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Random Forest Prediction of Crystal Structure from Electron Diffraction
Patterns Incorporating Multiple Scattering
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(Dated: 11 September 2024)

Diffraction is the most common method to solve for unknown or partially known crystal
structures. However, it remains a challenge to determine the crystal structure of a new
material that may have nanoscale size or heterogeneities. Here we train an architecture of
hierarchical random forest models capable of predicting the crystal system, space group, and
lattice parameters from one or more unknown 2D electron diffraction patterns. Our initial
model correctly identifies the crystal system of a simulated electron diffraction pattern from a
20 nm thick specimen of arbitrary orientation 67% of the time. We achieve a topline accuracy
of 79% when aggregating predictions from 10 patterns of the same material but different zone
axes. The space group and lattice predictions range from 70-90% accuracy and median errors
of 0.01-0.5Å, respectively, for cubic, hexagonal, trigonal and tetragonal crystal systems while
being less reliable on orthorhombic and monoclinic systems. We apply this architecture to
a 4D-STEM scan of gold nanoparticles, where it accurately predicts the crystal structure
and lattice constants. These random forest models can be used to significantly accelerate the
analysis of electron diffraction patterns, particularly in the case of unknown crystal structures.
Additionally, due to the speed of inference, these models could be integrated into live TEM
experiments, allowing real-time labeling of a specimen.

INTRODUCTION

Many technologically important materials are crys-
talline, formed from small unit cells tiled periodically
in three dimensions along a lattice1. The arrangement
of atoms inside the unit cell and the shape of the lattice
control many important materials properties2. Examples
include catalytic activity3, ion diffusion kinetics4, optical
properties5, yield strength6, plasticity7 and magnetism8.
We therefore require robust characterization methods to
predict9, experimentally determine10 and refine crystal
structures11,12.

Transmission electron microscopy (TEM) and scan-
ning TEM (STEM) provide several methods which can
be used to determine crystal structures13. These range
from direct imaging at atomic resolution in 2D14 and
3D15, spectroscopy in 2D16,17 and 3D18, and diffraction
in 2D19 and 3D20. Electron diffraction is the most com-
mon electron microscopy (EM) method to solve for un-
known or partially known crystal structures21, as it pro-
vides direct and interpretable feedback on the orientation
of crystal grains under the beam. Electron diffraction is
often invaluable when high spatial resolution is required,
due the sub angstrom spatial resolution possible with
STEM scans. The ability to utilize STEM and collect
a diffraction pattern at every probe position, with a spa-
tial resolution orders of magnitude higher than possible
with even the most focused X-ray beams, is one of the

key advantages of using electron diffraction for crystal
structure determination13,22. Coherent scattering from
a single crystal aligned along a zone axis will produce a
two-dimensional Bragg diffraction pattern, which is com-
posed of sharp spots positioned at lattice crossings. The
spot positions are defined by the intersection of the Ewald
sphere with the reciprocal lattice points of the crystal,
which are given by the three-dimensional Fourier trans-
form of the real space lattice23. The diffraction spot in-
tensities, integrated over the beam shape, are defined by
the shape function of the parent crystal evaluated at the
closest distance, known as the excitation error, of the
Ewald sphere for each reciprocal lattice point24.

Most existing analytical and simulation techniques to
analyze electron diffraction patterns make use of the
kinematical approximation, which assumes the scatter-
ing particles scatter only once within the crystal24–26.
This results in diffraction spot intensities that vary lin-
early with the structure factor intensities27. By contrast,
spot intensities in electron diffraction patterns tend to be
strongly modulated by multiple scattering of the beam,
where electrons scatter off of the crystal multiple times
during transmission. The higher incidence of multiple
scattering in electron diffraction is mainly due to the far
stronger interaction between electrons and the crystalline
material vs X-rays28. This causes non-trivial changes
in diffraction spot intensities, and these deviations from
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kinematical theory are unique to each specimen thick-
ness and crystal orientation to the electron beam25,29.
Multiple scattering can also result in spots at locations
of forbidden reflections using kinematical theory, signifi-
cantly complicating the application of kinematical theory
to electron diffraction analysis25,30,31.

While there are programs that attempt to solve for
structural information from dynamical electron diffrac-
tion patterns, these brute force simulations are very com-
putationally intensive and require pre-existing structural
knowledge about the potential systems present11. These
challenges can be somewhat mitigated by utilizing preces-
sion electron diffraction (PED), where the incident elec-
tron beam is rotated around the central axis of the mi-
croscope and a diffraction pattern taken at each rotation
angle. This results in PED pattern, which is a summa-
tion of each of these individual patterns, and therefore
serves to limit the contributions of dynamical scatter-
ing effects to the full PED pattern and renders kine-
matical theory more suitable22,28,32,33. However, since
collecting PED patterns requires specific hardware that
many TEMs do not possess, dynamical diffraction pat-
terns are still quite common and remain much more diffi-
cult to analyze. Due to the deviations between dynamical
and kinematical diffraction, models trained using elec-
tron diffraction patterns simulated using the kinematical
approximation will struggle significantly to predict pat-
terns containing reflections generated by multiple scatter-
ing events. To mitigate this issue, we have generated a
dataset of simulated dynamical diffraction patterns, with
a wide range of thicknesses and crystal orientations, to
ensure our model is prepared for a broad of a set of real
world experimental conditions.

Due to the widespread adoption of fast direct elec-
tron detectors, we can now quickly measure thousands or
even millions of diffraction patterns from a sample34,35.
These datasets are typically comprised of 2D diffrac-
tion patterns recorded over a 2D grid of converged elec-
tron probe positions, producing a four-dimensional (4D)-
STEM dataset36. The simplest method to determine
the sample’s crystal structure from these diffraction pat-
terns is to generate libraries of diffraction patterns at
different orientations from one or more potential crystal
structures37. These simulated diffraction patterns are
then matched against experiments to determine both the
best fit orientation and phase38. There are several al-
gorithms and software packages which can perform this
automated crystal orientation matching (ACOM)26,39,40.
However, this method cannot be used to determine crys-
tal structure or orientation from structures not included
in the diffraction libraries. It is possible to jointly solve
for the relative orientations of polycrystalline grains and
use 3D electron diffraction methods to solve for the
structure41, but this requires a sufficiently large number
of orientations and extended analysis42.

