non-editable properties that may be modified by UI and system callbacks

(MUI), we preserve them using the state saving/restoring callbacks, as shown in Code 4.4.

Note that here we distinguish between the static and dynamic GUI elements. For static GUI

elements, they are recreated automatically by Android, thus we only need to retrieve them

(via findViewById() at line 10) and restore their properties (line 11). Furthermore, if there
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1 class FooActivity extends Activity{

2 void onSaveInstanceState(Bundle state) { ...

3 TextView view = findViewById(R.id.text_time);

4 state.putString("text_time", view.getText()); //property of static view

5 state.putBoolean("tView_ref", this.tView.getViewId() == R.id.text_time);

//ref

6 state.putString("dView", this.dView.getText()); //property of dynamic

view

7 state.putId("dView_parent", getParentId(this.dView)); //parent GUI of

dyn. view

8 }

9 void onRestoreInstanceState(Bundle savedState) { ...

10 TextView view = findViewById(R.id.text_time);

11 view.setText(savedState.getString("text_time")); //restore property

12 if(savedState.getBoolean("tView_ref", false))

13 this.tView = view; //redirect GUI reference to new GUI instance

14 if(this.dView == NULL) { //if not created during pre-interaction

15 this.dView = new TextView(this);

16 View parent = findViewById(savedState.getInt("dView_parent"));

17 parent.add(this.dView); //attach the dynamic GUI to its parent GUI

18 }

19 this.dView.setText(savedState.getString("dView")); //restore property

20 }

21 }

Code 4.4: Saving and restoring external state.
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are corresponding references found in NISTATEin, we redirect those references to the newly

created GUI elements. For dynamic GUI elements, we need to recreate them first (line 15)

and attach them to their parent GUI elements (lines 16-17), then recover their properties

(line 19).

The aforementioned external state saving/restoring strategy assumes that the GUI

elements and their appearances should remain the same after restarting or relaunching.

In certain cases of activity restarting, however, developers may want to change the GUI

elements and/or their appearances after restarting (e.g., changing the appearances of some

GUI elements after the phone rotation). For such cases, developers can step in and bypass

the saving and restoring of relevant parts of the state to avoid overwriting their customized

setups of GUI elements and properties, which are usually specified in a different layout file.

Handling Asynchronous Tasks. An activity instance may offload some blocking tasks

(e.g., downloading a file) asynchronously to background threads to keep the UI thread

responsive. Android offers several ways to achieve this; commonly used strategies include

AsyncTask[52], Service[66], and IntentService[63]. First, as these components are separated

from Activity, they can continue executing on the background threads during the activity

restarting. However, upon app relaunching, their execution will be terminated along with

the activities. Unfortunately, unlike Activity, there are no dedicated saving and restoring

mechanisms offered by Android for these components to preserve their states before they

get destroyed. On the other hand, this design aligns with the nature of the asynchronous

tasks – they are temporary and can be relaunched as needed. So, instead of preserving their

states upon destroying/termination, we may preserve their initial states – their “inputs”,
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so that they can be relaunched. As long as these asynchronous tasks do not depend on

the activity instance state, this handling will not affect the correctness. Actually, such

handling has been provided by Android for IntentService. The Bundle that serves as the

input to an IntentService is automatically saved, and then it is reused when the IntentService

is relaunched (following the app relaunching). For Service, similar handling can be easily

enabled via a flag named START_REDELIVER_INTENT. For AsyncTask, Android does not offer a

similar service. In order to preserve the input parameters of an AsyncTask, we need to locate

the callsite where the AsyncTask was launched, save and restore its parameters along with the

activity instance state. An alternative solution is to refactor the AsyncTask to an IntentService.

In fact, prior work [124] has shown that AsyncTask is the source of many runtime issues and

the more recent component IntentService is preferred.

4.5 Implementation

As some implementation details have already been discussed, in this section we

focus more on the tools that realize the static analyses and runtime module; including a

static analyzer, an Android Studio plugin, and an APK patching tool. The latter two are

alternative ways to help developers generate state-saving/restoring routines. Together, they

constitute LiveDroid.

Static Analyzer. The static analyzer, namely LiveDroid-analyzer, is implemented

using several program analysis libraries built upon the Soot [144] framework, including

Heros [82], Spark [118], and FlowDroid [76]. The Soot [144] framework provides an easy-to-

manipulate intermediate representation (Jimple) for analyzing Java programs, and Heros [82]
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provides a solver for inter-procedural, finite, distributive subset (IFDS) problems in a flow-

sensitive and context-sensitive manner. LiveDroid-analyzer takes an app’s APK file as

input and feeds it into FlowDroid [76] to collect user interaction and post-user interaction

callbacks in the form of inter-procedural control-flow graphs (ICFGs). By traversing the

ICFGs, LiveDroid-analyzer then identifies the GUI properties that may be modified

by callbacks (MUI). Next, the ICFGs are passed to Heros where the entry-liveness and

may-modify analyses are implemented. The analysis results are then integrated (i.e., MOD

∩alias,field LIVE) with the help of an alias analysis module in Soot, called Spark [118]; Spark

implements Andersen’s points-to analysis. The editable GUI properties (EUI) are captured

in a manually-constructed list, based on Android APIs. Developers may expand this list

with editable properties of their customized GUI elements. Finally, LiveDroid-analyzer

outputs the aggregated analysis results into a report file in XML.

Per the IFDS framework [134, 82], the worst-case time complexity for our entry-

liveness and may-change analyses (two locally separable problems) is O(ED), where E is

the number of edges in the supergraph, and D is domain size, that is the number of access

paths. The time complexity for pointer analysis using Spark [118] is cubic in program size

for typical inputs.

Android Studio Plugin. We developed a plugin based on Android Studio 3 – LiveDroid-

plugin, which can generate code that realizes the runtime module either for an activity or

the whole app. To do so, LiveDroid-plugin first takes the report from static analyzer as an

input and extracts the static analysis results. Then, when directed by developers, it generates

constructors for classes missing default constructors and getter/setter methods for private

92



fields that need to be accessed. Finally, the plugin inserts the saving and restoring code into

callbacks onSaveInstanceState() and onRestoreInstanceState() for each access path together

with the alias grounding code for each group of potentially aliased references specified in the

static analysis report. The plugin can help developers refactor their code based on their

needs.

APK Patching Tool. As an alternative solution, we also developed a patching tool –

LiveDroid-patch, which can directly insert code into a compiled app (APK), without

accessing the source code. The tool uses the static analysis report as the plugin does, based

on which it injects the data saving and restoring code into the APK file. To achieve this,

LiveDroid-patch leverages Soot for reverse engineering, code insertion, and recompilation.

After that, Zipalign and apksigner are used to align and sign the final APK. Note that

LiveDroid-patch avoids the complexities of accessing private fields and constructing

parent objects (see Section 4.4), as it directly modifies the binary.

Limitations. Although LiveDroid aims for an accurate solution with a combination of

static analysis and runtime modules, the static analysis inherits limitations from other static

analysis tools. For example, FlowDroid [76] does not support lambda-style event declarations

in Java 8 and native method modeling. It also inherits limitations on reflective calls, which

are resolved only if their arguments are string constants. The LiveDroid analysis and plug-in

can only process Java code at the moment, as Soot does not fully support the invokedynamic

bytecode [93] which affects apps written in Kotlin (or Java code using lambdas and method

refs). Similar limitations apply to the plug-in, which is written for Java only, and cannot

process NativeActivity [57] or apps written in Kotlin.
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4.6 Evaluation

This section evaluates LiveDroid on real-world Android apps to demonstrate its

applicability, effectiveness in identifying the NISTATE, its costs and benefits for generating

state-saving and restoring routines, as well as some of its limitations.

4.6.1 Methodology

To evaluate LiveDroid, we crawled 1,033 packages from F-Droid [89] app store

and retained 966 apps (denoted as GroupL); apps without activities, or for which FlowDroid

failed to build an ICFG, were removed. We selected an additional set of 36 apps (denoted

as GroupS), as they had necessary instance states and at least 20 Stars on GitHub [94]

or 5K downloads on GooglePlay [99]. As shown in Table 4.4, they include some highly

influential open-source projects, such as K-9 mail, Free RDP, and LeafPic. Together, GroupL

and GroupS are composed of 4,808 and 231 activities, respectively. We use GroupL for

evaluating the applicability of the static analyzer in general and GroupS for a focused study,

including collecting the statistics of the app state NISTATE and analyzing the costs and

benefits of state saving and restoring. For each Android project, we applied LiveDroid to

each activity registered in the AndroidManifest.xml.

To examine the actual app behaviors, we use a Nexus 5X smartphone running

Android version 8.1. The programming environment is Android Studio 3.4. Experiments on

GroupL were conducted on a PC with a 3.5 GHz Intel Xeon processor and 16 GB RAM,

while results for GroupS were collected on a MacBook Pro with a 2.0 GHz Intel Core i5

processor and 8 GB RAM.
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4.6.2 Static Analysis

We evaluated the applicability of the static analyzer on GroupL and the static

analysis results on GroupS in detail, including performance, app state statistics, and

correctness. In summary, our evaluation results show that the proposed static analysis is

generally applicable to various real-world apps, effective in identifying necessary instance

state – yielding significantly fewer access paths compared to previous work [142] but being

more systematic than manual state identification. In the following, we first present the

applicability results of the static analyzer, then discuss the detailed static analysis results

on GroupS.

Applicability. Table 5.2 summarizes the static analysis results on GroupL. At the activity

level, among 4,808 activities, 1,896 activities contain non-empty state NISTATE, including

1,630 activities (33.9%) with non-empty external state and 512 activities (10.6%) with

non-empty internal state. At the app level, among 966 apps, 452 (46.8%) contain at least

one activity with non-empty external state and 322 (33.3%) contain at least one activity

with non-empty internal state. Note that the above results are from static analysis, rather

than the ground truth. Later in this section, we will report the number of false positives in

the static analysis results when we study GroupS. While we did not observe any failures

during the above analysis, there are a couple of situations where the static analyzer may

fail, including NativeActivity written in C/C++ and activities implemented in Kotlin (Soot

does not fully support invokeDynamics [93]).

Time Cost. We measured the time required for performing the static analysis on GroupS.

The results are reported in Table 4.4 under Column “Time”. For most apps (30/36), the
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Table 4.2: Activities and Apps (GroupL) with Non-Empty External/Internal States.

