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Abstract of the Dissertation 

Using genetic variation to discover novel factors in cross-tissue signaling 

 

by 

Cassandra Van 

Doctor of Philosophy in Mathematical, Computational, and Systems Biology 

University of California, Irvine, 2024 

Assistant Professor Marcus Seldin, Chair 

 

The study of cross-tissue communication has become more significant to the study of 

metabolic regulation and physiological homeostasis, from the level of fundamental signaling 

studies to the consideration of clinical treatment therapies. But these communications are not static, 

plain-truth relationships, as they are also influenced by factors like genetic sex, the environment 

or diet, and individual variation in the subjects studied.  

In this dissertation, I showcase my graduate work studying patterns of cross-tissue 

communication by using different contexts, like genetic sex, cell-type interactions, and functional 

pathways, through the application of a published cell-type deconvolution pipeline called ADAPTS. 

Cell type deconvolution allows me to estimate cell type proportions in bulk RNA-sequencing data, 

which I can then correlate with expression in other cell types or tissues. First, I investigated the 

influence of genetic sex on cell-type interactions of a single tissue of origin, skeletal muscle. I then 

expanded the approach to deconvolute multiple tissues, and these cell type proportion estimates 

were incorporated into a publicly available web tool, GD-CAT, developed by the lab. Finally, I 

applied the ADAPTS pipeline as part of the discovery of a novel factor affecting heart function, to 

gain a better understanding of the systemic regulation of heart failure. 
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Two supplementary tables are included with this dissertation, relevant to Chapter 1. 

Supplemental Table 1 contains the DESeq2 statistics from our global survey of myokine 

correlation with genetic sex. Supplemental Table 2 contains the cell marker genes that were used 

to identify the muscle cell types and their full gene expression signatures.



1 
 

Background 

Looking at the most prevalent non-communicable causes of death globally, as reported by 

the WHO1, the list is headed by heart failure, followed by stroke, respiratory diseases, and kidney 

diseases to highlight a few. These diseases have all been widely studied over the years and have 

been shown to be systemic and affect multiple organs2–7. In addition, studies of COVID-19 from 

the recent pandemic have only reinforced how interconnected our bodies are and how crucial inter-

organ communication is to maintaining physiologic homeostasis8. These communications are 

governed by circulating bioactive factors and can be identified by broad surveys of all genes within 

RNA-sequencing measures across tissues within a population9,10. Expanding on this intuition, 

parallel strategies can be used to understand how individual genes mediate signaling across 

metabolic tissues through correlative analyses of gene variation between individuals. Thus, a 

comparison of quantitative levels of gene expression relationships between organs in a population 

could aid in understanding cross-organ signaling. 

Organs consist of many different cell types which all function in concert to maintain the 

body, and RNA-sequencing is one method widely used to investigate mechanisms at this level. 

When studying signaling, especially involving secreted factors, it is important to be able to parse 

the signaling signatures that correspond to particular cell types to be able to follow their 

interactions to drive specific mechanisms. These can be investigated in vitro, but isolating and 

applying one cell type at a time to a tissue would be a daunting task. Alternatively, cell-type 

expression signatures can be used in silico to study cross-tissue communications. To obtain those 

cell type expression signatures, one might dissect out a tissue and purify for constituent cell types, 

but this can be technically difficult and time-consuming. Another way is to perform single-cell 

sequencing of a tissue and computationally cluster the cells into likely cell types; however, single-
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cell sequencing results are sparse in expression markers and relatively expensive to obtain in 

comparison to the density of bulk RNA-sequencing results, also often obtained from less tissue. 

Accordingly, the majority of publicly available data consists of dense bulk RNA-sequencing 

results alongside sparse single-cell sequencing results and some purified cell-type sequencing data. 

Deconvolution methods computationally combine the information gathered in both bulk and 

single-cell sequencing to leverage both the specificity of the single-cell data and the density of 

data in the bulk data. This allows the correlation of specific genes or the abundance of specific cell 

types within tissues or, if available in multiple tissues, across tissues, for more systemic studies.  

Throughout the work described in this dissertation, I utilized a published package called 

ADAPTS to perform my cell-type deconvolution11. This package allows the import of a matrix 

containing the single-cell expression signatures for a specific tissue (ex. a labeled data matrix from 

a Seurat object) and a matrix containing the bulk sequencing gene counts in the matching tissue 

across the individuals to be deconvoluted. In this case, the bulk data consisted of 310 individuals 

(210 males, 100 females) from the GTEx database. Users can compare the results of several 

popular deconvolution algorithms to obtain the most reliable results and output the according cell 

type proportion estimates in each individual, which would allow investigation of cell type variation 

across individuals, as well as correlations leveraging that variation. Additionally, the 

deconvolution of multiple tissues allows focused interrogation of tissue cross-talk through the lens 

of cell-type specific signaling. 

Cross-tissue analyses are crucial in the study of systemic diseases, but the sheer magnitude 

of the data involved necessitates prioritization of potential targets. Deconvolution is a 

computational concept that allows investigators to utilize the abundance of informationally dense 

bulk sequencing data to discover specific biologically relevant interactions. The ADAPTS pipeline 
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was well-appointed for the deconvolution of our datasets, and I was ultimately able to discover 

and validate an unexpected function for an endocrine factor affecting heart function.  
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Chapter 1 

 

Genetic variation of putative myokine signaling is 

dominated by biological sex and sex hormones. 

Leandro M. Velez*, Cassandra Van*, Timothy Moore, Zhenqi Zhou, Casey Johnson, Andrea L. 

Hevener, Marcus M. Seldin. eLife 11, e76887 (2022). 

* Authors contributed equally 

 

 

 

Preface 

The work presented here in Chapter 1 arose from the understanding that muscle is one of 

the most influential cornerstones of our health, not only in directly enhancing our physical prowess 

but also in maintaining our metabolic homeostasis and cognitive function, by secreting myokines 

that affect our systemic physiology and other organs directly. The effect of genetic sex difference 

is readily apparent in the observation of many animal populations not only in the development of 

the sexual organs, but also in general physiology like muscle development, fat accumulation, and 

metabolic homeostasis. Although we know that there are some differences in skeletal muscle 

amount and cell type between males and females, it is not well-understood how myokines might 

interact with the rest of the body to yield these differences, and I specifically wanted to know what 

insights we might glean from more focused cell-type analysis. We found that when global myokine 

expression and cell type composition estimates are averaged across the variation in individuals, no 

overt sex differences were observed. In contrast, when those myokines, globally or deconvoluted 

by cell type, were correlated with expression in specific other tissues, strong sex-specificity was 

observed, suggesting that it is the relationship between tissues and signaling schemas that truly 

captures the majority of the variation between sexes. 
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Introduction 

Proteins secreted from skeletal muscle, termed myokines, allow muscle to impact systemic 

physiology and disease.  Myokines play critical roles in a variety of processes, including metabolic 

homeostasis, exercise improvements, inflammation, cancer, and cognitive functions12–17.  Several 

notable examples include key peptide hormones such as myostatin and interleukin-6 which exert 

potent actions in regulating autocrine/paracrine muscle physiology18 and beneficial exercise-

induced endocrine signaling12, respectively.  Despite the clear relevance of these factors in 

mediating a multitude of physiological outcomes, the genetic architecture, regulation, and 

functions of myokines remain inadequately understood.  Given that genetic sex contributes 

critically to nearly every physiologic outcome, it is essential to consider when relating specific 

mechanisms to complex genetic and metabolic interactions.  Specifically, many metabolic traits 

impacted by myokines show striking sex differences arising from hormonal19–22, genetic19,23 or 

gene-by-sex interactions24,25. In this study, we leveraged the natural genetic correlation structure 

of gene expression both within and across tissues to understand how muscle interacts with 

metabolic tissues. Collectively, we provide a population genetics framework for inferring muscle 

signaling to metabolic tissues in humans.  We further highlight sex and estradiol receptor signaling 

as critical variables when assaying myokine functions and how changes in cell composition are 

predicted to impact other metabolic organs.    

 

Results 

Sex hormone receptors are enriched with myokine expression independent of biological sex:  

Our goal was to exploit the correlation structure of natural genetic variation to investigate 

how skeletal muscle communicates with and impacts metabolic organs.  We first assayed the 



6 
 

regulation of myokines and changes in cellular composition, then related these observations to 



7 
 

inferred cross-tissue signaling mechanisms (Figure 1A). Initially, we quantified the differential 

expression of genes encoding all known secreted proteins (3,666 total) in bulk transcriptomic 

sequencing of skeletal muscle from 210 male and 100 female individuals26.  While several notable 

myokines appeared different between sexes (Figure 1B), a striking majority of all secreted proteins 

(74%) showed no difference in expression between males and females (Figure 1C, Supplemental 

Table 1).   

To understand potential sex effects on the regulation of myokines, Gene Ontology 

enrichments were performed on genes that showed the strongest correlation with myokines 

corresponding to each category (male-specific, female-specific, or non-sex-specific). Extracting 

the top 10 pathways for each category, then visualizing the enrichments in the unique pathways, 

the top pathways that persisted in females were also always observed to overlap with the non-sex-

specific category (Figure 1D).  In contrast, the top pathways enriched for male-specific myokines 

were distinct (Figure 1D).  Notably, the female and shared pathways suggested roles in epigenetics 

Figure 1. Sex and hormone effects on global myokine regulation. A, Overall study design for integration of 

gene expression from muscle from 310 humans, single-cell RNA-seq, muscle-specific deletion of Esr1 to infer 

interorgan coregulatory process across major metabolic tissues.  B-C, Differential expression analysis for sex was 

performed on all genes corresponding to secreted proteins in skeletal muscle (myokines).  The specific genes 

which showed significant changes in each sex are shown as a volcano plot (B) and the relative proportions of 

myokines corresponding to each category at a least-stringent logistic regression p-value less than 0.05 (C). D, For 

each differential expression category based on sex shown in C, myokines were correlated with all other muscle 

genes for pathway enrichment.  Then the top 10 enriched pathways in males, females, or non -sex specific (by 

overall significance) were visualized together where number of genes corresponding to each category shown as a 

relative proportion.  E, The same analysis as in D, except instead of myokines being correlated with AR, ESR1, 

both hormone receptors, or neither, as compared to correlating with all genes. F-G, Myokines were binned into 2 

categories based on significant differential expression (logistic regression adjusted p -value<0.05) between 

muscle-specific WT and MERKO mice (F) or those that showed no change (G), then visualized as relative 

proportions within each category shown in C.  H, Midweight bicorrelation (bicor) coefficients (color scheme) and 

corresponding regression p-values (filled text) are shown for muscle MSTN ~ ESR1 or AR in both sexes (top).  

Below, correlations are shown for differential expression log2FC (color scheme) and corresponding logistic 

regression p-values (text fill) for MSTN between sexes in humans or WT vs MERKO mice.  I, Quantification of 

processed form of myostatin (Supplemental Figure 2 bottom band) relative to beta-actin in WT or MERKO muscle 

in male or female mice. p-values were calculated using a Student’s t-test.  J-K, The top 3 pathways of genes which 

significantly (p<1e-4) correlated with muscle MSTN in males (J) or females (K).  For human data, n=210 males 

and n=100 females.  For mouse MERKO vs WT comparisons, n=3mice per group per sex.  p -values from 

midweight bicorrelations were calculated using the Student’s p-value from WGCNA and logistic regression p-

values were calculated using DESeq2. 



8 
 

and RNA processing, while male-specific myokine coregulated processes were more enriched in 

metabolic pathways (ex. NADH metabolism) (Figure 1D).  Further, a majority of myokines 

showed a strong correlation with receptors mediating functions of androgens (androgen receptor 

– AR), estradiol (estrogen receptor α – ESR1), or both, regardless of sex-specific expression 

(Figure 1E). We note that the expression of hormone receptors themselves was also not 

significantly different between sexes (Supplemental Figure 1).   

To infer causality from hormone receptor regulation, we performed RNA-sequencing on 

mice lacking Esr1 in skeletal muscle specifically (MERKO) and integrated these analyses with 

human myokine estimates.  While myokines not 

regulated by Esr1 showed little sex-specific 

differences in expression, those that were estrogen-

dependent showed a much stronger representation of 

sex-specificity, in particular in males (Figure 1F-G).  

Among these was the master regulator of skeletal 

muscle differentiation and proliferation, myostatin 

(MSTN), where hormone receptor correlations and 

gene expression were markedly higher in males 

compared to females (Figure 1H).  Further, ablation 

of Esr1 in mice uniquely drove expression changes in 

males (Figure 1H).  These data suggest interactions 

between biological sex and ESR1 to tightly regulate 

MSTN in males, whereas other factors could 

contribute more in females.  

Supplemental Figure 1. Skeletal muscle sex 

hormone receptor expression between 

sexes.  Normalized gene expression levels for 

androgen receptor (AR) or estrogen receptor 

(ESR1) (y-axis) in each sex (x-axis).  None of 

the expression levels were significantly 

different between sexes (Student’s t-test). 