Large numbers of experimental diffraction patterns can
also be analyzed with machine learning (ML) methods43.
Unsupervised ML has been used for clustering large vol-

umes of electron diffraction patterns and unmixing pat-
terns containing multiple grains44–46. These approaches
are valuable for determining regions of similarity in a
sample and for simplifying analysis of diffraction pat-
terns which are superpositions of multiple grains, as these
can be challenging to analyze without further processing.
However, clustering methods are unable to perform tasks
such as assigning a crystal system or lattice parameter
values to an unlabeled electron diffraction pattern. Ad-
ditionally, variational autoencoders have been used to de-
velop a latent representation for electron diffraction pat-
terns which can be used to cluster similar patterns47,48

and train subsequent ML models to make predictions
about physical properties of the sample when the latent
space represents convergent beam low energy electron
diffraction (CBLEED)49. However, these methods have
yet to be applied broadly to direct prediction of crys-
tal system, lattice parameters or space groups of crystals
from their electron diffraction patterns.
The most common architecture for supervised ML elec-

tron diffraction analysis is the convolutional neural net-
work (CNN), which has achieved a wide variety of ap-
plications when analyzing electron diffraction patterns.
These applications include precise strain and orienta-
tion mapping from known structures50, inverting com-
plex dynamical diffraction patterns into projected kine-
matical structure factors51, determining crystal symme-
tries in electron backscattered diffraction (EBSD)52, and
predicting space groups when focusing specifically on cu-
bic materials and a subset of cubic space groups53. More
broad crystal system classification tasks have also been
conducted with CNNs, such as hybrid models predicting
crystal structure from a inputs containing a combina-
tion of 1D and 2D electron diffraction profiles54. Among
the most robust crystal system prediction methods is55,
which generated a dataset of roughly half a million sim-
ulated kinematical electron diffraction patterns and con-
structed a CNN for crystal system prediction directly
from a single input 2D electron diffraction pattern, at-
taining an accuracy of 0.55 for simulated kinematical
data. They also developed a prediction aggregation pro-
cedure, which is based on continual pattern acquisition
until a specified level of uniformity in the predictions is
reached. This procedure attains an accuracy of 94% on
simulated kinematical data. Although this aggregated
accuracy is quite high, the requirement of continual data
acquisition until a near uniform set of predictions across
the individually acquired patterns is reached requires
that the model be integrated into the data acquisition
procedure to fully utilize this aggregation procedure.
In this work we build a hierarchical architecture of ran-

dom forest models to predict crystal system, lattice pa-
rameters and space group from electron diffraction pat-
terns. We have selected this architecture mainly due to
the ability of an ensemble of estimators to generate a pre-
diction uncertainty metric. Specifically, in this work we
derive a confidence metric for classification tasks based
on the number of decision trees predicting the most com-
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mon label, subtracted from the number of decision trees
predicting the second most common label, and divided by
the total number of decision trees. This provides a signif-
icant advantage over neural network architectures, which
are typically black box estimators, and previous studies
have shown the quantitative utility of utilizing the pre-
diction confidence derived from random forest models56.
This is particularly valuable in the case of predicting
crystal structure from electron diffraction patterns due to
the inherent uncertainty in deriving 3D information from
a 2D representation of the crystal, as ambiguity in the
diffraction pattern at some crystal orientations can cause
misidentifications even by trained experts57,58. Knowing
that there is a low vs high degree of uncertainty in the
crystal structure prediction can yield valuable informa-
tion to the user, particularly if multiple patterns from
the same material are available.

In this study, we simulate electron diffraction patterns
from 36,600 crystals, using 100 symmetry-unique orien-
tations and 100 specimen thicknesses from 2-200 nm for
each crystal. We use the Bloch wave method to include
multiple scattering from thick samples in our diffraction
pattern simulations24. We parameterize these diffraction
patterns using a polar coordinate basis. Using this pa-
rameterized representation, we develop a random forest
ML architecture which takes this basis as an input and
returns predictions of crystal system, space group, and
lattice parameter lengths. We validate our method on
individual diffraction patterns and test the accuracy of
our method applied to aggregate sets of diffraction pat-
terns to mimic the inputs from a 4D-STEM scan of a
polycrystalline sample. We also validate the use of this
architecture as an experimental analysis tool by predict-
ing a 4D-STEM scan of a sample of gold nanoparticles
(AuNPs). Finally, we have made all of our simulated
diffraction patterns freely available to researchers who
want to develop their own automated crystal structure
analysis methods.

METHODS

Diffraction Pattern Dataset Generation

To generate our simulated electron diffraction pattern
library we obtained crystal structures from the Materials
Project59, including only structures which have been ex-
perimentally observed. This generated a list of ≈50,000
materials. We then removed materials with unit cell vol-
umes greater than 1,000 Å3. This was done to ensure
efficient simulation and because materials with unit cells
this large rarely occur in nature. This produced a dataset
containing ≈36,000 materials. This dataset contains ma-
terials from all 7 crystal systems, and their distributions
can be seen in Figure S1. It is worth noting that the
crystal system distribution is not uniform, which can be
considered an advantage of this model, as it carries an
implicit bias towards more experimentally observed crys-
tal structures (i.e. orthorhombic) and away from more

uncommon ones (i.e. trigonal). For each crystal, 100
unique and non-symmetrically redundant zone axis were
selected, spanning the crystals’ fundamental zone. We
note that the sampling density for high symmetry crys-
tals (e.g. cubic) will therefore necessarily be higher than
those for low symmetry crystals (e.g. monoclinic)26. An
overview of our dataset generation procedure and the
scope of our dataset can be found in Figure 1.

Pattern Simulation

Electron diffraction patterns were simulated for each
target zone axis for each crystal using Bloch wave calcu-
lations implemented in py4DSTEM24,26,29,60. Each pat-
tern was simulated using a beam energy of 300 keV, a
maximum scattering angle of 2 Å−1, and specimen thick-
nesses from 2 nm to 200 nm thick with a step size of 2
nm. In the models trained in this work, we used only
the 20 nm thickness simulations for a total of 3.6 million
unique diffraction patterns. All thicknesses are contained
in the datasets published with this work.
We simulated our electron diffraction patterns using

the Bloch wave method. This method allows the genera-
tion of a simulated pattern by calculating the scattering
matrix using the Fourier coefficients of the crystal elec-
trostatic potential, the beam direction, and the sample
thickness29. This allows the accurate generation of a sim-
ulated pattern for an arbitrary crystal tilt and specimen
thickness. The output of each Bloch wave simulation is
an (n, 3)-sized set of n Bragg peaks, each defined by a
vector (qx,qy,I), where qx and qy are the x and y posi-
tion of the peak in diffraction space and I is its intensity.
This format is equivalent to a diffraction peak represen-
tation after Bragg disk detection as defined by Savitzky
et al. 60. As the number of spots present in each pattern
can vary widely, we performed a preprocessing step to
create a uniformly sized input to our ML models, which
is a requirement for the architecture we’ve chosen. We
decomposed each pattern into a vector of complex-valued
radial representations. Each entry in this vector is de-
fined by τm,p where m and p are the radial and angular
orders, respectively. Each radial function m has a width
of 0.05Å−1 and a number of angular modes defined by p.
τm,p is given by