Necessary instance state (NISTATE) #activities #apps

Non-empty external state (NISTATEex 6= ∅) 1630 (33.9%) 452 (46.8%)
Non-empty internal state (NISTATEin 6= ∅) 512(10.6%) 322 (33.3%)

analysis finishes within 1 minute and often within 10 seconds. For app#28, the analysis took

much longer, nearly 30 minutes. After examining its source code, we found the app uses

multiple external libraries (e.g., Dropbox, JodaTime and Apache Jackrabbit), which greatly

increases the analysis workload. This problem can be mitigated with the help of developers

by specifying the source code packages that the analyzer may skip, a functionality we plan

to add later.

State Statistics. The detailed analysis results on GroupS are reported in Table 4.4.

First, Column EX reports the size of external state NISTATEex in terms of the number of

properties. We found that 21 out of 36 apps have necessary GUI properties that must be

preserved. Among them, app#27 has the most – 35 GUI properties, due to its richer and

more interactive user interface, which take more inputs from the user. The next column, UIC,

reports the number of GUI elements with at least one necessary access path. Comparing

this column with the prior one, we can find that most GUI elements have just one necessary

access path. The next two columns, MOD and LIVE, show the sizes of MOD and LIVE,

respectively. In general, there are more access paths in LIVE than MOD, indicating that some

access paths remain unchanged through the app lifecycle (e.g., “constants”). As mentioned

earlier, the intersection between MOD and LIVE defines the internal state NISTATEin,

whose size is reported in Column IN. As the results show, IN is consistently less than MOD
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Table 4.3: Details of selected apps in GroupS to apply LiveDroid-Analyzer.

Stars: #stars on GitHub, Popu.: #downloads on Google Play, ACT: #activities,

MUT: #access paths of all mutable activity fields (up to 3rd level) – state in [142]

# Package Stars Popu. ACT MUT

1 au.com.wallaceit.reddinator 30 50K+ 18 1,529
2 com.alaskalinuxuser.hourglass 5 5K+ 2 25
3 com.dozingcatsoftware.asciicam 105 100K+ 5 102
4 com.freerdp.afreerdp 4,297 100K+ 30 254
5 com.fsck.k9 4,659 5M+ 29 3,275
6 com.github.axet.binauralbeats 16 50K+ 23 549
7 com.github.xloem.qrstream 29 - 4 25
8 com.ihunda.android.binauralbeat 135 1M+ 1 225
9 com.kiminonawa.mydiary 1,402 - 14 2,542

10 com.llamacorp.equate 45 10K+ 13 201
11 com.namelessdev.mpdroid 557 100K+ 26 172
12 com.ringdroid 692 - 3 142
13 com.sagar.screenshift2 47 1M+ 36 297
14 com.tastycactus.timesheet 42 - 6 67
15 de.baumann.browser 387 10K+ 12 319
16 de.onyxbits.listmyapps 57 100K+ 5 69
17 de.schildbach.wallet 1,818 1M+ 13 415
18 de.smasi.tickmate 78 1K+ 10 173
19 jackpal.androidterm 2,318 10M+ 21 185
20 jp.sblo.pandora.aGrep 18 10K+ 21 65
21 moe.minori.pgpclipper 18 - 5 54
22 net.kervala.comicsreader 1 100K+ 11 166
23 nl.asymmetrics.droidshows 53 - 6 283
24 org.billthefarmer.diary 98 - 3 48
25 org.billthefarmer.tuner 91 - 3 171
26 org.disrupted.rumble 138 23 553
27 org.glucosio.android 324 - 17 621
28 org.gnucash.android 987 100K+ 22 1,169
29 org.horaapps.leafpic 2,948 - 11 3,038
30 org.openintents.notepad 38 50K+ 9 127
31 org.secuso.privacyfriendlynotes 46 5K+ 11 145
32 org.secuso.privacyfriendlytapemeasure 8 5K+ 11 644
33 org.yaxim.androidclient 91 100K+ 10 205
34 ru.henridellal.emerald 42 10K+ 8 108
35 se.bitcraze.crazyfliecontrol2 85 10K+ 12 713
36 tellh.com.gitclub 620 - 15 1,102

Total 469 19,778
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Table 4.4: Detailed static analysis results from applying LiveDroid-Analyzer on GroupS.

EX: #access paths in the external state, UIC: #necessary GUI elements, MOD: #access paths in set MOD,

LIVE: #access paths in set LIVE, IN: #access paths in the internal state,

S: #access paths in set NISTATE, Alias: #alias groups (#total aliases), Time: analysis time (s)

# Package EX UIC MOD LIVE IN S Alias Time

1 au.com.wallaceit.reddinator 32 23 42 99 7 39 0 21
2 com.alaskalinuxuser.hourglass 0 0 13 15 6 6 0 2
3 com.dozingcatsoftware.asciicam 0 0 7 31 5 5 1(2) 3
4 com.freerdp.afreerdp 0 0 12 55 10 10 1(2) 14
5 com.fsck.k9 0 0 59 241 25 25 1(2) 62
6 com.github.axet.binauralbeats 1 2 90 252 49 50 0 40
7 com.github.xloem.qrstream 2 2 12 28 10 12 0 54
8 com.ihunda.android.binauralbeat 0 0 0 11 0 0 1(2) 3
9 com.kiminonawa.mydiary 0 0 8 31 8 8 0 24

10 com.llamacorp.equate 0 0 27 86 25 25 0 7
11 com.namelessdev.mpdroid 5 5 140 172 58 63 1(2) 42
12 com.ringdroid 0 0 18 30 10 10 0 7
13 com.sagar.screenshift2 10 10 12 45 0 10 0 11
14 com.tastycactus.timesheet 19 19 10 52 8 27 0 2
15 de.baumann.browser 17 12 31 61 24 41 0 11
16 de.onyxbits.listmyapps 10 10 5 15 4 14 0 5
17 de.schildbach.wallet 0 0 24 61 17 17 0 507
18 de.smasi.tickmate 13 13 36 22 10 23 0 6
19 jackpal.androidterm 0 0 53 98 34 34 0 61
20 jp.sblo.pandora.aGrep 0 0 2 30 1 1 0 1
21 moe.minori.pgpclipper 0 0 15 33 12 12 0 5
22 net.kervala.comicsreader 2 2 41 97 29 31 1(2) 9
23 nl.asymmetrics.droidshows 30 19 7 43 5 35 0 7
24 org.billthefarmer.diary 5 4 4 16 2 7 1(2) 4
25 org.billthefarmer.tuner 0 0 6 6 6 6 0 16
26 org.disrupted.rumble 13 10 20 48 13 26 0 24
27 org.glucosio.android 35 35 1 7 0 35 0 116
28 org.gnucash.android 18 10 3 29 2 20 1(2) 1,779
29 org.horaapps.leafpic 0 0 20 57 13 13 0 47
30 org.openintents.notepad 2 2 20 38 12 14 1(2) 6
31 org.secuso.privacyfriendlynotes 22 15 21 47 16 38 0 10
32 org.secuso.privacyfriendlytapemeasure 5 5 21 43 15 20 2(4) 6
33 org.yaxim.androidclient 0 0 10 25 8 8 0 68
34 ru.henridellal.emerald 7 7 17 27 6 13 0 5
35 se.bitcraze.crazyfliecontrol2 7 7 55 189 34 41 2(4) 22
36 tellh.com.gitclub 0 0 10 84 7 7 0 49

Total 255 212 872 2,224 491 746 13 -
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and LIVE among all tested apps, except for app#8, app#9, and app#25, in which cases IN

= MOD. Adding the internal state size IN and external state size EX together, the overall

app state size is shown in Column S (i.e., S = IN + EX). Finally, as discussed in Section 4.3,

some access paths in the NISTATE may be aliases. Column Alias shows the number of

alias groups and the number of aliases in total, which (1) confirms the necessity of aliasing

analysis, and (2) shows that aliases do not occur often or in large groups in the NISTATE.

State Comparison with Prior Work. It is important to note that internal necessary

instance state (Column IN) is significantly smaller than the number of mutable activity

fields in the app (shown in Column MUT) – the app state considered by recent work [142].

On average, IN is only 1.5% of MUT. The reduction mainly comes from a more rigorous

definition of the necessary instance state based on the liveness and modification properties,

as well as field-sensitive analysis results (i.e., access paths). Moreover, the prior work [142]

does not cover the external state which also represents a large portion of the total necessary

instance state (see Column EX).

Revealed State Issues. We manually compared the state identified by the static analyzer

(Column S in Table 4.5) with the state actually saved by developers in the original app code

(Column Ss in Table 4.5). Interestingly, we found that a large number of necessary access

paths are not saved and restored, as reported in Column Su (i.e., S - Ss). In total, there

were 231/393 identified access paths (including GUI properties and activity fields) that were

not saved and restored in the original apps, which may lead to various state issues during

the user interaction. To confirm this, we manually tested activities of each app in GroupS

based on the identified unsaved access paths Su to verify if they cause any state issues. The
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Table 4.5: New Issues discovered by applying LiveDroid-Analyzer on GroupS.

S: size of NISTATE, Issued:#issues detected, Su: #access paths of unsaved NISTATE,

Ss: #access paths of saved NISTATE, FP% : false positive ratio

Package S Issued Ss Su FP%

com.alaskalinuxuser.hourglass 6 1 0 6 0
com.fsck.k9 25 2 23 2 0
com.github.xloem.qrstream 12 1 0 10 16.7
com.kiminonawa.mydiary 8 3 0 8 0
com.ringdroid 10 1 0 7 30.0
com.tastycactus.timesheet 27 4 1 24 7.4
de.baumann.browser 41 3 14 27 0
de.smasi.tickmate 23 2 4 13 26.1
moe.minori.pgpclipper 12 3 2 9 8.3
nl.asymmetrics.droidshows 35 2 32 2 2.9
org.billthefarmer.diary 7 4 3 4 0
org.billthefarmer.tuner 6 1 0 6 0
org.disrupted.rumble 26 2 13 4 34.6
org.glucosio.android 35 3 31 4 0
org.gnucash.android 20 1 1 17 10.0
org.horaapps.leafpic 13 1 3 10 0
org.openintents.notepad 14 3 1 10 21.4
org.secuso.privacyfriendlynotes 38 6 20 18 0
org.secuso.privacyfriendlytapemeasure 20 1 5 15 0
org.yaxim.androidclient 8 1 3 3 25.0
tellh.com.gitclub 7 1 6 1 0

Total 393 46 162 200 7.9

testing results confirm that 200 out of 230 unsaved access paths do trigger state issues. The

number of issues from the user’s perspective is reported under Column Issued. Note that a

state issue often involves multiple (necessary) access paths in the app state. Most issues are

manifested as the loss of some user interaction state. Table 4.6 reports some examples of

the newly-revealed state issues exposed by our approach. As we will show later, all these

new state issues can be fixed by the runtime module with generated state-saving/restoring

routines.
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1 // activity_bootloader.xml

2 <RelativeLayout xmlns:android="http://schemas.android.com/..." ...>

3 <TextView android:id="@+id/bootloader_title" ... /> //false positive

4 ....

