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Abstract

Mountains and rivers: rare events in noisy systems and the forces that shape them

by

Benjamin Kuznets-Speck

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Carlos Bustamante, Co-Chair

Professor David Limmer, Co-chair

Rare events are ubiquitous in noisy complex systems throughout the physical sciences and
to large extent determine their function and regulation. Dissipative outside forces often
work hand in hand with equilibrium structure to shape the mechanism and frequency of
such improbable fluctuations, but little is known about how to codify the influence of non-
equilibrium on reaction rates and their mechanisms. In the last quarter century we have
seen paradigm shifting breakthroughs in reaction rate theory that have allowed for the study
of rare transitions in complex many particle systems. At the same time, development of the
statistical mechanics of trajectories has revolutionized how we study the behavior, response
and functional limits of systems away from equilibrium. Here, we develop a trajectory theory
of how reaction rates respond to nonequilibrium forces, allowing us both to probe how non-
equilibrium systems regulate their function, and leverage optimally designed forces to sample
reaction rates from finite time driven trajectories for the first time.
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To the family and friends who walk beside me always.

The world is very dusty, uncle. Let us work.
One day the sickness shall pass from the earth for good.
The orchard will bloom; someone will play the guitar.
Our work will be seen as strong and clean and good.

And all that we suffered through having existed
Shall be forgotten as though it had never existed.

–Donald Justice
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Chapter 1

Introduction

The biophysical world is random on the length scales over which proteins and molecular
machines operate. This inherent randomness, due to thermal fluctuations, causes molecules
to diffuse in their aqueous surroundings. On rare occasions, this noise can build up to affect
large scale transitions between conformational states that would otherwise be impossible.
The function and regulation of such a molecular system, i.e. the probabilities of being in
each state and how they change in time, is determined by the rates at which the system
switches between states. If one were able to tune transition rates, by injecting external
energy through additional forces, they could control the function of such systems and design
new ones to achieve specific tasks and preferentially go towards or steer away from target
states. It is therefore natural to ask how transition rates change when time-dependent
external forces are applied to a noisy physical system. Throughout this work, we will ask
time and time again how rates are shaped by nonequilibrium external forces, how such forces
regulate the mechanism of transitions and how they can be used to determine rates when no
external forces are present at all.

1.1 Configurations and Trajectories

Configurations x(t) are snapshots of physical systems at specific points in time, and trajecto-
ries X = {x(t0), ...x(tf )} are how these snapshots are strung together to make a movie. x(t)
could represent the full state of the system– the positions and velocities of all constituent
particles– or it could be a collective variable, or order parameter, such as the end to end
distance of a protein. A stochastic trajectory of a particle diffusing in a system with two
stable states is shown in Fig. 1.1. In equilibrium, it is enough to study these snapshots by
themselves, devoid of the forces that join them together through time. Statistical mechan-
ics has traditionally been the study of configurational distributions, averaged over time but
fundamentally outside of it. Only in recent years has it been realized that the statistical
mechanics of trajectories holds a key to probing nonequilibriumn systems with a framework
analogous to equilibrium thermodynamics.
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Figure 1.1: An order parameter x which describes the system state transitions between two
stable regions of phase space, A and B, shaded and white respectively. We can histogram the
trajectory over time to yield the probability distribution p(x), and − ln p(x) can be viewed
as a free energy surface in which the system diffuses. Transitions from A to B occur at rate
kAB and require crossing a free energy barrier.

1.2 Transition rate theory

The rates at which stable states transition between one another determines how the states
are distributed. Transition rates can be defined as the inverse first passage time for a given
transition to occur

k = 1/⟨t⟩. (1.1)

This description is consistent with defining the rate as a cumulative transition probability
per unit time k = P [B|A]/τ whenever the transition is rare.[1] Here the transition path time
τ is the typical time to cross from A to B when the transition has been initiated, and it
can usually be described by the local correlation timescale of state A. Since each transition
attempt is uncorrelated once time τ has elapsed, and the system typically transitions only
after many attempts m≫ 1 at time t = mτ ≫ τ , the distribution of waiting times ρ[B|A](t)
is Poissonian

ρ[B|A](t) = (1− kτ)mk = (1− kt/m)mk ≈ kτe−kt (1.2)

so the cumulative transition probability

P [B|A](t) =
∫ t

0

dt′ke−kt
′
= 1− e−kt ≈ kt, τ ≤ t≪ k−1 (1.3)

is linear in time on the appropriate timescale. The transition probability P [B|A](t) can also
be represented by a correlation function between regions of phase space A and B [1]

kt =
⟨hA(0)hB(t)⟩
⟨hA⟩

≡ ⟨hB|A⟩, τ ≤ t≪ k−1 (1.4)
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where the average is taken over stochastic paths of length t,

⟨hA(0)hB(t)⟩ =
∫
D[X(t)]hA(0)hB(t)P [X(t)] (1.5)

is the joint probability of being in state A at time 0 and state B at time t, ⟨hA⟩ is the
probability to find the system in state A, and hi denotes an indicator function

hi(t) =

{
1 if x(t) ∈ i
0 else

. (1.6)

In Fig. 1.2, we illustrate that the time derivative of the side-side correlation function encodes
the rate by showing how it plateaus to the time independent rate constant.

Figure 1.2: Transition rates are encoded in the temporal correlations between different
areas, A and B, of configuration space. The side-side correlation function ⟨hB|A⟩ = kt grows
linearly in time with a proportionality constant equal to the transition rate k. We plot the
log of the rate, k(t) = d⟨hB|A⟩/dt, which plateaus to a constant value for times τ ≤ t≪ k−1

on the order of the transition path time τ .

Rare rates can also be described by the probability of traversing a so called transition
state atop a barrier in free energy (negative log-probability, − ln p(x)) between states A
and B, as shown in Fig. 1.1. Integrating by parts, ⟨hA(0)ḣB(t)⟩ = −⟨ḣA(0)hB(t)⟩ since
⟨hA(0)ḣB(0)⟩ = ⟨ḣA(t)hB(t)⟩ = 0. Now using the chain rule ḣA(0) = ẋ(0)∇xhA(x) =
−ẋ(0)δ(x(0) − x‡), where the transition state x‡ defines the border between A and B and
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δ(x(0) − x‡) is the Dirac delta function. Multiplying and dividing by the transition state
probability ⟨δ(x− x‡)⟩ = p(x‡), we arrive at transition state theory [2]

k(t) =
⟨ẋ(0)δ(x(0)− x‡)hB(t)⟩

2⟨δ(x(0)− x‡)⟩
⟨δ(x(0)− x‡)⟩

⟨hA⟩
≡ v(t)

2

p(x‡)

⟨hA⟩
. (1.7)

Here v(t) = ⟨ẋ(0)hB(t)⟩x(0)=x‡ is the reactive flux through the transition state x‡ at time

τ ≤ t≪ k−1, when it has become quasi-stationary, and p(x‡) ∝ e−∆F (x‡) gives the expected
Arrhenius rate behavior in equilibrium.

1.3 Stochastic path ensembles

As we just saw, we can access transition rates through the probability of finding a reactive
path. Path ensembles have proven useful for their ability to make broad reaching general
statements about fluctuations far from equilibrium. Under the Markovian assumption, [3]
the probability of observing a stochastic path X(t) can be broken down into the probabilities
of observing changes in individual conformations over independent time steps of length ∆t

P [X(t)] = P [x(∆t),x(2∆t), ...,x(m∆t)] = p0(x)

t/∆t∏
m

P [xm+1|xm] (1.8)

which we label by m. Here p0(x) is the probability to observe an initial condition of con-
figuration x. To study systems with N particles in continuous phase space with dimensions
labeled by α, we typically employ the Langevin equation

ẋi = µiFi
λ(x, t) + ηi, 1 ≤ i ≤ N, (1.9)

where µi is a vector of mobility coefficients and ηi is white noise with ⟨ηi(t)⟩ = 0 and
⟨ηi(t)ηjβ(t′)⟩ = 2Diδijδαβδ(t− t′). The strength of the noise fluctuations is proportional to
the particle diffusion ⟨ηi(t)ηi(t′)⟩ ∝ Di = kBTµ

i, given by the Einstein relation.
The Langevin equation has discretized increments

∆xi(t) ≡ xi(t+∆t)− xi(t) = µiFi
λ(t)∆t+

√
2Di∆tηi, (1.10)

where ηi is a vector of Gaussian random numbers with zero-mean and unit variance. Since
we are dealing with white noise, we can write down an explicit expression for the probability
of observing a single noise transition. The white noise is the only place randomness occurs
in the equations of motion, so

− lnP [xim+1|xim] + const. =
(ηi)2

2⟨δ2ηi⟩
= ∆t

(∆xi/∆t− µiFi
λ)

2

4Di
. (1.11)

In the limit of small time steps, the path probability

P [X(t)] = p0(x)e
Uλ(t)/Zλ (1.12)
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can be written in terms of a path-action [4]

Uλ =
∑
i

− 1

4Di

∫ t

0

dt′(ẋi − µiFi
λ)

2, (1.13)

and a path partition function

Zλ =

∫
D[X]dxp0(x)e

Uλ(t). (1.14)

To evaluate averages of path observables, we sum over paths with weight P [X(t)]

⟨O⟩(t) =
∫
D[X(t)]OP [X(t)]. (1.15)

1.4 Trajectory reweighting

We often care about how an average, such as a side-side correlation function for example,
changes when a force is added to or removed from a stochastic system. We can relate averages
in the presence and absence of a driving force λ by reweighting stochastic trajectories by
their path distributions. Inserting a factor of unity, and assuming the initial distributions
are the same, we arrive at the reweighted path average [5]

⟨O⟩λ =
∫
D[X(t)]OPλ[X(t)] =

∫
D[X(t)]OP0[X(t)]

Pλ[X(t)]

P0[X(t)]
≡ ⟨Oe∆Uλ⟩0. (1.16)

Here

∆Uλ(t) = Uλ − U0 =
∑
i

− 1

4Di

∫ t

0

dt′(µiλi)2 − 2µiλi(ẋi − µiFi
0) (1.17)

is what we will refer to as the relative action.

1.5 Fluctuation theorems and second laws

Basic universal conclusions about the nonequilibrium nature of a system can be uncovered
by studying how ∆Uλ fluctuates. When the observable in Eq. 1.16 is unity, O = 1,

1 = ⟨e∆Uλ⟩0 = ⟨e−∆Uλ⟩λ (1.18)

by normalization of the path distribution. This fluctuation theorem [6, 7] in the second
equality is illustrated in Fig. 1.3 for the bi-stable process shown in Fig. 1.1. Jensen’s
inequality (a convex function of a mean is less than the mean of the function) further tells
us that

⟨∆Uλ⟩0 ≤ 0 ≤ ⟨∆Uλ⟩λ. (1.19)
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Figure 1.3: An illustration of the integral fluctuation theorem: in a double-well potential
driven by an athermal active force, the average value of e−∆Uλ is unity for short-time trajec-
tories t ∼ τ started in state A (see Fig. 1.1).

When λ time reverses the unperturbed system, ẋ(t) 7→ −ẋ(tf − t) and the relative action
evaluates to the entropy production −β(W − ∆F ), and we get back a statement about
equilibrium free energy differences called Jarzynski equality [8]

β∆F = − ln⟨e−βW ⟩F = ln⟨eβW ⟩R
and the second law of thermodynamics

− ⟨W ⟩R ≤ ∆F ≤ ⟨W ⟩F , (1.20)

where

∆F = FB − FA, FA,B = kBT ln

∫
dxe−βVA,B(x) (1.21)

for equilibrium potentials VA,B, and

W (t) =

∫ t

0

dt′
∂

∂t′
V (x(t′), t′). (1.22)

is the work done on the system due to driving. As we will see later on, O is only 1 sometimes,
we can arrive at similar (second law type) expressions constraining transition rates.

1.6 Optimal control and gradients of noisy trajectory

observables

Second law type statements like those in Eq. 1.20 are variational in the sense that to get the
closest value to for instance ∆F by measuring nonequilibrium work, one should minimize
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⟨W ⟩F To minimize the average value of a path observable ⟨O(t)⟩θ over a set of control
parameters θ, we represent the time-dependent external force as

λ(x, t) =
∑
µ

θµλ
µ(x, t) (1.23)

with parameters θ and basis functions λµ(x, t) [9]. Once the control force is parameterized,
we can perform gradient descent

θi+1 = θi + l∇θ⟨O(t)⟩θ (1.24)

where here l is a learning rate, to iteratively update the parameters. Altering the param-
eters changes the distribution of paths in phase space, so parameter gradients of average
observables

∂θ⟨O⟩θ = ⟨∂θO⟩θ + ⟨O∂θ lnP [X(t)]⟩θ ≡ ⟨∂θO⟩θ + ⟨Oqθ⟩θ (1.25)

can be taken by keeping track of so called Malliavin weights qµ [10, 11, 9].
For the systems we consider here

ẋi = µiFi
θ(x, t) + ηi (1.26)

the path distribution is

lnP [X(t)] =
∑
i

− 1

4Di

∫ t

0

dt′(ẋi − µiFi
θ)

2 − lnZθ (1.27)

where Zθ is a partition function. Differentiating the above equation with respect to θ yields
[11]

qθ(t) = yθ(t)− ⟨yθ(t)⟩, yθ(t) =

∫ t

0

dt′
β

2

∑
i

ηi(t′)

∆t
∂θF

i
θ. (1.28)

By keeping track of qθ for each control parameter, we can minimize the expectation of any
observable. We note that since the noise is uncorrelated to the force at the same timestep,
⟨yθ(t)⟩ → 0 in the infinite trajectory limit.[12]
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Chapter 2

Bringing the heat: dissipation sets a
speed limit on driven transitions

This work was done in a collaboration with David Limmer that resulted in the publication
”Dissipation bounds the amplification of transition rates far from equilibrium.” [13]

Dissipation is the energetic cost of maintaining nonequilibrium. As otherwise static sys-
tems are injected with energy from external forces, they lose a portion of that energy to the
thermal bath around them through dissipation. Using trajectory reweighting, we link dis-
sipation to how transition rates are enhanced or suppressed under time dependent external
force, and find that this fundamental cost sets a limit on transition rate response.

Complex systems can convert energy imparted by nonequilibrium forces to regulate how
quickly they transition between long lived states. While such behavior is ubiquitous in natu-
ral and synthetic systems, currently there is no general framework to relate the enhancement
of a transition rate to the energy dissipated, or to bound the enhancement achievable for
a given energy expenditure. We employ recent advances in statistical thermodynamics to
build such a framework, which can be used to gain mechanistic insight on transitions far from
equilibrium. We show that under general conditions, there is a basic speed-limit relating the
typical excess heat dissipated throughout a transition and the rate amplification achievable.
We illustrate this trade-off in canonical examples of diffusive barrier crossings in systems
driven with autonomous and deterministic external forcing protocols. In both cases, we find
that our speed limit tightly constrains the rate enhancement.