τm,p =
∑

j

βm,p(q⃗)Ij(q⃗) (1)

where the sum is evaluated over all diffraction spots
contained within the radial function, Ij is the intensity
of the corresponding spot, and βm,p is defined in equation
2 below:

βm,p(q⃗) = max

(
1− ||q| −m∆q|

∆q
, 0

)
exp (i p ϕq) , (2)

where |q| =
√
qx2 + qy2 is the magnitude of each scat-

tering vector, ∆q is a chosen radial step size, ϕq =
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Fig. 1 Summary of the generation of data used to train this model. Top row: 36000 structures are extracted from the materials project,
filtering for only materials that have been experimentally observed. Bottom row: For each of these materials, 100 unique zone axes are
simulated using py4DSTEM by generating a crystal system specific orientation map to ensure the symmetrical uniqueness of each zone
axis. For each unique zone axis, 100 specimen thicknesses are simulated, from 2-200 nm with 2 nm spacing. The thicknesses are indicated
by the stack of patterns making up each unique zone axis.

atan2(qy, qx) is scattering vector angle, and m and p are
the radial and annular orders respectively. Each bin has
a total width of 2∆q, and overlaps adjacent bins by ∆q.
The top row of Figure 2 shows some examples of our basis
functions with 6-fold rotational symmetry, i.e. p = 6.

We used 41 radial bins extending to a maximum scat-
tering angle of 2 Å−1, with a step size of ∆q = 0.05
Å−1. For each radial bin, we included 13 different angu-
lar frequencies corresponding to p = 0, 1, ..., 12. We se-
lected a maximum angular frequency of 12, correspond-
ing to twice the value of the highest observed symme-
try present in our simulated dataset of 6-fold rotational
symmetry. We selected the radial step size by balancing
higher bin density with memory constraints for model
training. This yields a 533-length complex vector for
each diffraction pattern, which was converted into the
absolute magnitude and complex argument components
and stacked yielding a length 1,066 fixed sized real vector
as the input to the random forest model. An illustration
of this process is shown in Figure 2 and Figure S2.

Although our dataset contains triclinic materials, our
modeling procedure struggled significantly to predict

them accurately. The crystal system model when triclinic
is included is shown in Figure S3. The overall accuracy
on individual patterns when triclinic is included is 63%,
a decline from 67% when triclinic is not included. Partic-
ularly noticeable is the model’s insensitivity to positive
identification of triclinic systems; only 14% of triclinic
materials in the test set are correctly identified as tri-
clinic. The vast majority of triclinic materials are pre-
dicted incorrectly as either monoclinic or orthorhombic.
Since triclinic materials make up only slightly less of the
dataset than trigonal, which can be predicted success-
fully, it can likely be ruled out that the model is uni-
formly biased against triclinic due to a low volume of
triclinic training data (Figure S1). Rather, in this case
it is possible that many of these triclinic materials are
only very slightly distorted from monoclinic structures,
and therefore the model has difficulty distinguishing be-
tween them. Additionally, it is also possible that the
information contained in the 2D diffraction patterns is
insufficient to differentiate the 3D differences between
monoclinic and triclinic structures. Due to this observa-
tion, and the lack of triclinic materials in most materials
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Fig. 2 Illustration of the full model architecture. First, the radial basis transformation is applied to the input diffraction pattern(s),
represented as Bragg lists. The black spots in the first row show the location of diffraction spots, scaled by their intensities, and the rings
show example radial/angular bin pairs with 6 fold angular symmetry ranging from low (center) to high (outer) radial order. The color of
each radial basis bin represents the complex phase. Then, the crystal system is predicted and, based on this prediction, the pattern(s) are
transferred to the lattice and space group prediction models corresponding to the predicted crystal system.

science works, we have removed them from the model
presented in this work. This resulted in a final training
and validation dataset of ≈3.4 million patterns.

Random Forest Modeling

In this work we used random forest (RF) models for
crystal structure prediction. These RF models were
trained using Scikit-learn’s RandomForestRegressor and
RandomForestClassifer models61. We trained 13 distinct

random forest models to develop our full architecture.
These were: a model to predict the crystal system, 6
models to predict space group, and 6 models to pre-
dict the lattice parameter lengths, a, b, c. Each of these
6 models correspond to a crystal system, excepting tri-
clinic, and they are trained on only materials from that
crystal system. See Figure 2 for an illustration of how an
arbitrary input passes through our architecture. The hy-
perparameters of each class of model are shown in table 1.
These hyperparameters were selected due to observations
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that increasing the number of trees and the max depth
beyond the values shown in table 1 led to minimal im-
provement in model accuracy, and led to large increases
in the memory size of the models. This set of hyper-
parameters optimizes model performance and memory
constraints, where our goal was to keep each model less
than 10 GB.

Parameter Crystal Lattice Constant Space Group
Num Trees 80 80 128
Max Depth 40 100 30
Max Features all all all

The dataset was split into train and test components
using a 75/25 random train/test split function from
Scikit-learn, resulting in 2.5 million patterns for train-
ing and 0.9 million for testing. One caveat to this ap-
proach was that the random split was done along mate-
rials, such that all simulated patterns from a given mate-
rial were assigned to either the train or test group. This
was done in order to remove potential model biases due
to the model receiving patterns from the same material,
but different zone axes, in the training and test set. This
ensures that the test set was comprised entirely of mate-
rials absent from the training set. The set of training and
testing materials was preserved across the submodels as
well, ensuring that test set materials in the crystal system
model were also test set materials for each of the lattice
constant/space group models. This allows the validation
of the entire architecture using our test set, rather than
considering individual components separately.

The structure of this model allows for the input of
either individual or multiple patterns. In the case of an
individual pattern, the prediction is returned as well as
the predictions for each of the decision trees comprising
the random forest, which can be thought of as the model’s
internal confidence in its prediction. In the case of a
categorical prediction (crystal system, space group) the
most commonly predicted label across the decision trees
is assigned as the prediction. In the case of a regression
task (lattice parameters) the median value of the decision
trees is assigned as the prediction.