9 
 

Given that, like many bioactive secreted proteins, the regulation and sex-specificity of 

myostatin are additionally controlled via post-transcriptional mechanisms27, we next explored 

gene expression changes at the protein level.  Immunoblots were performed on skeletal muscle 

from male and female WT or MERKO mice (Supplemental Figure 2).  Quantification of the 

processed form of myostatin showed 

that, consistent with the RNA-

sequencing in mice and humans, the 

protein trended toward higher levels 

in male compared to female mice, 

where ablation of Esr1 showed a 

reduction (Figure 1I).  Dissimilar to 

the mouse sequencing data but 

consistent with human correlations, 

female MERKO mice showed a 

reduction in the processed form of 

myostatin relative to their WT 

controls (Figure 1I).  Related to the sex-specific regulation of myostatin observed at both RNA 

and protein levels, gene expression also showed differences in functional annotations. Here, the 

most highly enriched pathways in males showed GO terms related to glycolytic metabolism 

(Figure 1J) compared to oxidative phosphorylation in females (Figure 1K).  These observations 

are consistent with previous studies which note myostatin-dependent increases in muscle mass in 

males, but not females27,28, where estradiol signaling is suggested as a mechanism mediating these 

differences.  These data demonstrate that the expression of most myokines is not different between 

Supplemental Figure 2. Immunoblot for myostatin in EDL 

muscle from WT and MERKO male and female mice.   Full 

immunoblots shown for skeletal muscle lysate blotted for 

myostatin (top) or β-actin (bottom) corresponding to different 

C57BL/6J male (left) or female (right) mice in either WT 

(floxed) or KO (floxed-cre) for skeletal muscle Esr1.  Band 

sizes shown to indicate either precursor (top band) or 

processed/LAP form (bottom band) of myostatin. 
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genetic sexes; however, interactions between sex and hormone receptors likely play important 

roles in determining myokine regulation and local signaling. 

 

Sex dominates cross-tissue pathways enriched for myokines:  

Given that expression levels of most myokines appeared similar between sexes, we next 

assessed putative functions across organs.  We applied a statistical method developed to infer 

cross-tissue signaling which occurs as a result of genetic variation29–31. Here, we assayed the 

distribution of midweight bicorrelation coefficients between myokine expression levels and global 

gene expression in key metabolic tissues including the hypothalamus, heart, intestine, pancreas, 

liver, subcutaneous, and visceral adipose tissue.  Remarkably, nearly all highly significant 

correlations between myokines and target organ genes (putative direct interactions) showed sex-

specific modes of operation (Figure 2A-H). Sex-specificity also appeared more pronounced for 

positive correlations between myokines and target tissue genes, as compared to negative (Figure 

2A-H).  Further, among these significant cross-tissue circuits, hormone receptor enrichments for 

these myokines were strongly dependent on the category (ex. significant only in females) rather 

than target tissue (Figure 2A-H).  This observation further suggests that hormone receptor levels 

(ESR1 or AR) in muscle are a stronger determinant of myokine expression compared to genetic 

sex; however, sex is suggested to dominate coregulated signaling processes across organs via 

myokines. To gauge the relative impact of muscle steroid hormone receptors across organs, the 

number of significant correlations between ESR1, AR, or both were quantified from muscle to each 

tissue.  Here, ESR1 showed an order of magnitude stronger correlations across metabolic tissues 

compared to correlations with AR or with both hormone receptors. (Figure 2I-J).  Additionally, the 

number of significantly correlated cross-tissue male ESR1 genes (Figure 2I) were three-fold higher



11 
 



12 
 

than those in females (Figure 2J).  Because both sex and ESR1 signaling appeared to contribute to 

the regulation and functions of myokines, significant cross-tissue enrichments were binned into 

categories taking into consideration whether myokines were driven by ESR1 in muscle, and/or 

showing a sex-specific mode of cross-organ significance.  This analysis suggested that a majority 

of myokines were either driven by ESR1 and signaled robustly across sexes (Figure 2K, yellow) 

or signaled differently between sexes, but regulated independently of ESR1 (Figure 2K, red).  

These categories appeared to a much greater extent compared to a combination of both ESR1-

driven myokine and sex-specific cross-tissue signaling (Figure 2K, beige) or neither (Figure 2K, 

seagreen). One notable example of predicted sex-specific signaling was observed for tumor 

necrosis factor alpha (TNFα). When compared between sexes, muscle TNFα showed markedly 

different putative target tissues (Figure 2L, left), as well as underlying functional pathways (Figure 

2L, right).  For example, overall inflammatory processes engaged by TNFα were stronger in 

adipose tissue in females; however, the same pathways were higher in the liver and hypothalamus 

in males (Figure 2L, left). Collectively, these data show that genetic sex and related sex steroid 

hormones, particularly estradiol, exert dominant roles in regulating predicted tissue and pathway 

engagement by myokines. 

 

Figure 2. Sex and hormone effects on myokine regulation. A-H, Key illustrating analysis for distribution of midweight 

bicorrelation coefficients between all myokines in skeletal muscle and global transcriptome measures in each target tissue.  

Coefficients are plotted between sexes (left), where proportions for 2SD > mean are subdivided into occurrence uniquely 

in females, males, or shared (middle).  The significant (2SD >mean) myokines identified in each category were then binned 

into hormone receptor correlations for ESR1, AR, both, or neither (right).  This analysis was performed on all myokines 

across subcutaneous adipose tissue (B), visceral adipose (C), heart (D), hypothalamus (E), small intestine (F), liver (G) and 

pancreas (H). I-J, Significant cross-tissue correlations between muscle ESR1, AR, or both hormone receptors are colored 

by tissue and shown for males (I) or females (J). K, For each tissue (y-axis), the ratio of significant cross-tissue correlations 

per muscle myokine (x-axis) are shown and colored by categories of: either the myokine regulated by ESR1 and/or a 

significant target tissue regression occurring specifically in one sex.  L, Number of significant cross-tissue correlations with 

muscle TNFα are shown for each sex and colored by tissue as in I-L (left).  The -log10(p-value) of significance in an 

overrepresentation test (x-axis) are shown for top significant inter-tissue pathways for muscle TNFα in each sex (right). 
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Muscle cell proportions are similar between sexes, but associated changes across tissues show 

sex-specificity:  
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To determine the potential impact of muscle composition on other tissues, we next 

surveyed muscle cellular proportions in the context of genetics and sex.  Single-cell transcriptomic 

sequencing of human skeletal muscle32 was integrated with the bulk data previously described 

using cellular deconvolution11 to estimate cellular composition in the population (Figure 3A). 

Here, a proportionsInAdmixture approach33 outperformed other methods (Supplemental Figure 3) 

to capture a majority of established cell populations across individuals (Supplemental Table 2).  

Similar to myokine expression, when averaged across genetic backgrounds, no notable differences 

were observed between sexes in terms of cell composition, with the exception of modestly higher 

glycolytic fiber in males, compared to elevated oxidative fiber levels in females (Figure 3B).  

Additionally, no differences were observed in the correlations within muscle between 

compositions (Supplemental Figure 4); however, after the correlation of all myokines with cell 

composition profiles, nearly every cross-tissue enrichment corresponding to an individual muscle 

cell type differed between sexes (Figure 3C).  Generally, differences in skeletal muscle cell 

abundance were associated with changes in liver and visceral adipose tissue pathways in males, 

compared to pancreas in females (Figure 3C).  In contrast to general myokine enrichments, specific 

Figure 3. Genetic variation of muscle cell proportions and coregulated cross-tissue processes.  A, Uniform 

Manifold Approximation and Projection (UMAP) for skeletal muscle single-cell sequencing used to deconvolute 

proportions. B, Mean relative proportions of pseudo-single-cell muscle cell compositions (denoted by color) 

between sexes. C, Number of significant cross-tissue correlations (y-axis) corresponding to each skeletal muscle 

type in each sex (x-axis).  Target tissues are distinguished by color, where NS (male platelets) denotes that no 

significant cross-tissue correlations were observed.  D, Heatmap showing significance of correlations between 

skeletal muscle hormone receptors and cell proportions, * = p<0.01.  E, the strongest enriched myokines are 

plotted for each myokine (y-axis, -log10p-value of myokine ~ cell composition) are shown for each muscle 

proportion for each sex (x-axis).  Gene symbols for myokines are shown above each line, where red lines indicate 

positive correlations between myokine and cell type and blue shows inverse relationships.  F, Significant cross-

tissue correlated genes in liver (blue) and pancreas (purple) for muscle fast twitch glycolytic fibers (p<1e -6) were 

used for overrepresentation tests where enrichment ratio of significance (x-axis) is shown for each pathway and 

sex (y-axis). G, Heatmap showing the regression significance of the top 5 genes corresponding to inflammation 

(liver), exocytosis (liver), and protein synthesis (pancreas) for proportions of fast-twitch fiber type (un-adjusted).  

Below each correlation between fast-twitch fiber and liver or pancreas gene, the same regressions were performed 

while adjusting for abundance of select myokines in each sex.  *=p<1e-6. 



15 
 

cell types showed stronger correlations with AR when compared to ESR1 across both sexes where 

the most abundant cell types were significantly enriched for both steroid hormone receptors 

Supplemental Figure 3. Comparisons of deconvolution methods. Cell proportions were estimated from 

skeletal muscle transcriptomic sequencing across the 310 individuals in GTEx.  Here, comparisons of the three 

most common methods (DCQ, NNLS, and proportionsInAdmixture) were plotted for each pseudo-sc-

proportion, where the proportionsInAdmixture method captured the largest relative number of cell types.  
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(Figure 3D).  To uncover potential direct mechanisms linking changes in cell composition to 

peripheral tissues, we extracted the top myokine correlation with each cell type in each sex.  Again, 

despite few differences between sexes in terms of myokine expression and cell composition, 

specific myokines highly correlating with individual cell types were markedly different between 

males and females with the exception of one, APOD in slow-twitch fibers (Figure 3E).  

To determine if variation in cell compositions corresponding to sex-specific tissue 

signaling via myokines was predicted to be likely, we implemented adjusted regression mediation 

analyses34 for glycolytic fiber composition.  Male glycolytic fiber type abundance was selectively 

enriched for liver pathways such as immune cell activation and regulated exocytosis (Figure 3F), 

and the top-correlated muscle secreted protein with male glycolytic fiber type levels was secreted 

glutathione peroxidase 3 (GPX3) (Figure 3E).  Here, adjusting regressions between glycolytic fiber 

Supplemental Figure 4. Cell composition correlations within each sex. Heatmaps showing regressions for cell 

proportions in males (left) or females (right), * = regression p-value<0.01. 
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and liver pathways on GPX3 reduced the overall significance across tissues (Figure 3G), 

suggesting GPX3 as a potential mediator of this communication.  These data point to a potential 

mechanism whereby muscle fiber abundance could buffer free radical generation in the liver, 

thereby feeding back on inflammation. This analysis appeared additionally sensitive to inferring 

non-dependent relationships between muscle cell types, top-ranked myokines, and cross-tissue 

processes.  For example, female glycolytic fibers were strongly enriched for pancreatic protein 

synthesis pathways; however, when adjusted for the top-ranked myokine CES4A, no changes in 

regression significance were observed (Figure 3F-G).  These analyses suggest that male GPX3 is 

a potential mechanism whereby fast-twitch muscle signals to the liver; however, the same cell type 

in females drives pancreas protein synthesis independent of CES4A.  In summary, we show that 

cell composition is strongly conserved between sexes, but putative cross-tissue signaling of altered 

composition differs entirely.  We further suggest putative myokines and mechanisms, as well as 

highlight the key regulatory roles of estradiol in both sexes.   

 

Discussion 

Here we provide a population survey of skeletal muscle myokine regulation and putative 

functions using genetic variation and multi-tissue gene expression data.  We find that in general, 

the expression of myokines does not significantly differ between sexes; however, inferred 

signaling mechanisms across tissues using regressions show strong sex specificity.  Steroid 

hormone receptors, in particular ESR1, are highlighted as key regulators of myokines and 

potentially interact with biological sex for proteins such as myostatin.  Further integration with 

loss-of-function mouse models of Esr1 highlighted the key roles of estradiol signaling in muscle 

in terms of myokine regulation and signaling across both sexes.  Generation of pseudo-single-cell 
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maps of muscle composition showed that, like myokines, muscle proportions are conserved 

between sexes, but inferred interorgan consequences differ substantially.   

When interpreting these findings, several considerations should be taken.  While inter-

tissue regression analyses have been informative in dissecting mechanisms of endocrinology29–

31,35, observations can be subjected to spurious or latent relationships in the data. While causality 

for inter-organ signaling can be inferred statistically using approaches such as mediation as in 

Figure 3G, the only method to provide definitive validation for new mechanisms is in experimental 

settings. Further, our current analyses rely on gene expression to guide functions of proteins which 

are typically strongly regulated by post-transcriptional processes. As shown for myostatin (Figure 

1), gene expression analyses can miss key functional aspects of proteins, where follow-up studies 

and resources focused on protein and subsequent modification levels could heavily improve 

predictions. In addition, we anticipate that estimates for ESR1 effects on myokines in this study 

likely represent an underestimated number of all human ESR1-driven myokines.  One limitation 

here includes that annotation of known orthologous mouse-human genes36 remains somewhat 

limited.  Furthermore, cell composition estimates from single-cell sequencing data are inferred 

from gene expression, where histological or flow cytometry-based methods can provide much 

more accurate direct quantifications.  Clearly, morphological and structural differences between 

sexes have been observed in humans37 which, if not apparent in gene expression, would be missed 

in this analysis.  Future studies addressing these points will help to clarify context- and mechanism-

relevant muscle-derived endocrine communication axes.  In summary, this study highlights the 

key contributions of sex and sex steroid hormones in mediating myokine functions.          
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Methods 

Key Resource Table: 

     

Reagent type Designation 

Source or 

reference 

Identifiers 

Additional 

information  

 

Antibody 

anti-MSTN 

(Goat polyclonal) R&D AF788 (1:1000) 
 

Antibody 

Rabbit anti-Bactin 

(Rabbit polyclonal) Genetex GTX109639 

(1:1000)  

 

Animals – All mice used in this study were approved by the University of California Los Angeles 

(UCLA) Animal Care and Use Committee, in accordance with Public Health Service guidelines 

with reference #92-169.   