The natural world is full of systems in which the rate of a rare dynamical event is enhanced
through coupling to a dissipative process. [14, 15] In vivo, molecular chaperones accelerate
protein folding and assembly so that otherwise slow transitions occur on biologically relevant
timescales, at the energetic cost of maintaining chemical potential gradients [16]. Shear forces
drive colloidal assemblies and polymer films to order rapidly enough for viable synthesis, at
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the expense of applying external forces [17]. Such behavior is leveraged across physical and
biological systems, but there are few known principles available to act as guides or constrain
possibilities. Here we use nonequilibrium stochastic thermodynamics to demonstrate that
dissipation bounds the enhancement of the rate of a transition away from equilibrium. The
bound is sharp near equilibrium and for large barriers, holds arbitrarily far from equilibrium,
and can be tightened with additional knowledge of kinetic factors. Our work thus elucidates
a fundamental trade-off between speed and energy consumption.

In equilibrium, the rate of a transition between two long lived states is determined by the
likelihood that a thermal fluctuation provides sufficient energy to the system to overcome
a free energy barrier. Away from equilibrium, external forces and nonthermal fluctuations
can mitigate this constraint, modulating the rate relative to its equilibrium value. Depar-
tures from thermal equilibrium make it difficult to predict the extent to which a dissipative
process can influence a transition, as traditional rate theories are grounded in equilibrium
statistical mechanics. For instance, both classical transition state theory [2] and Kramer’s
theory [18] require information on the probability to reach a rare dividing surface, or tran-
sition state. In equilibrium the Boltzmann distribution supplies that probability, but within
a nonequilibrium steady-state that information is generally unavailable. Freidlin-Wentzell
theory [19], and transition path theory [1] supply formal means of estimating rates away
from equilibrium through the consideration of path ensembles. However, rate calculations
within these formalisms require complex optimizations or partition function evaluations, and
do not encode simple relationships between rates and other measurable quantities.

Using principles from stochastic thermodynamics, we develop a general theory of nonequi-
librium rate enhancement, deriving exact relations and fundamental bounds[3]. Stochastic
thermodynamics has supplied a number of relationships that constrain fluctuations away
from equilibrium in terms of measurable energetic observables [8]. The fluctuation theorems
illustrate fundamental time-reversal symmetries [6], and thermodynamic uncertainty rela-
tions bound response [20]. In this work, we show that the rate enhancement achievable away
from equilibrium is bounded by the heat dissipated over the course of the transition,

kneq
keq
≤ eβQ̄/2, (2.1)

where kneq/keq is the ratio of the nonequilibrium to equilibrium transition rates, and deviation
from equilibrium due to broken detailed balance is codified by Q̄, the average excess heat
released over the transition due to the nonequilibrium process, in units of kBT , where kB is
Boltzmann’s constant and T the temperature of the bath. Our theory demonstrates that
the rate enhancement achievable by coupling a system to a dissipative process, an essential
dynamical quantity, is limited by general thermodynamic constraints. To test the theory, we
study paradigmatic two-state continuous force systems, driving them from equilibrium with
both deterministic and autonomous forces.
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2.1 Stochastic thermodynamics of rate enhancement

To derive Eq. 2.1, we consider systems driven by a time-dependent force, λ(t), either exter-
nally controlled or coupled to an additional nonthermal noise-source that evolves indepen-
dently of the system-state, precluding feedback. Extensions to systems evolving in boundary
driven nonequilibrium steady-states, though likely possible, are not explored in this work.

In the presence of the time-dependent force, the rate, kλ, of transition between two long-
lived states, is the probability that a transition occurs per unit time. For a system described
by a configuration, x(t), at time t, we will consider initial and final states, A and B, that
are collections of configurations defined by the indicator functions,

hi(t) =

{
1 if x(t) ∈ i
0 else

(2.2)

where i ∈ {A,B}, and we assume A and B are not intersecting. For times longer than the
characteristic local relaxation time and much shorter than the inverse rate, kλ derives from
a ratio of path partition functions,

kλ(A→ B) =
d

dt

ZAB(λ)

ZA(λ)
. (2.3)

Here,

ZAB(λ) =

∫
D[X(t)]hA(0)hB(t)Pλ[X(t)] (2.4)

is the number of transition paths, X(t) = {x(0), ...,x(t)}, starting in A and ending in B at
time t, weighted with probability Pλ[X(t)], and

ZA(λ) =

∫
D[X(t)]hA(0)Pλ[X(t)] (2.5)

is the corresponding number of paths starting in A [1].
The ratio in Eq. 2.3 is simply the conditional probability of the system being in state B

given it started in A. Provided the transition is rare, consistent with A and B representing
metastable states, there is a range of time over which ZAB(λ) increases linearly, and kλ is
constant. Specifically, the rate constant is defined for observation times τA ≲ t ≪ k−1

λ ,
where the transition path time is typically on the order of τA, the characteristic relaxation
time within state A, and shorter than the timescale required for global relaxation. The
probability of a path is the product of a distribution of initial conditions, ρλ[x(0)], and the
conditional transition probability Pλ[X(t)|x(0)], such that Pλ[X(t)] = Pλ[X(t)|x(0)]ρλ[x(0)].
While in general away from thermal equilibrium, ρλ[x(0)] is unknown, Pλ[X(t)|x(0)] can
be inferred, provided an equation of motion. For the specific model calculations discussed
below, Pλ[X(t)|x(0)] will take an Onsager-Machlup form[4].

Stochastic thermodynamics gives structure to path ensembles and relations to thermody-
namic quantities. In an equilibrium system, the principle of microscopic reversibility implies
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that the probability of a trajectory is equal to its time-reverse. Specifically, let P̃λ[X̃(t)]
denote the probability of observing a time-reversed trajectory X̃(t) = {x̃(t), ..., x̃(0)}, where
x̃(t) is a time-reversed configuration of the system at t, labeled in the forward time direction.
In the absence of the dissipative protocol, λ = 0, the system is in equilibrium and P0[X(t)] =
P̃0[X̃(t)]. The Crooks fluctuation theorem extends this notion to systems driven away from
equilibrium by an arbitrary time dependent force λ(t)[6]. For a nonequilibrium system, mi-
croscopic reversibility is manifested by Pλ[X(t)|x(0)] = P̃λ[X̃(t)|x(t)] exp[β(Q[X(t)|x(0)] +
Qrev[(x(t),x(0)])]. The first term in the exponential, βQ, is what we refer to as dissipation,
as it is the excess heat transferred from the system to the bath along a trajectory driven
from equilibrium over the corresponding heat transferred for a reversible process. For an
equilibrium system, the reversible contribution to the heat is equal to the Shanon entropy,
βQrev = ln ρ0[x(t)]/ρ0[x(0)]. It is generally derivable as the change in energy due to the
conservative forces, and thus depends on only the trajectory’s boundaries.

Coupling the system to a dissipative process will generally change its dynamics. Using
trajectory reweighting, we relate the transition rate in the presence and absence of the
nonequilibrium force λ(t). We consider two path probability distributions with support on
the same X(t), so that the relative action

β∆Uλ[X(t)|x(0)] = ln
Pλ[X(t)|x(0)]
P0[X(t)|x(0)]

, (2.6)

relating one to the other, is well-defined. Performing a change of measure, for a constant dis-
tribution of initial conditions, we express ratios of path partition functions in either ensemble
as

ZAB(λ)

ZAB(0)
=
〈
eβ∆Uλ

〉
0
=
〈
e−β∆Uλ

〉−1

λ
, (2.7)

where, unlike in chapter 1, the brackets denote a conditional average in a transition path
ensemble connecting states A and B in time t, with path probability P0[X(t)] in the first
equality, or Pλ[X(t)] in the second equality.

When transitions in both path ensembles are rare, kλt and k0t ≪ 1, the overwhelming
majority of paths originating from A will remain there on the timescales where the rate is
time independent, so that ZA(λ) = ZA(0). In Sec. S1., we consider generalizations away
from this limit, showing that the ratio ZA(0)/ZA(λ) cancels contributions in Eq. 2.7 due to
different distributions of initial conditions. Thus, under mild assumptions, combining Eq. 2.3
with Eq. 2.7, we find

kλ
k0

=
〈
eβ∆Uλ

〉
0
=
〈
e−β∆Uλ

〉−1

λ
(2.8)

which is an exact relation between transition rates in the presence or absence of the dissi-
pative process. Lower and upper bounds can be read off by applying Jensen’s inequality to
each of these expressions,

β ⟨∆Uλ⟩0 ≤ ln
kλ
k0
≤ β ⟨∆Uλ⟩λ (2.9)
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constituting a fundamental envelope for the rate enhancement. This result is general pro-
vided any two trajectory ensembles have common support. In a suitably defined linear
response regime, the ensembles are approximately equal, ⟨∆Uλ⟩λ ≈ ⟨∆Uλ⟩0, so the bounds
are saturated. This corresponds to a near-equilibrium regime where driving is small. While
Eq. 2.9 is derived for constant initial conditions for simplicity of notation, the impact of differ-
ent initial conditions on an upper bound is to add a positive constant equal to a symmetrized
Kullback–Leibler divergence between initial distributions in the driven and equilibrium en-
sembles (Sec. S1.). In the linear response regime, and when transition paths are long enough
to lose memory, a common occurrence for rare transitions which quickly relax in both A and
B, changes to initial conditions can be neglected.

Generally, ∆Uλ contains thermodynamic and kinetic factors. To separate them, we de-
compose ∆Uλ into time-reversal-symmetric and asymmetric trajectory observables,

∆Uλ =
Q+ Γ

2
, (2.10)

where the excess heat Q = ∆Uλ[X(t)|x(0)] − ∆Uλ[X̃(t)|x̃(0)] is odd under time-reversal,
and the excess dynamical activity Γ = ∆Uλ[X(t)|x(0)] + ∆Uλ[X̃(t)|x̃(0)] is even. On the
whole, both the heat and the activity play important roles in response and stability of
nonequilibrium systems [7, 5]. While the heat has a simple mechanical definition and is
largely independent of the system’s dynamics, the activity depends on details of the equation
of motion, making it hard to generalize.

We find that for rare transitions across a host of physically relevant conditions, the
activity can be neglected. Near equilibrium, the average activity in the conditioned transition
ensemble vanishes due to time-reversal symmetry. In cases of instantonic transitions, where
the driving force varies slowly relative to the characteristic transition path time the activity
is small. Even away from limiting cases where the barrier is much larger than the scale
of the noise, the activity can be neglected. Consider for instance free diffusion, where rare
transitions are largely noise assisted. In these sojourns over broad, diffusive regions, the
activity is strictly negative. By neglecting it, a bound based on the heat alone is satisfied
though weakened. Each case is considered explicitly in Sec. S2. Remarkably, this implies
that the dissipation accumulated over a transition bounds the rate enhancement,

ln
kλ
k0
≤ β

2
⟨Q⟩λ , (2.11)

which is our main result. Identifying the system under finite λ as a nonequilibrium system,
and its absence as an equilibrium one, we identify Eq. 2.11 as a more precise statement
of Eq. 2.1. We note, however that the rate enhancement relation is general for any two
transition path ensembles.
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Figure 2.1: Nonequilibrium driving enhances transition rates. a, Trajectories of a two-state
system in equilibrium (left) and the same process driven away from equilibrium (right) by
a time-dependent external force. b, Rate enhancement for different asymmetric two-state
systems as a function of dissipated heat, each driven by a randomly chosen combination of
deterministic and stochastic external forces. The bound in Eq. 2.11 is shown as a black line
and points are colored according to the magnitude of the force, low (blue) to high (red).

2.2 Autonomous and deterministic forcing

To illustrate the robustness of our dissipative bound, we first consider the overdamped
dynamics of a particle in a one-dimensional asymmetric potential subject to both external
time dependent and nonthermal forces. Specifically, the equation of motion for the position
of the particle, x, is taken as γẋ = −∂xV (x) + λ(t) +

√
2kBTγηx where γ is the friction

due to the surrounding medium, imposing a diffusion constant Dx = kBT/γ, and ηx is
a Gaussian random variable with ⟨ηx(t)⟩ = 0 and ⟨ηx(t)ηx(t′)⟩ = δ(t − t′). The static
external potential consists of two quartic states, V (x) = VA(x)Θ(−x) + VB(x)Θ(x). Each
basin Vi(x) = (∆Vix

2/(2l2i ))(x
2/(2l2i ) − 1), i ∈ {A,B}, is characterized by the distance of

its minimum (|x|, |y|) = (li,∆Vi) to the origin, where the states are joined by Θ(x), the
Heaviside function. V (x) supports two metastable states with a barrier between them if
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β∆Vi > 1 for both i = A and B. Figure. 2.6a), where x(t) exhibits fluctuations concentrated
around two regions of the potential, with few, fleeting transitions between them, manifests
this metastability.

We drive the system out of equilibrium according to a time-dependent protocol λ(t) =
f [p cos(ωt)+ (1− p) cos(θ(t))] with maximum amplitude f partitioned, p ∈ [0, 1], into deter-
ministic and autonomous components. The deterministic portion of the driving is periodic
with frequency ω, whereas the autonomous piece is determined by an additional nonther-
mal process, θ̇(t) =

√
2Dθηθ, with diffusion constant Dθ, and delta-correlated white noise,

⟨ηθ(t)⟩ = 0 and ⟨ηθ(t)ηθ(t′)⟩ = δ(t− t′).
Considering transitions that take the particle from one side of the potential to the other,

we define hA = Θ(x + lA/
√
3) and hB = Θ(x − lB/

√
3), which correspond to the locations

of the maximum force opposing the transition in the absence of λ(t). The dissipated excess
heat can be computed from

Q(t) =

∫ t

0

dt′λ(t′)ẋ(t′), (2.12)

and its mean estimated within the nonequilibrium steady-state by integrating the dissipa-
tion rate over reactive trajectories of length t, given by the typical transition path time as
discussed in Methods and Sec. S3. Given a suitable separation between inverse rate and re-
laxation time, Q is often insensitive to the precise value of t. We reiterate that Q differs from
the total heat by the conservative boundary portion which appears in both the equilibrium
and driven actions, and therefore does not play a role in the rate enchancement.

Figure 2.6b) shows the results of 3000 randomly constructed models, where ∆Vi, li, p, f ,
and Dθ, were chosen uniformly over a wide range of parameters, as detailed in Methods. For
each model, kλ, k0 and ⟨Q⟩λ have been independently evaluated, and Fig. 2.6b) demonstrates
that the bound holds across the broad parameter-space. Points are colored blue to red in
increasing magnitude of the driving force f , showing that the protocol most efficiently am-
plifies the equilibrium rate when β⟨Q⟩λ < 10. Pushing past this regime, the bound becomes
progressively weaker, as dissipation increases, but rate enhancement reaches a plateau. This
corresponds to a limit where driving is large enough to degrade the assumption that basin
A is metastable.

