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Abstract
How does a child’s vocabulary production change over time?
Past research has often focused on characterizing population
statistics of vocabulary growth. In this work, we develop
models that attempt to predict when a specific word will be
learned by a particular child. The models are based on two
qualitatively different sources of information: a representa-
tion describing the child (age, sex, and quantifiers of vocabu-
lary skill) and a representation describing the specific words a
child knows. Using longitudinal data from children aged 15-36
months collected at the University of Colorado, we constructed
logistic regression models to predict each month whether a
word would be learned in the coming month. Models based
on either the child representation or the word representation
outperform a baseline model that utilizes population acquisi-
tion norms. Although the child- and word-representation mod-
els perform comparably, an ensemble that averages the predic-
tions of the two separate models obtains significantly higher
accuracy, indicating that the two sources of information are
complementary. Through the exploration of such models, we
gain an understanding of the factors that influence language
learning, and this understanding should inform cognitive the-
ories of development. On a practical level, these models may
support the development of interventions to boost language ac-
quisition.
Keywords: Language acquisition; word learning; lexical ac-
quisition

Introduction
How does a child’s current vocabulary inform and relate to
their vocabulary in the future? We know that deficits in a
child’s early lexicon is a predictor of future language skills
(Dale et al., 2003). Potentially, if researchers can recommend
words that the child is ready and able to learn, early learning
deficits might be corrected. However, reliable prediction can
be made only if word learning develops in a systematic way.
In this paper, we explore whether there are regularities in the
growth of a child’s vocabulary that allow the trajectory of an
individual’s learning to be predicted.

One source of information that can be used to model vocab-
ulary acquisition is population-level norms. The most com-
prehensive study (Dale & Fenson, 1996) collected productive
vocabulary for over 1130 children between the ages of 16 and
30 months, based on parent reports on 649 words. Summary
statistics from this communicative development inventory or
CDI, describe norms of acquisition. For example, 78.7% of
children produce the word dog by age 18 months. Figure 1

top frame, shows an example of the CDI norms. These norms
are typically used to assess a child’s vocabulary in relation to
her peers, as quantified by a CDI percentile for a given age
and vocabulary size. However, the CDI population statistics
can extended as a means to predict an individual’s learning of
a given word at a given age.

month 16 month 17 . . . month 29
airplane 38.5 39.4 . . . 95.0
light 35.9 30.3 . . . 90.0
zoo 9.0 9.1 . . . 66.7

age sex . . . voc. sz dog house . . . zoo

kid A
16.2 F . . . 32 0 0 . . . 0
17.1 F . . . 49 1 0 . . . 0
18.9 F . . . 132 1 0 . . . 1

kid B
19.3 M . . . 257 1 0 . . . 0
20.5 M . . . 345 1 1 . . . 0

Figure 1: Example of normed CDI entries (top) and longitu-
dinal CDI data for sample children (bottom).

The accuracy of these predictions for any individual de-
pends on the nature of variability within the population. Any
prediction model based on normed data assumes that children
learn in a fundamentally similar fashion to one another. For
example, implicit in a prediction model based on normed data
is that late talkers (children below the 20th CDI percentile for
vocabulary size given their age) have the same vocabulary
trends as early talkers (children above the 80th percentile).
The aggregation essentially suggests that these late talkers do
not learn words in a different order, just that they learn words
later. This suggestion has been directly examined and shown
to be false: typical and late talkers learn not only at different
rates but they learn different lexical items (e.g., Beckage et
al., 2011). More generally, limitations of the norms have been
noted by many researchers. For example, the norms don’t
generalize to all populations (e.g., Arriaga et al., 1998; Thal
et al., 1999) and the norms mask idiosyncrasies in an individ-
ual’s learning (e.g., Mayor & Plunkett, 2011).