Data sources and availability – All datasets used, R scripts implemented for analyses, and a 

detailed walkthrough guide are available via https://github.com/Leandromvelez/myokine-

signaling to facilitate analysis.  Human skeletal muscle and metabolic tissue data were accessed 

through the GTEx V8 downloads portal on August 18, 2021, and previously described26.  To enable 

sufficient integration and cross-tissue analyses, these data were filtered to retain genes that were 

detected across tissues where individuals were required to show counts > 0 in 1.2e6 gene-tissue 

combinations across all data. Given that our goal was to look across tissues at enrichments, this 

was done to limit the spurious influence of genes only expressed in specific tissues in specific 

individuals. Post-filtering consists of 310 individuals and 1.8e7 gene-tissue combinations.  Single-

cell sequencing from skeletal muscle used for deconvolution was obtained from Rubenstein et al32.  

Esr1 WT and KO mouse differential expression results are available on GitHub as well, where raw 

https://github.com/Leandromvelez/myokine-signaling
https://github.com/Leandromvelez/myokine-signaling
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sequencing data has been deposited in the NIH sequence read archive (SRA) under the project 

accession: PRJNA785746 

Selection of secreted proteins – To determine which genes encode proteins known to be secreted 

as myokines, gene lists were accessed from the Universal Protein Resource which has compiled 

literature annotation terms for secretion38.  Specifically, the query terms to access these lists were: 

locations:(location:"Secreted [SL-0243]" type:component) AND organism:"Homo sapiens 

(Human) [9606]" where 3666 total entries were found. 

Differential expression of myokines dependent on sex – Gene expression count matrices were 

isolated from tissues other than skeletal muscle, where individual genes were retained if the total 

number of counts exceeded 10 in at least 50 individuals.  Next, only genes encoding secreted 

proteins (above) were retained, where logistic regression contrasted on sex was performed using 

DESeq2.  Differential expression summary statistics were used for downstream binning of sex-

specificity based on an empirical logistic regression p-value <0.05.  This threshold was used to 

reflect the least stringent cutoff where, despite potential false positive influence, genes that 

nominally trended toward sex-specific expression could be included in those categories.  Given 

that the general conclusions supported very few proportions of myokines showing sex-specific 

patterns of expression, this conclusion would only be further exaggerated if the DE threshold were 

made more stringent and lessened the number of myokines in each category.      

Regression analyses across tissues – Regression coefficients and corresponding p-values across 

tissues were generated using the WGCNA bicorandpvalue() function33. Myokine-target gene pairs 

were considered significant (ex. Figure 2A-H) at a threshold of abs(bicor) > 2 standard deviations 

beyond the average coefficient for the given target tissue of interest.  In previous studies, this 
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threshold of 2 standard deviations reflects adaptive permutation testing p-values <0.0129,30.  For 

analyses estimating cumulative patterns of concordance across tissues (ex. Figure 2I-L), empirical 

regression p-values (Student’s p-value from bicor coefficients) of 0.01 (corresponding to 

abs(bicor)>0.1) were used to assay global patterns.  While empirical p-values are subjected to false 

positives, including these enables broad visualization of both potential direct interactions (ex. 

myokine-target gene) as well as coregulated processes across organs.  It is important to note that 

we exclusively rely on these empirical p-values when surveying broad correlation structures, 

whereas much more stringent and appropriate thresholds (ex. p<1e-6 for Figure 3G) were applied 

when inferring direct interactions.      

Pathway enrichment analyses – For Figure 1I and Figure 3G, genes corresponding to p-value 

cutoffs were visualized using Webgestalt39 to enable streamlined analysis.  This tool enabled 

simultaneous overrepresentation testing of GO:BP (non-redundant), KEGG, and Panther 

databases. For Figure 1D, the top 1000 (by regression p-value) significant genes from myokines 

to all muscle bicorrelation analysis in females, males, or non-sex-specific datasets were assessed 

for enrichment in GO Biological Process terms using clusterProfiler ver. 4.0.2 in R40.  The resulting 

top ten GO terms in each dataset were integrated and plotted against the relative proportion of the 

adjusted p-value and visualized in the same graph using ggplot2.  

Deconvolution of skeletal muscle – Raw single-cell RNA sequencing from skeletal muscle was 

obtained from Rubenstein et al32.  These raw counts were analyzed in Seurat where cluster analyses 

identified variable cell compositions.  Cell type annotations were assigned based on the top 30 

genes (Supplemental Table 2) assigned to each UMAP cluster through manual inspection and 

enrichR41.  Finally, a normalized matrix of gene:cells was exported from Seurat and used to run 

deconvolution on skeletal muscle bulk sequencing.  Using the ADAPTS pipeline11, three 



22 
 

deconvolution methods (DCQ, NNLS, or proportionsInAdmixture) were compared based on the 

ability to robustly capture reasonable cell proportions (Supplemental Figure 4), where 

proportionsInAdmixture showed the best performance and was subsequently applied to bulk 

skeletal muscle sequencing.   

ESR1 muscle KO generation, RNA-Seq, and integration with human data – Muscle-specific Esr1 

deletion was generated and characterized as previously described22.  The whole quadriceps was 

pulverized at the temperature of liquid nitrogen. Tissue was homogenized in Trizol (Invitrogen, 

Carlsbad, CA, USA), RNA was isolated using the RNeasy Isolation Kit (Qiagen, Hilden, 

Germany), and then tested for concentration and quality with samples where RIN > 7.0 used in 

downstream applications. Libraries were prepared using KAPA mRNA HyperPrep Kits and 

KAPA Dual Index Adapters (Roche, Basel, Switzerland) per the manufacturer’s instructions. A 

total of 800-1000 ng of RNA was used for library preparation with settings 200-300 bp and 12 

PCR cycles. The resultant libraries were tested for quality. Individual libraries were pooled and 

sequenced using a HiSeq 3000 at the UCLA Technology Center for Genomics and Bioinformatics 

(TCGB) following in-house established protocols. Raw RNAseq reads were inspected for quality 

using FastQC v0.11.9 (Barbraham Institute, Barbraham, England). Reads were aligned and 

counted using the Rsubread v2.0.042 package in R v3.6 against the Ensembl mouse transcriptome 

(v97) to obtain counts. Lowly expressed genes (>80% samples with 0 counts for a particular gene) 

were removed. Samples were analyzed for differential expression using DeSeq2 v1.28.043. 

Conservation of genes between mice and humans - To find which myokines and pathways were 

conserved between mice and humans, all orthologous genes were accessed from MGI vertebrate 

homology datasets, which have been compiled from the Alliance for Genome Resources36 and 

intersected at the gene level (roughly 18,000 genes). 
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Immunoblotting procedures – Muscle tissue was homogenized in the TissueLyser II (Qiagen) at 

4 °C in RIPA lysis buffer supplemented with protease inhibitors. The homogenate was centrifuged 

at 4 °C for 10 min at 10 000 g, and the protein concentrations in the supernatant were measured by 

the BCA assay (Bio-Rad). After boiling protein samples for 5 min, 20 μg of protein from each 

sample was applied on an SDS–polyacrylamide gel (10%), and electrophoresis was performed at 

100 V for 1.5 h. The separated proteins were transferred to nitrocellulose membranes and 

membranes were blocked for 1.5 h in TBS (4 mM Tris–HCl, pH 7.5, and 100 mM NaCl) containing 

5% skim milk plus Tween 20, at room temperature. Goat polyclonal anti-GDF8 (Myostatin) 

(R&D, catalog number AF788) at 1/1000 dilution was applied overnight as the primary antibody. 

After washings, membranes were incubated with Goat IgG HRP-conjugated Antibody (R&D 

HAF017) at 1/10000 for 2h, and bound HRP activity was detected with an enhanced 

chemiluminescence method (Clarity Western ECL, BioRad), by means of a chemiluminescence 

detection system (ChemiDoc System, BioRad). The intensities of the resulting bands were 

quantified by densitometry (ImageJ free software). Membranes were immersed in a stripping 

solution for 10 mins (Restore PLUS Western Blot, Thermo Fisher), and then the process was 

repeated with a rabbit polyclonal anti-beta actin (GeneTex GTX109639) at 1/1000 dilution as a 

loading control to assess the uniformity of loading.  
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Leveraging genetic correlation structure to target 

discrete signaling mechanisms across metabolic 

tissues.  
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Kershaw, Dequina Nicholas, Benjamin L. Parker, Selma Masri, Marcus M. Seldin. eLife 12, 
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Preface 

Having seen the utility of cell-type deconvolution to further our understanding of 

myokine communication and the influence of genetic sex, I wanted to empower myself and other 

users to investigate connections in more tissues, so I deconvoluted all tissues that were available 

in both the Tabula Sapiens single-cell sequencing database and the Genotype-Tissue Expression 

(GTEx) Database. As described here in Chapter 2, these cell type proportion estimates were 

incorporated into a web tool developed by the lab to allow Gene-Derived Correlations Across 

Tissues (GD-CAT), which is now publicly available at gdcat.org and allows the study of cross-

tissue communications with genetic sex, diet, metabolic traits, and other relevant contexts. 

 

Introduction 

Interaction and/or coordination between organs is central to maintaining physiologic 

homeostasis among multicellular organisms.  Beginning with the discovery of insulin over a 
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century ago, the characterization of molecules responsible for signaling between tissues has 

required careful and elegant experimentation where these observations have been integral to 

deciphering physiology and disease. Further, the actions of these molecules have been the key 

focus for the development of potent therapeutics. For example, physiologic dissection of the 

actions of soluble proteins such as proprotein convertase subtilisin/kexin type 9 (PCSK9) and 

glucagon-like peptide 1 (GLP1) have yielded among the most promising therapeutics to treat 

cardiovascular disease and obesity, respectively44–47. A majority of our understanding of how 

organs and cells utilize these mechanisms of tissue communication has arisen from elegant 

biochemical and physiologic experimentation.  While these targeted investigations exist as the 

most definitive way to demonstrate causality for mechanisms, scaling such approaches to 

deconvolute the actions of tens of thousands of unique molecules that circulate in the blood 

becomes an impossible task.  A major obstacle in the characterization of such soluble factors is 

that defining their tissues and pathways of action requires extensive experimental testing in cells 

and animal models.  

Recent technological advances have enabled more unbiased views of molecules in 

circulation.  Next-generation technologies have quantified thousands of factors in the blood across 

large populations. For example, large-scale proteomic measures have prioritized disease 

biomarkers and suggested involvements in genome-wide association mechanisms48–50. Similar 

studies focused on integrating genetic variation with metabolomics quantification have yielded 

similar insights51–53. However, the challenge is identifying which organs are secreting these 

molecules, how fast they are produced/degraded, and the recipient tissues processing and/or 

responding to these factors.  Furthermore, it is important to also identify the receptors that sense 

the secreted factor and enable the target organ to respond. This is challenging because the 
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abundance of secreted factors and target receptors are dynamic and can rapidly change in response 

to a variety of environmental changes (ex. diet, time of day, temperature, stress). In addition, it is 

well known that genetic- or sex-driven variation can also modulate endocrine signaling. Hence, 

the foundations of therapeutic discovery require a comprehensive understanding of the 

mechanisms of endocrine signaling, and here lies massive potential and an unmet need. 

Previous studies in mouse and human populations have demonstrated that when 

sufficiently powered, several known and new mechanisms of organ communication can be 

identified through simple global analyses of gene-gene correlations9,29,54–56.  The intuition behind 

this approach is that correlations across tissues and the natural variation in individuals will robustly 

reflect highly significant relationships that have the potential to capture direct signaling.  In this 

study, we expanded on this intuition and tested the paralleled hypothesis that potential functions 

of signaling between tissues could be prioritized by focusing correlation analyses across 

individuals on specific genes.  We highlight several areas where this approach was sufficient, as 

well as lacking in the ability to recapitulate known tissue communication mechanisms. These 

analyses are contextualized by additional explorations of pathway-specific relationships (ex. 

between Gene Ontology (GO) terms) and an example of context-specific gene-trait relationships 

for hormone receptors. In addition, we provide a user-friendly web tool to query these analyses in 

mouse and human population datasets at gdcat.org.     

 

Results 

Construction of a web tool to survey transcript correlations across tissues and individuals (GD-

CAT):  
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Previous studies have established that “brute force” analyses of correlation structure across 
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tissues from population expression data can identify several known and new mechanisms of organ 

cross-talk.  These were accomplished by surveying the global co-expression structure of all genes, 

where high correlation outliers highlighted proteins that elicit signaling9,29,54–56.  Following this 

intuition, we hypothesized that a paralleled but alternative approach to inter-individual correlation 

structure could be exploited to understand the functional consequences of specific genes.  Our 

initial goal was to establish a user-friendly interface where all of these analyses and gene-centric 

queries could be performed without running any code. To accomplish this, we assembled a 

complete analysis pipeline (Figure 4A) as a Shiny-app and Docker image hosted in a freely 

available web address (gdcat.org).  Here, users can readily search gene correlation structure 

between individuals from filtered human (Gene-by-Tissue Expression Project – GTEx) and mouse 

(Hybrid Mouse Diversity Panel – HMDP) across tissues.  GTEx is presently the most 

comprehensive pan-tissue dataset in humans26, which was filtered for individuals where most 

metabolic tissues were sequenced56.  Collectively, this dataset contains 310 individuals, consisting 

of 210 male and 100 female (self-reported) subjects between the ages of 20-79.  Data from the 

HMDP consisted of 96 diverse mouse strains fed a normal chow (5 tissues) or high-fat/high-

sucrose diet (7 tissues) as well as carefully characterized clinical traits57–62. Users first select a 

given species, followed by reported sex (human) or diet (mouse) which loads the specified 

environment. Subsequent downstream analyses are then implemented accordingly from a specific 

Figure 4. Web tool overview and inter-individual correlation structure of established endocrine proteins.  A, 

Web server structure for user-defined interactions, as well as server and Shiny app implementation scheme for 

GD-CAT.  B, All genes across the 18 metabolic tissues in 310 individuals were correlated with expression of 

ADIPOQ in subcutaneous adipose tissue, where a q-value cutoff of q<0.1 showed the strongest enrichments with 

subcutaneous and muscle gene expression (pie chart, left).  Gene set enrichment analysis (GSEA) was performed 

using the bicor coefficient of all genes to ADIPOQ using gene ontology biological process annotations and 

network construction of top pathways using clusterProfiler, where pathways related to fatty acid oxidation were 

observed in adipose (left) and chemotaxis/ECM remodeling in skeletal muscle (right). C-E, The same q-value 

binning, top within-tissue and top peripheral enrichments were applied to intestinal GCG (C), liver FGF21 (D) 

and muscle IL6 (E). For these analyses, all 310 individuals (both sexes) were used and q-value adjustments were 

calculated using a Benjamini-Hochberg FDR adjustment. 
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gene in a given tissue.  This selection prompts 

individual gene correlations across all other 

gene-tissue combinations using biweight 

midcorrelation33.  From these charts, users are 

able to select a given tissue, where gene set 

enrichment analysis testing using 

clusterProfiler40 and enrichR41 are applied to the 

correlated set of genes to determine the positive 

(activated) and negative (suppressed) pathways 

that occur in each tissue.  In addition to general 

queries of gene-by-gene correlation structure, 

comparisons of expression changes are also 

visualized between age groups as well as 

reported sexes. Further, we included the top 

cell-type abundance correlations with each 

gene. To compute cell abundance estimates 

from the individuals in GTEx, we used single-

cell RNA-sequencing in various tissues 

available from Tabula Sapiens63 and applied 

cellular deconvolution methods in the ADAPTS 

Supplemental Figure 5. Performance across 4 

methods of cell-type deconvolution. Relative 

proportions of cells (y-axis) are shown for all cell types 

annotated in single-cell reference (x-axis) in Liver (top), 

Heart (middle), and Skeletal Muscle (bottom).  
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package to the bulk RNA-sequencing data from the same tissues in GTEx11 (Methods).  