In order to understand the physical processes that determine whether or not the bound
is saturated, we focus on two cases of the model presented above. First, we set p = 0,
which corresponds to an active Brownian particle in an external potential. Active Brownian
particles provide a canonical realization of how autonomous athermal noise can drive novel
steady-states without simply imparting an effective temperature[21]. These self-propelled
agents exhibit dynamical symmetry breaking and collective motion [22, 23], and previous
studies have shown that the escape of active particles from a metastable potential exhibits
interesting behavior arising from an interplay between the driving force, persistence time
statistics, and the shape of the potential[24, 25]. For simplicity we take a symmetric poten-
tial, with lA = lB = 1 and β∆VA = β∆VB = 10, setting γ = 1 and kBT = 1/2.

Figure 2.5a) shows the dependence of the rate enhancement on the rotational diffusivity,
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Figure 2.2: Rate enhancement for an active Brownian particle. a, Rate enhancement
as a function of rotational diffusivity constant Dθl

2
A/Dx for f = 1. b, Rate enhancement

as a function of the magnitude of active driving relative to the maximum force opposing
the transition in equilibrium f/Fm for Dθ = 1/2. In both, the rate enhancement (black
diamonds) is bounded by the dissipated heat (red circles).

Dθ at fixed f = 1. The small Dθ limit is a quasi-stationary regime corresponding to an
equilibrium system with an additional linear force added to the potential.

Increasing the rotational diffusivity decreases the persistence of the driving, and as a
consequence ⟨Q⟩λ and kλ/k0 fall off in this limit. In the largeDθ limit, the system is effectively
in equilibrium at an elevated temperature, as λ averages to 0. Lower rate enhancement and
little dissipation are observed across this range of Dθ, and our bound is uniformly close.
These results are consistent with a recent study in which an effective potential approach
was used to derive kλ/k0 for an active Ornstein–Uhlenbeck process in a cubic well[26]. As
shown in Fig. 2.5b), our bound is closest to the true rate enhancement when driving is small
compared to the maximum force needed to surmount the barrier in equilibrium, f < Fm

where Fm = 8∆VA/3
√
3lA. In that regime, the heat and rate enhancement both scale

with f 2, as predicted by linear response theory. When the protocol and gradient forces are
comparable, the transition ceases being a rare event and further increasing f has little effect
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Figure 2.3: Rate enhancement in the Duffing oscillator. a, Rate enhancement as a function
of the magnitude of driving frequency relative to the natural frequency of the equilibrium
system, ω/ω∗, for f = 1.4. b, Rate enhancement as a function of the magnitude of function
of the periodic driving relative to the maximum force opposing the transition in equilibrium
f/Fm for ω/ω∗ = 1 at f = 1.4. In both, the rate enhancement (black diamonds) is bounded
by the dissipated heat (red circles).

on the rate, but increases the heat.
As a second test case, we consider underdamped dynamics with time-periodic driving,

p = 1. This model, known as the Duffing oscillator,[27] is the simplest model of a stochastic
pump and one whose nonequilibrium behavior is marked by significant nonlinearity. As an
underdamped process, its barrier crossing behavior is determined both by spatial as well as
energy diffusion, in which both position and velocity correlations play a role. The equation
of motion is given by mẍ = −γẋ− ∂xV (x)+λ(t)+

√
2kBTηx, where the mass m reflects the

change to underdamped dynamics. Again we take a symmetric potential, lA = lB = 1, now
with β∆VA = β∆VB = 14 and m = β = γ = Dx = 1.

Figure 2.4a) shows that for a moderate force, f/Fm ≈ 0.13, there is an optimal driving
frequency, denoted here as ω∗, which greatly enhances the transition rate. This phenomenon
is known as stochastic resonance[27]. For slow driving, ω ≪ ω∗, the particle typically
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makes a transition before the external force reaches its maximum. For ω ≫ ω∗ driving
is inefficient, and on average requires multiple forcing cycles before presenting a chance to
cross the barrier with the help of a positive force within the time of a typical transition.
The approximate shape of the rate enhancement profile is Lorentzian, a trait inherited from
the absorption lineshape of an underdamped harmonic oscillator. In this case, the resonant
frequency coincides with the curvature of the equilibrium double-well potential driven with
a quasi-static force, ω∗ ≈

√
8(∆V − f)− γ2/4[28]. We find near saturation of the bound

throughout a wide range of frequencies and across even such nonlinear behavior as stochastic
resonance. In Fig. 2.4b), we plot kneq/keq and β⟨Q⟩λ/2 against the driving amplitude relative
to Fm. As in the other examples, the bound on rate enhancement is tight so long as the
metastability of state A is preserved.

2.3 Additional bounds on ratios and differences of

transition rates

Our main results were obtained under the assumption that the probability of starting in A
does not change much under the influence of driving ZA(λ) ≈ ZA(0). In this section, we
derive a more general bound that relaxes this assumption, and discuss in what cases we
expect initial conditions to play a significant role. The factor ZA(0)/ZA(λ) in question is
the ratio of single-time probabilities and has played an important role in the development
of Monte-Carlo sampling on the space of driving protocols.[29] As with the transition path
partition function, it is still possible to express such a ratio in terms of the moment generating
function of the relative action

ZA(0)

ZA(λ)
=

〈
ρ0
ρλ
e−β∆Uλ

〉
A,λ

=

〈
ρλ
ρ0
eβ∆Uλ

〉−1

A,0

, (2.13)

which implies

− β⟨∆Uλ⟩A,λ −DKL(ρλ||ρ0) ≤ ln
ZA(0)

ZA(λ)
≤ −β⟨∆Uλ⟩A,0 +DKL(ρλ||ρ0) (2.14)

where the paths of any length are conditioned to start in state A. After restoring initial
conditions, Eq. 9 of the main text then implies

β(⟨∆Uλ⟩0 − ⟨∆Uλ⟩A,λ)− J(ρλ||ρ0) ≤ ln
kλ
k0
≤ β(⟨∆Uλ⟩λ − ⟨∆Uλ⟩A,0) + J(ρλ||ρ0), (2.15)

which is our most general result. Initial conditions ρλ(x0) and ρ0(x0) enter in through a
symmetric variant of the Kullback–Leibler divergence known as the Jeffreys divergence,

J(ρλ||ρ0) = DKL(ρλ||ρ0) +DKL(ρ0||ρλ) =
∫
dx0(ρλ − ρ0) ln

ρλ
ρ0
≥ 0, (2.16)
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and we will discuss shortly under what conditions it can be neglected. Even when its most
likely state changes, if A remains metastable, the system will start in an effective stationary
state with flux and force that both vanish on average, leaving the negative, λ2 piece of the
dynamical activity as the only portion of ⟨∆Uλ⟩A,0 left. However, this piece does not depend
on the trajectory since under our assumptions, the external force is independent of the
system configuration, so it cancels in the relative action with an identical contribution from
the driven ensemble. We can therefore deduce that only the trajectory dependent portions
of ⟨∆Uλ⟩λ, and J(ρλ||ρλ) are likely to contribute to our upper bound.

To understand the influence of initial conditions, we begin by noting that they cease to
enter into the bound when the initial configuration is deterministic or the system is prepared
according to the same distribution, either ρλ or ρ0. Next, that ρλ and ρ0 are equivalent in
linear response means J(ρλ||ρλ) vanishes in this regime. Thus, if making the transition is
correlated with the initial distribution in state A, then whenever that correlation remains
relatively invariant under driving, initial conditions can be neglected. Perhaps most relevant
to the present work and the study of rare events is the situation when initial conditions
becoming uncorrelated with the ’bulk’ of the transition path, and are forgotten. The reason
why loosing memory of initial conditions is far from exotic for such reactive trajectories
stems directly from the fact that state A is assumed, by definition of the rate constant, to
be metastable, harboring a local minima of the free energy landscape. The initial portion of
a typical rare event transition path from A to B will therefore relax exponentially quickly
in this local basin and loose memory over a short timescale τA determined by the curvature
of the basin. Since the rate constant is defined for times that are order τA, as detailed in
the paragraph following Eq. 5 in the main text, the brunt of reactive paths are marked by
boundary portions of rapid relaxation on either side of the transition region. When state A is
suitably defined so that this memory loss occurs in both the driven and reference ensembles,
all that matters is that the particle starts somewhere in state A, which is guaranteed by the
transition portion of the path probability. In other words, knowledge about the character of
state A is contained directly in ⟨∆Uλ⟩λ when both rate constants are defined with a common
observation time, which is the topic of Sec. S3. When the driving is so extreme that a
common observation time ensuring relaxation before escaping state A cannot be obtained,
the rate constant effectively looses meaning. Such atypical cases can be addressed taking
into account initial conformational distributions, or preferably, redefining A so that k0 and
kλ are comparable by memory-less transition paths of the same length.

The recently proposed dissipation-time uncertainty relation [30] claimed that the rate of
steady state entropy production bounds the difference of forward to backward, denoted here
with a tilde, transition rates, out of and into a metastable state A, from above

kλ − k̃λ ≤ β⟨Q̇⟩λ. (2.17)

In this section, we follow the same line of thinking, but use the definition of ∆U in place of
the traditional fluctuation theorem. For a two-state system, the indicator functions (Main:
Eq. 2) defining states A and B are simply related by hA(t) + hB(t) = 1. In this case, the
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cumulative probability p(t) that no transitions occur up to time t, the survival probability,
is related to the probability that at least one occurs in the same way:

pλ(t) =
ZAA(λ, t)

ZA
= 1− ZAB(λ, t)

ZA
. (2.18)

From Eq. 1. in the main text, this relation implies that the transition rate is given by
kλ = −d ln pλ(t)/dt. Bounding pλ(t)/p0(t) from above and below in the AA path ensemble,
and subsequently using the fact that hA(t) = 1−hB(t) to convert to the AB ensemble yields
the envelope presented in Eq. 13. For example,

p0
pλ

=
ZAA(0, t)

ZAA(λ, t)
= ⟨e−β∆U⟩AA,λ ≥ e−β⟨∆U⟩AA,λ = e−β(1−⟨∆U⟩AB,λ) =⇒ kλ − k0 ≥ β⟨∆U̇λ⟩AB,λ

(2.19)
yields an upper bound, where, to be explicit, we label averages by which path ensemble they
belong to (AA and AB). Again, bounds in Eq. 13 assume the meta-stability of the A state
is sufficiently preserved, though this can be relaxed by following the procedure laid out in
SM section 3. We leave it to future work to delve into the utility of bounding the change of
the rate kλ − k0 in this fashion.

2.4 Instantonic, slow driving and near equilibrium

limits

In order to understand when the contribution to the dynamical activity to the rate enhance-
ment bound can be neglected, we consider both simplified limiting cases that are analytically
tractable, as well as additional numerical experiments on the systems considered in the main
text. In general, the dissipative bound is valid in cases where the activity can be neglected
due to its size or if it can be shown to be strictly negative. The former case can be argued
to occur near-equilibrium or when specific spatial symmetries exist that result in its average
being small. The latter case occurs when a particle traverses both large, narrow barriers as
well as broad diffusive barriers.

Limiting cases of high and broad diffusive barriers

For simplicity and concreteness, we consider an overdamped particle in a 1d symmetric
double well potential. The equation of motion is analogous to that considered in the first
two examples in the main text,

γẋ(t) = Fλ(x) +
√

2kBTγη, ⟨η(t)⟩ = 0 ⟨η(t)η(t′)⟩ = δ(t− t′), (2.20)

where Fλ(x) = −V ′(x)+λ(t) is the total force, including the gradient and non-gradient con-
tributions. From the equation of motion, it is straight-forward to show that the conditioned
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transition probability takes the form lnPλ[x(t)|x(0)] = βUλ[x(t)] +C, where C is a constant
and the Onsager-Machlup path-action is

Uλ = −
1

4γ
dt′ {γẋ(t′)− Fλ[x(t′)]}2 (2.21)

for an ensemble with finite nonequilibrium driving and path of length t.
In the limit that the barrier separating two metastable states is large, such that transitions

between them are rare, the rate can be computed by extremizing the path action, δUλ/δx = 0.
Preforming the functional differentiation, the instantonic trajectory satisfies the second order
differential equation

γ2ẍ− Ḟλ[x(t′)]− Fλ[x(t)]∂xFλ[x(t)] = 0, (2.22)

which can, in principle, be solved subject to the boundary conditions of starting in state A
and ending in state B. Here we will consider both states being defined at specific points
x = xA and x = xB for states A and B, respectfully. However, solving this equation is
difficult for nonconservative potentials and time dependent driving forces. We consider the
case of a large, sharply peaked barrier, such that the maximum force due to the potential,
Fm, is much larger than the magnitude of the applied driving force, f = max |λ(t)| ≪ Fm.
In this limit, the instanton equation simplifies to

γ2ẍ ≈ V ′(x)V ′′(x) (2.23)

which results in the trajectory traced out by the particle in equilibrium. Its first integral is
a constant of motion, yielding

γ2ẋ2 = [V ′(x)]2, (2.24)

that provides both branches of the instanton, or extremal path.[19] The positive root yields
the trajectory beginning at xA and ending at the maximum of the potential separating the
two metastable states, x = xm, and results in a positive contribution to the action. The
negative root yields the trajectory beginning at xm and ending at xB, with zero action. The
resultant total action is approximated in this limit as

Uλ ≈
∫ t/2

0

dt′ ẋ(t′)Fλ[x(t
′)] =

∫ t/2

0

dt′ ẋ(t′)λ(t′)−
∫ x‡

xA

dx V ′(x) (2.25)

where consistent with the assumption of an equilibrium trajectory minimizing action, we
have neglected terms of order O(λ2) that are strictly negative and invoked time reversal
symmetry to set the domain of the integrals. The first term is the equilibrium change in
energy, while the second is the heat. Using this result, we can compute the averaged relative
action between equilibrium and nonequilibrium path ensembles

⟨∆Uλ⟩λ ≈ β ⟨Q⟩neqAB /2 (2.26)

which has no contributions from the activity and coincides with our main result. This
calculation clarifies a relevant linear response limit in which the dissipative bound is tight.
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It is one in which the typical reactive trajectory in and out of equilibrium are similar,
following a gradient path, which occurs in cases where the conservative forces experienced
during a transition are large relative to the nonequilibrium driving forces, f ≪ Fm.

For a second example, we consider a barrier that is locally parabolic in the vicinity of its
maximum,

V (x) ≈ −kx2/2 + V0

where k denotes its local curvature and V0 is the offset from the minimum in the A state. In
the limit that βV0 ≫ 1, we can assume that the majority of the action required to overcome
the barrier is localized to the region around the maximum. In such a case, the stochastic
action in the presence of the external force is extremized by the solution of

γ2ẍ(t) = k2x(t) + kλ(t) + γλ̇(t) , (2.27)

for the instantonic trajectory subject to boundary conditions which we take to be symmetric
about the maximum, x(0) = −x0 and x(t∗) = x0. It is convienent to introduce the charac-
toristic relaxation time, τ = γ/k. This linear ordinary differential equation can be solved by
the method of Laplace transforms, yielding

x(t) = −x0 cosh(t/τ) +
x0 + x0 cosh(t

∗/τ)

sinh(t∗/τ)
sinh(t/τ) + f(t)/γ − f(t∗)/γ

sinh(t∗/τ)
sinh(t/τ) (2.28)

where f(t) is the convolution of the external force with the Green’s function,

f(t) =

∫ t

0

dt′λ(t′)e(t−t
′)/τ (2.29)

and acts as an inhomogenious source. From the definitions in the main text, the heat and
activity are given by

Q =

∫ t∗

0

dt ẋ(t)λ(t) Γ = − 1

2γ

∫ t∗

0

dt λ(t) [2kx(t) + λ(t)] (2.30)

whose averages are computed within the instantonic trajectory. The heat has a familiar
form. The activity includes a contributions due to the product of the gradient force and
the external force, and a contribution due to the external force squared. While the latter is
strictly negative, path independent, and can be dropped while still satisfying the bound, the
former may be positive or negative.