Despite their shortcomings, the CDI norms may be useful
for characterizing an individual child’s lexical growth. In this
paper, we compare predictions based on the CDI norms with
predictions based on child-specific sources of information. In
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Figure 2: Graphical representation of the child-level features.
x-axis is vocabulary size, y-axis percentile. The color of the
data points is related to the age of the child with darker point
indicating older children.

the case of the normed model, we consider two instantiations,
one aggregated across both male and female children and one
based on the norms for males and females separately. For
the child-specific information sources, we specifically have
two sources of information at our disposal from a data set
we’ll describe in detail shortly. First, we have child features:
the child’s age, sex, vocabulary size, and language skill as
estimated by CDI percentile. Figure 2 visualizes three of
these features in relation to one another. Second, we have
the specific productive vocabulary of a child at a particular
moment of time, as assessed by parent report; we character-
ize the vocabulary as a binary vector of word features indi-
cating whether or not a word is known. These two sources
of information come from longitudinal studies. Figure 1 bot-
tom frame shows examples of specific children’s vocabulary
trajectories.

We test two hypotheses. First, are child- and word-features
as useful as the population acquisition norms for predicting
whether a specific word will be learned by a child in a certain
window of time? Second, do the child- and word-features
provide redundant information, or can the two qualitatively
different sources combine to yield greater predictive power
than either individually?

The child-language literature suggests that information
about an individual learner may be useful in predicting the
learning of unknown words. For example, the sex of the child
is a significant factor in language development as vocabulary
size and the sex of the child are correlated: females have
larger vocabularies on average than their age-matched male
peers (Fenson et al., 1994). Clearly, age is a critical feature
as well: certain words are more likely to be learned earlier
than others. The CDI percentile, which is formed by combin-
ing information about the child’s age and vocabulary size as
compared to peers, is itself useful for predicting the specific
words a child knows (Beckage & Colunga, 2013). Thus, we
find justification for predicting word learning using the child
features of age, sex, vocabulary size, and CDI percentile.

Nonetheless, these child features don’t tell the whole story.

The content of the child’s vocabulary may reflect the language
learning environment, the child’s interests and possibly learn-
ing strategies that the child has. Consequently, the words
known by the child may be predictive of which words they
learn next; co-occurrence of words in a child’s vocabulary in-
creases predictability of future language learning above and
beyond the normed age of acquisition data (Beckage & Col-
unga, 2013). Work also suggest that there is a strong relation-
ship between what words a child will learn and the language
learning environment of the child (Weizman & Snow, 2001)
and their specific interests (DeLoache et al., 2007). These as-
pects of learning may be better captured by the content of the
child’s vocabulary than by features related to the child’s age
and vocabulary size.

In this article, we compare models that utilize child fea-
tures and/or word features to predict the learning of individ-
ual words over a time window of roughly a month. That is,
we use information about the child and the child’s vocabulary
at time t to predict whether an individual word not known
at time t will be learned by time t +∆t. (Ideally, observa-
tions are a month apart, but as we explain in the methodol-
ogy section, ∆t varies across observations.) We build logis-
tic regression models for each word individually and include
features related to the child and/or to the vocabulary of the
child. We discuss the modeling assumptions in detail below
but to summarize, we compare performance of logistic re-
gression models to models based on the age of acquisition
data. The performance of the logistic regression models, with
child- and/or word- features, helps us understand the features
relevant to predicting the learning of individual words, in-
forming our models of lexical acquisition in young children.

Methodology
Vocabulary Data
We use data collected as part of a 12-month longitudinal study
in Dr. Colunga’s Lab at the University of Colorado Boul-
der. The data were collected over three recruitment phases in
which parents and children came to the lab for recurrent vis-
its over 12 consecutive months. Visits were timed at nearly
monthly intervals and, on average, we have 9 visits for each
child. Overall, we include 112 monolingual children. At each
visit, parents completed a vocabulary report. The parental
vocabulary report was collected using the MacArthur-Bates
Communicative Development Inventory (CDI, Dale & Fen-
son, 1996) and included commonly used, early learned En-
glish words. Across all recruitment phases, we have a total of
996 CDI snapshots of children’s’ vocabulary knowledge.

The study represents many different types of language
learners with the age of the children in the study ranging
from 15.3 months to 33 months. The median age of a child
across all the CDIs is 22 months. We also have a full range
in language ability represented as well. To approximate lan-
guage ability, we utilize the CDI percentile which is calcu-
lated based on the size of the child’s vocabulary as compared
to their age matched peers. The range of the CDI percentile
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represented in the CDI vocabulary snapshots was between 0
and 99, with a median percentile of 54. We should note that
recruitment of participants in the longitudinal study was bi-
ased to over-represent late-talkers as late-talkers are a popu-
lation of particular interest in language acquisition.

