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Morphometric analysis and linear measurements of the scala 
tympani and implications in cochlear implant electrodes

Rance J.T. Fujiwara, MD MBAa, Gail Ishiyama, MDb, Ivan A. Lopez, PhDa, Akira Ishiyama, 
MDa

aDavid Geffen School of Medicine at UCLA, Department of Head and Neck Surgery, Los Angeles 
90095

bDavid Geffen School of Medicine at UCLA, Department of Neurology, Los Angeles 90095

Abstract

Hypothesis: The objective of this study was to perform detailed height and cross-sectional area 

measurements of the scala tympani in histologic sections of non-diseased human temporal bones 

and correlate them with cochlear implant electrode dimensions.

Background: Prior investigations in scala tympani dimensions have utilized micro-CT or 

casting modalities, which cannot be correlated directly with microanatomy visible on histologic 

specimens.

Methods: 3-D reconstructions of 10 archival human temporal bone specimens with no history of 

middle or inner ear disease were generated using H&E histopathologic slides. At 90° intervals, the 

heights of the scala tympani at lateral wall, mid-scala, and perimodiolar locations were measured, 

along with cross-sectional area.

Results: The vertical height of the scala tympani at its lateral wall significantly decreased from 

1.28 mm to 0.88 mm from 0° to 180°, and the perimodiolar height decreased from 1.20 to 0.85 

mm. The cross-sectional area decreased from 2.29 (sd 0.60) mm2 to 1.38 (sd 0.13) mm2 from 0° 

to 180° (p=0.001). After 360°, the scala tympani shape transitioned from an ovoid to triangular 

shape, corresponding with a significantly decreased lateral height relative to perimodiolar height. 

Wide variability was observed among the cochlear implant electrode sizes relative to scala 

tympani measurements

Conclusion: The present study is the first to conduct detailed measurements of heights and 

cross-sectional area of the scala tympani and the first to statistically characterize the change in 
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its shape after the basal turn. These measurements have important implications in understanding 

locations of intracochlear trauma during insertion and electrode design.

Keywords

scala tympani; temporal bone; cochlear implant; electrode design; 3-D reconstruction

Introduction

Patients with moderate to profound bilateral sensorineural hearing loss, who demonstrate 

inadequate benefit from hearing amplification, may benefit from cochlear implantation, 

which has now become the standard of care and has been shown to improve global 

cognitive function, quality of life scores, and other long-term benefits.1-3 Recently, efforts 

have focused on performing implantation as atraumatically as possible, for residual 

hearing preservation and minimalization of triggers of fibrosis.4,5 Immediate or delayed 

intracochlear pathology, such as translocation across the basilar membrane, through the 

organ of Corti, or lateral wall damage may trigger fibrosis and osteneogenesis, resulting in 

nonoptimal audiologic outcomes postoperatively.6-8

Two recent studies showed that translocations across the basilar membrane were most 

likely to occur at angular insertion depths near either 180° or 400°.6,9 To date, several 

studies have been conducted looking at cochlear microanatomy and dimensions of the scala 

tympani (ST).9-15 Limited work has provided detailed morphometric analyses of the ST that 

explain why these areas are susceptible to electrode translocation, and few have compared 

such measurements to that of current cochlear implant electrodes. The most extensive 

analysis was performed by Avci et al., who utilized micro-CT in non-implanted human 

temporal bone specimens to record three different ST vertical heights along the length of the 

cochlea.11 Detailed studies utilizing histologic human temporal bone specimens, however, 

have not been performed.

The purpose of this study is three-fold. First, as previously demonstrated, we seek to 

perform 3-D reconstruction of histologic sections of human temporal bone specimens, 

which has not been performed in the current literature for the purposes of scala tympani 

morphometric analysis.16 Second, the vertical height and cross-sectional area of the scala 

tympani are measured at 90° intervals using the round window as the 0° reference point, as 

established by Verbist et al.17 Vertical height measurements are obtained at three different 

horizontal positions in order to better approximate the designed lateral and perimodiolar 

positions of cochlear implant electrodes. Third, the cross-sectional area and height of current 

electrodes are compared to scala tympani measurements.