Comparison of deconvolution methods11 showed that DeconRNASeq64 captured the most cell 

types within the most tissues (Supplemental Figure 5) and therefore was applied to all tissues 

where both sc-RNA-seq and bulk-RNA-seq were available. These tissues encompassed visceral 

adipose, subcutaneous adipose, aortic artery, coronary artery, transverse colon, sigmoid colon, the 

heart left ventricle, the kidney cortex, liver, lung, skeletal muscle, spleen, and small intestine. Other 

tissues such as brain, stomach, thyroid, etc. were only available in one of the databases. 

We initially examined pan-tissue transcript correlation structures for several well-

established mechanisms of tissue crosstalk via secreted proteins that contribute to metabolic 

homeostasis.  Here, the binning of the significant tissues and pathways related to each of these 

established secreted proteins resembled their known mechanisms of action (Figure 4B-E). For 

example, variation with a subcutaneous adipose expression of ADIPOQ was enriched with genes 

in several metabolic tissues where it has been known to act (Figure 4B, left).  In particular, 

subcutaneous adipose ADIPOQ expression correlated with the fatty acid oxidative process within 

adipose (Figure 4B, middle) and was enriched with ECM, chemotaxis, and ribosomal biogenesis 

in skeletal muscle (Figure 4B, right).  These correlated pathways align with the established 

physiologic roles of the protein in that fat secretes adiponectin when oxidation is stimulated65,66 

and that muscle is a major site of action67.   Beyond adiponectin, the inter-individual correlation 

structure additionally recapitulated broad signaling mechanisms for other relevant endocrine 

proteins.  For example, intestinal GCG (encoding GLP1, Figure 4C), liver FGF21 (Figure 4D), 

and skeletal muscle IL6 (Figure 4E) showed binning patterns and pathway enrichments related to 

their known functions in pancreas44,68, adipose tissue69,70 and other metabolic organs71, 

respectively.  These analyses show some examples of exploring transcriptional correlation 
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structure with our web tool to confirm and identify mechanisms of signaling, where we note that 

additional limitations should be considered.   

 

Pathway-based examination of gene correlation structure and significance thresholds across 

tissues shows differences in concordance in and across organs:  

While the select observations shown in Figure 4 provide examples of support in exploring 

the correlation structure of genes across inter-individual differences to investigate endocrinology, 

several limitations in these analyses should be considered.  First, an additional explanation for a 

given gene showing a strong correlation between the tissues could arise from a general pattern of 

correlation between the two tissues and not necessarily due to the discrete signaling mechanisms.  

In previous studies surveying correlation structure and network model architectures in the HMDP 

and STARNET populations, genes appeared generally strongly correlated between liver and 

adipose tissue compared to all other organ combinations explored29,54,55.  To investigate this global 

pattern of gene correlation structure between metabolic organs, we selected key Gene Ontology 

(GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and randomly 

sampled equal numbers of genes across multiple statistical thresholds to evaluate the relative 

significance of inter-tissue correlations.  These analyses suggested that the usage of empirical 

student correlation p-values recapitulated a clear pattern of inter-tissue correlations between 

pathways (Figure 5).  For example, a comparison of the number of genes achieving significance 

of correlation between tissues among select GO terms revealed that tissues such as adipose and 

muscle appeared more correlated than spleen and other tissues at p-values less than 1e-3 (Figure 

5A, left column).  These global patterns of gene correlation between tissues among select pathways 

were reduced when the p-value threshold was lowered to 1e-6 (Figure 5A, middle column) or  
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q-value adjustments (Methods) were performed (Figure 5A, right two columns).  For these reasons, 

only q-value adjusted values were used and implemented into pie charts providing the tissue-

specific occurrences of correlated genes at 3 thresholds (q<0.1, q<0.01, q<0.001) within the web 

tool.   

Next, in order to further evaluate these global patterns of innate transcript correlation 

structure and determine whether they reflected concordance between known metabolic pathways 

or were merely innate to the dataset used, tissues were rank-ordered by the number of genes that 

meet p-value thresholds and compared to randomly sampled genes of similar pathway sizes (Figure 

5B). Among the KEGG pathways selected (hsa04062 − Chemokine signaling pathway, hsa04640 

− Hematopoietic cell lineage, and hsa00190 − Oxidative phosphorylation), the top-ranked organs 

by correlated gene numbers differed (skeletal muscle, colon, and thyroid, respectively); however, 

a general trend of specific tissues ranking higher than others was observed (Figure 5B).  For 

example, skeletal muscle and heart appeared among the strongest correlated across pathways and 

organs, compared to kidney cortex and spleen which were observed to rank among the least 

correlated (Figure 5B, Pathways).  We note that when the same analysis was performed on 

randomly sampled genes from each organ consisting of the same number of genes within each 

KEGG pathway, these rankings and the number of significant correlating genes were no longer 

Figure 5. Tissue-specific contributions to pan-organ gene-gene correlation structure. A, Heatmap showing 

the number of gene-gene correlations across tissues which achieve significance relative to total number of genes 

in each pathway at biweight midcorrelation student  p-value < 1e-3 (left column), p-value < 1e-6 (left middle 

column) of BH-corrected q-value <0.1 (right middle column) or BH-corrected q-value<0.01 (right column).  

Within-tissue correlations are omitted from this analysis. B-D, Genes corresponding to each KEGG pathway 

shown were correlated both within and across all other organs where the number of genes which meet each 

Student’s p-value threshold (p-value<0.01 (left) or p-value<1e-4 (right)) are shown (y-axis).  Tissues (x-axis) are 

rank-ordered for hsa04062 − Chemokine signaling pathway (B), then maintained in that order to plot the ranking 

scores for hsa04640 − Hematopoietic cell lineage (C) and hsa00190 − Oxidative phosphorylation (D ). BH = 

Benjamini-Hochberg. 
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observed (Figure 5B, Random Genes), suggesting that in certain instances, differences between 

organs in general connectivity to others might reflect concordance between known pathways.   

It is important to consider here that for the organs ranking lower, the lack of relative 

correlating numbers is likely due to the sparsity of available data and not necessarily general 

patterns of gene correlation.  This point is supported by the fact that among the lowest-ranked 33% 

of tissues across pathways, we observed a significant negative overall correlation (bicor = -0.45, 

p-value = 2.3e-5) between the number of NA values per individual and the gene count for 

significance shown in Figure 5B.  This negative correlation between missing data and a number 

of significant correlations for pathways across tissues was not observed when binning the top 33% 

(bicor = 0.09, p-value = 0.42) or middle 33% (bicor = -0.12, p-value = 0.27) of organs.  

Collectively, these analyses show that innate correlation structures exist between organs which 

differ depending on pathways investigated, and that tissues that don’t show broad correlation 

structure could potentially be attributed to areas of missing data in GTEx.  

 

PSK9 signaling and lipid exchange between adipose and muscle are apparent in simple network 

models of correlation structure:  

Next, we wanted to ask whether our approach of analyzing inter-individual correlation 

structure across tissue for endocrine proteins was also sufficient to define within -tissue 

signaling mechanisms or actions of enzymes producing metabolites that signal across organs.  

Dissimilar to the cross-tissue distributions of significance in Figure 4, the same analysis of 

liver PCSK9 highlighted exclusively liver genes that correlated together (Figure 6A), in 

particular, those involved in cholesterol metabolism/homeostasis (Figure 6B).  Consistent 

with the established role for PCSK9 as a primary degradation mechanism of LDLR47,72, 
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network model construction of correlated genes highlighted PCSK9 as a central node linking 

cholesterol biosynthetic pathways with those involved in other metabolic pathways such as 
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insulin signaling (Figure 6C). 

Given that organ signaling via metabolites comprises many critical processes among 

multicellular organisms, our next goal was to apply this gene-centric analysis to established 

mechanisms of metabolite signaling. The gene PNPLA2 encodes adipose triglyceride lipase 

(ATGL) which localizes to lipid droplets and breaks down triglycerides for oxidation or 

mobilization as free fatty acids for peripheral tissues73.  Variation in the expression of PNPLA2 

showed highly significant enrichments with beta-oxidation pathways in adipose tissue (Figure 6D).  

Muscle pathways enriched for the gene were represented by sarcomere organization and muscle 

contraction (Figure 6F).   Construction of an undirected network from these expression data placed 

PNPLA2 as a central node between the two tissues, linking regulators of adipose oxidation (Figure 

6F, red) to muscle contractile process (Figure 6F, purple) where additional strongly co-correlated 

genes were implicated as additional candidates (Figure 6F). In sum, these analyses provide two 

examples of within-liver signaling via PCSK9 and adipose-muscle communication through 

PNPLA2 where the top-correlated genes and network models recapitulate known signaling 

mechanisms. Given the utility of these undirected network models, a function in GD-CAT was 

Figure 6. Inter-individual transcript correlation structure and network architecture of liver PCSK9 and 

adipose PNPLA2. A, Distribution of pan-tissue genes correlated with liver PCSK9 expression (q<0.1), where 93% 

of genes were within liver (purple).  B, Gene Ontology (BP) overrepresentation test for the top 500 hepatic genes 

correlated with PCSK9 expression in liver.  C, Undirected network constructed from liver genes (aqua) correlated 

with PCSK9, where those annotated for “cholesterol biosynthetic process” are colored in red.  D-E, Over-

representation tests corresponding to the top-correlated genes with adipose (subcutaneous) PNPLA2 expression 

residing in adipose (D) or peripherally in skeletal muscle (E).  F, Undirected network constructed from the 

strongest correlated subcutaneous adipose tissue (light aqua) and muscle genes (dark blue) with PNPLA2 (black), 

where genes corresponding to GO terms annotated as “fatty acid beta oxidation” or “ muscle contraction” are 

colored purple or red, respectively. For these analyses, all 310 individuals (both sexes) were used, and q-value 

adjustments calculated using a Benjamini-Hochberg FDR adjustment.  Network graphs were generated based in 

biweight midcorrelation coefficients, where edges are colored blue for positive correlatio ns or red for negative 

correlations.  Network edges represent positive (blue) and negative (red) correlations and the thicknesses are 

determined by coefficients.  They are set for a range of bicor=0.6 (minimum to include) to bicor=0.99.  
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added to enable users to generate network models for any gene-tissue combination and select 

parameters such as a number of within-tissue and peripheral correlated genes to include. 

 

Inter-individual correlation analysis of hybrid mouse diversity panel highlights tissue- and diet-

specific phenotype relationships with sex hormones:  

Genetic reference panels in model organisms, such as mice, present appeal in studying 

complex traits in that environmental conditions can be tightly controlled, tissues and metabolic 

traits readily accessible, and the same, often renewable, genetic background can be studied and 

compared among multiple exposures such as diets or drug treatments61,74–76.  For this resource, we 

utilized data from the HMDP fed a normal chow61,62 or high-fat, high-sucrose (HFHS) diet for 8 

weeks57–60.  While the number of tissues available was less than in GTEx, these panels allow for a 

comparison of how gene correlations shift depending on diet.  Therefore, queries of gene 

correlation in mice were segregated into either chow or HFHS diet and an additional panel to 

download a table or visualize the relationship between genes and clinical measures was added. The 

inferred abundances of cell types from each individual mouse are correlated across user-defined 

genes, with the bicor coefficient plotted for each cell type. 

One advantage of HMDP data compared to GTEx is the abundance of phenotypic measures 

available within each cohort.  To show the utility of examining correlations within this reference 

panel, we selected sex hormone receptors androgen receptor (Ar), estrogen receptor alpha (Esr1), 

and estrogen receptor beta (Esr2) and binned the top 10 phenotypes that were correlated with each 

receptor.  These analyses were stratified based on where sex hormones were expressed (either liver 

or adipose tissue) and a dietary regiment of the 96 strains (normal chow or HFHS diet).  This 

analysis demonstrated the difference in relationships between the tissue location of sex hormone 
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receptors and dietary context with metabolic traits. For example, expression of Ar in adipose tissue 

among HMDP mice fed a HFHS diet was negatively correlated with fat mass and body weight 

traits, whereas expression in the liver oppositely correlated with the same traits in a positive 

direction (Figure 7A).  The top traits that correlated also differed by tissue or expression for Ar, 

such as plasma lipid parameters in adipose tissue compared to blood cell traits in chow-fed mice 

(Figure 7A).  We note that among the three hormone receptors investigated, Esr2 appeared the 

most consistently correlated between tissues and diets with metabolic traits (Figure 7B).  