Of the 680 words on the full CDI, 649 of these words are
normed and exactly match the words in the CDI snapshots.
These 649 words are the words we use to represent an indi-
vidual child’s vocabulary in this study. As part of these 649
words, all types of word classes are represented. The most
common are concrete nouns (dog, chair, etc.) followed by
action verbs (drink, run, etc.) as well as connecting words,
descriptive words and words about time and routine. Because
of the variation in the type of words as well as the baseline
knowledge of a word (both in the norms and our observed
data) we construct an independent logistic regression model
for each word. We utilize different information from each
CDI snapshot as the input to our model and predict acqui-
sition forward to the next CDI–capturing the probability of
learning a specific word in approximately one month’s time.
Though we model each word individually, we are not inter-
ested in performance across different types of words so we
consider the performance of a model to be based on the fea-
tures included in training across all types of words–that is to
say a model refers to the features included in training, not the
specific word we train on.

Model Construction and Evaluation
We construct separate models for each target word. To gen-
erate training and test sets for each target, we use the snap-
shots from all children up to and including the point in time at
which the child transitions from not knowing to knowing the
target. (We use the terms ’know’ and ’learn’ loosely; the CDI
snapshots are in fact a parent’s report of a child’s productive
vocabulary, however, we hope they capture something about
learning and the acquisition process.) The point of transition
can vary from one child to the next as well as one target to
the next. For example, one child may show initial learning of
the word ’dog’ at month 18, and if CDIs are available for that
child for the preceding months 15, 16, and 17, then that child
will provide 3 separate snapshots (predicting to month 16, 17
and 18) from which model training and testing is performed,
2 of which involve a prediction of not knowing the target and
one of which involves knowing the target.

We explore a set of alternative models for each target word,
as we will describe. The models take as input a representa-
tion of a child’s snapshot at some time t, and predict whether
or not the target is known at the next snapshot, collected at
t +∆t. Specifically, the model outputs the probability of tar-
get acquisition at t +∆t. In all cases of training and test, the
target is not known at t. We make predictions conditional on
the target not being known because once a target is learned
it remains known, and one can trivially use the conditional
models we develop to make unconditional predictions.

For each target, the full data set is split into training and
test sets, and the same split is held constant for all alternative

models. The training and test sets are created by selecting all
children who do not know the target at the beginning of the
study. We then place 80% of the children in the training set
and the remaining 20% in the test set. Because the number of
children who initially know a word varies across words, the
training and test set is created uniquely for each target.

We evaluate each alternative model for each target via the
log-likelihood and with the ROC area under the curve (AUC)
metric applied to the test set. Both measures weight each
prediction equally, and thus later learning children play more
heavily into the measure. To obtain a single measure of per-
formance for each alternative model, we sum log-likelihoods
or combine ROC curves over all 649 target words. To deter-
mine the reliability of difference between alternative models
across targets, we compute a paired t-test treating target as the
random variable.

Baseline Normed Acquisition Model
We constructed baseline normed models utilizing published
CDI statistics that indicate the normative age of acquisition
(Dale & Fenson, 1996). These norms are based on 1130 CDIs
collected for children between the ages of 16 and 30 months.
In the Dale study, the CDIs are binned by age (rounded to
the nearest month) and then the percentage of children who
were reported to produce a specific word is calculated. We
use these values, for each word, for each month, to estimate
the probability of learning a currently unknown word. In
the first normed model, only one feature is used for predic-
tion: the age of the child. Because the norms exist only for
children between 16 and 30 months and the children in our
study are occasionally younger or older, we establish bound-
ary conditions–for children over 30 months age or younger
than 16 months, we use either the 30 month or 16 month
norms. We also consider the norms separately for male and
female children. This allows for a more informed baseline
model since age and the sex of the child are features in the
model. However, the number input CDIs used to construct
the norms separately for male and female children are fewer
and thus may be more subject to population level fluctuations
that are not informative in prediction.