Materials and methods

Human temporal bones

A total of 10 human temporal bone (HTB) specimens (5 right, 5 left) from 9 subjects (5 

male, 4 female) with no history of middle or inner ear surgery, no audiological diseases 

which would affect the labyrinthine structures such as Meniere’s disease or labyrinthitis 
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ossificans, and no history of cochlear implantation, were included in this study. Age at death 

ranged from 15 to 82 years old. This study was approved by the UCLA Institutional Review 

Board (IRB protocol #10-001449). All methods used in this analysis are in accordance 

with NIH and IRB guidelines and regulations. The temporal bone donors were part of a 

National Institute of Health funded National Temporal Bone Laboratory at UCLA through 

the National Institute on Deafness and Other Communication Disorders. Each medical 

record from patients who have donated their temporal bones was reviewed and maintained 

within a secured electronic database.

HTB processing

The temporal bones were removed postmortem and processed as has previously been 

described.16,18 Briefly, they were placed in 10% neutral buffered formalin for 3 weeks, 

decalcified in ethylenediaminetetraacetic acid until shown by x-ray to be free of calcium. 

Embedding was done in increasingly concentrated celloidin to allow for complete 

penetration. The temporal bones were then exposed to fumes to chloroform for 4 weeks 

(in a desiccator) to allow for polymerization of the celloidin. The celloidin block was then 

cut into 20 micron sections, of which every tenth section was mounted and stained with 

hematoxylin and eosin (H&E).

3-Dimensional reconstruction of the cochlea

The serial images (27-38 slides) of 10 HTB specimen were examined under light 

microscopy under a 10x objective (Leica DMi8) and captured using a digital camera 

(Leica DFC 7000T) within the Leica Application Suite X (LAS X, Leica Microsystems, 

Wetzlar, Germany) software. The images were imported into the Fiji (Fiji Is Just ImageJ) 

software program; automatic alignment was performed using the TrakEM2 plugin and 

verified manually using fiduciary landmarks, including the modiolus, internal auditory canal, 

and semicircular canals. The aligned stacks were then uploaded onto Amira (version 2022.1) 

to generate 3-D reconstruction. Dimensions in the x and y axes of each voxel within Amira 

were input based on pixel and linear dimensions provided by LAS X software; to account 

for the nine unstained sections between each H&E section, the voxel dimension in the z 

axis was set at 200 μm (20 μm-thick sections multiplied by 10 sections). For each specimen, 

the entire cochlea and ST were segmented using the ‘Segmentation’ tool within Amira to 

generate surfaces of each 3-D reconstruction (Figure 1). The ‘Smooth Surface’ module was 

then used to smooth the surface of each reconstruction.

Linear height and cross-sectional measurements of the ST

The standard Cochlear view and coordinate system established by a 2010 consensus panel 

was then utilized for all measurements, as has previously been performed.16,17 Briefly, a 

line from the center of the round window and through the modiolus and terminating at the 

lateral wall of the basal turn corresponds with the 0° and 180° reference points (y-axis), 

with the x-axis perpendicular and establishing the 90° and 270° reference points. The line 

from the helicotrema through the intersection of the x- and y-axes represents the z-axis. At 

90° intervals of angular distance from 0° (round window) to 810°, cross-sections of the ST 

were generated with the ‘Surface Cross Section’ tool. The height of the ST was measured at 

3 different points every 90°: the height at the horizontal center of the lateral and modiolar 
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walls, the height 0.2mm from the lateral wall, and the height 0.2mm from the modiolar wall, 

as has previously been performed in the literature.11 The cross-sectional area of the ST was 

calculated every 90° using the ‘Patches’ mode of the ‘Surface Area Volume’ module (Figure 

2).