5 <TextView android:id="@+id/bootloader_statusLine" ... /> //true

positive

6 ...

7 </RelativeLayout>

8 // BootloaderActivity.java

9 public class BootloaderActivity extends Activity {

10 private TextView mConsoleTextView; //true positive

11 protected void onCreate(Bundle savedInstanceState) {

12 super.onCreate(savedInstanceState);

13 setContentView(R.layout.activity_bootloader);

14 this.mConsoleTextView = (TextView)

findViewById(R.id.bootloader_statusLine);

15 }

16 protected void onPostExecute(String result) { ... //AsyncTask callback

17 appendConsoleError("Firmware file can not be found.");

18 }

19 public void appendConsoleError(String status) { ...

20 this.mConsoleTextView.append("\n" + status);

21 }

22 public void startFlashProcess(final View view) { //click handler

23 this.mConsoleTextView.setText("");

24 }

25 }

Code 4.5: Case Study: False Positive and True Positive.
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Table 4.6: Example issues revealed by static analysis.

Package State issues

com.alaskalinuxuser.hourglass timer state lost and paused
com.fsck.k9 bound email account lost
com.fsck.k9 entered email text lost
de.baumann.browser webpage reloaded
org.gnucash.android search results disappear
org.horaapps.leafpic player position reset to 0

False Positives and False Negatives. Our manual examination also showed that some

reported necessary access paths are actually false positives – they do not trigger any actual

state issues even when they are unsaved. These access paths are reported in Column FP%

of Table 4.5. While false negatives are possible (e.g., due to reflection), we did not find

any false negatives in our evaluation. In general, our static analyses are designed to be

over-approximate, modulo unhandled language features. Next, we focus our discussions on

false positives.

The cost of false positives is extra state saving and restoring; developers are not

required to handle false positives. Our examination reveals two main causes of false positives.

The first reason is unrealizable execution paths. Like other data-flow analyses, our entry-

liveness and may-modify analyses are conservative in the sense that they assume all the

control-flow paths are possible. However, depending on the constraints along the paths, many

of them may never happen. Similarly, there could be semantic constraints among the GUI

elements that restrict the order in which callbacks may be invoked. Our callback modeling

does not reason about such constraints. Another cause of false positives is our coarse-grained

UI property analysis, which does not distinguish between different GUI elements of the

same type. This can be improved by tracking updates to each individual GUI element. The
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challenge lies in the fact that a GUI element reference in the activity class may refer to

different GUI elements (in the layout file) at different times. On the other hand, note that

the imprecision of alias analysis does not introduce false positives, because if one reference

is true positive, all of its aliases are also true positives – they point to the same object.

Case Study. Code 4.5 presents an example activity from the project se.bitcraze.crazyfliecontrol2.

First, our entry-liveness and may-modify analyses find that the access path this.mConsoleTextView

is both live and may be modified (see lines 28 and 32). On the other hand, the UI prop-

erty analysis finds that the text properties of two GUI elements, bootloader_title and

bootloader_statusLine, both belong to the external necessary instance state because some

APIs of TextView are invoked, append() and setText(). In total, our static analyses report

three positives. However, one of the GUI properties, bootloader_title.text, is a false positive

as its instance never gets modified in any callback. This false positive comes from the

imprecision of the UI property analysis. Furthermore, it is not hard to find that the base

objects of the external and internal necessary instance states (bootloader_statusLine and

this.mConsoleTextView) actually refer to the same GUI element (see line 18). This indicates

opportunities for improving our static analyses. In fact, if we can infer that a View reference

always points to the same GUI object, we can save just the GUI object and link the View

reference to the object during state recovery. We leave the exploration of such improvements

for future work.
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4.6.3 Generating State-Saving/Restoring Routines

In the following, we first evaluate the applicability of code generation for sav-

ing/restoring state using the Android Studio plugin and the APK patching tools, and report

the time and space costs of code generation, as well as the runtime costs of state saving

and restarting. For the applicability evaluation, we use apps in GroupS; For the cost

measurements, we randomly select 8 apps from GroupS as they involve significant manual

efforts. We ensured that the 8 apps include 4 apps with collections (i.e., such as List and

Set) and 4 apps without collections from GroupS. The reason we separate these two cases

is because the collections, as dynamic data structures, may carry relative larger amount of

data, in which case the benefits of reduced state size might be more significant.

Applicability. First, we installed the LiveDroid-Plugin on Android Studio 3.4. Then,

for each app in GroupS, we loaded its source code into Android Studio and manually went

through the code generation process with the installed plugin. We confirmed that the plugin

was applied to all the apps successfully. Next, we tested the developed patching tool by

first generating APK files for all the apps in GroupS. Then, we applied the patching tool

to each APK file. Again, we did not observe any issues when using the tool. These results

demonstrate the applicability of our developed tools.

Code Generation Costs. The time costs of code generation and patching are both

reported in Table 4.7. The “Plugin” column shows the average time cost for applying the

code generation, at the activity level, using the plugin. It contains two sub-columns: one for

the first time applying and one for the second time. Note that the first-time application

incurs more setup costs (e.g., inserting setter/getter methods). On average, the time cost
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Table 4.7: Time costs (ms) of code generation.

Package Plugin
1st 2nd Patching

com.alaskalinuxuser.hourglass 257 184 17,691
com.fsck.k9 672 470 35,676
com.kiminonawa.mydiary 302 220 18,436
com.tastycactus.timesheet 205 135 26,515
de.smasi.tickmate 539 457 19,327
nl.asymmetrics.droidshows 576 351 17,745
org.gnucash.android 729 514 451,231
org.secuso.privacyfriendlynotes 275 231 19,809

Arithmetic Mean 444 320 75,804

Table 4.8: Space costs of LiveDroid-Plugin.

Package APK (Kilobytes) Lines of Code (SLoC)
before after before after

com.alaskalinuxuser.hourglass 2,028 2,143 18.9K 19.0K
com.fsck.k9 6,562 6,640 214.6K 214.8K
com.kiminonawa.mydiary 16,305 16,306 64.5K 64.6K
com.tastycactus.timesheet 58 206 3.4K 4.1K
de.smasi.tickmate 1,467 1,557 15.8K 16.4K
nl.asymmetrics.droidshows 227 320 9.7K 10.4K
org.gnucash.android 7,882 7,889 109.1K 109.3K
org.secuso.privacyfriendlynotes 2,543 2,633 26.7K 27.2K

Arithmetic Mean 4,634 4,712 57.8K 58.2K

is less than 500ms, hence LiveDroid-Plugin’s responsiveness makes it suitable for being

used in development environments. The “Patching” column reports the total processing

time of each APK file; on average, it takes about 30 seconds.

Besides time costs, code generation also increases the size of source code. Table 4.8

reports the space costs of code generation using the plugin (in terms of #lines of source

code) and patching (in terms of APK file size). The increase is relatively small for large

apps and more significant for small apps. On (arithmetic) average, there is a 0.7% (58.2K
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vs. 57.8K) increase in terms of lines of code for using the plugin and a 1.6% (4712KB vs.

4634KB) increase in terms of APK size.

Time Saving with Reduced State Size. We compare the costs of state saving/restoring

using LiveDroid with the costs of saving/restoring using all mutable activity fields [142].

To simulate the app restarting scenarios, we turned on the “No background process” option

in the test smartphone’s Settings – this way the OS will automatically kill an app once it is

moved into background and relaunch it once the user switches back to it. Table 4.9 presents

the results of time cost for saving and restoring, and speedup gained using LiveDroid,

compared to saving and restoring all mutable activity fields. In general, for apps with

collections, the speedup can reach over 140X for state saving and over 40X for state restoring.

The difference between the speedups for saving and restoring is due to flash memory’s

asymmetric read/write speeds. For apps without collections, the speedups are relatively

smaller, ranging from 1.5-17.5X for state saving and 1.1-6.8X for state restoring, respectively.

The exact speedup depends on the reduction in the number of access paths (see columns

MUT in Table 4.3 and S in Table 4.4) and the types of the access paths (e.g., a primitive or

an object with multiple fields). These results confirm the end-to-end benefits of the proposed

state identification techniques (Section 4.3), which shrink the app state substantially, hence

substantially reducing the costs of state saving/restoring.

Correctness of Code Generation. To verify if the generated code works correctly or

not, we installed all the apps with generated state-saving/restoring routines on a Nexus 5x

smartphone and manually examined their behavior. First, we checked the 46 state issues we

found based on the static analysis (Section 5.5.2). The results show that all 46 issues were
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Table 4.9: Time costs (ms) of saving/restoring before and after LiveDroid-Plugin.

Package Saving time and speedup Restoring time and speedup
before after speedup before after speedup

de.smasi.tickmate 300.3 2.4 123.7X 56.8 1.4 41.0X
nl.asymmetrics.droidshows 283.0 2.0 141.1X 43.8 1.0 43.8X
org.glucosio.android 196.4 5.4 36.3X 29.6 1.4 21.6X
org.secuso.privacyfriendlynotes 71.4 2.3 30.8X 29.9 1.4 21.8X
com.alaskalinuxuser.hourglass 173.6 115.3 1.5X 217.1 205.4 1.1X
com.fsck.k9 156.5 23.8 6.6X 30.3 5.5 5.5X
com.kiminonawa.mydiary 158.2 9.0 17.5X 25.8 3.8 6.8X
org.billthefarmer.diary 244.6 145.7 1.7X 42.3 20.8 2.0X

Geometric Mean 182.9 11.0 16.6X 44.7 4.7 9.5X

successfully fixed, because the issues were due to unsaved necessary access paths, and the

generated state-saving/restoring routines ensured these necessary access paths are saved

and restored. In addition, we checked if there are any new issues introduced by the code

generation; none was observed. This is expected as the data saving itself does not cause any

functional side-effect and data restoring occurs after all the initialization operations, ensured

by the onRestoreInstanceState() callback. In actual development scenarios, the app code may

evolve over time. In such cases, developers may re-apply our tools to their applications after

subsequent source code changes; this would not lead to issues because our tools only insert

saving and restoring code to two callbacks dedicated for state saving and restoring, and new

code generations will simply overwrite the previous versions.