Expression of Esr1 also showed a clear tissue and diet difference in the traits that were the most 

strongly co-regulated.  Under HFHS dietary conditions, a negative correlation with insulin and fat 

pad weights was observed exclusively with adipose expression, while positive correlations with 

liver lipids were observed with expression in the liver (Figure 7C).  These analyses highlight how 

phenotype correlations in mouse populations can help to determine contexts relevant for gene 

regulation and point to the diversity of potential contexts relevant for sex hormone receptors in 

metabolic tissues.    

 

Discussion 

Here, we provide a new resource to explore correlations across organ gene expression in 

Figure 7. HMDP tissue- and diet-specific correlations of sex hormone receptors .  A-C, The top 10 phenotypic 

traits which correlated to expression of androgen receptor (A), estrogen receptor 1 (B) or estrogen receptor 2 (C) 

colored by direction in the HMDP.  Positive correlations are shown in light blue and negative correlations as 

sunset orange, where phenotypes (y-axis) are ordered by significance (x-axis, -log(p-value) of correlation).  

Correlations are segregated by whether sex hormone receptors are expressed by gonadal adipose tissue (left two 

columns) in 96 HMDP strains fed a HFHS diet (left), normal chow diet (left middle) or liver -expressed receptors 

fed a HFHS diet (right middle) or normal chow diet (right).  
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the context of inter-individual differences.  We highlight areas where these align with established 

and relevant mechanisms of physiology and suggest that similar explorations could be used as a 

discovery tool.  Several key limitations should be considered when exploring GD-CAT for 

mechanisms of inter-tissue signaling though.  Primarily, correlation-based analyses could reflect 

either causal or reactive patterns of variation.  While several statistical methods such as 

mediation77,78 and Mendelian Randomization79,80 exist to further refine causal inferences, likely 

the only definitive method to distinguish is through carefully designed experimentation. Further, 

analyses of genetic correlation (ex. correlations considering genetic loci to infer causality) also 

present appeal in refining some causal mechanisms. Correlation between molecular and 

phenotypic variables can occur for a variety of reasons, not just between their individual 

relationships, but often more broadly, from a variety of complex genetic and environmental 

factors.  Further, many correlations tend to be dominated by genes expressed within the same 

organ.  This could be due to the fact that within-tissue correlations could capture both the pathways 

regulating the expression of a gene, as well as potential consequences of changes in 

expression/function, and distinguishing between the two presents a significant challenge.  For 

example, a GD-CAT query of insulin (INS) expression in the pancreas shows exclusive 

enrichments in the pancreas and corresponding pathway terms reflect regulatory mechanisms such 

as secretion and ion transport (Supplemental Figure 6).  Representation of given genes may also 

differ significantly depending on the dataset used.  In addition, the analyses presented are derived 

from differences in gene expression across individuals which arise from complex interaction of 

genetic and environmental variables.  Expression of a gene and its corresponding protein can show 

substantial discordances depending on the dataset used.  These have been discussed in detail81–83, 

but ranges of co-correlation can vary widely depending on the datasets used and approaches taken.  
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We note that for genes encoding proteins where actions from acute secretion grossly outweigh 

patterns of gene expression, such as insulin, caution should be taken when interpreting results.  As 

Supplemental Figure 6. Pancreatic INS expression correlations. Correlations across tissues in GTEx were 

binned according to q<0.1 (top) and corresponding pancreatic GSEA network graph is shown (bottom).  
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the depth and availability of tissue-specific proteomic levels across diverse individuals continue 

to increase, an exciting opportunity is presented to explore the applicability of these analyses and 

identify areas when gene expression is not a sufficient measure.  For example, mass-spec 

proteomics was recently performed on GTEx samples84; however, given that these data represent 

only 6 individuals, analyses utilizing well-powered inter-individual correlations such as ours 

which contain 310 individuals remain limited in applications. 

The queries provided in GD-CAT use fairly simple linear models to infer organ-organ 

signaling; however, more sophisticated methods can also be applied in an informative fashion.  For 

example, Koplev et al generated co-expression modules from 9 tissues in the STARNET dataset, 

where the construction of a massive Bayesian network uncovered interactions between correlated 

modules54.  These approaches expanded on the analysis of STAGE data to construct network 

models using WGCNA across tissues and relating these resulting eigenvectors to outcomes85.  The 

generalized approach of constructing cross-tissue gene regulatory modules presents appeal in that 

genes are able to be viewed in the context of a network with respect to all other gene-tissue 

combinations.  In searching through these types of expanded networks, individuals can identify 

where the most compelling global relationships occur. One challenge with this type of approach; 

however, is that coregulated pathways and module members are highly subjective to parameters 

used to construct gene regulatory networks (GRNs) (ex. reassignment threshold in WGCNA) and 

it can be difficult to arrive at a “ground truth” for parameter selection.  We note that the WGCNA 

package is also implemented in these analyses, but solely to perform gene-focused correlations 

using biweight midcorrelation to limit outlier inflation.  While the midweight bicorrelation 

approach to calculate correlations could also be replaced with more sophisticated models, one 

consideration would be a concern of overfitting models and thus, biasing outcomes. 
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In another notable example, MultiCens was developed as a tool to uncover communication 

between genes and tissues and applied to suggest central processes that exist in multi-layered data 

relevant to Alzheimer’s disease86. In addition, Jadhav and colleagues adopted a machine learning 

approach to mine published literature for relationships between hormones and genes87.  Further, 

association mapping of plasma proteomics data has been extensively applied and intersection with 

genome-wide association disease loci has offered intriguing potential disease mechanisms49,88. 

Another common application to single-cell sequencing data is to search for overrepresentation of 

known ligand-receptor pairs between cell types89. These and additional applications to explore 

tissue communication/coordination present unique strengths and caveats, depending on the 

specific usage desired.  Regardless of the methods used to decipher, one important limitation to 

consider in all these analyses is the nature of the underlying data.  For example, our evaluation of 

the GTEx data structure suggested that matching expression data between individuals was 

insufficiently available for important organs such as the spleen and kidney. Further, GTEx samples 

vary as to the collection times, sample processing times, and other important parameters such as 

cause of death. Mouse population data such as the HMDP or BxD cohorts offer appeal in these 

regards, as environmental conditions and collection times are easily fixed.  Regardless, careful 

consideration of how data was generated and normalized is fundamental to interpreting results.       

In sum, we demonstrate that adopting a gene-centric approach to surveying the correlation 

structure of transcripts across organs and individuals can inform the mechanism of coordination 

between metabolic tissues.  Initially, we queried several well-established and key mediators of 

physiologic homeostasis, such as FGF21, GCG, and PCSK9.  These approaches are further 

suggested to be applicable to mechanisms of metabolite signaling, as evident by pan-tissue 

investigation of adipose PNPLA2.  Exploration of HMDP data highlighted diverse phenotype 
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correlations for sex hormone receptors depending on tissue and diet. To facilitate widespread 

access and use of this transcript isoform-centric analysis of inter-individual correlations, a full 

suite of analyses such as those performed here can be implemented from a lab-hosted server 

(gdcat.org) or in isolation from an RShiny app or Docker image.         

 

Methods 

Availability of web tool and analyses – All analyses, datasets, and scripts used to generate the 

associated web tool (GD-CAT) can be accessed via: https://github.com/mingqizh/GD-CAT or 

within the associated Docker image. In addition, access to the GD-CAT web tool is also available 

through the web portal gdcat.org. This portal was created to provide a user-friendly interface for 

accessing and using the GD-CAT tool without the need to download or install any software or 

packages. Users can simply visit the website to choose a species, sex/diet, gene of interest, and 

tissue and start using the tool. The corresponding tutorial and the other resources were made 

available to facilitate the utilization of the web tool on GitHub. The interface and server of the web 

were built and linked based on the Shiny package using R (v. 4.2.0).  

Pathway-specific gene correlations across tissues – Detailed scripts and analyses for pathway-

specific investigations across tissues in Figure 5 are provided at: https://github.com/itamburi/gtex-

app-kegg-pathways. Briefly, to interrogate broad tissue correlation structure, the number of genes 

that passed each biweight midcorrelation p-value cutoff are shown normalized to the total number 

of genes corresponding to that pathway term.  Pathways were selected by accessing all available 

GO annotations for all genes using the Universal Protein Resource90 and subsetting genes where a 

given term is listed. To determine which tissues showed the most co-correlation across genes and 

organs, KEGG terms were selected and corresponding gene-tissue combinations were correlated.  

https://github.com/mingqizh/GD-CAT
https://github.com/itamburi/gtex-app-kegg-pathways
https://github.com/itamburi/gtex-app-kegg-pathways
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Tissues were then binned individually by the number of significant correlations that were observed 

across organs among each selected KEGG pathway at indicated correlation p-values.  Tissues were 

rank-ordered for chemokine signaling at p<0.01, then that order was maintained for subsequent p-

values and pathways to show different patterns in ranking scores. Each term was also compared to 

a randomly sampled set of genes corresponding to the same number contained in each pathway.   

Data sources and availability: All human data used in this study can be immediately accessed via 

the web tool or Docker to facilitate analysis.  Metabolic tissue data was accessed through the GTEx 

V8 downloads portal on August 18, 2021, and previously described26,56.  These raw data can also 

be readily accessed from the associated R-based walkthrough: 

https://github.com/Leandromvelez/myokine-signaling. Briefly, these data were filtered to retain 

genes that were detected across tissues where individuals were required to show counts > 0 across 

all data. Given that our goal was to look across tissues at enrichments, this was done to limit the 

spurious influence of genes only expressed in specific tissues in specific individuals. HMDP data 

was collected from previously described studies57,61,62,76 and inter-individual differences were 

compared at the strain level to maximize possible comparisons between historical data.  

Correlation analyses across tissues – biweight midcorrelation coefficients and corresponding p-

values within and across tissues were generated using the WGCNA bicorandpvalue() function33.  

We note that while the WGCNA package was used to calculate coefficients and corresponding 

Student’s p-values, this generalized framework does not utilize any module generation.  

Associated q-value adjustments were applied using the Benjamini-Hochberg (BH) FDR from the 

R package “stats”.  The BH procedure was selected instead of other FDR control methods because 

of its efficiency in CPU usage on the hosted server.    

https://github.com/Leandromvelez/myokine-signaling
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Pathway enrichment analyses – Pathway enrichments were generated using gene set enrichment 

analyses available from the R package clusterProfiler40.  Specifically, the bicor coefficients were 

used as the rank-weight of each gene, and enrichment tests were performed by permuting against 

the human or mouse reference transcriptome.  Terms used for the enrichment analyses were 

derived from Gene Ontology (Biological Process, Cellular Component, and Molecular Function) 

which were accessed using the R package enrichR41.  For this analysis and on the available app, 

input genes were determined at the indicated q-value threshold. 

Deconvolution of bulk tissue sequencing data on web tool – All scripts and deconvolution data 

produced are available at: https://github.com/cvan859/deconvolution.  Briefly, sc-RNA-seq data 

was accessed from Tabula Sapiens63 for matching organ datasets with metabolic tissues.  From 

these data, 4 deconvolution methods (NNLS, DCQ, proportionsInAdmixture, and DeconRNA-

Seq) were applied to GTEx bulk data through the ADAPTS11 package where DeconRNA-Seq64 

was selected for its ability to capture the abundance of the most cell types across tissues such as 

the liver, heart, and skeletal muscle (Supplemental Figure 5). The full combined matrix was 

assembled for DeconRNA-Seq results across individuals in GTEx where correlations between cell 

types and genes were performed also using the bicorandpvalue() in WGCNA33.       

https://github.com/cvan859/deconvolution
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Chapter 3 

 

Soluble CRLF2 acts as a new signaling mechanism 

between immune cells and cardiomyocytes 

(manuscript in progress) 

Cassandra Van, Khue Nguyen, Andrew Schmidt, Christy Nguyen, Leandro M. Velez, Casey 

Johnson, Carlos HV Nascimento-Filho, Anna Grosberg, Marcus M. Seldin.  

 

 

 

Preface 

Now that I could query correlations with many tissues in the body, I wanted to discover 

and confirm a biologically relevant molecule. We chose heart failure as a target and asked what 

endocrine factors we might find that would affect heart function, described here in Chapter 3. We 

confirmed a strong link between the liver and the heart, as supported in multiple published studies 

of metabolism and homeostasis, and moreover, we identified a new role for a soluble isoform of a 

cytokine receptor, Crlf2 (sCRLF2), as an endocrine factor that directly modulates cardiomyocyte 

functions, using in vitro cell line assays and an in vivo mouse model. CRLF2 is normally found 

membrane-bound and is best known for its upregulation in acute lymphoid leukemias following a 

translocation event, but little is known about the soluble isoform. We found that sCRLF2 weakly 

interacts with immune cell lines representing the immune cells where it is produced, but strongly 

signals directly to cardiomyocytes. 

 

Introduction 

Heart failure is the leading cause of death in the world and is clinically defined by a 

collection of physical symptoms (e.g. breathlessness, ankle swelling, fatigue) and signs (e.g. 