Cochlear implant electrode dimensions

The length of ten cochlear implant electrodes, in addition to their individual heights and 

widths at their apex and base, were obtained from publicly available manufacturer data from 

three major cochlear implant electrode companies as well as current literature. 19-21 This 

included the Cochlear (Cochlear Limited, Sydney, Australia) Slim Straight (CI622), Slim 

Modiolar (CI632), and Hybrid L24 electrodes; the MED-EL (Innsbruck, Austria) FLEX 

Soft, FLEX 24, and FLEX 28 electrodes; and the Advanced Bionic (Advanced Bionics, 

LLC, Valencia, California, USA) 1J, Helix, Midscala, and Slim J electrodes. The estimated 

angular depth of insertion, equivalent to the angular depth at which the electrode apex would 

be positioned with full insertion, was determined by a review by Dhanasingh and Jolly 

in 2017.19 Detailed manufacturing information regarding the linear length at which each 

stimulating electrode was positioned, as well as the height and width at each stimulating 

electrode position, was obtained directly from Cochlear Limited for the Slim Modiolar and 

Slim Straight electrodes. Identical information for the MED-EL FLEX 28 was gathered from 

a review by Dhanasingh in 2021.22

The cross-sectional area of each electrode at its apex and base was calculated using the area 

formula for an ellipse πab, where a is the major radius (half of implant width) and b is 

the minor radius (half of implant height). The percentage of occupied ST was calculated 

by dividing each electrode apex’s cross-sectional area by the ST cross-sectional area at full 

insertion. The area of each electrode’s base was calculated as a percentage of the round 

window cross-sectional area, which was determined from a previous study by Shakeel et 
al.23

Detailed electrode dimension calculations for CI632, CI622, and FLEX28

Finally, with the detailed specifications obtained for the Cochlear Americas Slim Modiolar 

and Slim Straight electrodes, and for the MED-EL FLEX 28, we performed two calculations 

every 90° assuming full electrode insertion: first, the percentage of ST cross-sectional 

area occupied (as described above); and second, the maximal potential distance from the 

electrode to the basilar membrane. The angular position of each stimulating electrode for 

the CI632 and CI22 electrodes was estimated utilizing previously calculated outer and inner 

cochlear wall linear distances.16 The maximal potential distance from electrode to basilar 

membrane was estimated using the height specified for each electrode and the ST heights 

calculated above.

All statistical analysis was performed on Stata 14.2 (StataCorp, College Station, TX). 

Means and standard deviations were calculated for each height and cross-sectional area 

measurement every 90 degrees. Two-sided paired student’s t-test was utilized to compare 

overall means of the lateral, central, and perimodiolar heights. To determine statistically 

significant changes between each 90° interval, one-way repeated measures ANOVA was 
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conducted. A post hoc analysis using the Bonferroni correction was performed to determine 

statistically significant changes in the means of these measurements at each 90° interval 

while accounting for the problem of multiple comparisons.

Results

Scala tympani vertical height

Analysis of the 3-D reconstructions of the 10 temporal bone specimens showed notable 

variability in the ST. Table 1 details the means and standard deviations of the central height, 

lateral height, and perimodiolar height at 90° intervals. The central height was significantly 

greater in length than both the lateral and perimodiolar measurements (p<0.001). Generally, 

the ST assumes an ovoid shape over its basal turn, and over the course of the middle turn 

develops a triangular shape with its perimodiolar height greater than its lateral height. The 

transition from 360° to 450° appeared to be the transition point of the shape change. At less 

than 360°, the lateral height had a mean of 0.92 mm (sd 0.25), and the perimodiolar height 

was 0.99 mm (sd 0.29) (p=0.09), as expected in an ovoid shape. However, at >360°, the 

perimodiolar height (mean 0.71mm, sd 0.23) was significantly greater than the lateral height 

(0.53 mm, sd = 0.21) (p<0.001), consistent with the change to a pyramidal or triangular 

shape in the scala tympani beyond the first cochlear turn.

The largest interval decrease in height for all three measurements occurred over the first 

half of the basal turn. For the central height, there was a significant decrease from 0° to 90° 

from 1.79 mm (sd 0.38) to 1.39 mm (sd 0.14) (p=0.002) on ANOVA testing, and again from 

90° to 180° (1.09 mm [sd 0.15], p=0.001). The lateral height significantly decreased from 

1.28 mm (sd 0.25) to 0.85 mm (sd 0.10) (p=0.002) over the first 90°. While no change in 

perimodiolar height from 0° to 90° was observed, there was a significant decrease from 90° 

to 180°, from 1.21 mm (sd 0.35) to 0.85 mm (sd 0.15) (p=0.001).

In all three height measurements, a relative plateau was also observed from roughly 180° 

to 450°. After 450°, the central, lateral, and perimodiolar heights each had steady, slow 

decreases in their magnitudes. There were no statistically significant decreases over 90° 

increments from 450° to 810°.