The CDI norms are not predictive in nature. They simply
report population level acquisition rates. However, we can
use the acquisition data captured by these norms for predic-
tion. We must first transform the norms from a probability of
knowing a word at a given age (and sex) to the probability of
learning a currently unknown word at a given age. The dif-
ference between the CDI norms at month m and month m−1
might seem like a measure of learning, but the difference is
occasionally negative (due to the fact that the data used to
construct the norms are cross-sectional: the children in the
16 month group are not the same children as in the 17 month
group). To ensure monotonicity of the normed model, we
smooth out negative differences by replacing them with the
rate of vocabulary change over the minimum time span that
yields a positive rate of change.

Because the CDI norms are binned by months and we may
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be required to make a prediction for a child at age t + ∆t
which may lie between two months, linear interpolation on
the smoothed differences of the CDI norms is performed.

Logistic Regression Models
We use lasso regression, a penalized (L1-regularized) logistic
regression model that performs feature selection to exclude
(set coefficients to zero) features that do not meaningfully
contribute to the prediction. In principle, lasso regression
serves to regularize a model; that is, it attempts to prevent
overfitting by reducing the number of nonzero coefficients in
the model. We perform lasso regression in R using the li-
brary glmnet (Friedman et al., 2010), which internally per-
forms cross-validation using the training data to select the
regularization parameter, and the remainder of the data are
used to determine model coefficients.

We develop a set of alternative logistic regression models
that differ in the features provided as input. The two sets
of features we consider are child features and word features.
The child features are: the sex of the child, the number of
words spoken by the child, the CDI percentile, and the age
of the child at snapshot t. We include two additional features
pertaining to the child: ∆t and the session (visit) number. The
reason for including ∆t is that the time between snapshots is
designed to be one month, but this desideratum is not always
satisfied and the variation of ∆t may be useful for prediction.
We include the session number to capture how long into the
12 month longitudinal study the child is. We have found that
the child’s participation in this longitudinal study positively
affects their vocabulary growth and influences their vocabu-
lary size and percentile, thus this child-level feature may af-
fect our ability to predict the acquisition of words.

Turning to the word-level features, we construct an indica-
tor vector with one element per word. The ith element of the
vector is set to 0 or 1 depending on whether the parent reports
that the child can produce word i at snapshot t.

Results
We first compare performance of the normed models, the
child-feature model, and word-feature model (Table 1). The
performance is assessed via log-likelihood where values
closer to zero are better and ROC area under the curve (AUC)
where values closer to 1 are better. As expected, the fit to
the training set (column 2) is related to the complexity of
the model. The model with the most free parameters, the
word-feature model, best fit the training data. However, on
the test set (column 3, llk; column 4, AUC), this model did
not perform as well as the child-feature model, due to over-
fitting of the training set. Nonetheless, both the child- and
word-feature models outperform the normed models (using a
paired two-tailed t-test comparing to the normed model that
considers only the child’s age, child t(649)=44.71, p <.001;
word t(648)=30.62, p <.001).

The log-likelihood score and AUC score combine perfor-
mance across individual words. We can also examine which
of the models–normed, child-, and word-feature–performs

Table 1: Performance of the normed, child-feature and word-
feature models.

llk train llk test AUC % best fit
norms -123076 -30849 .588 1.39
norms(m/f) -123813 -31135 .563 1.39
child -84698 -22774 .812 67.02
word -65703 -24059 .801 30.20

the best for each word. Column 5 of Table 1 indicates
the percentage of words for which a given model outper-
forms the others using log-likelihood as the evaluation met-
ric. Consistent with the log-likelihood results, both child- and
word-feature models outperform both normed models, and
the child-feature model outperforms the word-feature model.