When the architecture is provided multiple patterns,
the predictions of each individual pattern are aggregated
to generate an ensemble prediction. In the case of a cat-
egorical prediction (crystal system, space group) the ag-
gregation is done by a weighted average of the individual
predictions. The weight attached to each individual pre-
diction is the number of decision trees predicting the most
common label, subtracted from the second most com-
mon label and divided by the number of decision trees,
in this case 80 for crystal system prediction and 128 for
space group prediction. Using this procedure, termed dif-
ference aggregation in this work, the confidence of each
individual prediction is leveraged to determine the aggre-
gate prediction. The confidence in the aggregate predic-
tion is the weighted sum of the predicted label divided
by the sum of all the weights across all the individual
pattern predictions. See Figure 3 for an illustration of

how an aggregate prediction is generated from individual
predictions for crystal system inference. For the aggre-
gate lattice parameter prediction, the median value of
the predictions of each individual pattern is returned as
the prediction.
The architecture of our crystal structure prediction

model flows as follows. First, the pattern(s) is(are) de-
composed into our radial basis representation. Second,
the radial representation of each pattern is passed into
the RF model which predicts the crystal system. This
model returns a prediction and the confidence in that
prediction. Based on the predicted crystal system, a
submodel is then selected for the prediction of the space
group and lattice parameters. Each of the 6 crystal sys-
tems used in this work has a unique model for this pur-
pose. The pattern(s) is(are) then input into these models,
which return values for the lattice parameters and space
groups.

Experimental Electron Diffraction Patterns

The performance of our random forest models on ex-
perimental data was validated using a 4D-STEM scan
of a sample of gold nanoparticles (AuNPs) on a carbon
support film. The 4D-STEM data was acquired on the
on the TEAM I microscope, operated at 300kV with a
probe convergence angle of 0.63 mrad and a step size of
2.1 nm. The diffraction patterns were recorded on the
Dectris Arina camera with a dose of approximately 400
e−/Å2. To compare the input experimental data to our
simulated data, we utilize principal component analysis
(PCA) to decompose the input vectors for our experimen-
tal data and our simulated data corresponding to FCC
Au into a two dimensional representation. This is shown
in Figure S4, which demonstrates that the experimental
data contains many patterns that are similar in scope to
our simulated FCC Au electron diffraction patterns, and
also many that are significantly different from the simu-
lated Au, demonstrating the versatility of this model on
data not directly encompassed by the simulated data.
Upon pattern acquisition, electron diffraction patterns

are processed to lists of Bragg peaks from the raw ex-
perimental pattern using py4DSTEM60. The resulting
datacube contains acquired Bragg lists at each probe po-
sition on a 256x256 grid scan. This array of patterns
is filtered to remove Bragg lists containing fewer than 5
diffraction spots. The filtered dataset is then transformed
into our radial representation and the crystal system is
predicted with our random forest model. The resulting
array of crystal system predictions is median filtered in
a 5x5 grid and pixels with a difference confidence lower
than 0.005 post median filtering are removed, as this re-
flects a very low gap between the number of trees pre-
dicting the plurality crystal system vs the second most
commonly predicted. Two possible avenues are followed
after crystal system determination: lattice prediction of
all probe positions with a median filtered crystal system
prediction using either one lattice prediction model or the
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lattice prediction model corresponding to the crystal sys-
tem prediction at that probe position. Both avenues are
utilized in this work: lattice parameter prediction using
only the cubic model, due to the fact that with a-priori
knowledge we know that FCC Au is cubic, and lattice
parameter prediction using the model corresponding to
the crystal system prediction of the individual pattern
at each probe position, simulating a situation where we
have no prior information about the crystal system.

RESULTS AND DISCUSSION

Crystal System Accuracy

The overall accuracy of our crystal system prediction
model is 67% when tested on 859,656 patterns from 8,549
previously unseen materials. A confusion matrix of the
performance of the model on the six crystal systems is
shown in Figure 4a. The on-diagonals correspond to cor-
rect predictions, and the row and column errors are the
false negative and false positive predictions, respectively.
The values are the percentage of the test dataset at-
tributed to the prediction. The largest source of error
is orthorhombic and monoclinic crystals incorrectly clas-
sified as each other. This error could stem from the sim-
ilarity in the crystal systems and the inherent challenge
in using 2D diffraction patterns to differentiate the inher-
ently 3D difference between monoclinic and orthorhom-
bic structures. Orthorhombic crystals also contain the
highest false positive prediction rate, 43% for the indi-
vidual prediction, as shown in Figure S5. We attribute
this to the abundance of orthorhombic crystals in the
training dataset, leading to an orthorhombic bias. This
seems to be the greatest indicator of inaccuracy, as the
false positive rate is strongly correlated with the preva-
lence of that crystal system in the dataset (Figure S5).
Similarly, trigonal materials have few false positives and
are the least common material in the dataset, further
supporting this supposition.

Figure 4c contains average values for the prediction
confidence of each of the corresponding entries in Figure
4a. The confidence value for a single pattern prediction
is the percentage of the individual decision trees predict-
ing the crystal system. Figure 4c shows the prediction
confidence reflects the accuracy confusion matrix, where
accurate predictions are linked to higher confidence val-
ues on average.

The prediction confidence can function as an internal
uncertainty metric and aide in interpreting the model’s
predictions. Analyzing the accurate predictions shows an
average confidence of 55% when all accurate predictions
are averaged together. Additionally, averaging the con-
fidences of the inaccurate predictions shows a decrease
in confidence to 38%, showing accurate predictions are
associated with higher confidence on average.

Although there are misprediction regions of higher con-
fidence, such as monoclinic’s misprediction as orthorhom-
bic with the same average confidence with which or-

thorhombic is correctly predicted, it is possible that mi-
nor distortions in the orthorhombic lattice make it nomi-
nally monoclinic, but still functionally orthorhombic, and
cause the model to render a higher confidence prediction.
The uniquely high symmetry of cubic materials is also
identified by the model, resulting in accurately identified
cubic materials having a prediction confidence over 20
percentage points higher than the next highest crystal
system.