4.7 Conclusion

This work targets a major challenge in developing reliable mobile apps – a volatile

runtime environment that repeatedly destroys app state through activity and app-level

restarts. The solution is an automatic approach that combines callback modeling, static
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analysis, and runtime data saving/restoring techniques. The callback modeling categorizes

different callbacks based on their invocation orders relatively to the user interaction. The

static analysis takes both app code (Java class) and GUI interface (layout file) as inputs

and identifies critical external and internal app state via novel, necessary instance state,

abstraction. The runtime module saves and restores the identified app state, based on the

actual aliases. Finally, the evaluation confirms that the developed tool set LiveDroid,

including an Android Studio plugin and an APK patcher, is able to find the critical app

state from a large space of candidate access paths and substantially boost reliability of apps

running in volatile runtime environments through code generation.
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Chapter 5

Static User Transaction Graph

5.1 Introduction

As mentioned in earlier chapters, the mobile app market is competitive and mobile

apps are highly interactive, thus it is important for app developers to ship apps that provide

a great user experience with low user-perceived latency [86] and reliable functionalities.

The primary way to keep UI responsive is to use an asynchronous programming

model with multiple threads to handle blocking operations such as handling I/O and data

processing [50]. The asynchronous programming model quickly results in complex program

flows. For example, a simple data fetching request could trigger multiple asynchronous

calls and complex synchronization among threads. In such cases, identifying performance

bottlenecks requires tracking of program flows of event handlers defined at main thread (UI

thread) and asynchronous threads.

State of The Art. Recent studies [133, 163] highlighted importance and challenges to

profile and measure latency in user transaction for mobile apps and systems. AppInsight [133]
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focuses on Windows Phone and generates user transaction graphs dynamically based on app

instrumentation and online execution trace collection. These dynamic user transaction graphs

(DUTGs) only capture the program execution flows for a specific user transaction and lack the

complete picture of all possible execution flows in a user transaction. As a result, developers

may miss important information, such as longer critical execution paths. In comparison, the

authors of Panappticon [163] focus on Android and utilize lower level instrumentation in the

operating system (OS) and Android framework to collect app execution traces, based on

which DUTGs are constructed. However, such low-level instrumentation imposes a huge

challenge to app developers, as Android framework is frequently updated. More critically,

no prior work has systematically attempted to capture all the possible execution paths in a

user transaction, including both synchronous and asynchronous execution paths, as well as

the relevant control flows and utilize such knowledge to better serve the developers.

Overview of This Work. The goal of this work is to leverage static analysis to answer

the questions above – statically reasoning about the user transactions in mobile apps to

discover all possible execution paths of each user transaction and utilizing the analysis results

to carry out a variety of app profiling and testing tasks, thus freeing developers from the

tedious and error-prone app instrumentation in the presence of complex user interfaces and

highly asynchronous executions.

In specific, we define static user transaction graph (SUTG)—a graph represents

all possible temporal and causality relations among operations of interest during all possible

user transactions triggered by a user manipulation. In its essence, SUTG summarizes the

execution flows from the entry to all possible exit points of a user transaction, meanwhile
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captures all UI updates and start and synchronization of threads. To achieve our goal, we

propose (i) a static analysis that reasons about app source code to generate SUTGs, and (ii)

tools to automatically instrument apps using SUTGs for user-perceived latency profiling and

app testing in the presence of asynchronous state updates.

In this work, we focus on the Android platform due to the popularity of platform

(75% market share as of July 2020 [149]) and open-source ecosystem. Android apps consists

of many different callbacks (i.e., event handlers) to respond to various events, generated

due to user interaction (e.g., clicking, scrolling, and typing). These callbacks essentially

serve as the starting points of user transactions. Our static analysis starts the construction

of a SUTG from each user action callback. During the construction, the static analysis

discovers interesting program points such as UI updates, asynchronous method calls, and

inter-component communications (e.g., Service to Broadcast receiver communication), and

connects them based on the causality relations as well as the control flows.

Once constructed, SUTGs can serve for different kinds of app testing and profiling

tasks. In this work, we present two SUTG-based tools.

• Automatic user perceived-latency profiler, which leverages SUTGs to instrument mobile

apps at the binary level and remove the instrumentation afterwards. It requires no

app source-code level or OS/framework level modifications. Furthermore, the profiler

can map the profiling results back to SUTGs to provide critical path reasoning and

path coverage analysis to help developers find the performance bottlenecks.

• Automatic state-management for asynchronous events, whose subsequent operations

affect a UI test, we refer as idling resource manager. Idling resource manager helps
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developers by automating idling resources API usages to carry out testing reliably

when asynchronous executions are involved.

We evaluated static analyzer on popular open-source (from F-Droid [89]) and

commercial (from Google Play [99]) apps, corpus of total 791 apps. Furthermore, we

conducted a focused study on selected 44 apps (GroupS), and developed instrumentation tools

for applications of SUTG called, LatencyInstrumentor and Idling-ResourceManager.

In summary, this work makes the following contributions:

• We introduce Static User Transaction Graph based on possible flows of a user interac-

tion, that captures the UI and control flow properties of a user transaction.

• We provide static analysis to automatically build Static User Transaction Graph for

a given app, that developers can apply for the annotated or complete source code of

their apps.

• We develop and provide two applications of Static User Transaction Graph, a user

perceived latency profiler and an idling resources state manager.

• To evaluate Static User Transaction Graph and its applications, we applied our static

analyzer on 791 Android applications from F-Droid [89] and Google Play [99], and

show SUTG is applicable to real-world apps.
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5.2 Static User Transaction Graph

In this section, we define static user transaction graph (SUTG) for mobile apps

in detail, including information it captures and its structure, then we present the static

analysis for constructing SUTGs.

5.2.1 Definitions

Definition 11 A user transaction u starts with a user manipulation with the app m

and ends when all asynchronous (threads) and synchronous operations triggered by m are

completed.

Roughly speaking, given a user transaction, a dynamic user transaction graph

(DUTG) is a graph representing the temporal and causality relations among operations of

interest during this specific user transaction. In comparison, a static user transaction

graph (SUTG) is a graph representing all possible temporal and causality relations among

operations of interest during all possible user transactions triggered by a user manipulation.

To facilitate a range of applications as discussed later, we define the SUTG such

that it captures the following operations and relations of interest:

1. User interaction actions (e.g., a Button is clicked).

2. UI updates on user interfaces (e.g., text in TextView changes).

3. Causal relations between asynchronous calls and their callbacks (e.g., AsyncTask).

4. Synchronization points among threads (e.g., between an AsyncTask and UI thread).

5. Inter-component interactions (e.g., start a new activity for displaying results).

113



S
onclick()

A U B A

S

S

U

A

S

U

UUI thread

FooAsync

FooService

FooReceiver
E

E

EESE

onReceive()

onPostExecute()

doInBackground()

onHandleIntent()

P

Figure 5.1: Static User Transaction Graph (SUTG) for the code snippets in Code 5.1 and

Code 5.2.

6. Control flows relevant to the above operations and relations.

In the following, we discuss how SUTG captures the above operations in its

structures.

Graph Structure. Roughly speaking, a SUTG can be viewed as a set of “simplified”

control-flow graphs (CFGs) of callbacks, inter-connected by their temporal causality relations.

Figure 5.1 shows an example SUTG for the code snippets in Codes 5.1 and 5.2.

A SUTG starts from a callback (i.e., event handler) that corresponds to the user

action (e.g., onClick() at Line 2 in Code 5.1 for a user click). For each callback involved in the

user transaction, the SUTG defines an S node and a E node, denoting the start and end of the

callback, respectively. If the callback involves UI update operations (e.g., bodyText.setText()

at Line 4 and 12 in Code 5.1 and Line 22 in Code 5.2), the SUTG defines a U node for each

consecutive sequence of UI updates. When the callback spawns asynchronous threads (e.g.,

AsyncTask().execute() at Line 3 in Code 5.1) or performs inter-component communications

(e.g., sendBroadcast(intent)) at Line 14 in Code 5.2, an A node is created for each call site,

114



Table 5.1: Node Types in SUTG.

Node Type Description
S start node of a callback
E end node of a callback
B a control-flow branching point
P a control-flow joining point (a PHI-node)
U UI updates
A asynchronous callback invocation

meanwhile a directed edge is created from the A node to the S node of the asynchronous

callback. For conciseness, in each callback, only the relevant control flows—control flows that

connect the above defined nodes, are preserved in the SUTG. To separate nodes on different

branches, SUTG defines B nodes and P nodes for branching and joining, respectively. For

synchronous calls in the callback, SUTG “inlines” the above nodes (excluding S and E

nodes) from the callees into the control flows of the caller, along with the relevant control

flows. In the presence of recursive calls, a back edge is inserted into the SUTG to represent

the repetitions of nodes within the recursive methods. Finally, all SUTG nodes encode the

direct caller’s information, so that they can be quickly located in the source code. Table 5.1

summarizes the node types of SUTG.

Based on the above definition, we can easily define a DUTG, which is a subgraph

of SUTG such that only branch is taken at each B node in the SUTG.

5.2.2 Static Analysis for Graph Construction

Mobile apps use callbacks (i.e., event handlers) to respond to user actions. Our

analysis starts the construction from these callbacks which are the entry points of user
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1 class FooActivity extends Activity{

2 void onClick() {

3 new FooAsync().execute();

4 this.bodyText.setText("started!");

5 }

6 class FooAsync extends AyncTask {

7 void doInBackground(){

8 ... // local I/O to find data

9 }

10 void onPostExecute(){

11 if(foundLocally)

12 bodyText.setText("fetched locally!");

13 else {

14 filter = new IntentFilter("ACT_RESP");

15 receiver = new FooReceiver();

16 registerReceiver(receiver, filter);

17 // start service

18 service = new Intent(...,FooService.class);

19 service.putExtra("request", url);

20 startService(service);

21 }

22 }

23 }

24 }

Code 5.1: Example Activity and AsyncTask .
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1 class FooService extends IntentService {

2 public FooService() {

3 super("FooService");

4 }

5 @Override

6 void onHandleIntent(Intent intent) {

7 String url = intent.getStringExtra("request");

8 // fetch data from server based on url

9 Data data = ... ;

10 // send Broadcast

11 Intent broadcastIntent = new Intent();

12 broadcastIntent.setAction("ACT_RESP");

13 broadcastIntent.putExtra("receive", data);

14 sendBroadcast(broadcastIntent);

15 }

16 }

17

18 class FooReceiver extends BroadcastReceiver {

19 public void onReceive(Context c, Intent i) {

20 Data data = i.getStringExtra("receive");

21 // consume data

22 bodyText.setText("fetched remotely!");

23 }

24 }

Code 5.2: Example IntentService and BroadcastReceiver.
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transactions. The goal of our static analysis is to discover all possible synchronous and

asynchronous exit points of a given callback and the UI operations along the paths reaching

to the exit points, meanwhile encode the results in the form of a graph as defined above.