In the limit of small λ(t), it can be verified that the first contribution to the activity
vanishes, as the instanton trajectory spends equal time on the left and right side of the barrier
with corresponding equal and opposite forces from the external potential. The second term
enters proportional to −λ2(t) which can also be neglected if λ(t) is small. This is identical to
the near equilibrium case considered above. Analogously, in the limit that λ̇ ≈ 0, such that
over the transition the external force is well approximated by a constant, by symmetry the
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activity will be strictly negative. Consider for concreteness a periodic force λ(t) = f cos(ωt)
with characteristic amplitude f and frequency ω. In the limit that ωτ ≪ 1, the heat will be
β ⟨Q⟩neqAB = 2fx0 and the activity ⟨A⟩neqAB = −f 2t∗/2γ < 0. In the opposite limit that ωτ ≫ 1,
many cycles of the driving force will elapse during the instantonic trajectory and its influence
on breaking the symmetry around the barrier will vanish. In the case of a monochromatic
driving force, the heat is β ⟨Q⟩neqAB = f 2t∗/2γ and the activity ⟨A⟩neqAB = −f 2t∗/4γ < 0 can be
neglected in the bound. Away from these cases, the trajectory need not be symmetrically
distributed around the barrier, and the activity maybe finite. However, this occurs when
the driving is large, in which case the second term in the activity will dominate leading to
it being negative.

Finally, in the case where the barrier is broad and flat, we can approximate the motion
at the top as free diffusion conditioned a set of starting and ending points, xA and xB.
Specifically, when V (x) = 0, for an arbitrary external force, the average heat and activity
simplify to

β ⟨Q⟩neqAB =
(xB − xA)

t∗

∫ t∗

0

dt λ(t) + γ−1

∫ t∗

0

dt
[
λ(t)− λ̄(t∗)

]2 ⟨A⟩neqAB = − 1

2γ

∫ t∗

0

dt λ2(t)

where λ̄(t∗) denotes the external force averaged over the transition time t∗. The activity is
manifestly negative and can be dropped from the dissipative bound. As above, it is negligible
when the scale of λ is small as it scales quadratically. Taking |xB−xA| and t∗ large, the heat
becomes the displacement times the average force, β ⟨Q⟩neqAB ≈ (xB − xA) λ̄ and the activity
⟨A⟩neqAB ≈ −t∗λ̄2/2γ where λ̄2 is the average squared size of the external driving.

Relative magnitudes of the heat and activity in the transition
path ensemble

Here, we discuss the results of additional simulations on systems featured in the main text
Figs. 2 and 3. Shown in Fig. 2.4 and 2.5 are the heat (top row), and also the activity
(bottom row) throughout the course of the transition. Each column represents a driving
speed : low, medium and, high, from left to right, and we fix all other parameters as in
the main text. The active Brownian particle in Fig. 2.4 is driven at a speed Dθ equal to
its inverse auto-correlation time, and ω is the analogous variable in the Duffing Oscillator
depicted in The quantities plotted in these figures as a function of time, in units of the

reactant (A) relaxation time, are averages of
∫ τ−t/2
−t/2 Q̇ and

∫ τ−t/2
−t/2 Γ̇, which are not part

of the transition path ensemble until crossing occurs at time zero. For the overdamped
active Brownian particle, Γ̇ = −γ−1λ(t)Fλ[x(t)] and in the underdamped Duffing oscillator
Γ̇ = γ−1λ(t)(γẍ(t)− Fλ[x(t)]), which can be derived by constructing the symmetric part of
the corresponding path action.

As the reaction proceeds from beginning to end, heat and activity are computed in the
path ensemble defined by the additional constraint that the particle position coincides with
the transition state, x‡ at time zero. That is, we average over all trajectories starting at time
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Figure 2.4: Additional examples of active barrier crossing. Rate amplification ln kλ/k0
(black, from counting transitions), dissipation (red, top row), and dynamical activity (red,
bottom row) along the typical reaction trajectory, in units of the reactant (state A) re-
laxation time τA. All parameters except for active diffusivity Dθ relative to that at which
the enhancement is half its maximum D∗

θ are set according to Fig. 3 a). Left: slow driving
with a long persistence time Dθ/D

∗
θ ≈ 2 × 10−3. Center: close half-maximum persistence

Dθ/D
∗
θ ≈ 1. Right: low-persistence forcing Dθ/D

∗
θ ≈ 7.
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Figure 2.5: Revisiting stochastic resonance. Rate amplification ln kλ/k0 (black, from count-
ing transitions), dissipation (red, top row), and dynamical activity (red, bottom row)
along the typical reaction trajectory, in units of the reactant (state A) relaxation time τA.
Parameters apart from driving frequency ω are set according to FIG. 3 a) in the main text.
Left: slow, quasi-adiabatic driving ω/ω∗ ≈ 0.42. Center: close to resonance ω/ω∗ ≈ 1.04.
Right: very fast forcing ω/ω∗ ≈ 1.55.

−t/2 in A before crossing at time 0 and ending up in B a time t/2 after that. Since both
the underlying system and the driving are symmetric in time in the long-time limit, it is
reasonable to believe the instanton connecting A to B is also, so this scheme should sample
the AB ensemble as the number of trajectories becomes large. We collect long trajectories
of Q̇ and Γ̇, integrating from −t/2 to τ − t/2 for τ ∈ (0, t). Specifically, we run simulations
of ∼ 108−9∆t until ∼ 103−4 reactions are observed. The majority of paths lie above β ⟨Q⟩neqAB

but there are a number of outlying negative heat trajectories, wherein the particle crosses the
barrier while also opposes the driving force, which is a consequence of the integral fluctuation
theorem.

In Heat (top, red) rises past the rate enhancement (black) in the immediate vicinity
of this time, an observation consistent with the non-equilibrium transition-state theory we
develop below. On the other hand, the activity need not serve as an upper bound, as is
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the case for particles driven at the half-maximum speed and resonance frequency in in the
center column of Fig. 2.4 and 2.5, respectively. Like we discussed in the section prior, the
activity accumulated over a symmetric barrier should vanish by symmetry in the adiabatic
limit, a signature which is approximately realized in Fig. 2.4 (bottom left). Finally, when
driving varies so quickly that it couples effectively as a second bath, Fig. 2.4, the activity is
negative, as would be expected for free diffusion.

2.5 Separation of timescales in the driven and

equilibrium ensembles

The existence of a time-independent transition rate between two metastable states requires
a separation of timescales between local relaxation within a metastable state and the charac-
teristic time to transition between the two states. [1] The rate enhancement relation in the
main text additionally requires that separation exists for both the driven and equilibrium
ensembles, and further that these two intervals defined by the local relaxation and typical
transition waiting times have some amount of overlap, starting at tmin.

Crucially, the observation time t past which our bounds are defined and valid in the
conditioned path ensemble must be chosen at least as large as the minimum overlap time
t > tmin. Before tmin, heat will increase approximately linearly. An observed transition
to different behavior, typically occurring around the reactant relaxation time τA, can be
employed as a signature of when our bound is tightest in situations wherein the true rate
enhancement is unknown.

Heat does not accumulate in a quasi-equilibrium state, so if both A and B remain deeply
metastable, one can expect there to exist an interval of time starting around tmin when the
particle commits to state B and β ⟨Q⟩neqAB varies relatively slowly. To test these predictions,
we consider the mixed driving system studied in Fig. 1. Specifically, Fig. 2.6 shows the log
ratio of the rates in and out of equilibrium as a function of time for that system, together
with the accumulated heat, where τ is an intermediate time between 0 and the observation
time t. In all cases where there are is large barrier separating states A and B, and the
applied force f is smaller than the maximum force Fm due to the potential, the ratio of
rates plateaus within a time of O(1). Further, over the time window when the rate ratio
is time independent, heat gains support at a much smaller rate than prior to this window,
plateauing in the case of dual metastability in Fig. 2.6 a. Therefore, under these conditions,
we find path ensemble averages in question to be somewhat insensitive to precise time at
which they are taken.

2.6 Connection to transition-state theory

Our main focus is on rates calculated within the transition path ensemble, obtained by
approximating the sum over time-dependent trajectories. The benefit of this approach is
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Figure 2.6: Rate amplification kλ/k0 (black) and dissipation (red) for three examples of
heterogeneously driven two-state systems. The shape of the equilibrium potential for each
system is inset (blue) in the upper-left hand corner, and time is taken in units of the relaxation
time for state A (the state on the left side of each inset). a, transitions in an approximately
symmetric double-well driven by equal parts deterministic and active forces, amplitudes
summing to around half the equilibrium well-depth. b Escape from a basin of attraction to
a less-stable state driven by mostly active forces with total max-amplitude around 0.35∆VA.
c Excursions to a state with greater stability, forces mainly by a time-periodic protocol with
maximum amplitude about 0.75∆VA.

that all that one needs is a definition of two states, A and B. Detailed mechanistic knowledge
of the kinetic bottlenecks through which the transitions pass is unnecessary, alleviating the
potentially hard problem of finding a good reaction coordinate, q, and relevant transition
state, q‡, dividing metastable states A and B. However, if a pertinent reaction coordinate
is known, the rate can be estimated by much simpler means using transition-state theory,
which trades in the path partition function ZAB(λ) for the average flux through a transition
state times the probability of being at q‡. [2] Generalizing the traditional result, for a
nonequilibrium system,

kλ ≤
⟨|q̇|⟩λ,q‡

2

ρλ(q
‡)

ρλ(A)
. (2.31)

where ⟨|q̇|⟩λ,q‡ is the average flux through the transition state, and ρλ(q
‡)/ρλ(A) is the relative

probability of finding the system at the transition state relative to the total probability of
finding the system in state A. In equilibrium, the equipartition theorem dictates that the
average flux is independent of q, but that is not necessarily true away from equilibrium. The
transition-state theory approximation is an underestimate of the true rate, as it neglects
those trajectories that switch direction after already passing q‡, and can be made exact by
computing a correction termed the transmission coefficient.

For rare, instantonic transitions, the relative probability to reach the transition state,
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ρλ(q
‡)/ρλ(A), is by far the dominant contribution to the transition-state theory rate. In

equilibrium, this term gives rise to the Arrhenius law

k0 ∝
ρ0(q

‡)

ρ0(qA)
= e−β∆F (2.32)

where ∆F = F (q‡) − F (qA) is the height of the free energy barrier separating q‡ from
the most probable state qA ∈ A. Out of equilibrium, rate estimation via transition state
theory becomes a much more difficult problem, because while a time averaged stationary
distribution ρλ(q) still exists, one cannot in general express it in a simple close form.

However, using the Kawasaki distribution equation, we can approximate the nonequilib-
rium steady-state distribution in terms of a product of the equilibrium distribution and a
correction dependent on the mean dissipation. As formulated by Crooks [6] for stochastic
dynamics and similar to that derived by Evans and Searles[31], the Kawasaki distribution
provides a relation for the probability of being in state q having started in an equilibrium
distribution, and cumulant generating function of the accumulated dissipated heat. Specifi-
cally,

ρ0(q) = ρλ(q)
〈
e−βQ

〉
λ,q

(2.33)

where Q is the heat dissipated to the environment, ρ0(q) is the initial equilibrium probability
of state q, ρλ(q) is the nonequilibrium probability of state q, and the brackets ⟨. . . ⟩λ,q denote
an average under the driving force λ conditioned on ending at state q. Taking the saddle
point, and applying Jensen’s inequality,

ρλ(q)

ρ0(q)
≤ eβ⟨Q⟩λ,q (2.34)

we arrive at a bound for the ratio of the nonequilibrium to equilibrium distributions.
The bound of the steady state distribution cannot be applied directly to the estimation

of rates, but under mild assumptions it can provide an estimate similar to the result in
the main text. To proceed, we first assume that the probability of being in state A is
unchanged between the equilibrium and nonequilibrium ensemble, ρλ(A) = ρ0(A). From the
Jarzynski equality [8] and integral fluctuation theorems[32], this is true if the protocol is
cyclic, because then ⟨exp(βQ)⟩λ = 1. This can be obtained by taking the observation time
long enough for the driven system to relax back to the original equilibrium distribution by
the final time, since in that case, the conservative heat and the change in free energy both
cancel, leaving the excess heat behind. Assuming like initial distributions is approximately
valid in the limit that A is deeply metastable. Next, we assume that we can ignore the
change to the flux over the transition state due to coupling to λ. Moreover, the fluctuation-
response inequality[33] implies the first order change to the flux is expected to scale as
∼
√
β⟨Q⟩λ, which is subdominant to the exponential dependence from the change in the

probability distribution. Finally, we assume that the transmission coefficient in and out of
equilibrium are the same. This is likely a good assumption in the limit that the original
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transition state theory estimate in equilibrium is tight, and the transition is instantonic such
that the protocol is slowly varying relative to the typical transition path time. Under those
assumptions, we find

kλ
k0
≤ eβ⟨Q⟩

λ,q‡ (2.35)

where we have applied Eq. 2.34 to the probability of reaching the transition state. Note here,
as previously, the activity does not enter the approximate bound, and we have a purely me-
chanical relationship between the enhancement speed of a process and the energy required.
Further, the dissipated heat is that accumulated in going from state A to the transition
state, q‡. In an instantonic limit, and near equilibrium, we expect the heat accumulated in
reaching the top of the barrier to be half that to reach state B, which would result in an
analogous expression as the main text.

2.7 Conclusion

We have shown that separation of timescales in rare event problems causes the dissipated
heat to serve as a speed limit on how much the rate can increase under nonequilibrium force.
We have also formulated a more general theory in terms of the stochastic path action which
yields a variational principle that can be used to infer target rates by applying external forces
to driven and equilibrium systems alike.

The variational relationship in Eq. 2.11 between the transition rate and a thermodynamic
quantity is reminiscent of equilibrium transition state theory, where the rate is bounded by
the thermal flux times the probability that a thermal fluctuation brings the system from
an initial reactant state to a rare transition state. From the Kawasaki distribution,[34] the
nonequilibrium configurational distribution is related to the equilibrium one by a cumulant
generating function of the excess dissipation conditioned on ending at a specific configura-
tion. Neglecting changes to the flux generated by coupling to a nonequilibrium process, the
transition state theory estimate of the rate is bounded by the average heat conditioned on
ending at the transition state. Eq. 2.11 thus has the interpretation of a nonequilibrium
extension to standard transition state theory, and is expected to be a good approximation to
the rate enhancement in cases where the system spends little time at the top of the barrier.