Crystal System Accuracy of Aggregate Predictions

The first component of this work produced a crystal
system accuracy of 67% on individual patterns and de-
veloped a heuristic for inferring the prediction’s accu-
racy based on the model’s internal confidence. However,
often many diffraction patterns are taken in an exper-
iment, ideally at multiple orientations. Therefore, we
have also developed an architecture to examine predic-
tions across multiple patterns and aggregate them into
a single prediction. This approach is particularly use-
ful for situations where the user is varying the pattern
acquisition zone axis, either through sample tilting or
by sampling diffraction patterns from multiple individual
particles that are randomly oriented, and allows a higher
accuracy and stronger confidence prediction of the crys-
tal structure. The aggregate prediction is determined
by a weighted average of the individual patterns, termed
difference aggregation, as described in the methods and
shown in Figure 3.
When using the predictions generated from aggregat-

ing 10 patterns at different orientations into a unified pre-
diction, the crystal system prediction accuracy increases
to 79%. The explanation for this increase in accuracy can
be seen in Figure 3. In Figure 3, individual predictions of
three electron diffraction patterns are shown, and these
represent the three main types of predictions rendered by
the model trained on individual patterns. The first, Fig-
ure 3a,d, is an accurate prediction with high confidence,
showing that 47 of the 80 decision trees in the random
forest model make the same prediction as the most com-
mon prediction, in this case trigonal. Using the difference
aggregation method, this yields a prediction of trigonal
with a weight of (47 - 20)/80 = 0.3375, where 20 is the
number of decision trees predicting monoclinic, the sec-
ond most common prediction. The second type, Figure
3b,e, is a correct prediction that occurs with low confi-
dence. In this case, the model returns a prediction of
trigonal but only 26 of the 80 decision trees make the
same prediction. Additionally, an appreciable 19/80 de-
cision trees make the incorrect prediction of cubic. This
leads to a prediction of trigonal with very low weight,
(26-19)/80 = 0.0875. The third case is an inaccurate
prediction, which also typically occurs with low confi-
dence. This case is illustrated in Figure 3c,f, where the
model incorrectly assigns the material as tetragonal, but
only 24 of the 80 decision trees predict this. Additionally,
an almost identical number, 21, predict trigonal, show-
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Fig. 3 How aggregate predictions are generated from a set of individual electron diffraction patterns from the same material. Figure 3a-c
shows a subset of the raw individual patterns, d-f shows the predictions on those patterns and g shows the resulting aggregate prediction.
The true crystal system for this material is trigonal.

ing an extreme lack of confidence in this prediction. This
yields a prediction of tetragonal with a very low weight,
(24-21)/80 = 0.0375 .

The difference aggregation method emphasizes predic-
tions that occur with high confidence, which are often
more accurate. Additionally, as can be seen in 3c, low
confidence predictions occur when the acquisition is quite
off zone, making understanding the pattern more difficult
for both modeling and human experts. Figure 3 shows
that by taking this aggregate of 10 patterns on this mate-
rial, the incorrect predictions are simply lumped into the
aggregate, and often contribute very little weight to the
aggregation. This produces a high confidence prediction
of trigonal, where its weighted contribution is roughly 3
times that of the next highest, tetragonal. The confu-
sion matrix shown in Figure 4b shows the results of run-
ning our entire test set through this architecture, where
10 patterns across different crystal orientations are each
predicted individually and then aggregated to serve as a
final prediction for that material. The crystal system ac-
curacy improves by 12 percentage points in the aggregate
case, increasing from 67% to 79%. The highest percent
increases come from trigonal and hexagonal, which im-
prove by 34% and 26%, respectively. The lowest comes
from cubic, which improves by only 3%. This, however, is

likely a reflection of how highly accurate the cubic predic-
tion was on the individual case. The confusion between
orthorhombic and monoclinic, and the general overpre-
diction of orthorhombic, has a lower prevalence in the
aggregate case. The greatest improvement comes from
the inaccurate prediction of monoclinic when the true
value is orthorhombic, which falls from 6% of the test set
to only 2.1% in the aggregate case.

Figure 4d shows the confidences of the aggregate
predictions, which is defined as the percentage of the
weighted sums making that prediction, not to be con-
fused with the percentage of individual decision trees
which determined model confidence for the predictions
on individual patterns in Figure 4c. As with the indi-
vidual confidences, the highest values for the prediction
confidence in Figure 4d run along the diagonal of the
confidence confusion matrix. However, in comparison to
Figure 4b the diagonal stands out as higher confidence
than the inaccurate predictions, particularly around or-
thorhombic and monoclinic confusions, which was an is-
sue in the individual case. A simple average of the con-
fidence of every material correctly predicted gives an av-
erage confidence of 88%. A similar procedure for the
inaccurate predictions shows the average confidence falls
to 66%.
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Fig. 4 Prediction accuracy and confidences for individual patterns and aggregate predictions. The values in (a) and (b) are the percentage
of the test set representing that prediction/true pairing. (a) shows the predictions on individual patterns while (c) shows their prediction
confidences, calculated by determining the percentage of decision trees in the random forest model corresponding to the predicted crystal
system. (b) shows the predictions on aggregate patterns and (d) shows the corresponding confidences, calculated by determining the
percentage the weighted aggregation values corresponding to the predicted crystal system.

Additionally, examining a column of the confidence
confusion matrix, as in the individual case in Figure 4c,
shows the highest value is the diagonal value, and often
by a margin greater than 10. Therefore, setting a crys-
tal system specific threshold prediction confidence for a
prediction to be considered trustworthy may allow the
systematic determination of accuracy based on predic-
tion confidence. This idea is further examined in Figure
S6, which visualizes the frequency of accurate vs inaccu-
rate predictions having high and low confidence. For the
cubic, hexagonal, tetragonal and trigonal predictions, a
higher confidence prediction is visibly linked to a greater
change of accuracy in the crystal system prediction for
individual pattern predictions and aggregate predictions

(Figure S6). The high number of materials and patterns
in the test set makes it possible to determine the likeli-
hood a prediction is correct based on its confidence. For
example, an individual pattern hexagonal prediction with
a confidence of between 0.3 and 0.35 has only roughly a
66% chance of being correct, while a hexagonal predic-
tion with a confidence of between 0.5 and 0.55 is correct
over 90% of the time. The confidence is a less useful met-
ric in the individual pattern case for orthorhombic and
monoclinic, given that the correct predictions are often
rendered with low confidence. In the 10 pattern aggre-
gate for these crystal systems this is mitigated somewhat
by a higher density of high confidence predictions, and
the confidence is much more strongly linked with accu-
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racy than in the individual pattern case.