48 
 

elevated jugular venous pressure, pulmonary crackles, and peripheral edema) caused by a 

structural or functional cardiac abnormality that ultimately manifests as reduced cardiac output or 

elevated intracardiac stress91,92. Heart failure is often systemic, commonly found with 

comorbidities like diabetes, liver disease, and kidney dysfunction that confer a higher risk for 

developing heart failure. In understanding and treating heart failure, endocrine regulation of heart 

function has been a central field of study. Many of these comorbidities are strongly linked with 

heart failure through mechanisms of endocrine communication. For example, a protein in the 

kidney called Klotho can either be membrane-bound and cleaved or alternatively spliced and 

secreted into the circulatory system to modulate blood pressure, mostly by modulating FGF23, a 

pro-inflammatory factor negatively associated with heart failure93,94. The kidney is responsible for 

maintaining salt and water levels in the body, which has a direct effect on blood pressure, and thus, 

heart function95,96. The heart and kidney communicate their statuses through the renin-angiotensin-

aldosterone system which activates the sympathetic nervous system to contract blood vessels to 

change flow pressure. Angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin receptor-

neprilysin inhibitors (ARNI) and mineralocorticoid receptor antagonists (MRA) are heart failure 

treatment drugs that directly affect this communication and are considered part of the main 

recommended panel of drugs for heart failure patients. Several other common heart failure 

medications also target endocrine signaling pathways: beta-blockers block the effect of 

epinephrine; and sodium-glucose co-transporter 2 inhibitors (SLGT) block glucose 

reabsorption97,98. Thus endocrine signaling pathways are relevant to studying heart function and 

failure. 

In addition, cellular functional pathways like glycolysis, cellular stress, hypertrophy, and 

cardiac muscle contraction are central cardiac processes and are often dysregulated in heart failure 
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patients99. Cellular stress and glycolysis increase during heart failure, most likely due to 

impairment of mitochondrial function100. If the mitochondria are impaired, reactive oxygen species 

(ROS) are not quenched during the process of respiration, and not only does ROS trigger stress 

protection mechanisms, the cell also has to turn to glycolysis to attempt to compensate for the 

dearth of ATP required to contract (2 ATP from glycolysis compared to 34 ATP from 

mitochondrial oxidative respiration)100,101. Hypertrophic cardiomyopathy and impaired cardiac 

contractile function are two of the most prevalent clinical characteristics of heart failure and 

cardiovascular diseases. In hypertrophic cardiomyopathy, the ventricle is meant to adapt to 

changes in blood flow demand by the growth of cardiomyocytes and organization of sarcomeres, 

but pathological hypertrophy is often associated with a higher risk of heart failure102. Impairment 

of the contractile function of the heart could be due to loss of cardiomyocytes or decreasing 

functionality of the cardiomyocytes or sarcomeres103–105. Altogether, these mechanisms are highly 

related and ultimately associated with heart failure. 

Many previous studies have looked at broad patterns of gene expression changes following 

heart failure or other major perturbations such as diet. In this study, we surveyed genetic variation 

in transcript levels across organs in a large number of individuals. Specifically, we leveraged the 

variation in population structure to correlate expression differences with each other and functional 

trait differences. The unified goal of this exercise was to identify patterns of genetic correlation 

and discover strong relationships that can then be validated more stringently once identified. 

Drawing on the relative ease of sequencing and tight environmental control of laboratory mice in 

comparison to humans, we focused our initial efforts on mining the Hybrid Mouse Diversity Panel 

(HMDP), a database of mouse genetics and functional traits across organs of many mice in 96 

strains106.  
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In this study, we looked to identify novel endocrine factors that affect heart function. We 

identified a new role for a soluble isoform of a cytokine receptor, Crlf2 (sCRLF2), as an 

endocrine factor that directly modulates cardiomyocyte functions, using in vitro cell line assays 

and an in vivo mouse model. CRLF2 is normally found membrane-bound and is best known for 

its upregulation in acute lymphoid leukemias following a translocation event, but little is known 

about the soluble isoform. We found that sCRLF2 weakly interacts with immune cell lines 

representing the immune cells where it is produced, but strongly signals directly to 

cardiomyocytes. This study provides a new direction in understanding tissue crosstalk 

influencing the heart. 

 

Results 

Screening endocrine candidates to specific heart functional pathways suggests strong 

communication with the liver:  

We initially wanted to identify the strongest genetic correlations between peripheral tissue 

gene expression and heart genes in specific functional pathways observed in heart failure. 

Therefore, genetic expression variation in adipose tissue, bone, liver, and aorta (our “source” 

tissues) was correlated with cardiac muscle contraction (shown in Figure 8A), glycolysis, cellular 

stress, and hypertrophy in the heart from the 96 mouse strains available in the HMDP (Methods). 

To identify which genes coded for proteins that could potentially signal directly between cells, we 

filtered top-ranked correlations for only genes annotated to be secreted from each “source” tissue 

(Methods). When we quantified the top 1% of the correlations for each pathway by “source” tissue, 

we observed that secreted proteins originating from the liver dominated the significant correlations 
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to the heart, which can be expected based on the well-established roles for liver-heart 

communication (Figure 8B-E).  
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We further narrowed these lists of endocrine candidates by taking the average of the 

correlation strengths for all gene-pathway comparisons in each functional pathway, and then 

ranking the top 30 genes accordingly. This top-ranked list also recapitulated known mechanisms 

of liver-heart signaling, as well as other established endocrine regulators of heart function (Figure 

8F), In particular, Ghr, ApoB and Apoa4, and Dpp4 have been previously described as genes that 

impact heart function via remodeling and nutrient metabolism107–109. In addition, FXI has recently 

been identified by another group in a heart failure mouse model by using a cross-tissue correlation 

approach110. Thus, we are reasonably confident that our screening approach is sufficient to identify 

known modes of endocrine communication. In addition, in each individual pathway, the 

correlation strengths of each gene form different patterns of ranking depending on the pathway 

(Figure 8F). These differences suggest even more potential specificity if we focus on a particular 

functional pathway.  

From this in silico screen, we chose to test a number of candidate factors directly in vitro. 

To simulate the secretion of endocrine factors by other cells and organs and eventually arriving at 

the heart, plasmids encoding our chosen endocrine factors were individually transfected into 

HEK293T cells, incubated overnight, and the resulting conditioned medias were applied onto 

differentiated H9C2 rat cardiomyocytes (Figure 8G, Methods). HEK293T cells were chosen for 

Figure 8. Screening all gene expression correlations from other tissues to several heart functional pathways 

reveals a preponderance of endocrine candidates from the liver, and CRLF2 in particular affects 

contractility genes in vitro. A, Histogram of correlations of all genes from all source tissues in HMDP, to genes 

in heart contraction (GO0055117). P-value cutoffs of correlation strengths are drawn as vertical lines. B-E, Pie 

charts summarizing the source tissues of the top 1% of the correlations (p<2e-4) to genes in heart contraction 

(from histogram plotted in A), hypertrophy, cellular stress, and glycolysis. F, Heatmap of correlation strengths of 

top 30 endocrine candidates, ranked by the average of the correlation strengths across all four functional pathways. 

G, In vitro candidate screening approach: plasmid encoding GOI or GFP for control was transfected into 

HEK293T cells and incubated overnight. The resulting conditioned media was applied to differentiated H9C2 rat 

cardiomyocytes, and gene expression was assayed using qPCR. H, Relative gene expression is plotted for various 

genes involved in contractile function compared to the GFP control vector. 
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ease of use in the lab and as a generic “other organ” proxy, and H9C2 rat cardiomyocytes were 

chosen for the same reason at this preliminary stage. We used some core contractile genes (Tgfβ, 

Gata4, Myh8, CamkIIδ; from GO Biological Process GO00055117) for our in vitro validation 

across several potential endocrine factors as a first pass and observed that Crlf2 most robustly 

changed the expression of target genes compared to a GFP control plasmid (Figure 8H). In 

summary, the pathway-specific correlation approach applied could identify known and new 

endocrine factors, and of our potential candidates to the heart, Crlf2 most warranted further 

investigation given the strength of the response to its overexpression. 

 

Genetic variation of Crlf2 is strongly correlated with lipid metabolism in the liver, and with 

structural processes in the heart:  

We next wanted to interrogate traits and conditions available in the HMDP dataset to look 

at how Crlf2 would correlate with diet across genetic backgrounds.  Here, when we looked at Crlf2 

expression in the liver, we found a strong upregulation of Crlf2 with a high-fat, high-sucrose diet, 

mostly irrespective of genetic background (Figure 9A). In addition, when we correlated the 

expression of Crlf2 with metabolic trait data, there was a strong inverse relationship to both the 

measured liver triglyceride and cholesterol levels (Figure 9B-C), suggesting that Crlf2 may have 

a role in linking diet to lipid metabolism. To begin to investigate how CRLF2 might function in 

vivo, recombinant CRLF2 protein was injected intra-peritoneally for 2 hours into fasted C57BL/6J 

male mice, then tissues were harvested and processed for bulk RNA-sequencing (Figure 9D, 

Methods). Gene set enrichment analysis (GSEA) of the sequencing results suggested suppression 

of pathways regulating metabolism in the liver, as well as suggested activation of pathways 

regulating structural processes in the heart (Figure 9E-F). These studies implicate Crlf2 in being 
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regulated by diet and lipids in the liver while engaging diverse metabolic and structural pathways 

directly when administered to mice. 

 

Treatment with sCRLF2 prioritizes interactions with immune cells and cardiomyocytes:  

Tissues are made of various cell types with different functional niches, which means 

different signaling mechanisms may be contributing to the connections we identified. To parse 

these possible relationships, deconvolution using single-cell data from Tabula Sapiens111 was 

applied to bulk liver data from the GTEx project26 to break down the cell types with which CRLF2 

might be interacting (Figure 10A). Specifically, our goal was to deconvolute bulk sequencing data, 

where population-level correlation with expression of CRLF2 could prioritize the strongest 

coregulated cell types. Using the DeconRNA-seq algorithm11, CRLF2 expression in the liver 

showed a strong negative correlation with hepatocytes, and generally positively correlated with 

most immune cell types (Figure 10B). In the heart, CRLF2 expression was positively correlated 

with cardiac fibroblasts and negatively correlated with cardiomyocytes and macrophages (Figure 

10C). If we consider cell types through which CRLF2 could be affecting the heart (Figure 10D): 

1) liver parenchymal cells affect liver immune cells, which migrate/secrete to the heart and cause 

changes; 2) liver immune cells migrate/secrete to heart and cause changes; 3) heart immune cells 

affect heart cardiomyocytes; or 4) heart cardiomyocytes respond directly. 

Figure 9. Crlf2 is strongly correlated with lipid metabolism, especially in a high fat, high sucrose diet, and 

supported by bulk RNA-sequencing of tissues from an acute injection of sCRLF2. A, Normalized gene 

expression of Crlf2 is plotted for mice on both normal chow and high-fat, high-sucrose (HFHS) diets. A trendline 

connecting mice of the same genetic background allows comparison of the gene-by-diet effect. B, Normalized 

expression of Crlf2 correlated with liver triglyceride levels across multiple mouse strains. C, Normalized 

expression of Crlf2 correlated with liver cholesterol levels across multiple mouse strains. D, Recombinant CRLF2 

protein was injected into fasted C57B6/J male mice for 2 hours, then organs were harvested and processed for bulk 

RNA-sequencing. E-F, Plots of the top gene set enrichment analysis (GSEA) pathways for the differentially 

expressed genes (DEGs) in the liver bulk RNA-sequencing (E) and the heart bulk RNA-sequencing (F). The size 

of the circle indicates the number of genes involved, while the color indicates the adjusted p -value. 
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To assay the response to CRLF2 in each of our prioritized cell types, we chose 

immortalized human cell lines to reflect the correlated cell types of interest.  These included BCL2 
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Jurkat T lymphocytes, HL-60 promyeloid cells, HEPG2 hepatocytes to simulate our immune cells 

or hepatocytes, as well as primary neonatal rat ventricular myocytes (NRVMs) as our heart 

cardiomyocytes (Methods). We applied recombinant sCRLF2 protein in minimal media directly 

to our cells of interest for 24 hours, then measured resulting expression changes by quantitative 

PCR (qPCR). We initially observed that HEPG2 cells did not strongly change any targets directly 

downstream of CRLF2, suggesting that these cells do not robustly respond to the protein (Figure 

10E). In contrast, we found that in the immune cell lines, the protein upregulated its own 

expression, as well as those of its binding partner IL7R (Figure 10F). Thus, the immune cells seem 

to respond more strongly to sCRLF2 than the hepatocytes do, and the HL-60 cells more than the 

BCL2 Jurkat cells. In HL-60 cells, the expression of IL7R and STAT5A were upregulated, implying 

that the protein engages canonical functions, similar to that of the transmembrane isoform. In 

BCL2 Jurkat cells, we noted a more mixed expression pattern, where IL7R was still upregulated, 

but we did not observe any of the other expected downstream targets upregulated. In both cell 

lines, ADGRE1, which encodes a macrophage marker F4/80, was strongly induced, which we 

should expect only for HL-60 promyeloid cells. The same experiments were performed in 

cardiomyocytes (NRVMs) and assayed for expression of heart functional genes (Figure 10G). 

Using an expanded panel of the contractile function genes originally used for screening in Figure 

8G-H, we observed that all the genes were strongly downregulated in response to the protein. Thus, 

of the cell lines we tested, cardiomyocytes responded most strongly to the direct addition of 

Figure 10. Cell type deconvolution prioritizes strongly correlated cell types for investigation; 

cardiomyocytes respond the most strongly to direct application of CRLF2.  A, Schematic of deconvolution 

pipeline for both liver and heart cell types. B-C, Correlation of liver (B) and heart (C) cell types with the 

expression of CRLF2 across the individuals in the deconvoluted GTEx dataset. D, Schematic of the possible cell 

type interactions resulting in modulation of heart function. E-G, Plots of relative fold changes in gene expression 

in HEPG2 human hepatocytes (E), HL-60 promyeloid cells and BCL2 Jurkat T lymphocytes (F), and neonatal rat 

ventricular myotubes (NRVM) cells (G). 
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recombinant CRLF2 protein. In conclusion, these results show how we prioritized potential cells 

of action for CRLF2, where both immune and cardiomyocyte cells responded the most robustly. 