Scala tympani cross-sectional area measurements

The measurements of the ST cross-sectional area for all ten specimens are depicted in Figure 

3. The largest variability in area measurements occurred over the first half of the basal turn. 

From 0° to 90°, the ST area significantly decreased from 2.29 mm2 (sd 0.60) to 1.95 mm2 

(sd 0.59) (p=0.002). The ST area also significantly decreased from 90° to 180° (1.38 mm2 

[sd 0.13], p=0.001).

Cochlear implant electrodes

Using available manufacturing data and prior studies on the angular depth of insertion 

of individual electrodes,19 the percentage of ST cross-sectional area occupied by each 

electrode’s apex was calculated. The calculations are detailed in Figure 4. Among the 

perimodiolar electrodes, the CI632 occupies 12.51% (sd 2.78%), compared to 22.34% (sd 
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4.97%) and 32.16% (sd 7.16%) for the Midscala and Helix, respectively. Among lateral wall 

electrodes, the CI622 occupies 7.82% (sd 1.74%), FLEX24 13.40% (sd 2.98%), and SlimJ 

12.78% (sd 2.84%).

Detailed electrode dimensions for CI632, CI622, and FLEX28

Finally, detailed electrode dimensions at each stimulating electrode location were obtained 

for the CI632, CI622, and FLEX28 electrodes; at 90° intervals, the percentage of occupied 

cross-sectional area as well as the maximal potential distance from the basilar membrane 

to the electrode were determined. For the perimodiolar CI632, the electrode occupied a 

mean ST cross-sectional area of 11.62% (sd 3.70, range 8.71–13.57%), and the vertical 

distance was 0.28 mm (sd 0.13, range 0.21–0.38 mm) from the basilar membrane. In 

contrast, the lateral wall CI622 occupied mean 10.67% (sd 3.24, range 9.38-12.3%), with 

vertical distance 0.25 mm (sd 0.11, range 0.19-0.39 mm); the FLEX28 occupied 21.94% (sd 

7.90, range 15.76-28.76%), with distance from basilar membrane 0.15 mm (sd 0.10, range 

0.05-0.13). The interval measurement averages are depicted in Figure 5.

Discussion

In the present study, we have detailed the vertical heights and cross-sectional area of the 

scala tympani using 3-D reconstruction of histologic sections in normal human temporal 

bone specimens without pathology and without a history of implantation. We compared 

these measurements to the current catalogue of cochlear implant electrode arrays and 

determined notable variability among currently utilized electrodes. Measurements were 

made using the coordinate system established by Verbist et al. in 2010.17

The ST vertical height in the central portion, lateral wall, and perimodiolar region all 

showed a statistically significant decrease over the first 180° of the basal turn of the cochlea 

as well as a steady decline in heights after 450°. Most prior studies have found an inverse 

correlation between distance from round window and ST height and area, though often 

do not account for the changing shape of the ST cross-section, measure along different 

horizontal ST positions, or perform detailed statistical analysis.10,12-14 A recent study by 

Avci et al. utilized 3-D reconstruction of micro-CT images to measure scala tympani height 

by lateral wall, central, and peri-modiolar dimensions.11 Despite using similar methodology, 

several differences were observed. First, the authors did not observe a decrease in the 

lateral or peri-modiolar heights over the first 180°, while we have identified a statistically 

significant decrease over the first half-turn. Of note, several other temporal bone studies 

found decreases in ST height over the first half-turn, though only measured along central 

horizontal locations.12,13 Second, while Avci et al. also found a significant decrease in the 

lateral wall height after 450°, from 0.86 mm to 0.35 mm from the round window to the 

end of the second turn, they found minimal change in the height of the perimodiolar scala 

tympani, decreasing from 0.82 mm to 0.72 mm from the round window to the end of the 

second turn. Again, the present study on human temporal bone specimens demonstrated 

significant decreases in height in all three regions of the scala tympani within 180° from the 

round window. Furthermore, we have statistically characterized the transition point in the 

cross-sectional contour of the scala tympani from 360° to 450°, from an ovoid shape to a 
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triangular shape with the perimodiolar region the tallest region. Avci et al. also comment on 

a similar change in shape without metric analysis. Finally, Avci et al. removed perilymph 

fluid in order to conduct CT studies and noted that the apical area could not be evaluated as 

a result, which may have affected the ST morphometry and resultant measurements relative 

to histologic temporal bone measurements.