To achieve this, our analysis needs to address several complexities related to UI updates,

asynchronous calls and inter-component interaction.

• Missing UI updates. The state-of-the-art static analysis tools such as FlowDroid [76]

fail to identify UI updates in Android apps, such as bodyText.setText() at Line 4 in

Code 5.1, because the UI variables (like bodyText) are not necessarily defined in the

Java source code explicitly (but in XML-based screen layout files).

• Asynchronous calls. Some background threads spawned by asynchronous calls need

to synchronize with the UI thread by invoking subsequent callbacks that run on the UI

thread. This synchronization defines the causality relations between the asynchronous

callback and its subsequent callback on the UI thread. However, the causality relations

are not defined by the app’s source code, instead, they are defined by the underlying

Android framework, thus cannot be discovered by any app-level code analysis.

• Inter-component communication. Nontrivial Android apps typically consist of

multiple components of different types (such as Activity, Service, BroadcastReceiver,

etc.), which may run concurrently with each other and communicate through passing in-

stances of Intent. These inter-component communications define the causality relations

among the senders and the receivers. For direct “point-to-point” communication, the

causality can be easily discovered as the receiver is explicitly mentioned when sending

the intent. However, for “broadcasting”-style communication (like BroadcastReceiver),
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receivers are absent in the intent sending call site (e.g., sendBroadcast(broadcastIntent)

at Line 14 in Code 5.2), thus it is non-trivial to statically map a sender with its

corresponding receiver(s).

In the following, we present the basic ideas of our static analysis, meanwhile address

the above complexities. At high level, we design the analysis as a worklist-based iterative

algorithm.

Initialization. To begin with, our analysis first collects the entry points of user transactions—

the callbacks defined for user actions. For Android apps, callbacks for user actions can

be registered either in Java source code or in the XML layout files. Our analysis scans

both places to collect the list of callbacks registered for handling user actions, denoted as

Callbacksuser . For each user action callback, our analysis creates a pair of S and E nodes,

representing their initial SUTGs.

Iteration. During the iterations, our analysis maintains a worklist of callbacks Callbacksworklist ,

which is initialized with the user action callbacks Callbacksuser . For each callback in the

worklist, our analysis first constructs its inter-procedural control-flow graph (ICFG), then

traverses its ICFG, meanwhile performs the following tasks:

• Identify UI update call sites. As mentioned earlier, UI update calls are missing

in the ICFGs generated by the state-of-the-art analyzers. To solve this problem, our

analysis first collects the references to UI variables—instances of various types of View

class. This can be achieved by looking for the uses of findViewById(), which is an

Android API that developers use to obtain view references. After that, our analysis

generates explicit allocations for these collected UI variables in the Java source code.
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In this way, ICFG generator (like FlowDroid) is able to generate ICFGs with UI

update call sites. To identify the UI update call sites in the ICFGs, our analysis

just needs to check the variable type (subclasses of View class) and the APIs (update

APIs are pre-collected based on API documentations of different View classes). For

developer-defined UI classes, their update APIs can also be appended to the list of

update APIs. For conciseness, the analysis creates a single U node for each consecutive

sequence UI update calls. The information regarding the update calls is stored as

attributes in the U node.

• Identify asynchronous call sites and their callbacks. Our analysis recognizes

call sites for asynchronous executions, like FooAsync().execute() and their subsequent

callbacks, like doInBackground() and onPostExecute(), based on offline modeling of the

asynchronous constructs collected from the Android and Java API documentations.

For each asynchronous call site, our analysis creates an A node. Then, for each

asynchronous callback, our analysis first creates a pair of S and E nodes, then adds it

into the callback worklist Callbacksworklist . Finally, our analysis connects the A node

to the S node of the first callback, and chains the callbacks by adding an edge from a

E nodes to the S node of the followup callback.

• Identify inter-component communications. Different instances of Android com-

ponents in an app (like Activity, Service, and BroadcastReceiver) communicate by

passing intent instances. The key to identify inter-component communications is to

find the intent filters which pairs the sender component with the receiver component.

The filters can be easily located based on their definitions (like the filter at Line 14
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in Code 5.1). From the filters, our analysis extracts the filter rules (e.g., ACT_RESP),

based on which it locates the components and methods that use the filters for sending

intents (e.g., boradcastIntent.setAction(ACT_RESP) at Line 12 in Code 5.2). For the intent

sending call site, our analysis creates an A node. Then, based on the filter registration

information (e.g., registerReceiver(receiver, filter) at Line 16 in Code 5.1), our anal-

ysis finds the receiver component (e.g., FooReceiver at Line 18 in Code 5.2). Depending

on the component types of the receiver, our analysis creates a single wrapper callback

that encloses all the lifecycle callbacks of the receiver component that are invoked

during its creation and initialization (e.g., onReceive() at Line 19 in Code 5.2). Then,

our analysis creates a pair of S and E nodes for the wrapper callback, then add it

to the callback worklist. Finally, our analysis connects the A node representing the

intent sending call site to the S node of the wrapper callback of the intent receiver.

• Identify relevant control flows. During the ICFG traversal, once our analysis

finds control flows, such as branching and joining points, that are relevant to the

identified UI update call sites, asynchronous call sites, and intent sending call sites,

it creates B nodes and P nodes correspondingly in the SUTG. In specific, when

the analysis discovers a control-flow branching point, if there exists at least one of

the above call sites of interest on at least one of its branches, it creates a B node

representing the branching point in the SUTG. Correspondingly, when the analysis

reaches a control-flow joining point, if there exists a path from the branching point to

the joining point along which one of the above call sites of interest occurs, then the

analysis creates a P node representing the joining point.
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To generate inter-procedural control-flow graph (ICFG), we leverages FlowDroid [76].

To keep our graph concise, we only encode the direct caller’s information in a SUTG node.

5.3 Applications of Static User Transaction Graph

Once SUTGs are constructed, they can be utilized for different use cases such as

profiling and testing of the apps. In the following, we present two applications of SUTGs.

5.3.1 User-Perceived Latency Profiling

It is important for developers to improve the performance of their apps, especially

user-perceived latency during the interactions. For simple scenarios, such as changing some

text on the screen after a user clicks, developers can easily instrument the event handlers of

the user actions to measure the latency. However, in presence of asynchronous executions,

measuring the time spent for a user transaction could be complicated, since the developers

need to consider the concurrent executions of different callbacks and their causality relations.

To free developers from the above tedious and complex instrumentation, we propose to use

SUTGs to automatically instrument the apps, which then collect the latencies of different

user transactions during the app testing.

Specifically, we provide a lightweight runtime client (in code 5.3) that generates log

messages with timestamps and unique SUTG node identifiers. The generated logs provide

information to measure the latency among the nodes of a given SUTG and derive the total

latency of a user transaction. Other than timestamp information, it is also important to
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1 public class LatencyProfiler{

2 enum State {IDLE, START, RUNNING, STOP};

3 private static LatencyProfiler instance;

4 private final String TAG = "LatencyProfiler";

5 private HashMap<String, State> eventStateMap; // event name and its status

6 private HashMap<String, Set<String>> backgroundTasks; // set of background tasks

7 public void registerEvents(String annotationInfo, String[] events) {

8 eventStateMap.put(annotationInfo, State.IDLE);

9 Set<String> tasks = new HashSet<>();

10 for (String event : events) {

11 if (tasks.add(event)) this.eventStateMap.put(event, State.IDLE);

12 }

13 this.backgroundTasks.put(annotationInfo,tasks);

14 }

15 void reportProgress(String annotationInfo, String event, State eventState) {

16 Log.i(TAG, annotationInfo + ":" + event + ":" +getTimeInMillis());

17 this.eventStateMap.put(eventName, eventState);

18 boolean mainThreadCompleted = isMainCompleted(annotationInfo);

19 boolean anyAsyncTaskInProgress = isAnyAsyncTaskInProgress(annotationInfo);

20 if(mainThreadCompleted && !anyAsyncTaskInProgress){

21 //User Transaction Completed, remove event

22 Log.v(TAG, annotationInfo+":transactionFinished:"+getTimeInMillis());

23 this.eventStateMap.remove(annotationInfo);

24 this.backgroundTasks.remove(annotationInfo);

25 }

26 }

27 }

Code 5.3: Runtime Module for Latency Profiler.
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1 class FooActivity extends Activity{

2 ...

3 @LatencyProfiler(info = "btnClick")

4 void onClick() {

5 LatencyProfiler.getInstance().registerEvents("btnClick", new String[0]);

6 LatencyProfiler.getInstance().reportProgress("btnClick", "MAIN", State.START);

7 this.bodyText.setText("Text Updated!");

8 LatencyProfiler.getInstance().reportProgress("btnClick", "MAIN", State.STOP);

9 }

10 }

Code 5.4: Example of simple User Transaction with Latency Profiling Instrumentation.

keep track of ongoing asynchronous operations at runtime, since an asynchronous operation

can continue running while its trigger has been finished already, or another user action

can cause to start it while an existing instance is in-progress. We keep track of ongoing

user transactions along with relevant in-progress asynchronous operations, which can be

achieved by maintaining a couple of HashMap data structures, as shown in Code 5.3. First

HashMap (eventStateMap), keeps track of ongoing user transactions, and another HashMap

(backgroundTasks) maintains the state of associated asynchronous executions for the user

transactions in eventStateMap.

We show the usage of our client in code 5.4 and code 5.5 for simple examples,

first, we need to register potential asynchronous operations for a user action and then

keep reporting the progress of user transactions. When all the ongoing synchronous and
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asynchronous operations associated with a user transaction has finished, then, LatencyProfiler

class will report that the user transaction has been completed.