While our examples have focused on simple one dimensional models, our formalism is
general and can be straightforwardly applied to many-body interacting systems. One im-
mediate consequence of higher dimensionality is that unlike in the examples explored here,
applied forces need not be aligned with the direction of the most likely transition path. In
such cases, we expect the efficiency with which an arbitrarily applied force enhances the
rate to be suppressed relative to the largely saturated bounds we have found here, as energy
may be transduced into modes not correlated with overcoming the barrier. In light of our
results, a natural optimal control problem arises in which nonequilibrium protocols can be
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constructed that minimize the dissipation for a given desired rate enhancement. Methods to
perform such optimizations employing molecular simulation and importance sampling have
been recently developed and show promise in complex systems [35, 9, 36] . Similarly, the
protocols uncovered by such an optimization have the potential to lend mechanistic insight
into reactions far from equilibrium, as basic concepts like free energy barriers and gradient
flows cease being well defined. The effect of dissipation on rate enhancement under counter-
diabatic[37] constraints, as well as in discrete-state networks and reaction-diffusion settings,
remains to be seen.

Overall, our investigations build a general framework for the systematic and computation-
ally efficient characterization of rate enhancement. Predicting how structure and external
influence conspire to alter reaction rates far from equilibrium is of immediate importance in
designing proteins, enzymes, small-molecule drugs, and the complex environments in which
they operate. We foresee future studies in interacting colloidal and polymeric systems, both
in shear and confining geometries that change dynamically in time [38]. Applications to het-
erogeneous growth, nucleation and jamming will also be interesting avenues to explore [39].
Time-dependent chemical potential gradients in gated release and receptor binding contexts,
as well as designing interaction protocols [40] for quick and robust self-assembly [41] and
pattern-formation [42] are another set of pressing examples to which our theory can apply.
Local heating in ATP hydrolysis and facilitated diffusion on DNA[43], where electric fields
play a pivotal role, are all more complex problems that may prove fruitful to study in this
manner.
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Chapter 3

Variational path sampling to learn
and control rare event rates in and
out of equilibrium

This work was done in a collaboration with Avishek Das and David Limmer that resulted
in the publication ”Direct evaluation of rare events in active matter from variational path
sampling.” [44]

With a theory for how transition rates change with applied nonequilibrium forces, we
turn to the variational principle our theory affords to learn transition rates. We start in
a ’klunky’ transition path ensemble with external forces that make the transition happen
always but at great energetic cost, and through iterations of sampling and gradient descent
in trajectory space, we generate new forces that affect the transition at lower and lower cost,
mimicking the forces a physical system would naturally feel during a spontaneous unforced
transition affected only by steady state fluctuations. Transitions in solvated molecules im-
mersed in explicit thermal and athermal active baths are of great interest in biophysics and
physical chemistry. We show that our generative reinforcement learning scheme can learn
rates and transition mechanisms in systems in and out of equilibrium. We study transitions
of a two state passive solute in a volume excluding liquid with and without the persistent
angular motion afforded by activity.

Active matter represents a broad class of systems that evolve far from equilibrium due to
the local injection of energy. Like their passive analogues, transformations between distinct
metastable states in active matter proceed through rare fluctuations, however their detailed
balance violating dynamics renders these events difficult to study. Here, we present a simula-
tion method for evaluating the rate and mechanism of rare events in generic nonequilibrium
systems and apply it to study the conformational changes of a passive solute in an active
fluid. The method employs a variational optimization of a control force that renders the
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rare event a typical one, supplying an exact estimate of its rate as a ratio of path partition
functions. Using this method we find that increasing activity in the active bath can enhance
the rate of conformational switching of the passive solute in a manner consistent with recent
bounds from stochastic thermodynamics.

3.1 Direct evaluation of rare events in active matter

from variational path sampling

The constituent agents of active matter– biomolecules, colloids, or cells– autonomously
consume energy to fuel their motion.[45, 46] Their resultant nonequilibrium states have
non-Boltzmann phase-space densities and exhibit exotic structural and dynamical collective
fluctuations, including motility-induced phase separation and swarming.[47, 48, 22, 49, 50]
Within these nonequilbrium steady-states, fleeting fluctuations can free particles from exter-
nal potentials,[24, 51, 25] nucleate stable phases from metastable ones,[52, 53] and assemble
passive objects.[54, 55] The study of such rare dynamical events within active matter and
the calculation of their associated rates is difficult. Traditional equilibrium rate theories like
transition state theory and Kramer’s theory require knowledge of the form of the steady-state
distribution that is not in general available.[56] Further, only a few numerical methods exist
that can be used to tame the exponential computational cost associated with sampling the
unlikely fluctuations that lead to transitions between metastable states. Existing methods
improve sampling by stratifying or branching stochastic trajectories[57, 58, 59] but do not
typically employ driving forces to specifically enhance the sampling of these rare events.

Here we present a perspective and an associated numerical algorithm, termed Variational
Path Sampling (VPS), for estimating transition rates in active systems using optimized
time-dependent driving forces. Our approach relies on a equality between the rate of a rare
event in a reference system and a ratio of path partition functions in the reference system
and with a driving force that makes the rare event occur with high probability. The VPS
algorithm solves a variational problem to approximate the functional form of an optimal
time-dependent driving force for this estimate and is applicable to any stochastic dynamics.
With VPS we investigate how driven fluids can direct motion into useful function. We
apply this technique to study the rate of conformational changes of a passive dimer in a
dense bath of active Brownian particles.[60, 61, 62] This model exemplifies how collective
active fluctuations around passive solutes can drive self-assembly and speed up transitions
between distinct metastable states. [63, 64] We find the rate to switch between the dimer’s
two metastable states increases dramatically with increasing activity in the bath, which we
rationalize with a recent dissipation bound from stochastic thermodynamics.[13] We study
the computational efficiency of rate estimation with VPS and demonstrate its advantage
over existing trajectory stratification based methods like Forward Flux Sampling.[57]

We consider a system described by overdamped Brownian dynamics of the form,

γiṙi(t) = Fi[r
N(t)] + ηi(t) (3.1)
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where ṙi is the rate of change of the i-th particle’s position, γi is the corresponding friction
coefficient, and Fi[r

N(t)] is the sum of all conservative, nonconservative and active forces
exerted on the i-th particle that depends on the full configuration of the N -particle system,
rN . The final term, ηi(t), is a Gaussian white-noise with ⟨ηiα(t)⟩ = 0 and

⟨ηiα(t)ηjβ(t′)⟩ = 2γikBTδijδαβδ(t− t′) (3.2)

for component (α, β) and kBT is Boltzmann’s constant times the temperature. In order to
study the transition rate between two long-lived metastable states, denoted A and B, we
define each from a given configuration using the indicator functions,

hX [r
N(t)] =

{
1 if rN(t) ∈ X
0 else

, (3.3)

for either X = A,B. In practice this designation requires an order parameter capable of
distinguishing configurations and grouping them into these distinct metastable states like
that illustrated in Fig. 4.1(a) in one dimension. Assuming there exists a separation between
the time τ ‡ required to traverse the transition region between the two metastable states, and
the typical waiting time for the transition, the rate k can be evaluated from the probability
to observe a transition, per unit time [2]

k =
⟨hB(tf )hA(0)⟩

tf⟨hA⟩
= t−1

f ⟨hB|A(tf )⟩ , (3.4)

where the angular brackets denote an average over trajectories of duration τ ‡ < tf ≪
1/k started from a steady-state distribution in A and ⟨hB|A(tf )⟩ denotes the conditional
probability for transitioning between A and B in time tf . When tf is chosen to satisfy the
timescale separation described above, k is independent of time.

If the transition is rare, most short trajectories are nonreactive leading to difficulties in
estimating the rate directly. Instead of trying to evaluate the small transition probability
through stratification as other existing methods do,[57, 58] we instead optimize a time-
dependent driving force λ(rN , t) that constrains the transition to occur, and evaluate the
probability cost associated with adding that force to the original dynamics. For a general
time-dependent force λ, using the Onsager-Machlup form for the probabilities of stochastic
trajectories,[4] the rate expression in Eq. 3.4 can be rewritten as[13]

k = t−1
f

〈
e−∆Uλ

〉
B|A,λ , (3.5)

where ⟨⟩B|A,λ denotes a conditioned average computed in presence of the additional force.
This relation holds for forces λ that affect the transition to occur with probability 1, such
that the rate in the driven ensemble is 1/tf . The average is of the exponential of the change
in the path action, ∆Uλ,

∆Uλ[X] = −
∫ tf

0

dt
∑
i

[λ2
i − 2λi · (γiṙi − Fi)]

4γikBT
, (3.6)
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between trajectories generated with the added force and in its absence. The path action and
all other stochastic integrals are evaluated in the Ito convention.

Equation 3.5 is a direct estimator for a rate employing an auxiliary control system, but it
only becomes useful when the protocol λ(rN , t) generates trajectories in a manner equivalent
to the unbiased reactive trajectory distribution. This is because the expectation can be
viewed as an overlap between the two reactive path distributions, and without significant
overlap the exponential average is difficult to estimate. We express the optimality of λ using
Jensen’s inequality after taking the logarithm of Eq. 3.5 to obtain a variational principle,

ln k ≥ − ln tf − ⟨∆Uλ⟩B|A,λ . (3.7)

If the average change in conditioned path action ⟨∆Uλ⟩B|A,λ is minimized over all possible
functional forms of λ, the rate can be obtained directly as a simple ensemble average of
∆Uλ∗ at the minimizer λ = λ∗.

The optimal control force λ∗ that saturates Eq. 3.7 is unique and given by the solution of
the backward Kolmogorov equation[65, 66, 67] as detailed in the Supporting Material (SM).
Specifically, the optimal force is 2kBT times the gradient of the logarithm of the commitor
probability[68] of ending in state B at tf . A schematic illustration of the optimal effective
time-dependent potential Vt(R) added to a double well potential is illustrated in Fig. 4.1(a).
The resultant force gradually destabilizes the reactant well to ensure the transition almost
surely within the short duration tf . Viewed in the backwards direction of time, the potential
follows the negative logarithm of the relaxation of an initially localized distribution in B to
its steady-state. The force is thus optimal in the sense that reactive trajectories, like those in
Fig. 4.1(b), generated with it are drawn from the reference path ensemble with the correct
statistical weights. Generically, λ∗(rN , t) is a function of all particle coordinates, so it is not
typically tractable to compute. We demonstrate here that one- and two-body representations
of λ can be sufficiently close to optimal as to estimate the rate accurately even in cases where
the rare event is collective, similar to related observations in large-deviation sampling.[69,
70, 71, 9]

We study the accuracy and utility of this formalism in a system comprised of an active
bath and a passive dimer that can undergo conformational changes between two metastable
states. All particles interact pairwise via a Weeks-Chandler-Andersen (WCA) repulsive
potential[72]

VWCA(r) =

{
4ϵ

[(σ
r

)12
−
(σ
r

)6]
+ ϵ

}
Θ(rWCA − r) (3.8)

with energy scale ϵ, and particle diameter σ, truncated at rWCA ≡ 21/6σ with the Heaviside
function Θ. Active particles experience an additional self-propulsion force of magnitude v0,
Fa
i (t) = v0e[θi(t)] where the director is e(θi) = (cos θi, sin θi) and θi obeys θ̇i(t) = ξi(t) with,

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = 2Dθδijδ(t− t′) (3.9)
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Figure 3.1: Reactive trajectories with VPS. (a)Schematic representation of the total optimal
time-dependent potential in an isolated passive dimer as t goes from 0 to tf . Shaded regions
are the compact (A, pink) and extended (B, light blue) states. (b) Unbiased reactive trajec-
tories generated with λ(R, t).

for angular diffusion constant Dθ. Passive solutes separated by distance R are bound by a
double-well potential

Vdw(R) = ∆V
[
1− (R− rWCA − w)2/w2

]2
(3.10)

with an energy barrier of height ∆V between the compact and extended states at R = rWCA

and R = rWCA + 2w respectively.[73] We study the transition rates between these states,
employing indicator functions hA(t) = Θ(RA−R) and hB(t) = Θ(R−RB) for RA = 1.25σ and
RB = 1.85σ. Conformation transitions like these in dense fluids are collective in origin[73]
and serve as a sensitive probe of the bath.

The VPS algorithm estimates an optimal force using a low-rank ansatz by iteratively
solving the variational problem in Eq. 3.7, and uses this force to directly obtain a rate
estimate. For computing the rate of isomerization of the passive dimer, we approximate λ∗

with a time-dependent interaction along the dimer bond vector R, expressed as a sum of
Gaussians

λ(R, t) = R̂

MR,Mt∑
p,q=1

c(i)pq e
−

(R−µR,p)
2

2ν2
R

− (t−µt,q)
2

2ν2t (3.11)

where c
(1)
pq = −c(2)pq are variational parameters to be tuned, and the locations and widths µR,p,

µt,q, νR and νt are held fixed. To impose the conditioning while minimizing ⟨∆Uλ⟩B|A,λ, we
use a Lagrange multiplier s to construct a loss function Ωλ = ⟨∆Uλ⟩λ + s(⟨hB|A⟩λ − 1).
For a general force that does not ensure the transition with unit probability, there is a
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multiplicative contribution to the estimate of the rate in Eq. 3.5 from ⟨hB|A⟩λ, which for
most optimized forces is negligible.

The optimization problem maps onto the computation of a cumulant generating function
for the statistics of the indicator hB(tf ) studied previously,[67, 74] with the short trajectories
starting from a steady-state distribution in the initial state. As such we can employ gen-
eralizations of recent reinforcement learning procedures to efficiently estimate the gradients
of the loss function with respect to the variational parameters.[75] Specifically, we modify
the Monte-Carlo Value Baseline (MCVB) algorithm[74] which performs a stochastic gradi-

ent descent to optimize c
(i)
pq . We add two preconditioning steps over the MCVB algorithm.

First, we generate an initial reactive trajectory using a routine reminiscent of well-tempered
metadynamics.[76] Then we symmetrize the learned force to ensure time translational invari-
ance of the transition paths. We denote this preconditioning algorithm MCVB-T. Further
information is available in the SM.

We first illustrate the systematic convergence of VPS by estimating the isomerization rate
of an isolated passive dimer. Such a simplified system allows us to compare to numerically
exact results, and study convergence of the force ansatz in the complete basis limit, where
MR,Mt → ∞ and the Gaussians cover the thermally sampled region in R and t. For
this simple system, we take kBT = γ = σ = ϵ = 1, w = 0.25σ, with diffusive timescale
τ = σ2γ/kBT . We simulate the one-dimensional version of Eq. 5.7 along R, with Vdw(R)
only. For simplicity we define state A by the initial condition R(0) = rWCA, and state B via
RB = 1.45σ. To provide a steady-state value in Eq. 3.4[74, 77], we use an Euler method
and take in this example tf = γwσ/

√
8kBT∆V . We choose µR,p and µt,q evenly distributed

in R/σ ∈ [0.9, 1.77] and t ∈ [0, tf ], respectively, and νR, νt to be half the distance between
Gaussian centers. We consider basis sizes MR =Mt = 2− 40, each optimized independently
and used to sample ∼ 105 transition paths.