The cross-sectional area also significantly decreased from 2.29 mm2 to 1.38 mm2 from 0° 

to 180°. Avci et al. similarly found a maximum cross-sectional area of 2.3 mm2 within the 

first 20° of the basal turn;11 a subsequent drop in area was also observed over the first 180°, 

though no statistical analysis or comment was made regarding this finding. Hatsushika et al. 
observed an initial rapid decrease in ST cross-sectional area over the first 1.5 mm from the 

round window, as well as a decrease from 2.25 mm2 to 1.2 mm2 at 14 mm from the round 

window, which is roughly equivalent to 180° in angular distance.12,16

The findings above have significant implications in cochlear implantation and the location 

of electrode translocation. Ishiyama et al. examined 13 HTB specimens with translocation 

injury implanted with first-generation cochlear implant electrodes.6 Translocation injuries 

tended to occur near 180° of angular insertion, with a mean of 186.36±51.62°; sites of 

translocation associated with lateral wall injury or scala media disruption were associated 

with a much greater degree of fibrosis and osteoneogenesis, which corresponded with loss 

of spiral ganglion neurons and poorer speech performance. Utilizing either intraoperative 

cone-beam CT or postoperative CBCT or traditional CT imaging, Morrel et al. in 2020 

studied 177 implanted ears, reporting 39 exhibited translocations.9 Higher angular insertion 

depths were correlated with increased rates of translocation; the median angular depth of 

translocation was 381° and followed a bimodal distribution, with most occurring around 

400° and a smaller subset around 200°. The localized angular distance of translocation at 

180° corresponds with the most significant decrease in both ST height and cross-sectional 

area demonstrated in the present study, suggesting that the precipitous decrease in the size 

of the scala tympani at this location places this area at increased risk for translocation. 

The localization of translocation injuries at 400° corresponds with the location at which 

the scala tympani assumes a more triangular shape with a decrease in lateral relative to 

perimodiolar heights from 360° to 450°. The change in conformation of the ST may affect 

the trajectory of a lateral wall electrode upon insertion and, coupled with the decreasing 

(albeit not statistically significant) ST size, may displace the electrode through the basilar 

membrane or osseous spiral lamina and predispose to significant lateral wall injury at the 

deeper angular insertions of the lateral wall electrode. Of note, Morrel et al. also commented 

that 8 of 10 insertions greater than 650° had translocations; we observed a precipitous drop 

from 630° to 720° particularly in the lateral ST height, which corresponds with this finding.

The notable variability in electrode diameter may have important implications in 

audiological outcomes. An additional consideration is the drop in the lateral wall height 

beyond 360° which may also indicate areas at risk of translocation injury with deeper 

angular insertion of the lateral wall electrode compared with the perimodiolar electrode. 

Larger electrodes may be displaced from the lateral wall, abut the basilar membrane at 

earlier insertion depths, or require increased insertional force, and as such may be more 

likely to incite inflammatory responses via lateral wall injury or abutment or displacement of 
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the basilar membrane.24 Even in the absence of translocation, fibrosis and osteoneogenesis 

may occur, with new bone formation increasing over time and correlated with worse 

postoperative audiologic measures.25 Increasing amounts of new bone formation have been 

positively correlated with degree of intracochlear insertional trauma, which may then result 

in worsened postoperative audiologic outcomes.6,26 As such, additional work needs to be 

performed in the importance of electrode dimensions in the prediction of intracochlear 

insertional trauma.