 

CRLF2 activates mitochondrial respiration, contractile fiber development, and ribosome 

biogenesis in bulk RNA-sequencing data: 

To get a more expanded view of the signaling changes in immune cells and cardiomyocytes 

resulting from the application of sCRLF2, HL-60 cells, BCL2 Jurkat cells, and NRVM cells were 

directly treated with sCRLF2 for 24 hours (as in the previous results shown in Figure 10) and 
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subjected to bulk RNA-sequencing. To understand which cells responded the most robustly, we 

compared the number of differentially expressed genes (DEGs) across cell lines at multiple p-

value thresholds (Figure 11A).  This analysis revealed that NVRM cardiomyocytes responded the 

most strongly to sCRLF2, compared to only a few significant gene changes in the immune cell 

lines (Figure 11A). GSEA of the cardiomyocytes showed strong activation of ribosome biogenesis, 

mitochondrial processes, and contractile fiber structural processes (Figure 11B). In contrast, the 

immune cell lines showed modulation of the more canonical immune function pathways 

previously studied with CRLF2 (Figure 11C-D). Overall, NVRM cardiomyocytes showed the 

most gene expression changes in response to sCRLF2, and in a novel manner, while the immune 

cells confirmed the canonical effects of CRLF2. 

 

CRLF2 does not impact contractility in primary cardiomyocytes, but shows effects on heart 

functional parameters in mice:  

To assess the systemic effects of CRLF2 in vivo, mice were injected with an adeno-

associated virus (AAV) construct with a backbone tropic for the liver, that encoded a short hairpin 

RNA (shRNA) of Crlf2 under a ubiquitous U6 promoter (n=6), along with a matched scrambled 

control (n=4) (Figure 12A-B). This system allows the AAV to be taken up mostly by the liver yet 

allows all cells in the liver to express the shRNA to reduce Crlf2. Mice were subjected to 

echocardiography at baseline injection and 4 weeks following administration in C57BL6/N mice 

Figure 11. sCRLF2 has the most robust global effects on gene expression of NRVM and targets 

mitochondrial structure as well as contractile fiber assembly.   A, Histogram of most differentially expressed 

genes in each cell line at multiple p-value thresholds. Next-generation sequencing was performed on RNA of 

BCL2 Jurkat, HL-60, and NRVM cells treated with sCRLF2 protein (0.1ug/mL) or an equivalent volume of Milli-

Q water over 24 hours. B-D, Network graphs of the top 30 pathways from GSEA analysis of NRVM (B), HL-60 

(C), and BCL2 Jurkat (D). The legends display the number of genes captured in each node (circle size) as well as 

the associated p-values (color scale). 
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(Figure 12A). The echocardiography before and after the administration of the AAV constructs 
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allowed us to compare the effect of Crlf2 knockdown using each mouse’s basal heart function as 

its own control (Figure 12C). Using a Wilcoxon t-test to compare the two groups, we observed an 

increase in left ventricular diameter both during systole and diastole, as well as a strong increase 

in peak aortic velocities.  

To assess the contractile function of the NRVMs directly, we used a muscle thin film 

(MTF) system developed by the Grosberg Lab (UCI) (Figure 12D)112, where glass coverslips are 

layered with substrate and stripes of fibronectin to encourage anisotropic (aligned) attachment of 

the NRVM cardiomyocytes to allow coordinated contraction (Methods). The aligned 

cardiomyocyte layer can be stimulated and the stress forces measured to observe any changes in 

systolic stress (maximum), diastolic stress (minimum), or active stress (magnitude) during 

contraction (Figure 12E, Methods). After seeding the NRVMs onto the MTFs in complete M199 

media, we switched to media containing sCRLF2 or an equivalent volume of Milli-Q water and 

measured the contraction strengths at 0 hours (baseline) and 24 hours (Figure 12F), plotted as filled 

circles connected by a trendline for each film (Figure 12G). The trendlines reveal large variability 

in the contractile function of the films over 24 hours, also captured in the box-and-whisker plots 

Figure 12. An AAV to knockdown Crlf2 in mice shows an effect on heart function, but functional 

contractility experiments using muscle thin films are inconclusive at 24 hours. A, Schematic of in vivo 

validation experiment injecting an AAV knocking down Crlf2 mRNA in C57B6/J male mice. Echocardiography 

was performed before and after a 4-week incubation, followed by a tissue harvest. B, 4 mice received the AAV 

knocking down Crlf2 mRNA by a short hairpin RNA, compared to 6 mice with a scrambled control. C, Mice were 

compared to their own values at baseline for various heart functional parameters and plotted with a box -and-

whisker plot. Wilcoxin t-tests were performed to compare the means of the two groups for each functional 

parameter. D, Schematic of muscle thin film (MTF) fabrication (Methods). E, Representative plot of the readouts 

obtained from each peak of each film of an MTF. Systolic stress is measured from the maximum force of the 

contraction and diastolic stress from the minimum force. Active stress is the magnitude of the peak.  F, Diagram 

of experimental groups with number of films for MTF experiments.  G, Plots of contractile stress data gathered 

using MTFs seeded with NRVM cells, treated with sCRLF2 protein (0.1µg/mL) or an equivalent volume of Milli-

Q water over 24 hours, then stimulated at 2.0Hz, 20V. For each treatment group in a stress measurement, raw 

contractile force values are plotted with filled circles and a trendline connects the 0h and 24h values for each film. 

On either side is a box-and-whisker plot of the spread of the raw values. On the outside, the inclusive average of 

the stress values is plotted along with its standard deviation. Figures 12D-E were made by the Grosberg Lab (UCI) 

and are reused with permission. 
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and averages plotted to either side of the respective strength measurements (Figure 12G). This 

variability likely explains the lack of significant changes in contractile strength, either in systolic 

or diastolic stress levels or in the resultant active stress. Ultimately, several heart functional 

parameters changed after a 4-week reduction of Crlf2, but a clear shift in contractile strengths of 

ex vitro cardiomyocytes was not observed. 

 

Discussion 

Our initial in silico screen suggested that a soluble isoform of a transmembrane cytokine 

receptor, Crlf2, might be linked to heart structure and function. CRLF2 (cytokine receptor-like 

factor 2; also called TSLPR, since it is the receptor for TSLP, thymic stromal lymphopoietin), is a 

cytokine receptor that forms a complex with IL7R to accept TSLP113–116. Canonically, the 

transmembrane complex triggers signaling through the JAK/STAT pathway, and is implicated in 

the proliferation and development of hematopoietic cells, including B-cells and T-cells through 

maturation and activation of dendritic cells113–115. CRLF2 on its own has a high affinity for TSLP, 

and the resulting complex then recruits IL7R, beginning the TSLP signaling cascade116. CRLF2 

expression is highest in granulocytes (neutrophils, eosinophils, basophils, mast cells) and other 

primary immune response cells (ex. Langerhans cells in the skin) in various tissues, then also in 

macrophages, dendritic cells, B-cells, and T-cells117. CRLF2 has multiple highly conserved 

isoforms, the canonical first being membrane-bound, and the second isoform is soluble (here 

referred to as sCRLF2)118,119. The second isoform arises through alternative splicing, retaining only 

the extracellular region. Next to nothing is known about this soluble isoform, but alternative 

splicing forms are often important for the regulation of protein interactions, and on the whole, 

expand the proteome available in the body120. Given that the soluble form might still bind TSLP 
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and recruit IL7R, this raises several possibilities for how sCRLF2 might be involved in endocrine 

signaling between the heart and liver: 1) either the soluble or membrane-bound isoforms of CRLF2 

could trigger non-migratory liver cells to secrete a signal that is trafficked to the heart; 2) the 

membrane-bound isoform of CRLF2 could directly traffic to the heart on an immune cell or 

liposome; or 3)  the soluble isoform of CRLF2 could traffic directly to the heart through the 

circulatory system. 

To test these wide-ranging possibilities, we looked at gene expression responses in vitro 

after the addition of sCRLF2 to delineate its effects on various cell types. To narrow down potential 

cell types for possibilities 1 and 2, we correlated CRLF2 with deconvoluted bulk RNA-sequencing 

for the liver26, since our screening found sCrlf2 from the liver was most strongly correlated with 

heart function. We chose hepatocytes, given the strong negative correlation we found, and a range 

of immune cell types, given the generally positive correlation. The hepatocytes were represented 

by HEPG2 hepatocytes, broadly the myeloid lineage by HL-60 promyeloid cells, and the lymphoid 

lineage focusing on T-cells by BCL2 Jurkat T lymphocytes. Immortalized cell lines are admittedly 

incomplete models but were more readily available than primary cell isolates while we were yet 

unsure of which cell types were most responsive to sCRLF2. For possibility 3, we used NRVM 

cells for cardiomyocytes112, which are derived from rat neonates, so there are possible limitations 

in comparing our human cell line results with our rat primary cell results. However, the two 

isoforms of CRLF2 are highly conserved and appear to be functionally homologous, if not 

sequence homologous, in mice, rats, and humans. In addition, the ligand TSLP is species-specific, 

in that if at least one of the components of the transmembrane receptor complex is of the 

corresponding species, cross-reactivity may occur121. Thus, we believe our results to be a strong 

foundation for further clarifying studies. 



64 
 

We further saw that Crlf2 correlates with lipid metabolism markers, and sCRLF2 seems to 

activate mitochondrial respiration and contractile fiber assembly in cardiomyocytes, which is not 

suggested by its well-studied canonical function in activating immune cell development. Many 

previous studies have found that liver lipid metabolism drives heart function and failure since the 

healthy, at-rest heart prefers a fuel mix prioritizing fatty acids over glycogen100,101,122–125. For 

example, PCSK9, which regulates LDL levels, has been associated with heart disease and has 

several inhibitors in clinical trials126,127. A body of recent studies have provided evidence for 

crosstalk between cardiac muscle fibers and the mitochondria that supply them128–131. Not only do 

mitochondria signal completely differently when isolated from supporting muscle or cardiac 

fibers, absence of some cytoskeleton factors can cause an energetic switch to a glycolytic 

phenotype128–130. These data support the possibility of a previously unknown involvement of 

CRLF2 with heart function, especially with energy metabolism, a critical process for the heart. 

Another key question that remains is how sCRLF2 could be exerting its effects on 

cardiomyocytes. Previous studies have found that repair of the heart following injury often 

involves concerted coordination of immune cells and their signals132–140. One recently discovered 

function of the heart resident macrophages is to take up dysfunctional mitochondrial material that 

cardiomyocytes might discard141. When macrophages are available, the cardiomyocytes contain a 

larger number of mitochondrial structures, perhaps to pass off any possible defective components 

more quickly. Another function of activated macrophages in the heart is to recruit granulocytes, 

where CRLF2 and the TSLP pathway are highly expressed, and dendritic cells promote the 

proliferation and differentiation of T-helper (Th) and T-regulatory (Treg) cells135,137. These T-cell 

subsets can recognize cardiac structure proteins like ACTC1 and TNNI as antigens after 

myocardial infarction and modulate the inflammatory response in support of cardiac tissue 



65 
 

healing142. When sCRLF2 is added to the environment, it is possible that the cardiomyocytes 

recognize sCRLF2 as part of a signal often used to recruit immune cells, and they are either 

upregulating their mitochondrial network or responding to the possibility of an injury as stress and 

increasing functioning. To obtain a more systemic picture of the effect of sCRLF2, co-culture 

experiments with T-cells may be informative. These may also be contrasted with conditioned 

media experiments from cardiomyocytes onto T-cells or cardiac structural proteins added onto T-

cells. If sCRLF2 is causing cardiomyocytes to present structural proteins as antigens to T-cells, 

which then triggers the process of remodeling and functional shift, we could capture that response 

downstream of the T-cells. This would provide a possible origin for sCRLF2 endogenously and 

explain the shift in heart function that we observed in our mouse model.  

In summary, this study has identified a novel role affecting heart function for a poorly 

studied soluble isoform of CRLF2 and linked these effects to cardiomyocytes directly. We found 

that, in 24 hours, sCRLF2 upregulated genes encoding respiratory activity and remodeling, in 

cardiomyocytes, which would then affect heart function over time. Overall, we might hypothesize 

that the increased presence of sCRLF2 would support heart health, following our RNA-sequencing 

results; and that the decreased presence of CRLF2 might suppress heart health, which agrees with 

the trends in results from our longer-term in vivo AAV mouse model. Given the overall adaptive 

capacity of the heart, it was surprising that sCrlf2 KD alone was able to induce these shifts in 

functional parameters and warrants further investigation. We did not observe differences in 

contractile function, however, after 24 hours of incubation with sCRLF2, which either suggests 

that we should survey contractile function and gene expression at shorter or longer timescales, or 

that more complex mechanisms might be at work. We can infer, though, that the mitochondrial 

respiration activation must be upstream of possible contractile functional changes, but it is still 
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unclear how it gets triggered and when contractile gene expression begins to change. 

Mitochondrial activity could be tracked using the Seahorse XF assay, and combined with a 

timecourse setup, cardiomyocytes could be simultaneously assayed for when activity begins and 

when gene expression begins to change.  

Ultimately, CRLF2 is present and influential in many hematopoietic cells, which have been 

increasingly shown to influence other organs and be involved in a myriad of diseases, so further 

study of CRLF2 and other potential immune-derived endocrine regulators will contribute to an 

important understanding of inter-organ cross-talk and hopefully provide some missing links in the 

treatment of complex diseases like heart failure. 

 

Methods 

Animals – All mice used in this study were approved by the University of California Irvine (UCI) 

Animal Care and Use Committee, in accordance with Public Health Service guidelines with 

reference No. 2022-102 and No. 2022-054. 

Data sources and availability – Human tissue data was accessed through the GTEx V8 downloads 

portal on August 18, 2021, and previously described26.  To enable sufficient integration and cross-

tissue analyses, these data were filtered to retain genes that were detected across tissues where 

individuals were required to show counts > 0 in 1.2e6 gene-tissue combinations across all data. 