Figure 4.2(a) illustrates a typical learning curve for the control force, showing convergence
of the variational rate bound towards the numerically exact rate. The variational estimate
requires a basis of MR,Mt > 40 to approach the rate to within the statistical uncertainty
of the estimate, however alternative estimates with small basis sets can be refined using a
cumulant expansion approximation to Eq. 3.5. Specifically, truncating the exact exponential
relation at the ℓth cumulant as

ln k ≈ − ln tf +
ℓ∑

n=1

1

n!

dn ln
〈
e−∆Uλ

〉
B|A,λ

d∆Un
λ

(3.12)

provides an approximation to the rate that converges in the limit that ℓ is large. Figure 4.2(b)
illustrates this convergence, where we find that even coarse-representations of the control
force can yield close estimates of the rate with only the first few cumulants, illustrating a
tradeoff between basis set completeness and statistical efficiency. Sweeping across a wide
range of barrier heights in Fig. 4.2(c), we find excellent agreement between the log-rate from
brute force simulations and a truncation of the cumulant expansion to ℓ = 2 using MR = 80
and Mt = 30.
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Figure 3.2: Convergence of isomerization rates for an isolated passive dimer. (a) Learning
curve for ∆V = 10kBT and MR,Mt = 20. (b) Convergence of the variational rate estimate
(circles) and cumulant corrections for ℓ = 2 (triangles) and ℓ = 4 (squares) with basis size as
compared to the numerically exact answer (dashed line). (c) Variational (circles) and ℓ = 2
(triangles) estimate of the rate compared to the exact value (dashed line) with increasing
barrier height.
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We next compute the isomerization rate with VPS when the dimer is immersed in an
explicit solvent of active Brownian particles with N = 80 and a total density of 0.6/σ2. The
dimer particles have a friction γd = 2γ and the solvent particles have γs = 4γ. We take
γ = σ = ϵ = 1, kBT = 0.5, ∆V = 7kBT , τ = σ2γ/2kBT = 1, Dθ = 1/τ and timestep
10−5τ . We also change w = 0.45σ such that the collisional cross-section of the dimer is large.
Collisions with active particles transduce energy along the dimer bond and we study the
change in the isomerization rate as the bath activity v0σ/kBT is varied from 0 to 18. We
use a basis size of MR = Mt = 50 distributed between R/σ ∈ [0.9, 2.3] and t ∈ [0, tf ] where
tf = 0.2τ . The optimization starts by learning forces λ(R, t) for the isolated dimer with
WCA interactions between monomers, followed by the MCVB-T algorithm. Then, λ(R, t)
is optimized in the presence of the bath for v0 = 0 and higher values of v0 are initialized
from converged forces at the previous v0.

The rate is a strong function of activity, increasing twenty-fold over the range of v0’s
considered. While the variational rate estimate from Eq. 3.7 is closest for the passive bath,
it weakens with increasing v0, indicating a growing importance of solvent degrees of freedom
in the optimal control force. With converged forces at each v0, we run 106 trajectories of
length tf to compute k from Eq. 3.5. This estimate correctly predicts the suppression of k due
to passive solvation and can be converged statistically for v0σ/kBT < 9, which is supported
by direct rate estimates from unbiased simulations in Fig. 4.3(a). Above v0σ/kBT = 9, the
optimized force is not close enough to λ∗ to estimate k directly through the exponential
average or a low order cumulant expansion.

Provided we have access to the transition path ensemble from direct unbiased simulations
or methods like Transition Path Sampling[1, 78, 79] we can supplement the estimate of k
using histogram reweighting.[80] k satisfies a reweighting relation of the form,

k =
e−∆UλPB|A,λ(∆Uλ)

tfPB|A,0(∆Uλ)
(3.13)

where we have defined PB|A,λ(∆Uλ) = ⟨δ(∆Uλ[X]−∆Uλ)⟩B|A,λ and similarly for its undriven
counterpart λ = 0. We evaluate k with this estimator by sampling 104 driven and only 6-
100 unbiased reactive paths, using the Bennett Acceptance Ratio[81] to evaluate the ratio of
probabilities. Compared with the brute-force estimate in Fig. 4.3(a), we find this reweighting
predicts k accurately across all values of v0 with significantly higher statistical efficiency then
a brute force calculation, which validates the accuracy and utility of the control forces. We
have compared the VPS rate estimates in the SM, using either Eqs. 3.5 and 3.13, to the
Rosenbluth variant of Forward Flux Sampling[57], and find that VPS is statistically more
efficient and converges more quickly with the number of reactive trajectories.

Access to an ensemble of transition paths in this active system gains us mechanistic
insight into the process. The rate enhancement observed for the compact to extended state
transition of the passive dimer with bath activity can be understood using recent results
from stochastic thermodynamics. Specifically the rate enhancement achievable by coupling a
reactive mode to a nonequilibrium driving force is bounded from above by the heat dissipated
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Figure 3.3: Rate enhancement of isomerization in an active fluid. (a) Change in the rate as
estimated from direct unbiased simulations (crosses), from exponential estimate (squares),
and from histogram reweighting (circles). The excess dissipated heat (triangles) bounds the
rate enhancement achievable demarked by the red shaded region. The thick tick mark on
the left denotes the rate for the isolated dimer. (b) and (c) Typical snapshots of reactive
trajectories of the active bath (blue) and passive dimer (red), at t = 0 and t = tf .

over the course of the transition.[13] In this case the nonequilibrium driving is afforded by
the interactions between the dimer and the active bath, so the bound takes the form

ln k ≤ ln k0 +
1

2kBT
⟨Q−Q0⟩B|A (3.14)

where k0 is the rate at v0 = 0 and ⟨Q − Q0⟩B|A is the dissipative heat less its average at
v0 = 0 given by

Q =

∫ tf

0

dt
∑
i∈d

∑
j∈s

(ṙi − ṙj) · FWCA(rij) (3.15)

which is a sum of the total force from the WCA potential of the solvent particles (s) on
the dimer (d) times the difference in their velocities in an ensemble at fixed v0 (SM). This
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bound is verified in Fig. 4.3(a) for all v0, and saturated at small v0. The specific mechanism
of energy transfer from bath to dimer that promotes transitions is clarified by examining
reactive trajectories driven by the biasing force and are typical, after removal of the bias
from the incomplete basis set. Figures 4.3 (b) and (c) show typical snapshots of the solvated
dimer at the start and end of the reaction. Energy transfer results from active particles
accumulating around the dimer, and preferentially in its cross-section, pushing it apart into
an extended state. This mechanism of action is reminiscent of how nonequilibrium agents
collect in the corners of mesoscopic gears to power their directed rotation.[63, 64] At low
v0, we find the driven isomerization process is efficient, while deviation from the bound at
large v0 demonstrates that energy is additionally funneled into non-reactive modes. Further
studies showing the unbiased nature of the VPS-sampled transition path ensemble in terms
of duration and distribution of transition paths, and quantification of the changing solvation
environment with v0 are provided in the SM.

3.2 Doob’s optimal force saturates the rate bound

For ease of notation, we consider states A and B being specific phase space points, rNA
and rNB , respectively. Let λ∗(rN , t) = 2kBT∇Φ, where Φ(rNB , tf |rN , t) is the log of the
probability to end at a single target configuration, rNB , conditioned on being at rN at time t.
This conditioned probability satisfies the logarithmic transform of the backward Kolmogorov
equation,[82, 65, 66, 67, 83]

∂tΦ +
∑
i

[
Di(∇iΦ)

2 +∇iΦ · Fi/γi +Di∇2
iΦ

]
= 0 (3.16)

where Di = kBT/γi is the diffusion constant and the gradients act on ri. The optimal force
achieves the reactive transition by construction, rendering ⟨hB|A⟩λ∗ = 1. The change in path
action with the optimal force is

∆Uλ∗ [X] = −
∫ tf

0

dt
∑
i

Di(∇iΦ)
2 +∇iΦ · Fi/γi −∇iΦ · ṙi (3.17)

Using Ito’s Lemma for the total time derivative of Φ to eliminate the final term,

∆Uλ∗ [X] = −
∫ tf

0

dt

{∑
i

[
Di(∇iΦ)

2 +∇iΦ · Fi/γi +Di∇2
iΦ
]
− Φ̇ + ∂tΦ

}
(3.18)

and substituting the backward Kolmogorov equation

∆Uλ∗ [X] =

∫ tf

0

dt Φ̇ = Φ(rNB , tf |rNB , tf )− Φ(rNB , tf |rNA , 0) (3.19)

the change of action can be evaluated exactly. The boundary terms from the exact integration
are 0 and the log of the transition probability between A and B in the reference system. The
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latter can be identified with ln⟨hB|A⟩, resulting in the equality in Eq. 7 using the definition
of the rate k in Eq. 4. This reasoning extends linearly to cases where A and B are collections
of configurations.

3.3 Generative reinforcement learning protocol for

learning optimal force

We optimize the time-dependent control force λ(R, t) by minimizing ⟨∆Uλ⟩B|A,λ over vari-

ational parameters c
(i)
pq using Lagrange multiplier s to impose the B|A conditioning. If

s is chosen to be more negative than an approximately estimated threshold value s∗ =
ln[⟨hB|A⟩/(1 − ⟨hB|A⟩)], the optimized forces drive the reaction with unit probability and s
need not be individually optimized. For a rare transition, any choice of s with a magni-
tude an order or more larger than the energy barrier height will robustly provide forces that
always satisfy the B|A conditioning.[74]

For optimization we use an extension of a reinforcement learning algorithm called Monte
Carlo Value Baseline (MCVB).[74] This algorithm computes the correlation of the gradient
of the log of the trajectory probability, called Malliavin weights,[9, 84] with the instantaneous
change in ∆Uλ and hB over the course of the trajectory. These yield the exact gradients of
the loss-function Ωλ with respect to the tunable parameters, with which a stochastic gradient
descent is performed. The MCVB algorithm simultaneously learns the driving force and a
corresponding value function, V(R, t) = ⟨∆Uλ,t + shB|A⟩λ|R(t)=R, where ∆Uλ,t contains the
integrated action difference only within [t, tf ] and the expectation is conditioned on starting
from R at time t. The value function greatly reduces the the variance of the gradients at
zero cost, allowing better convergence. Our modification to this algorithm, refered to as
MCVB-T, is a preconditioning step that enforces time translational symmetry for the log of
the bridge probability, Φ(rNf , tf |rN , t) = Φ(rNf , tf − t|rN , 0), as the reference forces are not
explicit functions of time. This is achieved by randomly choosing a tmid ∈ [0, tf ] for every
trajectory used for averaging the force gradient, and applying the force λ(R, t ∈ [tmid, tf ])
on it only for a duration [tmid, tf ]. This ensures that trajectories undergoing the transition
at late times are accounted for while training the force.

Details of the MCVB-T algorithm are available in the pseudocode in Algorithm 1. The
set of Gaussian coefficients parametrizing the force and the value function are denoted in
short by χ and ψ respectively. The MCVB algorithm is a special case of MCVB-T with fixed
tmid = 0.

Figure 3.4 illustrates all learning curves that led to the results in Fig. 3, plotting lnhB|A−
∆Uλ

∣∣
B|A as a function of training steps. The averages of this estimator and the gradients

are computed over 40 trajectories simulated at each training step. The trajectories are
initialized with coordinates randomly chosen from a collection of 10000 steady-state dimer
and bath configurations in state A, collected once in every 0.1τ time units from a long
trajectory without any driving forces. We first learn optimal forces in the absence of the
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Algorithm 1 Monte-Carlo Value Baseline with Time-translation invariance (MCVB-T)

1: inputs Gaussian coefficients for a general force λχ(r
N , t) and value function Vψ(rN , t)

2: parameters learning rates αχ, αψ; total optimization steps I; trajectory length tf con-
sisting of J timesteps of duration ∆t each; number of trajectories N

3: initialize choose initial weights χ and ψ, define iteration variables i and j, force and
value function gradients δP , δV , define functional form for stepwise increments (rewards)
ξ to the loss-function ∆Uλ + shB|A

4: i← 0
5: repeat
6: Generate trajectories [X(t)] with first-order Euler propagation starting from uncor-

related steady-state configurations in state A. Every trajectory starts experiencing the
force λ from a random time tmid which is sampled uniformly from [0, tf ]. Configurations,
times, noises (with variance 2γkBT∆t), Malliavin weights, integral of value function gra-
dients, and rewards are denoted by rNj , tj,ηj, yχ(tj), zψ(tj) and ξ(tj) = ξj respectively.

7: j ← 0
8: δP ← 0
9: δV ← 0
10: yχ(t0)← 0
11: zψ(t0)← 0
12: repeat
13: ẏχ(tj)← ηj · ∇χλχ(r

N
j , tj)/2kBT∆t

14: yχ(tj+1)← yχ(tj) + ∆tẏχ(tj)
15: żψ(tj)← ∇ψVψ(rNj , tj)
16: zψ(tj+1)← zψ(tj) + ∆tżψ(tj)
17: δP ← δP + ξjyχ(tj+1)− Vψ(rNj , tj)ẏχ(tj))
18: δV ← δV + ξjzψ(tj+1)− Vψ(rNj , tj)żψ(tj)
19: j ← j + 1
20: until j = J
21: average δP ,δV over N trajectories to get δP , δV
22: χ← χ− αχδP
23: ψ ← ψ + αψδV
24: i← i+ 1
25: until i = I
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explicit bath in Fig. 3.4(a), and then optimize these forces in the presence of the bath
in Fig. 3.4(b). We start our optimization by first finding an arbitrary force that ensures

the transition with a nonzero probability. We learn initial parameters c
(i)
pq with a routine

similar to well-tempered metadynamics.[76] Starting with c
(i)
pq = 0, at fixed frequency we

add c
(i)
pq 7→ c

(i)
pq + τmωTm/[Tm + ωN (R, t)], where N (R, t) is a running histogram of order

parameter R up to the current time t, and hyperparameters Tm, ω and τm determine how
quickly the force landscape is filled. The blue learning curve in Fig. 3.4(a) refers to 100
steps of metadynamics run with τm = 10t/Mt, ω = 4000 and Tm = 9000. We find that the
force solely from metadynamics is highly suboptimal compared to the rate bound, indicated
by the black dashed line. Starting with a λ averaged over all metadynamics steps and with
V = 0, we next optimize both sets of parameters with MCVB-T and then MCVB each over
1000 steps with learning rates αχ = 40, αψ = 200 and s = −100. We find that the variational
estimate converges tightly to the exact rate bound.

Figure 3.4: Learning curves for variational bound. (a) Optimization for the isolated dimer
with 100 steps of well-tempered metadynamics(blue), 1000 steps MCVB-T(orange) and 1000
steps MCVB(green). Black dashed line is ln ktf for the isolated dimer. (b) Learning curves
for 1000 steps each, in presence of the explicit bath with v0σ/kBT = 0, 2, 4, ..., 18. Black
dotted lines denote the corresponding converged values.