Because lasso regression discards input features it deems
to be irrelevant, we use the presence or absence of a feature
as a proxy for importance. Since a model is trained indepen-
dently for each predicted word, we determine the percentage
of models that include a particular child-feature to measure
the importance of a feature. The child-feature models have an
average of 4.7 parameters, and range from having 1 parameter
(the intercept) to 7 (all child features plus intercept). Across
child-feature models, 64.1% included the child’s sex, 64.1%
included either age or age-at-prediction, but only 22.8% in-
cluded both, suggesting that the time between visits is less
important than the general age of the child. The session visit
appears significant in nearly 60% of models. Most important
to the child-feature model are percentile and total vocabulary
size. Percentile is present in in 87.1% and total vocabulary
size at time t appears in 73.1% of the models respectively.

For the word-feature model, the number of parameters
could range from 1 (intercept) to 650 (each of the 649 words
plus the intercept). The actual range based on the model fit
for each word was between 1 and 83 features with an average
of 31 features. Since only a subset of the 649 words ended
up in the logistic regression models we can conclude that a
localized representation was at least as useful in predicting
acquisition than the full vocabulary. Of the features included
in the model, 83% had a positive weight indicating an in-
creased probability of learning the target word if the word
was known. We hope to investigate the relationships between
individual words, as well as why some of the coefficients in
the model were negative in future work.

We can conclusively say that both the child and word fea-
tures outperform the models based on the acquisition norms.
We can also conclude that the set of child features outperform
the word-vector features. To see how much of the increase in
performance of the child features over the word features was
due to overfitting of the word-feature model, we perform a
dimensionality reduction on the word features. We perform
principal component analysis on all 996 vocabularies, regard-
less of whether a specific vocabulary is in the training or test
set. We use the first 18 components of the PCA reduction as
determined by viewing a Scree plot of the components. We
then take the binary vocabulary vector of a child at a particu-
lar point in time and project it it into the principal components
space. This is done for each snapshot resulting in a vector of
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Figure 3: Graphical representation of two of the reduced word
features. The value of each word along the first (x-axis) and
second (y-axis) principal components is plotted. Each word is
colored based on the number of CDI reports where the word
is known.

18 features, representing each child’s vocabulary snapshot in
a reduced dimensionality. With figure 3 we visualize what
word-specific features are part of the reduced word model.
We plot the projection of each word onto the first two prin-
cipal components. The coloring of each word indicates the
number of CDI snapshots where the word is known. Here
we can see that the first two components capture the overall
frequency that the word is known across all CDIs.

Utilizing this reduced representation of the vocabulary data
(redux-word), we now find that the total likelihood of this
model is less than the child-feature model. We compare pre-
diction performance of the reduced word model to the child-
feature model and a model that contains both the child and
reduced word features. Column 2 of Table 2 shows the total
log-likelihood (llk) and column 3 shows the ROC area under
the curve value for the models based on child features, word
features, reduced-word features (redux-word), and both re-
duced word and child features. Referring back to Table 1, we
confirm that all of these models outperform the models based
on the CDI production norms. The number of free param-
eters (which is correlated with performance on the training
set) is included in column 3, as are the average number of
features seen in each model across all words (column 4). On
the test data, model fit is best for the child- and the reduced
word feature models. These two models, are not significantly
different in a paired t-test (t(649)=1.44, p = 0.148) but the
reduced-word-feature model is significantly better than the
other models. We report the results of a t-test between the
two redux models (t(649)=3.07, p = 0.002). We find that the
child-feature model is not significantly different than the re-
duced word model with child features included.

A priori, it seems likely that adding extra child features
should only improve the performance of the reduced-word
(redux-word) model. We instead find that the model with the
extra child features performs more poorly than the reduced
word-feature model without the child features. The observed
drop in performance with additional features reflects the fact

Table 2: Performance of the logistic regression models with
different features.

total llk AUC pos. param # params
child -22774 .812 7 4.70
word -24059 .801 650 31.20
redux-word -22654 .810 19 8.39
redux-w+child -22848 .803 25 9.72
ensemble -22263 .816 26 13

that lasso regression, while designed to minimize overfitting
via weight penalties, is not infallible. Any model trained on
finite data and a large number of input variables is likely to
overfit. As a means of avoiding this overfitting, we explored
an alternative means of combining the child features and the
reduced-word features into a single model: by constructing
an ensemble that consists of the two individual (pretrained)
models.