5.3.2 Idling Resource Manager

As mentioned in Section 2.4, the default UI testing tool for Android apps, Espresso [61],

could provide reliable synchronization when an asynchronous execution could update the

views (referred to as Idling Resource). However, developers need to include the implementa-

tion of the CountDownLatch API, which is used by Espresso for synchronization. To utilize this,

first, developers need to figure out synchronization logic and then integrate CountDownLatch

API calls carefully at correct places, which could be challenging, especially when multiple

asynchronous executions are involved within a single user transaction. Secondly, as developers

prepare the release version, they need to remove the code added in the first step (i.e., synchro-

nization logic), and they will need to perform this addition and removal every time they test

and release a new version of the app. Code 5.6 shows an example of CountDownLatch, app, first

increments the counter using idlingResource.increment() API, and on completion perform

decrement by calling idlingResource.decrement(). Finally, an idling resource is considered idle,

when “count” is at zero. For example, for 10 spawn threads, first idlingResource.increment()

will be called at the start of each thread, and idlingResource.decrement() will decrement the

counter when the thread finishes, eventually, when the counter reaches zero (i.e., idle state),

it means all threads are finished and Espresso test can continue the test case to perform

checks on view states.
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1 class FooActivity extends Activity{

2 @LatencyProfiler(info = "btnClick")

3 void onClick() {

4 String[] events = {"btnClick:TestAsync"};

5 LatencyProfiler.getInstance().registerEvents("btnClick", events);

6 LatencyProfiler.getInstance().reportProgress("btnClick", "MAIN", State.START);

7 new TestAsync().execute();

8 this.bodyText.setText("Text Updated!");

9 LatencyProfiler.getInstance().reportProgress("btnClick", "MAIN" ,State.STOP);

10 }

11 class TestAsync extends AyncTask {

12 void onPreExecute(){

13 LatencyProfiler.getInstance().reportProgress("btnClick",

"btnClick:TestAsync" ,State.START);

14 bodyText2.setText("Started Text");

15 }

16 void doInBackground(){

17 ... // no UI access allowed

18 }

19 void onPostExecute(){

20 bodyText2.setText("Completed Text");

21 LatencyProfiler.getInstance().reportProgress("btnClick",

"btnClick:TestAsync" ,State.STOP);

22 }

23 }

24 }

Code 5.5: Example of simple User Transaction with AsyncTask with Latency Profiling

Instrumentation.
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1 class FooActivity extends Activity{

2 ...

3 void onClick() {

4 ...

5 processMessage(getIdlingResource());

6 }

7 @AsyncAssertion(info = "processMessage")

8 static void processMessage(CountingIdlingResource idlingResource) {

9 idlingResource.increment();

10 // Asynchronous execution

11 Handler handler = new Handler();

12 handler.postDelayed(new Runnable() {

13 @Override

14 public void run() {

15 ...

16 idlingResource.decrement();

17 }

18 }, DELAY_MILLIS);

19 }

20 @VisibleForTesting

21 public CountingIdlingResource getIdlingResource() {

22 if (mIdlingResource == null) {

23 mIdlingResource = new CountingIdlingResource("processMessage");

24 }

25 return mIdlingResource;

26 }

27 }

Code 5.6: Example of Automatic assertions for Asynchronous Events.
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1 @RunWith(AndroidJUnit4.class)

2 public class FooActivityTest {

3 ...

4 @Before

5 public void registerIdlingResource() {

6 ActivityScenario activityScenario =

ActivityScenario.launch(FooActivity.class);

7 activityScenario.onActivity(new

ActivityScenario.ActivityAction<FooActivity>() {

8 @Override

9 public void perform(FooActivity activity) {

10 mIdlingResource = activity.getIdlingResource();

11 IdlingRegistry.getInstance().register(mIdlingResource);

12 }

13 });

14 }

15 @After

16 public void unregisterIdlingResource() {

17 if (mIdlingResource != null) {

18 IdlingRegistry.getInstance().unregister(mIdlingResource);

19 }

20 }

21 }

Code 5.7: JUnit Example of Automatic testing for Asynchronous Events.
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Code 5.7 shows a test class example for idling resource, developers first need to

get IdlingResource instance from the relevant activity and register with the Espresso testing

environment using IdlingRegistry.register() API call (appearing in registerIdlingResource()

method). The registration with the testing framework is usually performed before starting

the test, and upon finishing the test case, the registered idling resource is unregistered using

IdlingRegistry.unregister() API call.

In general, the test cases, registering, and un-registering the idling resource remain

app-specific and also developers do not need to remove them before releasing the app. Thus,

this work does not go into that and focuses on maintaining the synchronization logic of

idling resource, which developers need to add for testing and remove at the time of release.

By utilizing SUTG, as it encodes information about the trigger and synchronization of

asynchronous executions, we can instrument apps to add testing code with CountDownLatch

API calls, consequently, it will free developers from adding and removing synchronization

logic manually, when testing asynchronous executions.

5.4 Implementation

As some of the technical details about SUTG analysis and applications of SUTG

have been discussed already, in this section, we focus more on static analysis and instru-

mentation tools that realize the SUTG analysis and its applications. SUTG-Analyzer

implements the SUTG analysis, then based on the analysis results, both LatencyInstru-

mentor and Idling-ResourceManager instrument the APK files for applications of
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SUTG. Furthermore, we provide a tool to annotate the user actions that enables developers

to apply static analysis and instrumentation for selected user actions only.

SUTG-Analyzer. The static analyzer, namely SUTG-Analyzer, is built on top of

Soot [144] program analysis framework. SUTG-Analyzer works in two modes, (i) Process-

All – to process all the user actions defined in the app, and (ii) Process-Annotated – which

processes the only annotated user actions (i.e., event handler methods). The other libraries

that SUTG-Analyzer rely on include, Spark [118], FlowDroid [76], and Backstage [77].

The intermediate representation (Jimple) is provided by Soot [144] which facilitate us to

analyze Java programs. SUTG-Analyzer takes an app executable (APK) as input and

uses FlowDroid [76] to generate inter-procedural control-flow graphs (ICFGs), FlowDroid

also collects all the user actions when SUTG-Analyzer is used in Process-All mode.

Backstage [77] resolves the target Android components when those components are invoked

via Android’s Intent APIs. SUTG-Analyzer also takes in a list of View widgets, that

developers can utilize to add their custom UI widgets and our analysis would include them

in the analysis. Finally, SUTG-Analyzer outputs the aggregated results along with graph

description language (.dot extension) [29] file for each SUTG, which provides visualization

of SUTGs.

Method Annotation. As discussed earlier, developers can use SUTG-Analyzer in

Process-Annotated mode to utilize this option, developers can use @LatencyProfiler and

@IdlingResourceManager annotations for user-perceived latency profiling and idling resources

manager, respectively. Later on, when analyzing, SUTG-Analyzer can identify annotations

and perform analysis for only annotated user actions (i.e., Java methods).
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APK Instrumentation Tools. We also provide APK instrumentation tools for Latency

Profiling and Idling resource management, named LatencyInstrumentor and Idling-

ResourceManager, respectively. These tools take in an APK file and result from SUTG-

Analyzer as input and insert the code based on SUTG nodes as discussed earlier. We use

Soot [144] for code-generation, reverse-engineering, and recompilation. After that, we rely

on Android SDK tools such as Zipalign [44] and apksigner [16] to align and sign the final

APK. Finally, our instrumentation tools produce and sign the APK file that developers can

install, and run to profile and test.

Post-processing. The instrumented app using LatencyInstrumentor generates log

messages using Android’s Log.v() API at runtime, these log messages are collected and

written on the developer’s machine using our post-processing tool. We use Android Debug

Bridge (adb) [143] and logcat tools from Android SDK, specifically, we filter out our relevant

messages using adb logcat -s "LatencyProfiler", where “LatencyProfiler” is our tag that

we use in latency profiler as discussed earlier. At the end of the testing session, all the

collected logs are processed and analysis results are generated, along with annotated-SUTGs.

For instrumented apps using Idling-ResourceManager, espresso tests can be directly

performed after installing the APK using post-processing tool, which utilizes activity manager

and instrumentation monitoring (am instrument) from Android SDK .

Limitations. Although SUTG-Analyzer aims for an accurate solution, the static analysis

inherits limitations from other static analysis tools. For example, the stable version of

FlowDroid [76] used in SUTG-Analyzer does not support lambda-style event declarations

in Java 8 and native method modeling. It also inherits limitations on reflective calls, which
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are resolved only if their arguments are string constants. The SUTG-Analyzer analysis

can only process Java code at the moment, as Soot does not fully support the invokedynamic

bytecode [93] which affects apps written in Kotlin (or Java code using lambdas and method

refs). Similar limitations apply to the plug-in, which is written for Java only, and cannot

process NativeActivity [57] or apps written in Kotlin.

5.5 Evaluations

This section evaluates SUTG-Analyzer on real-world Android apps to demon-

strate its applicability, effectiveness in generating the SUTGs. Furthermore, we utilize SUTGs

for applying LatencyInstrumentor and Idling-ResourceManager and measure their

performance and correctness of instrumentation of APK files.

5.5.1 Methodology

To evaluate SUTG-Analyzer, we crawled 800 apps from F-Droid [89] and 400 top

apps from Google Play [99], and retained 535 apps from F-Droid (denoted as GroupF ) and

256 Google Play apps (denoted GroupP ). The removed apps either do not contain activities

(potentially do not offer user actions), or FlowDroid failed to build an Interprocedural

Control-Flow Graph (ICFG). We selected an additional set of 44 apps denoted as GroupS,

these apps are from F-Droid and Google Play with at least 30 stars on GitHub [94] in case

of open-source apps, and more than one million downloads on Google Play. As shown in

table 5.3, they include some highly influential open-source projects such as NewPipe and
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Free RDP, and some widely used commercial apps including BBC News, Wall Street Journal

and Alaska Airlines.

Collectively, GroupF consists of 3,424 Android components, GroupP has 5,627

Android components, and 1,164 Android components are in GroupS. Note that, we refer

to activities, services, broadcast receivers, and contents providers as Android components.

We use GroupF and GroupP applicability of static analysis in general and GroupS for a

focused study including statistics on SUTGs, and time cost for generating SUTGs. For each

app, we applied SUTG-Analyzer on each component registered in the AndroidManifest.xml.