Lattice Parameter and Space Group Accuracy

Upon determination of the crystal system, each pat-
tern is then input into the corresponding lattice con-
stant/space group model. We trained 12 models to ac-
complish this task, and these 12 models are comprised
of 6 sets of 2, with each set of 2 corresponding to lattice
parameter and space group prediction models for each
of the 6 crystal systems studied. For example, as seen in
Figure 2, once trigonal is predicted as the crystal system,
the model then flows into the space group and lattice pa-
rameter prediction models trained specifically on trigonal
materials.

Figure 5 shows the accuracy of the lattice and space
group models on each crystal system when using the lat-
tice/space group model matching the pattern’s predicted
crystal system, regardless of whether this prediction is
correct. It is important to note how this impacts the
topline accuracies, as we are including situations where
a pattern’s crystal system has been mispredicted. In the
case of space groups, the result is straightforward as,
for example, a space group prediction using the hexag-
onal model on a trigonal material mislabeled hexagonal
is guaranteed to be incorrect. The hexagonal model will
still return a space group prediction, however, it will only
predict from hexagonal space groups.

The lattice parameter prediction, however, presents a
more complex case since the lattice prediction can still be
reasonably accurate even if the crystal system has been
misidentified. This is especially true for boundary cases
between crystal systems. For example, if a crystal with
very similar, but not exactly the same, values for a, b, and
c is called a cubic by the crystal system prediction model,
the cubic model may return a reasonable lattice predic-
tion. Figure 6 and Figures S7-S9 show the inaccurate
crystal system identifications result in lattice parameter
predictions that are less accurate on average, although
they occasionally return highly accurate predictions.

The median prediction error was chosen to represent
the accuracy of the lattice prediction models due to the
high degree of skew found in histograms of the absolute
error in virtually every crystal system and lattice con-
stant (Figures S8 and S9). The individual pattern pre-
diction is taken from the median prediction of the 80 trees
in the random forest model, as this was shown to perform
far better than the mean value. The predicted values for
the 10 pattern aggregate prediction are determined by
taking the median result across the 10 patterns. In the
cubic case, shown in the red row in Figure 5, a = b = c
and therefore the median error is the same for each pa-
rameter, with a median absolute error of 0.03 Å and 0.02
Å for the individual and aggregate cases, respectively.
Since cubic materials are also identified with high accu-
racy from the crystal system prediction, this model can
produce a very detailed and accurate quantitative pre-
diction of the crystal structure for a cubic material.

Tetragonal, hexagonal and trigonal materials follow a
similar pattern in Figures 5 and 6, where, since a = b,
both of these parameters are predicted with a median ab-
solute error of around 0.1 Å for the individual case, with
a consistent improvement of roughly 33% when switching
to the aggregate case. The c axis, however, is harder to
identify, and the median absolute error for this parame-
ter is higher and more variable across these three crystal
systems. Hexagonal materials retain a reasonable accu-
racy with a median absolute error of 0.26 Å and 0.14 Å
for individual and aggregate patterns respectively. Trigo-
nal and tetragonal are noticeably worse for the individual
case, both between 0.5 Å and 0.6 Å. However, tetragonal
improves far more in the aggregate case, dropping to 0.26
Å while trigonal remains at 0.40 Å. This higher error is
likely due to the higher variability in c across these mate-
rials, as well as the presence of a few very high c values in
the simulated dataset which introduces more uncertainty
into the prediction and causes a few large outliers. The
higher spread of high c values is particularly noticeable
in the trigonal materials in Figure 6 and Figure S7, but
is clearly defined in all three of these systems.
Additionally, higher values of c present a challenge for

our radial basis representation. One possible explanation
comes from the underlying physics of a material with a
long c axis and how this is reflected in electron diffraction.
Such materials produce patterns with spots very close to
the origin and very close to each other, as a long c axis in
real space corresponds to very close spacing in reciprocal
space. In the case of an unusually long c axis, such as
30 Å, this produces spots 0.03 Å−1 apart, which can be
challenging for our radial basis representation, which uses
radial bins currently set to have a ∆q of 0.05 Å−1 (see
equations 1 and 2). Model performance on the c axis
begins to deteriorate slightly after 10 Å, and becomes
far more pronounced after 20 Å, as shown in Figure 6
and Figure S7. This is to be expected given sampling
frequency of our basis set, as the Nyquist frequency, or
the location where a decomposition begins to struggle to
regenerate the underlying distribution, begins at half the
resolution of the decomposition basis. In our radial basis,
this is 0.1 Å−1, corresponding to a lattice parameter of 10
Å. Another likely explanation is the low representation
of long c axis materials in the training set. This makes
the model unwilling to predict high values for any lattice
constant. Additionally, as many experiments are unlikely
to feature materials with unit cell parameters of greater
than 20 Å, this is unlikely to be a major detriment to
this model’s applicability to most experimental electron
diffraction patterns.
The introduction of different values for a, b, and c

in orthorhombic materials results in a decline in model
accuracy across all three parameters, likely stemming
from the difficulty in extracting predictions of a unit cell
with three unique dimensions from two-dimensional in-
put. The degeneracy in the 2D electron diffraction pat-
tern created by three different unit cell lengths makes
deducing the lattice parameter values for orthorhombic
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Fig. 5 Summary results for the full model architecture. In the crystal system column, the True Pos Rate is the percentage of correct
predictions made of that crystal system. For example, in the individual case 92% of cubic predictions are correct. The other 8% are
incorrectly called cubic. The Sensitivity denotes the percentage of the total diffraction patterns within that crystal system correctly
identified by the model. For example, in the individual case 86% of cubic materials are labeled cubic, while 14% are labeled as some
other crystal system. The space group accuracy is the simple percentage correctly predicted, and the lattice constant error is the median
error of the patterns predicted to correspond to that crystal system when they’re inputted into the lattice prediction model. Both lattice
parameter and space group prediction accuracies include materials incorrectly assigned to that crystal system.

very challenging, and even the moderate degree of cor-
relation between the predicted and true lattice constants
found in the orthorhombic plots in Figure 6 is surprising
from a fundamental perspective. Across a, b, and c axes
a similar pattern exists as the c predictions of tetrago-
nal, trigonal and hexagonal, where the lower valued lat-
tice parameters are predicted with reasonable accuracy
while some of the larger ones open up more significant er-
rors, which are commonly underestimates (Figure 6 and
Figure S7. Adding further dimensions to the lattice in
the monoclinic crystal system renders the model almost
completely unable to yield any meaningful lattice infor-
mation, which is likely a physical limitation of working
with two-dimensional data. The struggles with mono-
clinic which, due to the fourth degree of freedom, is no-
ticeably worse than orthorhombic, likely also stems from
correlations between the errors, i.e. if the model is unable
to predict the a axis correctly it will likely fail on b and c
as well. This is noticeably different from the orthorhom-
bic case, which is able to deliver reasonable predictions
on the shorter axes. This accurate prediction of some
component of the unit cell may allow the model to use
these predictions to make an inference about the longer
axes. A possible future direction to mitigate these issues
is to train this model using PED data, which will encode

3D information into the diffraction pattern and will be
better able to provide information on a 3D system22.