Next we use the converged λ and V to start the optimization in presence of the bath,
as illustrated in Figure 3.4(b). We successively optimize for each v0σ/kBT ∈ {0, 2, 4, ..., 18}
starting from the previous converged result, each over 1000 steps. Each time we choose
(αχ, αψ) = (0, 200) for the first 200 steps and (40, 200) for the remaining 800 steps. Learning
the value function before starting to change the force in this way avoids a brief period of
divergence at the beginning of each optimization run.[74] The results are robust towards
changing the learning rates as long as αψ is kept about 5-10 times of αχ, such that the value
function is always approximately accurate whenever the force is being changed.

Results in Fig. 2 were also obtained similar to this protocol, but with no value function.
For Fig. 2(c), the initialization parameters τm, ω and Tm are chosen at each barrier height
so that at least half of the transitions are reactive.
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Figure 3.5: Unbiased rates, statistical convergence and transition path ensemble with VPS
for v0σ/kBT = 8

. (a) Overlap of the incomplete tilted biased and the unbiased distributions, with the
scaling coefficient computed from Bennett Acceptance Ratio. (b) Errors in the rate

estimates from Equations 5 (kexp) and 13 (krwt) and from Forward Flux Sampling (kFFS)as
the amount of total simulation timesteps NF is varied. (c) Probability Density Functions
(PDF) of transition path times and reactive escape times in the transition path ensemble,

computed from the driven trajectories and unbiased reactive trajectories.

3.4 Unbiased reactive events from VPS

We use Eq. 5 and 13 in the main text to obtain rate estimates from direct simulations using
the low-rank optimized force λ. For the passive dimer in an active bath with v0σ/kBT = 8,
we have illustrated in Figure 3.5(a) overlap of the driven distribution PB|A,λ(∆Uλ) with the
unbiased distribution PB|A(∆Uλ) after tilting to correct the systematic error. The scaling
constant krwt, which is our estimate for the rate k, has been evaluated from Bennett Accep-
tance Ratio method[81] by using the tilting exponent as the reduced potential. This overlap
is observable only when the driving force λ is near-optimal. If the tilted distribution does
not contain enough statistics to represent the unbiased distribution, the estimate kexp from
Eq. 5 given by the area under the tilted distribution will underestimate the rate. If the basis
set is complete and the exact optimal force λ∗ can be obtained, ∆Uλ∗ will follow a Dirac
delta distribution PB|A,λ∗(∆Uλ∗) = δ(∆Uλ∗ +ln ktf ), and the first cumulant will be sufficient
to describe the log of the average of the exponential. This is also evident in Eq. 3.19 where
λ = λ∗ makes ∆Uλ[X] trajectory independent. In that case, all three estimates of k from
Eqs. 5, 7 and 13 will be equal and the unbiased reactive events will be entirely force-assisted
rather than being driven by thermal fluctuations.

Figure 3.5(b) shows the systematic and statistical errors in ln ktf calculated as VPS
estimates kexp and krwt from Equations 5 and 13 respectively in the main text. We have
computed the errors by comparing to direct unbiased simulation, as the number Nw of
uncorrelated trajectories of duration tf is varied, expressed through the total number of
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simulation timesteps NF = Nwtf/δt where δt is a single timestep. Given the optimized
driving force, kexp is computed by averaging over Nw trajectories and krwt is obtained by
reweighting PB|A,λ(∆Uλ) and PB|A(∆Uλ) each computed with Nw/2 total trajectories, of
which only a fraction are reactive without the driving force. At small NF , kexp systematically
underestimates the rate due to the full area under e−∆UλPB|A(∆Uλ) not being accessible
because of incomplete overlap, making kexp formally unbiased but statistically biased. This
error disappears with large NF . However, the full rate can still be successfully obtained by
comparing segments of incomplete distributions. Thus even when the undriven trajectory
ensemble has ≤ 10 reactive trajectories at smaller values of NF , krwt incurs much less error
and provides a rate estimate that is both formally and statistically unbiased.

Figure 3.5(c) demonstrates convergence of the transition path ensemble obtained from
direct simulations with the optimized forces even before the tilting correction. PB|A,λ(τ

‡) and
PB|A(τ

‡) are distributions of the transition path time τ ‡ measured as the time after leaving
state A and before reaching state B without returning to A. PB|A(τ

‡) is from 2000 reactive
trajectories obtained from 106 total unbiased simulated trajectories, while PB|A,λ(τ

‡) is from
a total of 2000 driven trajectories all of which were reactive. We find convergence in the
distribution of transition path times signifying direct access to the nearly unbiased transition
path ensemble by using the optimal force. Similarly we compare the distribution of the start
time of the reaction trxn ∈ [0, tf ] measured as the time the trajectory last leaves A before
arriving in B. We again find convergence in the driven ensemble compared to the unbiased
reactive ensemble indicating the forces λ(R, t) are near-optimal at all values of t.

The directly evaluated rates without additional forces used to compare VPS estimates
have in most cases been computed from 5 trajectories, each of duration 104τ with τ being the
diffusive timescale. We compute k using Eq. 4 by evaluating the expectation with a rolling
window over the trajectories after relaxing to a steady-state. We deviate from this protocol
only for Figure 2(c), where the barrier heights are too large to estimate the rate from direct
simulations. Here we use a numerically exact escape rate obtained from Kramer’s theory.[85]

3.5 Comparison with Forward Flux Sampling

In Figure 3.5(b) we have compared the numerical cost of VPS at an active self-propulsion
v0σ/kBT = 8 with that of a Rosenbluth-like variant of Forward Flux Sampling (RB-FFS).[57]
Starting from an ensemble of steady-state configurations in A, RB-FFS uses multiple inter-
faces between A and B to sequentially generate the transition path ensemble and compute
the nonequilibrium reaction rate without an additional driving force.[86, 87] The transition
paths generated from RB-FFS are unbranched and each has an associated weight as part of
the transition path ensemble, analogous to VPS, from which the rate is estimated.

In order to apply RB-FFS, we define the interfaces alongR asR/σ ∈ {1.25, 1.29, 1.33, 1.38,
1.43, 1.50, 1.57, 1.65, 1.72, 1.77, 1.81, 1.85} with the first and the last interfaces correspond-
ing to RA and RB respectively. We start RB-FFS trajectories from the same ensemble of
steady-state configurations in A that we have used for VPS, and record the configurations
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whenever the trajectories cross RA from the A side. Every time a trajectory reaches B, we
replace it in A at a random steady-state configuration. From each ofM0 recorded configura-
tions located at RA, we generate reactive paths by shootingM = 100 trajectories from each
interface sequentially and randomly choosing one out of those that reach the next interface
instead of coming back to A. The rate estimate is given by product of the forward flux of
crossing RA and the conditional probabilities of reaching subsequent interfaces, computed
from an average over weighted reactive trajectories from the RB-FFS simulation[57]. We
have variedM0 between 20 and 7000 to study the convergence of the RB-FFS rate estimate
kFFS as a function of the total number of simulation timesteps NF , as shown in Figure 3.5(b).
Statistical errors have been estimated over 3 independent parallel runs of the entire RB-FFS
procedure.

We find that the VPS rate estimates kexp and krwt incur much smaller errors than kFFS
at small NF , though at large NF all estimates converge to the same rate. Specifically, krwt

converges to the true rate fastest among the three estimates, and kexp incurs much smaller
systematic errors than kFFS even before convergence. This demonstrates that the use of the
optimized force in a simple low-dimensional basis in VPS reduces the computational cost
of estimating the exact rate by an order of magnitude or more compared to a trajectory
stratification based method like RB-FFS. Further, we find that in RB-FFS, obtaining suffi-
cient statistics given by a largeM0 required the use of a long serial simulation to converge
the flux of crossing the first interface at RA. Parallelization of the M trajectory segments
starting from each interface scaled poorly due to a broad distribution of durations over the
trajectory segments, each of which must continue till they reach either the next interface,
or A. Since shooting from the next interface can only start after the slowest of the previous
trajectory segment has concluded, parallel implementations of RB-FFS scaled poorly and
required overall a very long serial simulation. Our attempts to parallelize RB-FFS in an
alternate fashion by reducing the serial configurationsM0 worsened the systematic error in
kFFS even when averaged over fully independent RB-FFS implementations over many parallel
threads. In contrast, every step of VPS is trivially parallelizable because of all trajectories
being of the same duration tf , which corresponds to NF = 2 × 104. As a result, a parallel
implementation of VPS reduced its cost linearly and the overall computation required much
shorter serial simulations.

3.6 Dissipative rate bounds

Stochastic thermodynamics provides a fundamental speed-limit on the enhancement achiev-
able of the rate k of a rare nonequilibrium transition over a reference equilibrium rate k0 in
terms of the excess heat dissipation in the reactive path ensemble,[13]

ln k ≤ ln k0 +
1

2kBT
⟨Q⟩B|A (3.20)

where ⟨Q⟩B|A is defined as the time-reversal asymmetric contribution from the change in
path action between the equilibrium reference and the nonequilibrium system in which it
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is measured. This bound holds under mild assumptions of instantonic or diffusive transi-
tions and follows from a similar change of measure as leads to Eq. 7, with the additional
observation of the time-reversal symmetric contribution of the change in path action being
negligible near equilibrium. Here we show how to arrive at Eq. 14 employing this bound. As
in the main text, we assume a separation of timescales between local relaxation and typical
transitions so that the rate problem is well-posed.

We consider the rate enhancement afforded by coupling the dimer to an active solvent
over the equilibrium passive bath isomerization rate. However, if we simply compute the
excess heat dissipated as resulting from the time reversal asymmetric change in path action
in turning v0 from 0 to some finite value, the heat will be extensive in the number of solvent
degrees of freedom and thus not have a well-defined thermodynamic limit. To mitigate this,
we note that the isomerization rate of the dimer would be independent of v0 if the dimer
and solvent did not interact. Denoting kni and kni0 the rates of isomerization when the dimer
is uncoupled to the solvent at finite or zero v0, respectively, then k

ni = kni0 and

ln
k

k0
= ln

k

kni
kni0
k0
≤ 1

2kBT

(
⟨Q⟩B|A − ⟨Q⟩B|A,0

)
(3.21)

where ⟨Q⟩B|A is the excess dissipation resulting from turning on interactions between the
dimer and solvent at finite v0, and ⟨Q⟩B|A,0 = Q0 results from turning on interactions between
the dimer and solvent at v0 = 0. The inequality is preserved even though a difference of
heats is taken since the second ratio of rates kni0 /k0 are both evaluated at equilibrium and
thus the symmetric part of the action is zero. This second heat subtracts out the dissipation
that is uncorrelated with the isomerization, and the remaining excess dissipation is left finite
even when the number of solvent particles is large, so long as the dimer is correlated with
the solvent over a finite distance.

The full path action for a system at finite v0 in the presence of dimer-solvent interactions
is

Uv0(tf ) = −
1

4kBT

∫ tf

0

dt γ−1
d

∑
i∈d

[
γdṙi +∇iVdw −

∑
j∈d

FWCA(rij)−
∑
j∈s

FWCA(rij)

]2

+ γ−1
s

∑
i∈s

[
γsṙi − v0e[θi]−

∑
j∈d

FWCA(rij)−
∑
j∈s

FWCA(rij)

]2

− 1

4Dθ

∫ tf

0

dt
∑
i∈s

θ̇2i (3.22)

and using the convention that v0 is invariant under time-reversal,[49] the dissipated heat
associated with turning on interactions between the solvent and dimer is

Q(tf ) =

∫ tf

0

dt

[∑
i∈d

∑
j∈d

ṙiFWCA(rij) +
∑
j∈s

∑
i∈d

ṙjFWCA(rji)

]
(3.23)
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and is the same if v0 = 0 or is nonzero. Since FWCA(rji) = −FWCA(rij) we find the definition
of the Q in Eq. 15.

We measure ⟨Q⟩B|A(tf ) by averaging Eq. 3.23 over reactive trajectories of length tf = .2τ
sampled from long, 2×108 time-step, simulations in the nonequilibrium steady state at fixed
v0, with all other parameters as in the main text. Assuming transitions are uncorrelated, we
compile Q samples from 24 − 96 independent simulations, and use this data to calculate a
mean and standard error, as depicted in Fig. 3 (red triangles).

Figure 3.6: Solvation structure of the dimer by the active bath. Difference in pair distri-
butions ∆gX(r, ϕ1) (Left) and ∆gX(r, ϕ2) (Right). Configurations are conditioned such that
the bath is sampled with the dimer in the collapsed state ∆gA(r, ϕ1,2) (Top), the transition
region ∆gAB(r, ϕ1,2) (Middle) or the extended state ∆gB(r, ϕ1,2) (Bottom).

3.7 Nonequilibrium solvation structure

We have studied how the solvation structure around the dimer evolves with activity. We com-
pute the two-dimensional pair distribution functions for the position of the solvent around
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the dimer bond within a conditioned steady state ensemble average

gX(r, ϕ1) =
1

ρsρd

⟨
∑

i∈s δ(r
d
cm)δ(r − |ri − rdcm|)δ(ϕ1 − arccos(ri ·R))hX(R)⟩

⟨hX(R)⟩
, (3.24)

with the center of the dimer bond rdcm = (r1 + r2)/2 as a reference. Here, r is the radial
distance between rdcm and surrounding bath particles, which make an angle ϕ1 with the bond
vector R = r1 − r2. The indicator function hX(R) restricts configurations where the bond
length R falls into state X. Similarly, we probe the orientation of active solute particles
around the dimer bond vector with the pair distribution

gX(r, ϕ2) =
1

ρsρd

⟨
∑

i∈s δ(r
d
cm)δ(r − |ri − rdcm|)δ(ϕ1 − arccos(e[θi] ·R))hX(R)⟩

⟨hX(R)⟩
. (3.25)

where ϕ2 is the angle between a bath director and the dimer bond, and ρsσ
2 = 0.6 is the

density of the solvent, and ρdσ
2 = 0.008 is the density of the dimers. To compute gX(r, ϕi)

we average over configurations sampled from 24 simulations each with a length of 2 × 108

time-steps. In the left column of Fig. 3.6, ϕ1 denotes the angle between dimer bond center,
and bath particle position, whereas ϕ2 in the right column of Fig. 3.6 is the angle between
dimer bond center the bath particle director.

In Fig. 3.6, we consider the change in the pair distributions ∆gX(r, ϕi=1,2) = gX(r, ϕi=1,2, v0 =
9) − gX(r, ϕi=1,2, v0 = 0) in an active bath with v0 = 9 and its equilibrium counterpart at
v0 = 0. The different rows impose different conditions for the dimer bond distance R = |R|
to be either primarily in state X = A (top row), with R < 1.55σ, in the transition region
X = AB between states 1.55σ < R < 1.65σ (center row), or mostly in state X = B (bottom
row), with R > 1.65σ.