To examine the actual application behaviors when LatencyInstrumentor and

Idling-ResourceManager applied, we use a Nexus 5X smartphone running Android

version 8.1. The programming environment is Android Studio 3.4. Experiments on GroupF

and GroupP were conducted on a PC with a 3.5 GHz Intel Xeon processor and 16 GB RAM,

while results for GroupS were collected on a MacBook Pro with 1.4 GHz Quad-Core Intel

Core i5 processor and 8 GB RAM.

5.5.2 Static Analysis

We evaluated the applicability of SUTG-Analyzer on both GroupF and GroupP ,

and the results of static analysis on GroupS in detail, including performance, statistics

of SUTGs, and its correctness. Overall, our results show that SUTG-Analyzer applies

to various real-world apps and generates SUTGs covering all the possible flows of user
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Table 5.2: Results of running SUTG for GroupS and GroupP .

GroupF GroupP

Total Apps 535 256
Total Android Components 3,424 5,627
Total Event Handlers 8,007 11,606
Total Nodes in SUTGs 42,634 59,980
Total Paths in SUTGs 13,791 19,776
# of Events with multiple Paths 2,362 3,078
# of async Paths 1,077 2,057
# of async Nodes 2,814 5,264
# of Branches (Decisions) 8,801 11,899
# of UI Nodes 6,049 8,444
# of Apps with async path 207 (38.6%) 128 (50.0%)

transactions. In the following, we first present the results from the applicability of SUTG-

Analyzer, then discuss the detailed results of static analysis on GroupS.

Applicability. The summary of static analysis results is reported in table 5.2 for GroupF

and GroupP . At the application level, among GroupF apps, 38% (207 out of 565) apps, and

50% of apps (208 out of 256) from GroupP contain at least one asynchronous path, which

shows that a naive profiler would fail to measure user-perceived latency due to potential

asynchronous executions, and also these apps would require manual effort to implement

idling resource management during testing. As to the complexity of generated SUTGs, there

are 42,634 and 59,980 nodes in generated SUTGs for GroupF and GroupP , respectively.

While we did not observe any failures during the above analysis, there are a couple of

situations where the SUTG-Analyzer may fail, including NativeActivity written in C/C++

and activities implemented in Kotlin (Soot does not fully support invokeDynamics [93]).

Time Cost. We measure the time cost to generate SUTGs for GroupS and report the

results in Table 5.4 under column “Time”. For most apps (40/44), the analysis finishes

within 1 minute and often within 10 seconds (with an arithmetic mean of 29 seconds).
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Table 5.3: Detailed static analysis results from applying SUTG-Analyzer on GroupS.

Stars: #stars on GitHub, Installs: #downloads on Google Play,

AC: #Android components, EH: #event handlers analyzed.

# Package Stars Installs AC EH

1 com.bytestemplar.tonedef 49 10K+ 9 12
2 com.eleybourn.bookcatalogue 345 100K+ 22 143
3 com.freerdp.afreerdp 5,603 - 10 46
4 com.futurice.android.reservator 177 - 6 13
5 com.ihunda.android.binauralbeat 152 1M+ 1 23
6 com.jadn.cc 57 100K+ 16 51
7 com.mschlauch.comfortreader 30 1K+ 5 20
8 com.nightonke.cocoin 2,734 - 18 154
9 com.sagar.screenshift2 50 1M+ 10 41

10 com.ubergeek42.WeechatAndroid 460 - 9 10
11 com.zzzmode.appopsx 439 - 11 20
12 de.k3b.android.toGoZip 40 - 3 22
13 douzifly.list 58 - 6 49
14 io.github.hidroh.materialistic 2,152 100K+ 38 57
15 io.github.pd4d10.gittouch 897 1K+ 3 18
16 jackpal.androidterm 2,624 10M+ 9 40
17 org.billthefarmer.diary 174 10K+ 4 25
18 org.glucosio.android 332 - 17 76
19 org.mozilla.klar 1,835 500K+ 12 12
20 org.schabi.newpipe 15,063 - 17 55
21 org.sipdroid.sipua 456 - 21 48
22 org.xbmc.android.remote 366 - 25 145
23 bbc.mobile.news.ww - 10M+ 33 32
24 cc.pacer.androidapp - 10M+ 122 229
25 cl.datacomputer.alejandrob.newgpsjoystick - 1M+ 20 42
26 com.alaskaairlines.android - 1M+ 75 112
27 com.aws.android.tsunami - 1M+ 24 14
28 com.bskyb.fbscore - 10M+ 25 57
29 com.campmobile.snow - 100M+ 60 116
30 com.exutech.chacha - 10M+ 50 114
31 com.fundevs.app.mediaconverter - 100M+ 35 66
32 com.geekslab.qrbarcodescanner.pro - 10M+ 12 46
33 com.homesnap - 1M+ 105 187
34 com.jimmyjohns - 1M+ 10 30
35 com.magix.android.mmjam - 10M+ 29 112
36 com.musicplayer.music - 50M+ 28 94
37 com.secretdiaryappfree - 5M+ 23 72
38 com.showmax.app - 10M+ 23 88
39 com.synergetechsolutions.nearbylive - 5M+ 39 88
40 com.uc.browser.en - 100M+ 29 114
41 jp.co.rcsc.yurekuru.android - 1M+ 27 102
42 net.metapps.sleepsounds - 5M+ 10 31
43 uk.co.economist - 1M+ 67 135
44 wsj.reader sp - 1M+ 46 74
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Table 5.4: Detailed static analysis results from applying SUTG-Analyzer on GroupS.

Nodes: #nodes in SUTGs, Paths: #program flow paths in SUTGs,

Async: #asynchronous paths in SUTGs, UI: #UI nodes in SUTGs, Time: analysis time (ms).

# Package Nodes Paths Async UI Time

1 com.bytestemplar.tonedef 65 17 7 6 4,263
2 com.eleybourn.bookcatalogue 642 211 21 109 16,663
3 com.freerdp.afreerdp 196 70 8 14 10,872
4 com.futurice.android.reservator 90 26 8 18 2,903
5 com.ihunda.android.binauralbeat 59 29 0 3 2,054
6 com.jadn.cc 238 72 6 48 3,217
7 com.mschlauch.comfortreader 125 31 6 25 8,931
8 com.nightonke.cocoin 1,053 247 32 248 53,342
9 com.sagar.screenshift2 302 129 15 41 7,762

10 com.ubergeek42.WeechatAndroid 40 15 1 6 12,725
11 com.zzzmode.appopsx 105 34 2 2 10,270
12 de.k3b.android.toGoZip 124 34 6 15 4,098
13 douzifly.list 386 112 18 67 11,376
14 io.github.hidroh.materialistic 218 79 1 5 13,711
15 io.github.pd4d10.gittouch 65 20 0 7 3,270
16 jackpal.androidterm 223 68 1 32 4,602
17 org.billthefarmer.diary 139 36 0 24 3,643
18 org.glucosio.android 404 120 19 55 17,926
19 org.mozilla.klar 56 15 0 3 12,066
20 org.schabi.newpipe 224 61 1 24 21,399
21 org.sipdroid.sipua 541 494 22 36 86,908
22 org.xbmc.android.remote 1,340 451 154 176 15,024
23 bbc.mobile.news.ww 180 44 4 10 42,373
24 cc.pacer.androidapp 1705 595 190 107 131,401
25 cl.datacomputer.alejandrob.newgpsjoystick 268 81 4 29 40,110
26 com.alaskaairlines.android 559 194 24 19 35,306
27 com.aws.android.tsunami 71 28 1 12 17,797
28 com.bskyb.fbscore 270 91 5 25 31,187
29 com.campmobile.snow 537 209 11 94 41,611
30 com.exutech.chacha 609 223 31 58 125,499
31 com.fundevs.app.mediaconverter 311 121 5 30 26,341
32 com.geekslab.qrbarcodescanner.pro 333 131 24 31 14,267
33 com.homesnap 878 287 24 108 62,753
34 com.jimmyjohns 200 39 8 13 17,276
35 com.magix.android.mmjam 817 333 54 71 52,145
36 com.musicplayer.music 722 229 36 125 33,999
37 com.secretdiaryappfree 438 111 20 79 23,593
38 com.showmax.app 469 133 6 74 54,368
39 com.synergetechsolutions.nearbylive 520 170 28 71 41,431
40 com.uc.browser.en 699 230 12 85 23,253
41 jp.co.rcsc.yurekuru.android 582 210 32 124 47,644
42 net.metapps.sleepsounds 192 62 11 29 6,625
43 uk.co.economist 636 202 15 54 38,519
44 wsj.reader sp 333 110 6 27 42,413
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App#24 took the most time (i.e., 131 seconds), analysis result reveals that this app contains

a higher number of asynchronous and Android components compared to other apps. The

presence of Android components along with asynchronous execution paths increase the

analysis workload.

SUTG Nodes Statistics. Table 5.4 also reports different statistics about analysis results.

Column “Nodes” reports the number of nodes in SUTGs. We found that 30 out of 44

apps have more than 200 nodes in their SUTGs. The column “Paths” reports control-flow

paths in SUTGs, results reveal that 32 apps from GroupS contain more than 50 paths.

Additionally, we found that 33.9% of SUTGs have multiple paths. We also report the number

of asynchronous paths for SUTGs in column “Async”, we found 41 out 44 apps have at least

one asynchronous path, and 28.9% of SUTGs contains at least one asynchronous execution

on their paths. Among them, app#8 and app# 22 have the highest number of asynchronous

paths, these apps make several network requests using AsyncTask construct, and display that

inside the app UI, which results in a higher number of UI nodes for these apps in column

UI. Overall, the UI column shows that all the apps have UI nodes, which is expected in

mobile apps due to their highly user-interactive nature.

5.5.3 Applying SUTG for Latency Profiling and Testing

In the following, we first evaluate the applicability of code generation for latency

profiling and idling resource manager by applying them on APK files. We report the time

and space costs of code generation, as well as the runtime costs of LatencyProfiler. For the
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applicability evaluation, we use apps in GroupS; For the cost measurements, we randomly

select 20 apps from GroupS as they involve significant manual efforts.