The space group prediction models are able to de-
liver nearly perfect accuracy on cubic materials, correctly
identifying the space group almost 90% of the time on
individual patterns, with an improvement of a few per-
centage points in the aggregate case. Hexagonal, trigonal
and tetragonal retain a reasonable accuracy of 50-70%
on individual patterns while improving to 70-90% in the
aggregate case. Monoclinic and orthorhombic begin to
breakdown somewhat, mainly due to the high number of
false positives in monoclinic and orthorhombic. These
false positives introduce a large set of patterns that the
model is guaranteed to mispredict. This is a relatively
minor issue in cubic, hexagonal, trigonal and tetragonal,
with tetragonal being the highest false positive rate at
15% in the aggregate case. However, in the 10 pattern ag-
gregate case for monoclinic and orthorhombic, 28% and
29% of predictions are false positives, respectively. The
overall space group accuracy is 45% and 40% for each
of these crystal systems, including predictions on mis-
classified crystal systems. Therefore, using a conditional
probability, we can deduce the monoclinic/orthorhombic
accuracy conditional on correctly predicting the crystal
system. When the initial crystal system is predicted cor-
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rectly, the space group accuracy is 63% and 56% for mon-
oclinic and orthorhombic, respectively. Improving the
crystal system prediction for these crystal systems or hav-
ing a-priori knowledge of the crystal system for an exper-
imental test sample will lead to a significant increase in
space group accuracy. As noted above in the lattice pre-
diction discussion, a possible future direction to improve
crystal system accuracy is to train this model using PED
data. Precession better preserves the intensity-ordering
and forbidden reflections inherent to the space group,
which will be better able to provide information on a 3D
system, and should significantly enhance crystal system
identification and space group accuracy. This is an active
area of future work, and precession electron diffraction
simulations are currently being added to py4DSTEM for
this purpose.

Experimental Validation

To test the accuracy of this model on experimental
data we applied our architecture to a 4D-STEM scan of
gold nanoparticles (AuNPs). The 4D-STEM scan was
filtered to ensure predictions weren’t returned on probe
positions where crystals weren’t present and to remove
low confidence predictions. This was done by removing
probe positions where there were fewer than 5 diffrac-
tion spots, median filtering the results in a 5x5 grid and
removing pixels with a difference confidence lower than
0.005 post median filtering, as this reflects a very low
gap between the number of trees predicting the plurality
crystal system vs the second most commonly predicted.
The results are shown in Figure 7.

Figure 7b and c show the model can accurately iden-
tify around half the AuNP pixels as cubic, and when
weighting the predictions by prediction confidence we see
the cubic predictions are slightly more confident than the
hexagonal and tetragonal predictions, on average (Figure
7c).

While many crystals in Figure 7 are correctly identi-
fied as cubic, it is clear that an appreciable amount are
also predicted to be hexagonal, and an additional smaller
amount are predicted tetragonal. The mispredictions of
hexagonal and tetragonal can be explained by the exis-
tence of multiple orientations for FCC Au, such as the
111 axis, where the electron diffraction pattern is iden-
tical to that of a hexagonal pattern57,58. Therefore, it
would be beyond the scope of this model to return a pre-
diction of cubic for such an electron diffraction pattern.
This is further demonstrated in Figure 7d-f, which shows
extracted electron diffraction patterns that are predicted
cubic, hexagonal and tetragonal, respectively. Further-
more, the propensity for small AuNPs to form multiply-
twinned structures means that many diffraction patterns
may be integrating more than one twin species, which is
a feature not present in the training data for our model62.

When the prediction type is shifted from a per pixel
prediction to a per particle prediction, done by isolating
and predicting the brightest diffraction pattern in each

particle, the prediction spread falls to a roughly 40:40:20
cubic:hexagonal:tetragonal ratio. This is likely due to
the issues outlined above, and additionally shows a pref-
erence for the [111] zone axis, as this axis appears to
regularly show up as the brightest pattern in these crys-
tals, while aggregating over the particle as a whole yields
more particles labeled cubic. This can be explained by
the preferential orientation of AuNPs being in the 111
direction63. Additionally, previous work predicting crys-
tal structure of AuNP samples from electron diffraction
patterns found an almost identical spread of predictions
between hexagonal and cubic as presented in Figure 7c,
showing that degeneracy in FCC cubic AuNPs is a com-
mon problem across AuNP samples57.

An additional utility of this model is the prediction
of the lattice constant. These results are shown in Fig-
ure 7g-h. Figure 7g shows the pixels predicted in Fig-
ure 7b colored by their lattice constant prediction rather
than their crystal system prediction. Figure 7h shows
that, despite the rather large spread of per pixel pre-
dictions, the median lattice constant prediction is 4.03
Å, very close to the true lattice constant for Au of 4.08
Å64. Given the high standard deviation of predictions,
the exactness of this result shouldn’t be interpreted as
experimental accuracy to 0.05 Å, but it does show a high
degree of accuracy in the aggregate case of lattice param-
eter prediction. For the results shown in Figure 7g-h, all
patterns were predicted with the cubic lattice parameter
model. The spread using the lattice parameter model
corresponding to each individual pixel’s crystal system
prediction is shown in Figure S10. Figure S10 shows
that using the hexagonal/tetragonal model for patterns
predicted hexagonal/tetragonal leads to a series of pre-
dictions where the c axis is predicted slightly higher than
a and b, resulting in a mild underestimation of the a
and b axis and a slightly larger overestimation of the c
axis. These results are consistent with situations where
patterns from the incorrect crystal system are predicted
using a different lattice parameter model (Figure 6 and
Figure S7).