Several limitations exist to the present study. First, the study is limited to a small sample size 

of ten human temporal bone specimens. Second, our measurement of “maximal potential 

distance” is a rough estimate of the true distance from electrode to basilar membrane; in 

non-implanted specimens, we cannot perform this direct measurement, which is potentially 

an important factor in post-insertional inflammatory response and subsequent new bone 

formation. Third, while radiologic studies such as Avci et al. are limited by decreased 

discernability of tissue planes and of the basilar membrane in particular, the utilization of 

histologic specimens is also subject to error, including those related to HTB processing, 

variations in H&E staining, as well as artifacts related to compression, folding, or mounting 

in general. However, improved discernability of the basilar membrane and boundaries of the 

scala tympani allow for accurate 3-D reconstruction and measurement of the dimensions of 

the scala tympani. Finally, the angular depth of insertion for each electrode, particularly for 

the detailed analysis of the CI632, CI622, and FLEX28 electrodes, are estimated using data 

from prior studies on the outer and inner cochlear wall lengths; these estimates may not 

reflect or account for variability during actual electrode insertion during surgery.

Conclusion

Utilizing 3-D reconstruction of histologic sections of human temporal bone specimens, the 

present study details the cross-sectional area of the scala tympani throughout the cochlea, as 

well as the vertical height of the scala tympani at the lateral wall, central, and perimodiolar 

horizontal locations. The cross-sectional dimensions of ten commonly used cochlear implant 

electrodes were evaluated and measured relative to the respective dimensions of the scala 

tympani, yielding a wide variability of ratio of space of the scala tympani occupied by the 

electrode and proximity of electrode to the basilar membrane. The potential implications in 

postoperative outcomes is explored. There were significant interval decreases in all three 

height measurements in the first 180° and from 450° to 540°; we also report a significant 

decrease in the mean lateral height relative to the perimodiolar height after 360°. The 

scala tympani shape changed from elliptical to a scalene triangular shape with the narrow 

tail at the perimodiolar end after 360°. These measurements provide potential explanation 

regarding the mechanism by which electrode translocation occurs with higher frequency at 

approximately 180° and 400°. Additional investigation should be conducted into the impact 

of electrode dimensions as well as the role of different types of electrodes in insertional 

trauma.
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Figure 1. 
Segmentation and 3-D reconstruction of scala tympani superimposed on mid-modiolar 

histologic section.
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Figure 2. 
Cross-sections of 3-D reconstruction of scala tympani for vertical height and cross-sectional 

area measurements every 90°. Once segmentation and surface generation of the scala 

tympani was complete, cross-sections were generated every 90° and separately analyzed 

using linear measurement tools.
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Figure 3. 
Cross-sectional area (mm2) of the scala tympani as a function of angular distance in 10 

human temporal bone specimens. The cross-sectional area was measured in 90° intervals 

and significant decreased from 2.29 mm2 (sd 0.60) to 1.38 mm2 (sd 0.13) from 0° to 180° 

(p=0.001).
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Figure 4. 
Percentage of scala tympani and round window cross-sectional area occupied by cochlear 

implant electrodes at full insertion. The insertion depth angle was obtained from Dhanasingh 

and Jolly in 2017. Measurements of the round window area were determined by Shakeel et 
al. in 2015.
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Figure 5. 
Detailed cross-sectional area (a) and vertical distance from basilar membrane (b) 

measurements for CI632, CI622, and FLEX 28 electrodes. Measurements were recorded 

at 90° intervals for all three electrodes. When comparing the lateral wall electrodes, the 

CI622 occupied a mean 10.67% (sd 3.24%) of cross-sectional area, compared to 21.94% (sd 

7.90%) for the FLEX 28 electrode.
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Table 1.

Means and standard deviations of central, lateral, and perimodiolar height measurements of the scala tympani.

Angular distance (°) Central height, mm (SD) Lateral height, mm (SD) Perimodiolar height, mm (SD)

0 1.79 (0.38) 1.28 (0.25) 1.20 (0.29)

90 1.39 (0.14) 0.85 (0.10) 1.21 (0.35)

180 1.09 (0.15) 0.88 (0.14) 0.85 (0.15)

270 0.99 (0.16) 0.81 (0.17) 0.86 (0.11)

360 1.01 (0.18) 0.78 (0.17) 0.83 (0.23)

450 1.01 (0.10) 0.79 (0.20) 0.91 (0.24)

540 0.81 (0.15) 0.59 (0.11) 0.73 (0.19)

630 0.72 (0.11) 0.53 (0.13) 0.71 (0.14)

720 0.60 (0.18) 0.39 (0.18) 0.66 (0.25)

810 0.46 (0.13) 0.34 (0.13) 0.53 (0.21)
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