Applicability. First, we generated the SUTGs by applying SUTG-Analyzer for each app

in GroupS, then we loaded its APK in LatencyInstrumentor and inserted LatencyProfiler

class and API calls for LatencyProfiler. We confirmed that the LatencyInstrumentor was

applied successfully, and new APK files for all the apps have been generated. To instrument

apps for idling resources management, it is necessary to have test cases for apps available,

unfortunately, the APKs in GroupS do not include test cases. As an alternative, we tested

this instrumentation on a Micro-benchmark consisting of 5 apps and 3 sample apps from

Google (referred to as Google-benchmark). The apps in Micro-benchmark are written by us

and Google samples are available at GitHub [94], all apps include espresso test cases and

asynchronous executions. We tested the Idling-ResourceManager for all the apps in

both Micro-benchmark and Google-benchmark and generated new APK files. Again, we did

not observe any issues when using the tool. These results demonstrate the applicability of

our developed tools.

Time and Space Cost for Instrumentation. Table 5.6 presents the time and space cost

of applying LatencyInstrumentor on selected apps from GroupS. LatencyInstrumen-

tor took an average of 13.4 seconds, with the a maximum of 30 seconds for the “BBC News”

app, to perform instrumentation based on the SUTG-Analyzer results. Columns “Original

APK” and “Instrumented APK” compare the size of apps before and after instrumentation

in kilobytes, and instrumented binaries result in a 2.7% increase in size due to the code

injection to existing APK files.
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Table 5.5: Time (ms) and space (Kilobytes) costs of instrumentation using LatencyIn-

strumentor.

Package Original APK Instrumented APK Time

com.bytestemplar.tonedef 974 1,043 4,288
com.eleybourn.bookcatalogue 640 659 4,243
com.freerdp.afreerdp 20,675 20,709 12,291
com.sagar.screenshift2 2,514 2,563 7,610
com.ubergeek42.WeechatAndroid 1,994 2,036 7,472
com.zzzmode.appopsx 1,555 1,682 8,558
douzifly.list 1,766 1,983 7,849
io.github.hidroh.materialistic 3,259 3,420 16,584
io.github.pd4d10.gittouch 26,884 26,926 7,446
jackpal.androidterm 555 575 2,687
bbc.mobile.news.ww 12,911 13,292 30,979
com.geekslab.qrbarcodescanner.pro 2,188 2,371 17,162
com.overstock 7,415 8,269 29,288
uk.co.economist 8,362 8,552 18,429
wsj.reader sp 7,637 8,029 27,210

Arithmetic Mean 6,622 6,807 13,473

For Idling-ResourceManager, we applied instrumentation on all the apps in

Micro-benchmark and Google-benchmark, and we found that on average instrumentation

takes 4.9 seconds. This instrumentation is much lighter than the instrumentation performed

using LatencyInstrumentor, as Idling-ResourceManager requires instrumentation

for asynchronous operations only.

Case Study on User-perceived latency Profiling. We randomly selected 20 apps

to measure user-perceived latency using our tools. The apps were instrumented using

LatencyInstrumentor based on generated SUTGs and deployed on Nexus 5X, then we

used each app from the user’s perspective with informal use cases, some of the use cases are

listed in table 5.6. We used each app for 10 minutes, while attached to the development

machine, and collected the profiling results (using ADB Logcat). Column “Use Case” shows

139



Table 5.6: Runtime profiling after applying LatencyInstrumentor.

Package Use case SUTG DUTG Memory Tt To

io.github...materialistic

Add Bookmark 7 4 1,134 28 0.11
Remove Bookmark 7 4 1,134 37 0.11
Up vote a comment 6 4 1,491 12 0.11
Open news details 7 4 1,134 42,188 0.11

jackpal.androidterm

Take wifi Lock 7 5 695 6 0.13
Drop Wifi Lock 7 5 695 7 0.13
Take Wake Lock 7 5 687 9 0.13
Drop Wake Lock 7 5 687 8 0.13
Switch Session 8 6 582 53,874 0.16

bbc.mobile.news.ww
Open news details 22 13 1,003 25,356 0.35
Search a news topic 14 8 1,005 524 0.22

com.overstock Open Wish List 10 8 515 28,309 0.22
com.geekslab...pro Generate QR code 20 16 824 118 0.43
wsj.reader sp News feed 24 9 827 16,185 0.24

the user action taken in the app, which we execute during testing. The number of nodes in

SUTG and number of visited nodes is shown in Columns “SUTG” and “DUTG”, respectively.

We also measured the memory overhead caused due to our profiler at runtime, which is

shown in column “Memory” in bytes, we observe that overhead remains usually within 1

Kilobyte and maximum usage observed is up to 1,491 bytes. Note that, memory overhead

does not include log buffer, as we do not keep the log in the memory, logs are transferred

to the development machine instantly via ADB and written to a file. Columns Tt and To

report latency time for user transactions and runtime overhead due to our instrumentation

in milliseconds results clearly show that our instrumentation remains low-overhead. Based

on our measurements for one million operations for Log.v() API – Android SDK provided

logger, which we also utilize for logging, costs 20 µs (microseconds). The cost for single-use

of our API remains 27 µs, which is 7 µs more than Log.v() API usage, is due to operations

performed on HashMap data structures to keep track of ongoing user transactions and their

relevant asynchronous operations.
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Figure 5.2: Length (in milliseconds) of User Transactions of selected apps.

After using each app, we report the average length of user transactions in Figure 5.2.

As expected, we observed the majority of user transactions finished within a shorter period,

whereas some of the user transactions could vary from a few seconds to minutes. After more

analysis, we found when a user action takes an asynchronous path, which results in a longer

latency. One key reason for such variation in latency is local caching performed by the apps,

which reduces latency significantly after the first execution of a user transaction.

Improving coverage in Firefox Focus app. During post-processing of profiled user

actions, we also provide the list of missed event handlers that did not execute during the

profiling session. Developers can utilize this information to increase the coverage to test all

the available user actions in the app. For example, When we profiled instrumented version

of Firefox Focus [62] (an open-source app), after profiling we found that we missed the

following three users actions during the first session.
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1. onLongClick() from class LinkHandler, which responds to long click user action on browser

address bar.

2. This app allows to add custom URL completion, when a user adds a such entry, the

event handler onSharedPreferenceChanged() in UrlMatcher class gets triggered.

3. Finally, onDownloadStart() in SystemWebView class invokes when the app starts download-

ing a file.

At the end of the session, our post-processing tool pointed out these events (method

signatures with class names). Based on that we were able to see user actions required for

these events from the app source code and we perform these actions in the next session.

Another way to improve profiling coverage is to report paths that were not vis-

ited during the testing, for example, starting a download can take several paths within

onDownloadStart() method. When we perform a download and execution completes, the

post-processing tool reports that a path is never executed. This information is available

on annotated SUTG visualization in Dot file as well, we can generation annotated SUTG

based on static analysis SUTG and collected information at runtime. We further looked

into the application code and found that Firefox focus allows downloading files over HTTP

and HTTPS only, when downloading a file other than these protocols the missed path

will be taken. Next time, we tried to download a file over FTP (which is not supported),

downloading failed, and as a result, the missed path was executed.

Correctness of idling resource management. As mentioned earlier, for idling resource

management, execution of test and synchronization is managed by Espresso testing environ-

ment and our state management is limited to correctly managing the logic and executing
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count latch API for idling resources, which is required to carry-out testing correctly for

asynchronous components of the apps. We evaluated idling resource manager on Micro-

benchmark and Google-benchmark, after applying it on both benchmarks, we executed tests,

and manually verified the correctness of instrumentation.

5.6 Conclusion

This paper presents static user transaction graph (SUTG), which captures critical

temporal and causality relations among concurrently executed callbacks during the user

transactions. SUTG can be automatically constructed by static analysis and be leveraged as

the basis for various mobile instrumentation and testing scenarios. In this work, we applied

SUTG in two applications: automatically profiling user-perceived latency and managing idle

resources for app state testing. The SUTG-based latency profiler requires no modifications

to the underlying mobile OS, and can help developers find critical execution paths in user

transactions. Both applications can free developers from tedious and error-prone manual

instrumentation tasks. Finally, our evaluation using a wide range of real-world mobile apps

from Google Play and F-Droid show that the SUTG-based tools can be successfully applied

to real-world apps, provide accurate measurements, and requires little or no interventions

from developers.
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Chapter 6

Conclusions

This dissertation presents runtime system, static analysis, and developer tools to

help mobile system designers and mobile app developers better manage the mobile state

in volatile runtime environments. All the presented techniques have been examined and

evaluated on real-world mobile apps and have demonstrated their effectiveness. Specifically,

this dissertation has the following key contributions.

First, it presents the first formative study on the runtime change handling for

Android apps. The study not only reveals the current landscape of runtime change handling,

but also identifies a common cause for a variety of runtime change issues – activity restarting.

With this insight, it introduces a restarting-free runtime change handling solution, named

RuntimeDroid, which can load resources without restarting the activity. It achieves with

this with an online resource loading module called HotR. More critically, it can preserve prior

UI changes with a novel dynamic view hierarchy migration technique. For easy adoption, this
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work provides two implementations, RuntimeDroid-Plugin and RuntimeDroid-Patch,

to cover both in-development and post-development uses for Android apps.

Second, this dissertation targets a major challenge in developing reliable mobile apps

– a volatile runtime environment that repeatedly destroys app state through activity and app-

level restarts. The solution is an automatic approach that combines callback modeling, static

analysis, and runtime data saving/restoring techniques. The callback modeling categorizes

different callbacks based on their invocation orders relatively to the user interaction. The

static analysis takes both app code (Java class) and GUI interface (layout file) as inputs

and identifies critical external and internal app state via novel, necessary instance state,

abstraction. The runtime module saves and restores the identified app state, based on the

actual aliases. Finally, the evaluation confirms that the developed tool set LiveDroid,

including an Android Studio plugin and an APK patcher, is able to find the critical app

state from a large space of candidate access paths and substantially boost reliability of apps

running in volatile runtime environments through code generation.

Finally, this dissertation proposes static user transaction graph (SUTG), which

captures critical temporal and causality relations among concurrently executed callbacks

during the user transactions. SUTG can be automatically constructed by static analysis

and be leveraged as the basis for various mobile instrumentation and testing scenarios. In

this work, we applied SUTG in two applications: automatically profiling user-perceived

latency and managing idle resources for app state testing. The SUTG-based latency profiler

requires no modifications to the underlying mobile OS, and can help developers find critical

execution paths in user transactions. Both applications can free developers from tedious
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and error-prone manual instrumentation tasks. Finally, our evaluation using a wide range

of real-world mobile apps from Google Play and F-Droid show that the SUTG-based tools

can be successfully applied to real-world apps, provide accurate measurements, and requires

little or no interventions from developers.
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