Our ensemble simply averages the predictions of the child
model and the reduced word-feature model. This ensemble
significantly outperforms the other models, with a lower total
likelihood value and higher AUC value (see Table 2 last row).
We confirm this improvement in a paired t-test, comparing to
both the child model (t(649)=9.96, p <.001) and the reduced
word-feature model (t(648)=9.52, p <.001). The improve-
ment of the ensemble model over the independent child- and
word-feature models suggests that both sources of informa-
tion are contributing some amount of independent informa-
tion that improves prediction.

Conclusions
Our results show that models can predict the acquisition of
a particular target word by a specific child. In contrast, past
research has primarily focused on characterizing general pop-
ulation trends in vocabulary growth. We find that two qual-
itatively different sources of information are useful for pre-
diction: features that describe the child (such as age, sex and
total vocabulary size) and features that specify the vocabulary
content. Models based on either child- or word-features out-
perform the traditional age-of-acquisition norms in predicting
whether a specific word will be learned by a specific child.

We investigated which of the child features were most use-
ful for prediction via lasso regression, and found that CDI
percentile (chosen for 87% of models), vocabulary size (cho-
sen for 75% of models), and age (chosen for 64% of models)
were common features. Although CDI percentile is a func-
tion of both vocabulary size and age, the three features were
often (38% of models) included together in the model for a
specific word, consistent with previous work suggesting that
CDI percentile contains useful information about the interac-
tion between age and vocabulary size as compared to the peer
group (Thal et al., 1999; Beckage & Colunga, 2013).

The success of the word-feature representation, both with
and without dimensionality reduction, indicates that the con-
tent of the vocabulary is predictive of language learning.
This result is exciting because understanding how the known
vocabulary supports future vocabulary learning provides a
new opportunity for understanding the developmental process
(Smith, 2000). Further, this type of modeling can potentially
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be extended to interventions: if we know how words build on
one another, can we teach children certain words to create vo-
cabularies that are more useful for future language learning?

We found that reducing the word-feature vector via princi-
pal components analysis improves model performance com-
pared to using the original word-feature vector. This reduc-
tion is beneficial because PCA performs noise suppression
when we drop non-primary components and because it re-
duces the opportunity for overfitting. In addition, the reduced
representation may be more interpretable and psychologically
relevant. Referring to Figure 3, we see that the frequency at
which the word is known in the overall set of vocabularies
seems to be strongly related to the first 2 components but
other components might include semantic or phonological
features that can tell us more about the process of acquisi-
tion. We plan to explore this research question in more detail
in future work.

Perhaps our most important finding is that the child and
word features are complementary. This complementarity was
not evident when we constructed a single regression model
with both sets of features, but stood out when we combined
predictions of child-feature and word-feature models. The
combination, obtained by averaging the two models’ outputs,
achieves a statistically reliable improvement in prediction.
The resulting ensemble is proof that the child and word fea-
tures contain different types of information, both of which are
useful for predicting future language learning.

The key value of modeling in this domain is to help us
understand the sources of information that aid in prediction
the acquisition of new words. We showed, in this work, that
both child and word features are useful, and that the nature of
representation matters (e.g., unreduced versus reduced word
vectors). Clearly, there are many other source of information
that could be incorporated into a model, such as demographic
characteristics, the linguistic environment, and cognitive and
motor assessments of the child. Of course, obtaining these
measures can be costly, and future modeling will be directed
at determining which measures provide the most diagnostic
features. One dimension we have begun exploring is the se-
mantics and phonology of the child’s productive vocabulary.
In our present work, we treat the words as independent sym-
bols, but in principle a word representation which character-
izes known words and the target word in terms of semantic
and phonological features could be utilized.

Beyond exploring new types of features that might be use-
ful in modeling language acquisition, we would also like to
expand the class of models used to predict acquisition. The
most natural extension of logistic regression is a multilayer
neural network. In a network’s hidden layer, we can look
for the emergence of new features that have psychological
plausibility. Indeed, the success of our ensemble model sug-
gests that an intermediate level of representational transfor-
mation may serve the prediction task. Although the models
we have focused on in this work are not intended to charac-
terize cognitive and developmental processes per se, the rep-

resentations found to be useful for prediction should inform
cognitive models of child language development.
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