One existing experimental limitation is the inability to
predict patterns comprised of multiple grains62. This
is because the training data for the model was com-
prised only of diffraction patterns from individual grains.
Therefore, the addition of patterns comprised of multi-
ple grains appears as additional unexpected diffraction
spots which the model is then unable to separate into
component patterns. This results in the model typically
assigning these patterns almost exclusively as orthorhom-
bic or monoclinic, as it attempts to determine what indi-
vidual crystal could produce the multiple grain pattern.
In instances where this model is returning a higher than
expected volume of orthorhombic or monoclinic predic-
tions, the inputted patterns may be comprised of multi-
ple grains. Future work on this model will augment the
training data to include patterns with multiple grains, to
ensure increased robustness of this workflow.
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Fig. 6 2D histograms showing the accuracy of the 10 pattern aggregate lattice parameter prediction on materials predicted to correspond
to each crystal system. The orange colors denote mispredictions in the crystal system while the blue shows correct predictions. Increasing
color density shows more measurements at that location. The diagonal lines on each plot indicate the location of perfect predictions.

CONCLUSION

In this work, we simulated dynamical electron diffrac-
tion patterns of 20 nm thickness, and these simulated
patterns were used to train a hierarchical architecture
of random forest models to identify crystal system,
space group and lattice constants from unlabeled elec-
tron diffraction patterns. This hierarchical model first
predicts the crystal system and then transfers the pat-
tern into a crystal system specific submodel to predict
space group and lattice parameters. The crystal system
model returns an accuracy of 67% when predicting indi-
vidual patterns and 79% when predictions of 10 patterns
on different zone axes are aggregated together using a
difference confidence aggregation metric. Additionally,
we predict the uncertainty in model predictions for sin-
gle and multiple pattern inputs. This uncertainty is cor-
related with the accuracy of the prediction. The space
group prediction has an accuracy of ≈70-90 % for cubic,
hexagonal, trigonal and tetragonal crystal systems, while
being less reliable on orthorhombic and monoclinic sys-
tems. The lattice prediction varies from median errors
of ≈0.01-0.5 Å for cubic, hexagonal, trigonal and tetrag-
onal crystal systems, while ranging from ≈0.5-1.5 Å for
monoclinic and orthorhombic. The main difficulty in the
prediction of crystal structure in general, and particularly
the lattice prediction of orthorhombic and monoclinic, is
the inability to extract complete 3D information from
2D data. Future work will mitigate this issue by training
the model on precession electron diffraction data, which

encodes 3D information into the patterns and better pro-
vides information on a 3D system. This also explains the
increase in accuracy when aggregating patterns taken at
multiple zone axes. We applied this architecture to a
4D-STEM scan of gold nanoparticles, demonstrating our
ability to accurately predict crystal structure and lattice
constants. This architecture can be used to significantly
accelerate diffraction pattern analysis, especially for situ-
ations where the crystal structure is unknown or has not
been previously observed. Additionally, integration of
this model with a 4D-STEM experiment would allow on
the fly labeling of an entire sample with crystal informa-
tion and detection of outliers. Beyond the construction of
this model architecture, the included diffraction dataset
of ≈360 million diffraction patterns will benefit the sci-
entific community by providing a robust training set for
future data driven and automated analysis studies.
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Fig. 7 Application of the crystal structure prediction model on a set of experimental electron diffraction patterns taken from a sample
of AuNPs. (a) the dark field image of the scan. (b-c) the crystal system prediction where red corresponds to cubic, orange to hexagonal
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higher prediction confidence. The black rectangle in (c) corresponds to the raw pixel counts corresponding to each crystal system and
the bars indicate the counts weighted by prediction difference confidence. (d-f) sample electron diffraction patterns predicted each of the
three returned crystal systems. (g-h) the lattice parameter prediction where (g) are the same pixels predicted in (b).
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ment using precession electron diffraction tomography and dy-
namical diffraction: theory and implementation,” Acta Crystal-
lographica Section A: Foundations and Advances 71, 235–244
(2015).

12S. D. Griesemer, L. Ward, and C. Wolverton, “High-throughput
crystal structure solution using prototypes,” Physical Review
Materials 5, 105003 (2021).

13C. Ophus, “Quantitative scanning transmission electron mi-
croscopy for materials science: Imaging, diffraction, spec-
troscopy, and tomography,” Annual Review of Materials Re-
search 53 (2023).

14J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov,
T. J. Booth, and S. Roth, “The structure of suspended graphene
sheets,” Nature 446, 60–63 (2007).

15Y. Yang, C.-C. Chen, M. Scott, C. Ophus, R. Xu, A. Pryor,
L. Wu, F. Sun, W. Theis, J. Zhou, et al., “Deciphering chemical
order/disorder and material properties at the single-atom level,”
Nature 542, 75–79 (2017).

16P. Lu, L. Zhou, M. J. Kramer, and D. J. Smith, “Atomic-scale
chemical imaging and quantification of metallic alloy structures
by energy-dispersive x-ray spectroscopy,” Scientific reports 4,
3945 (2014).

17S. Wenner, L. Jones, C. D. Marioara, and R. Holmestad,
“Atomic-resolution chemical mapping of ordered precipitates in
al alloys using energy-dispersive x-ray spectroscopy,” Micron 96,
103–111 (2017).

18K. Jenkinson, L. M. Liz-Marzán, and S. Bals, “Multimode elec-
tron tomography sheds light on synthesis, structure, and proper-
ties of complex metal-based nanoparticles,” Advanced Materials
34, 2110394 (2022).

19M. W. Martynowycz and T. Gonen, “From electron crystallog-
raphy of 2d crystals to microed of 3d crystals,” Current opinion
in colloid & interface science 34, 9–16 (2018).

20B. L. Nannenga and T. Gonen, “The cryo-em method microcrys-
tal electron diffraction (microed),” Nature methods 16, 369–379
(2019).

21J. Zuo and J. Spence, Electron microdiffraction (Springer Science
& Business Media, 2013).

22M. Gemmi, E. Mugnaioli, T. E. Gorelik, U. Kolb, L. Palati-
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Fig. S4 Principal component analysis (PCA) of the experimental electron diffraction data used to validate this model (blue) compared
to the simulated electron diffraction patterns of FCC Au (orange) showing the first two principal components of the input vector. The
experimental data is partially transparent, meaning darker blue regions are indicative of more data at those positions.
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Fig. S9 Error histograms for lattice parameter prediction from 10 aggregated patterns. The histograms show the frequency where a crystal
system is predicted inaccurately (orange) stacked on top of correct predictions (blue).
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Fig. S10 Lattice parameter predictions when the predicted crystal system lattice parameter model is used. The a and b axes are the same
for all predicted crystal systems, therefore, only the predictions of the a and c axes are shown.