Given that our goal was to look across tissues at enrichments, this was done to limit the spurious 

influence of genes only expressed in specific tissues in specific individuals. Post-filtering consists 

of 310 individuals and 1.8e7 gene-tissue combinations.  Single-cell sequencing from the liver and 

heart used for deconvolution was obtained from Tabula Sapiens111. 
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Selection of secreted proteins – To determine which genes encode proteins known to be secreted, 

gene lists were accessed from the Universal Protein Resource which has compiled literature 

annotations terms for secretion38.  Specifically, the query terms to access these lists were: 

locations:(location:"Secreted [SL-0243]" type:component) AND organism:"Homo sapiens 

(Human) [9606]" where 3666 total entries were found.   

Selection of functional pathways – To focus our screening on functional pathways relevant to heart 

function and failure (Figure 8F), we chose GO:BP terms “cardiac muscle contraction” 

(GO0055117) for our Contraction pathway and “cardiac muscle hypertrophy in response to stress” 

(GO0014898) for our Hypertrophy pathway. We also filtered GO:BP annotations for “glycolysis” 

for our Glycolysis pathway and “ER stress” for our Cellular Stress pathway. 

Cell lines – HEPG2 (ATCC HB-8065), BCL2 Jurkat (ATCC CRL-2899), and HL-60 (ATCC 

CCL-240) cells were separately cultured in complete (containing 10-20% fetal bovine serum 

(FBS)) EMEM, RPMI-1649, and IMDM media, respectively. The cultures were incubated at 37ºC 

and 5% CO2 in air atmosphere. The three cell lines were maintained and subcultured following 

ATCC protocols.  

Recombinant protein treatment for cell lines – Cells were seeded onto 6-well plates, with 1e6 cells 

in each well, in complete media. The next day, the complete media was aspirated, then the cells 

and/or wells were washed with 1x phosphate-buffered saline (PBS) before being replaced or 

reseeded with minimal media (base media containing 1% ITS (insulin, transferrin, and selenium)) 

containing treatments as detailed: 0.1 µg/mL recombinant sCRLF2 protein (Sino Biological, 

29749-H08H) or the equivalent volume of Milli-Q water. The cells were incubated at 37ºC, 5% 

CO2 overnight. 
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RNA extraction – RNA was extracted from treated cells following QIAGEN RNeasy Mini Kit 

Protocol, then eluted in DNase/RNase-free water and stored at -80ºC. RNA concentration was 

determined using the NanoDrop One spectrophotometer.  

Quantitative real-time PCR (qPCR) –10 ng/µL cDNA was synthesized from extracted RNA 

following the qScript cDNA SuperMix Protocol, and then stored at -20ºC. Forward and reverse 

primers of interest were mixed at 10 µM in Milli-Q water from 100 µM stock concentrations. For 

each replicate, 0.2 µL primer mix was diluted with 5.8 µL Milli-Q water and 3 µL SYBR Green, 

which was subsequently added to 1 µL of 10 ng/µL cDNA. The reaction was sealed with 

MicroAmp Optical Adhesive Film and incubated in QuantStudio 3 Real-Time PCR System: (1) 

95ºC for 3 min, (2) 95ºC for 3 sec, (3) 60ºC for 20 sec, (4) 95ºC for 1 sec, (5) 60ºC for 20 sec, (6) 

95ºC for 1 sec; steps 2 and 3 repeated for 40 cycles. 

qPCR analysis – QuantStudio 3 Design & Analysis software was used to annotate sample results 

and generate Cq values for export into Microsoft Excel. The delta-delta Ct method was used to 

find the fold gene expression values. 95% confidence intervals and p-values were calculated using 

the CONFIDENCE.T function and two-tailed t-test assuming unequal variance, respectively. 

Deconvolution of liver and heart – Raw single-cell RNA sequencing was obtained from Tabula 

Sapiens111.  Human tissue data was accessed through the GTEx V8 downloads portal on August 

18, 2021, and previously described26.  Using the ADAPTS pipeline11, four deconvolution methods 

(NNLS, DCQ, proportionsInAdmixture, or DeconRNA-Seq) were compared based on the ability 

to robustly capture cell proportions, where DeconRNA-Seq showed the best performance over 

many tissues and was subsequently applied to bulk sequencing. R scripts implemented are 

available via: https://github.com/cvan859/deconvolution 

https://github.com/cvan859/deconvolution
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RNA sequencing – The extracted RNA was shipped on dry ice to Novogene Co for assessment of 

RNA quality using BioAnalyzer RIN scores. Samples chosen for library preparation and 

subsequent paired end sequencing (150 base pair read length) had RIN>9.5. All procedures 

followed Novogene Co. in-house protocols. 

RNA-sequencing analysis – Abundances of transcripts from raw transcriptome data were 

quantified using the kallisto program143. The output from kallisto, which included TPM (transcripts 

per million) for each gene within each sample, was gathered into a count matrix that compared 

TPM for each gene across all samples of a single cell type. From the aligned read TPMs, 

differential gene expression was performed using the DESeq2 package according to standard 

practices144. The identified differentially expressed genes (DEGs) were linked to Gene Ontology 

(GO) terms using Gene Set Enrichment Analysis (GSEA). 

Pathway enrichment analyses – Pathway enrichments were generated using gene set enrichment 

analyses available from the R package clusterProfiler40. Specifically, the bicor coefficients were 

used as the rank weight of each gene, and enrichment tests were performed by permuting against 

the human or mouse reference transcriptome. Terms used for the enrichment analyses were derived 

from GO (Biological Process, Cellular Component, and Molecular Function) which were accessed 

using the R package enrichR41.  

Substrate fabrication and micropatterning (Grosberg Lab, UCI) – Cell culture substrates were 

fabricated as previously described145 for cell culture experiments on NRVMs. Briefly, a large cover 

glass (76 mm x 83 mm; Brain Research Laboratories, Newton, MA) was cleaned by sonication for 

30 minutes in 95% ethanol and air dried. Next, the coverslips were spin-coated (2.5 min ramp, 

4000 rpm max) with 10:1 polydimethylsiloxane (PDMS; Ellsworth Adhesives, Germantown, WI). 
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The PDMS was allowed to cure for 12 h at 60°C. After curing, the large cover glass was cut into 

smaller coverslips (approx. 14 mm x 12.5 mm) using diamond glass cutters to fit into a 12-well 

plate. Fibronectin (FN; Sigma Aldrich, St. Louis, MO) was patterned onto the coverslips in lines 

22 μm wide with 3 μm gaps via microcontact printing. To microcontact print the patterns onto the 

coverslips, PDMS stamps with the desired design were sonicated in ethanol for 15 min and coated 

with 0.05 mg/mL drops of FN for 1 h. Prior to stamping, the coverslips were UVO-treated (Jelight 

Company, Irvine, CA) for 8 min to sterilize and functionalize the PDMS surface. The stamps were 

dried with compressed nitrogen and stamped onto the coverslips for 4 min before removal. The 

stamped coverslips were stored in phosphate-buffered saline (PBS; ThermoFisher, Grand Island, 

NY, Gibco Cat#10010049) until the seeding of cultures. This anisotropic surface patterning results 

in aligned cardiac tissues that mimic the properties of ex vivo heart sections112,146,147.  

Muscle Thin Film (MTF) fabrication from substrate-coated chips (Grosberg Lab, UCI) – Heart 

chips were fabricated for functional studies to measure contractile stress generation by muscular 

thin films. The same large cover glass used for cell culture studies was also used to fabricate the 

heart chips. Strips of the protective film (84mm x 5 mm) were placed on the cleaned cover glass 

spaced 7 mm apart. A layer of poly(N-isopropyl acrylamide) (PIPAAm) was spin-coated onto the 

surface and allowed to cure at room temperature for at least 10 minutes. The protective films were 

then peeled away, and the cover glass was once again spin-coated with 10:1 PDMS to achieve 

layers 10-15 μm thick before being cured for at least 12 h at 60°C. This resulted in alternating 

regions of the cover glass coated with only PDMS and both PIPAAm and PDMS. Individual chips 

were laser cut (Trotec Speedy 360, Plymouth, MA) from the large cover glass (laser-to-glass) to 

fit into a 12-well plate. Four “films” were laser cut (laser-to-PDMS) from the chips (2.5 mm in 

width, spaced 0.6 mm apart), then micropatterned as detailed above. The final cut to convert the 
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four films into two opposing rows of four films each was reserved for the analysis date, at which 

time the waste portions between films were manually peeled away. The laser cutter settings were 

set to score only the PDMS layer without engraving the glass underneath.  

Cardiomyocytes Harvest and Culture (Grosberg Lab, UCI) – Ventricular myocardium was 

extracted from two-day-old neonatal Sprague-Dawly rats (Charles River Laboratories, 

Wilmington, MA) as previously described148. Briefly, following resection, the ventricular tissue 

was washed with Hanks balanced salt solution buffer (HBSS; ThermoFisher, Grand Island, NY, 

Gibco Cat#14170161) and incubated overnight (12 h) at 4°C in 1 mg/mL trypsin solution (Sigma 

Aldrich, St. Louis, MO) dissolved in HBSS. The trypsin was then neutralized with 37°C M199 

culture media (ThermoFisher, Grand Island, NY, Gibco Cat#11150067) supplemented with 10% 

fetal bovine serum (FBS; ThermoFisher, Grand Island, NY, Gibco Cat#26140079). Then, the 

tissue was washed four times with 1 mg/mL collagenase type II (Worthington Biochemical 

Corporation, Lakewood, NJ) dissolved in HBSS. The cell solutions were centrifuged at 1200 rpm 

for 10 min, resuspended in chilled HBSS, and once again centrifuged at 1200 rpm for 10 min. The 

cells were re-suspended in warm 10% FBS M199 culture media and plated onto three consecutive 

pre-plates to isolate the cardiomyocytes via the different adhesion rates of cardiomyocytes and 

fibroblasts. Lastly, the final purified cardiomyocyte solution was counted and seeded onto the FN-

coated coverslips at 1 million cells/well in 12-well plates. Cells were supplemented with additional 

FBS until a final concentration of 30% FBS M199 culture media was achieved. After 24 h post-

seeding, the media was replaced with fresh 30% FBS M199 culture media. 48 h after initial 

seeding, the dead cells were washed away with PBS and the remaining cells were incubated in 

10% FBS M199 culture media. Cell culture and contractile studies were performed 5 days after 

seeding. The seeding density used to produce confluent monolayers was 1400 cells/mm2 149. 
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Muscular Thin Film (MTF) analysis of contractile stress by cardiac tissues (Grosberg Lab, UCI) 

– On the day of contractility studies, a razor was used to manually cut the films of the heart chips 

down the middle--parallel to the PIPAAm lines--to release the two rows of opposing films and 

allow them to contract vertically away from the chip112. Any waste portions of PDMS or 

extraneous films were peeled away manually using forceps. The contractility experiments were 

performed by placing the seeded heart chips into 35 mm Petri dishes filled with complete M199 

culture media. The petri dish was placed onto an INUL-MS2 Stage Top Incubator (Tokai Hit, 

Fujinomiya-shi, Shizuoka-ken, Japan) to control temperature while being imaged on the stereo 

microscope (no. SZX-ILLB2; Olympus America, Center Valley, PA). A mounted camera (no. 

A601f/A602f; Basler, Exton, PA) recorded the film’s movements from the top of the microscope 

at 100 fps. The tissues were field stimulated by a Myopacer Field Stimulator (IonOptix, Milton, 

MA) via two carbon electrodes (McMaster-Carr, Douglasville, GA) spaced 1.5 cm apart. The 

contractile behavior of the films was measured as the films were paced at 2 Hz with a voltage of 

20 V. Films were measured before stimulation by 0.1 ug/mL CRLF2 protein in complete M199 

media or an equivalent volume of Milli-Q water in complete M199 media, placed back into the 

incubator, and then measured again at the later time point. Using this protocol, each film effectively 

acts as its own control. Systolic, diastolic, active stress, and beating frequency measurements were 

calculated from recorded videos of the films using custom ImageJ and MATLAB codes through 

the calculations described previously112.  
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Summary: 

 In this dissertation, I summarize my contributions to two co-first author papers, mainly 

through application of a computational method called deconvolution, which I also leveraged to 

gain more insight into the discovery of a novel signaling role for CRLF2, a cytokine receptor, that 

might have an endocrine effect on heart function. 

In these projects, I used genetically diverse sample data to tease out strong correlations 

across tissues and health statuses. Furthermore, when I narrowed my query by tissue or cell type 

of origin or interest, and/or functional pathways of interest, I found I could draw out even more 

interesting correlations that are ultimately more likely to be biologically relevant. I began my PhD 

studies with the overarching desire to contribute to the study of inter-organ communication and to 

learn more computational methods to support the investigation of such biological questions, and 

these projects have addressed these goals. CRLF2 is an example of a factor found through this 

pipeline, and though open questions about the mechanism remain, the data is very compelling 

given the strength of response in vivo and in vitro across various cell lines and types. 

Importantly, it should be reiterated that throughout the work described here, we consider 

only robust associations found across variations in genetic backgrounds and only as indicators of 

the possible involvement of signaling/functional pathways. Our in silico findings may suggest the 

existence of causal relationships or direct interactions, but the validation of such connections will 

be obtained through experimental studies. As another caveat to consider, many correlations tend 

to be dominated by genes expressed within the same organ. It is likely that within-tissue 

correlations capture both the pathways regulating the expression of a gene, as well as potential 

consequences of changes in expression/function, and distinguishing between the two presents a 

significant challenge. Our broad genetic surveys, and my incorporation of deconvolution as a tool 
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to focus our queries, are applications of some unbiased methods to discover associations in cross-

tissue signaling that may have strong biological relevance and would merit further investigation. 
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