These results demonstrate that the rate enhancement is correlated with active particles
dynamically wedging within the cross section of the dimer, pushing it apart into an extended
state. The left column of Fig. 3.6 demonstrates that activity greatly enhances the packing
of bath particles between the two bonded dimer particles, while the right column illustrates
that bath particles preferentially orient perpendicular to the bond vector once far enough
within the cross section. In state A, the active nature of the bath causes particles to push
the dimer apart along R, as evidenced by the depletion for ϕ2 = π/2 and r/σ > 1 in the
top-right panel of Fig. 3.6. The transition region, center-left, shows a significantly higher
peak in the radial distribution function around ϕ2 = π/2, marking a decrease in the height
of the effective free energy barrier along R. This analysis also illustrates the mechanism of
increased stability in the active dimer extended state. Namely, Fig. 3.6 bottom-left shows
that the driven bath particles act to inhibit the extended state from closing.

3.8 Conclusion

In conclusion, we developed a novel formalism and corresponding algorithm termed Vari-
ational Path Sampling to compute rate constants in nonequilibrium systems by optimally
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driving the systems to transition between metastable states. VPS can be used to compute
rates in arbitrary stochastic systems and extends the use of optimal control forces in large de-
viation sampling to transient rare events.[9, 67, 69, 88, 70] VPS complements trajectory-level
importance sampling methods by generating the rare reactive event through a time-series
of driving forces instead of a sequence of rare noise histories. We expect this approach to
find broad use in rate computations for rare events in dissipative systems throughout the
physical sciences and across scales.

We have shown that forces that generate unbiased transition paths in complex noisy
systems in and out of equilibrium can be iteratively approximated with VPS. VPS can be
used to sample with ease unbiased transitions and estimate rates which would otherwise
be inaccessible to brute-forced simulations. In the future, we envision VPS will be used to
investigate rare events and map their mechanisms in more complex biophysical simulations.
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Chapter 4

Inferring equilibrium transition rates
from nonequilibrium protocols: a
general perspective on Bell’s law

This work was done in a collaboration with David Limmer that resulted in the publication
”Inferring equilibrium transition rates from nonequilibrium protocols.” [89]

In chapter 2, we saw that there exists a fundamental relationship between the speed
at which a driven system transitions states and the dissipation due to the driving, both
through a path-action a transition-state theory view of the rate process. Here, we extend
our transition-state theory picture to the case of an absorbing transition state and leverage
our theory to infer intrinsic rate constants from driven trajectories in the context of single-
molecule pulling experiments.

Extracting thermodynamic information from molecular systems through nonequilibrium
processes was made possible with the revelation of Jarzynski’s equality. [8, 34, 90, 91]
However, inference of kinetic information, such as the intrinsic rate of molecular transitions,
has remained more elusive.[92] Although useful ways of extracting transition rates from single
molecule force data exist, they often rely on fitting to phenomenological expressions[93] or
specifying a low dimensional model of the underlying conformational landscape. [94, 95]
Such theories also typically assume that the driving forces are quasi-adiabatic, so that the
molecule is assumed to locally equilibrate with the experimental forces imposed on it before
a transition occurs. Here, we report that a molecule’s bare equilibrium transition rate can
be inferred from the statistics of the excess heat released during a nonequilibrium protocol.
This result derives from expressions from stochastic thermodynamics[3] and an extension of
transition state theory into nonequilibrium regimes.

One of the most common methods for extracting rate information from nonequilibrium
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experiments and simulations employs Bell’s law.[93] Bell’s phenomenological rate law pos-
tulates that the speed of a molecular transition is accelerated with an applied external force
by a factor that varies exponentially

kλ ≈ k0e
βλ†x† , (4.1)

where kλ is the rate in the presence of the external force λ, k0 is the equilibrium rate, x† is
the distance along the forcing direction between the reactant state and a putative transition
state, λ† is the rupture force at the transition state and β is the inverse temperature times
Boltzmann’s constant. Evans and Richie showed that such a form emerges from Kramers
theory for specific model potentials, within a high friction limit.[96] Dudko, Hummer and
Szabo [97] developed alternative rate expressions from Kramers theory, as well as expressions
for other experimentally observable quantities, and more recently, introduced a model-free
method of estimating the force-dependent transition rate using statistics from the rupture
force distribution.[95] Using a nonequilibrium response relation for reaction rates,[13] we
provide a general perspective on the origin of Bell’s law. We explore subsequent general-
izations in a number of molecular systems with increasing complexity, and study the utility
of model-independent rate estimates that depend only on the statistics of the dissipation, a
thermodynamic quantity that is measurable experimentally.

4.1 Bell-type rate expressions from stochastic

thermodynamics conditioned on absorbing

boundaries

To start, we demonstrate how Bell’s law can be understood as a consequence of two distinct
approximations, a transition state theory approximation and a near equilibrium approxima-
tion. Within transition state theory, the rate of a transition between two metastable states
is

kλ = νpλ(x
†) (4.2)

where ν is the probability flux through x† and pλ(x
†) the probability to reach a transition

state, or dividing surface in phase space, starting from a metastable state.[98] This expression
is valid for any value of λ, but is an approximation to the rate because ν in principle depends
on x†, and errors associated with this approximation can be minimized with a judicious choice
of dividing surface.[2] In equilibrium, the probability to reach a transition state is given by
p0(x

†) ∝ exp[−βF (x†)], where F (x†) is the free energy to reach x†, resulting in the expected
Arrhenius temperature dependence.

While transition state theory is still applicable to systems away from equilibrium,[19, 99,
13] the likelihood of reaching the transition state is not generally known, rendering it difficult
to employ. For a system initially in equilibrium and acted upon by an external force, the
nonequilibrium distribution is encoded in the Kawasaki relation,[100, 101, 6, 102]

p0(r) = pλ(r)
〈
e−βQ

〉
λ,r

(4.3)
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where p0(r) is the initial equilibrium probability of full configuration r, pλ(r) is the nonequi-
librium probability, and the brackets ⟨. . . ⟩λ,x denote a trajectory ensemble average evolved
under the driving force λ conditioned on ending at r. The likelihood of the transition state,
pλ(x

†), is the marginalization of the full configurational probability onto the reaction coor-
dinate. For any trajectory ending in rupture at time trup, the excess heat dissipated to the
environment, Q, over that from the conservative force is given by

Q(trup) =

∫ trup

0

dt ṙ(t) · λ(r, t), (4.4)

which for a single molecule pulling experiment could be inferred from the force-extension
curve.

In general, an applied time dependent force can change the mechanism of the transition.
Even if the mechanism is conserved, both the height of the relevant barrier as well as the
location of the transition state can be altered.[97] However, if the barrier to transitioning is
large, we expect that the dominant change in the rate under an additional force is due to
modulation of the transition state probability pλ(x

†), leaving the location and flux through
the transition state unchanged. Under these assumptions, we employ the Kawasaki relation-
ship, Eq. 4.3, together with transition state theory, Eq. 4.2, to relate the transition rates in
the presence and absence of λ,

k0 ≈ kλ
〈
e−βQ

〉
λ,x†

, (4.5)

to the statistics of the dissipated heat. In this limit, the Kawasaki response relation connects
the transition rate amplification and the distribution of excess heat dissipated to the bath.
A similar rate enhancement relation has been derived from path ensemble techniques.[13]
While under the assumption of a conserved transition state this is the best estimate of
the rate enhancement, converging the exponential average requires significant data. The
equilibrium rate can be further approximated under an assumption of small applied force
with a cumulant expansion. Expanding the logarithm of the relative rate for small values of
the βQ,

ln k0 ≈ ln kλ − β⟨Q⟩+
β2

2
⟨δQ2⟩, (4.6)

which is our first main result. For simplicity of notation we drop the explicit condition on
the heat averages. Equations 4.5 and 4.6 imply that by measuring the rate of a rare event,
as determined by a mean first passage time kλ = 1/⟨trup⟩ to x†, and accompanying heat
statistics in a driven system, we can infer the rate of a rare event in thermal equilibrium.
These results can be considered as a nonlinear response theory for the rate,[103] in which
frenetic contributions are neglected.[5] Equation 4.6 is similar to higher order corrections to
Bell’s law valid for constant applied forces,[104, 105] generalized to arbitrary protocols.

Near-equilibrium, β⟨Q⟩ ≲ 1, and for slow driving forces, λ̇ ≈ 0, the heat dissipated
until crossing the transition state x† is well approximated by ⟨Q⟩λ,x† ≈ λ†x†, where we have
included only terms first order in λ and integrated Eq. 4.4 by parts. Such an approximation
is good when the transition remains activated, so the transition path time is much shorter
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Figure 4.1: Pulling on a harmonic molecule. (a) A cartoon of the time dependent potential,
initial barrier height β∆U †, and absorbing boundary condition, x†. (b) The heat dissipated
gives Bell’s law in the small loading rate, long rupture time limit. Dashed curves are Bell’s
law and the solid curves the excess heat for three potential stiffnesses. (c) Estimates of the
equilibrium escape rate for increasing barrier heights and a range of pulling velocities, each
with a typical heat as in (b).

than the time over which λ(t) varies. Substituting this approximation for the average heat
into Eq. 4.6 and neglecting higher order heat statistics, we find Bell’s law.
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4.2 Simple Harmonic Molecule

To understand the various rate inference expressions, we consider a hierarchy of models with
increasing complexity. In each, we apply a simple force ramp, with constant velocity v so
that λ ∝ v, and we measure the rate under this driving protocol, kλ → kv, as a mean first
passage time to an absorbing boundary condition. The first model we consider is a simple
overdamped particle trapped in a harmonic potential in one dimension, r→ x. The equation
of motion is

ẋ = µF (x) + µλ+
√
2Dη (4.7)

where the mobility µ and diffusivity D satisfy an Einstein relation βD = µ, F is a conser-
vative force, and η is a Gaussian random variable with ⟨η⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t − t′).
The conservative force is F = −aκx, and the particle is pulled with a linear ramp at loading
rate v, such that λ = aκvt as depicted in Fig. 4.1a. We fix κ = x† = β = µ = 1 and vary
v = {0, .., 0.5} and a = {8, 10, 12}. Simulations are run from an initial condition at the origin
and stopped upon crossing x† at t = trup, where kv = 1/⟨trup⟩. Time is measured in units of
τ = κ/µ. Associated with the location of the absorbing boundary condition is an increased
potential energy, equal to ∆U † = aκx†2/2. We use a time step t = 10−2τ and average over
104 trajectories.

In Fig. 4.1b) we verify the relationship between the heat and the argument of the
exponential in Bell’s law. Under a constant velocity force to lowest order in v, Q ≈ κvtrupx

‡,
which is plotted against the full expression for Q. As expected, for small v, in which β⟨Q⟩ ≲
1, both estimates agree. Note that ⟨Q⟩ does not vary linearly with v because trup depends
implicitly on loading rate. Figure 4.1c) illustrates the convergence of the equilibrium rate
employing different estimators, for a range of pulling velocities and barrier heights as ⟨Q⟩ →
0. The Bell’s law like rate estimate, correcting the rate with just the mean heat, approaches
the true equilibrium rate ln k0 from below. Within the validity of transition state theory,
this behavior can be understood as a consequence of Jensen’s inequality, applied to Eq. 4.5.
Including additional dissipation statistics as in the full expression in Eq. 4.5 yields a faster
convergence to the equilibrium rate for all barrier heights considered. Significant deviations
from Eq. 4.5 occur when the dissipation is comparable to the size of the energy barrier, in
which case the barrier is degraded enough for the event to no longer be rare. The agreement
between the full exponential average of the heat and its second order expansion is a result
of the linearity of the model studied.

From Bell’s law, methods exist to extract the equilibrium rate from a forced measurement
or simulation. A particularly accurate means of doing this is to perform maximum likelihood
estimation (MLE) on a known form of the rupture force distribution,[106, 94, 107]

pR(λ
‡) =

βkfit0
aκv

exp

[
βλ‡x‡ − kfit0

aκvx‡
(eβλ

‡x‡ − 1)

]
. (4.8)

to extract the equilibrium rate estimate kfit0 and transition state distance x‡. With k, v and
a fixed, we collect many samples of λ‡, the external force immediately after crossing the
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transition state, and find the MLE parameters by minimizing − ln pR(λ
‡) with the SciPy

minimize function, with initial guesses of −10 and 1 for ln kfit0 x‡ respectively.[108] Other
state of the art rupture force distributions exist, [109] but maximizing pR(λ

‡) over kfit0 and
x‡ is a common method of inferring k0 from single molecule data, and requires the least
fitting parameters. We find kfit0 from fitting the rupture force distribution is comparable in
accuracy to estimates from Eq. 4.6. For this system, all estimators that employ corrections
to Bell’s law are accurate to within 30% across the full range of pulling speeds studied.

4.3 Pulling in multiple dimensions

We now consider a simple model often adopted in force spectroscopy studies to understand
the role of flexible linkers. Specifically, we consider overdamped motion in 2 spatial dimen-
sions,

ṙ = −µ∇U(r) + µλ+
√
2Dη (4.9)

where r = {q, x}, and q is envisioned as a measured extension that is coupled to the true
molecular extension, x, through a potential

U(r) = ∆Ux2(x− 2)2 + κl(x− q)2/2 + κsr
2/2 (4.10)

where ∆U denotes the height of the barrier in the molecular coordinate, while κl and κs
are stiffnesses associated with the linker and trap, respectively.[110, 111, 112, 113, 114] In
this simplest multi-dimensional model of a single molecule pulling experiment, the molecule
undergoes diffusion in the 2-d landscape as shown in Fig. 4.2a. We perform force-ramp
simulations with an added force λ = κseΘvt, parameterized by a pulling vector eθ =
{cos(Θ), sin(Θ)} determined by the angle Θ relative to the q axis. The rate of heat dis-
sipation is computed from λ · ṙ. We fix β = µq = 1, x† = 1.5, κl = κs = 5, β∆U = 5 and
vary v = {0, .., 0.5} and Θ. As before we estimate averages from 104 trajectories with an
absorbing boundary condition at x†.

We first consider the experimentally relevant case of Θ = 0, where the q direction is
slow, µq/µx = 1/20 – the opposite case, when x is slow, being treatable analytically. [115]
Note that when Θ = 0, the heat is measured along the q direction only, and is therefore
experimentally accessible. Under these conditions, shown in Fig. 4.2b, we observe that
similar to the harmonic system, for small loading rates the dissipative second-cumulant
estimate of Eq. 4.6 converges faster to the exact equilibrium rate ln k0, than either the bare
driven rate or ln k0 ≈ ln kv − β⟨Q⟩ as ⟨Q⟩ → 0. As before, the estimate from the mean
dissipation converges from below, however in this case the inclusion of the second cumulant
results in convergence from above. The fit from the rupture force distribution is found to
perform better than Eq. 4.6, but is comparable to the exponential average from Eq. 4.5,
even for higher v. This is a consequence of the nonlinear system considered in this example,
where the non-Gaussian heat statistics manifest an enhanced variance and nonvanishing
higher order cumulants. Estimates from both Eq. 4.5 and Eq.4.8 provide accuracies within
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Figure 4.2: Protocol dependence. (a) The potential energy surface in the molecular x and
observed q coordinates with absorbing boundary placed at x† = 1.5. (b) Rate estimates
labeled as in Fig. 1c. (c) Modulation of the nonequilibrium rate with pulling velocity and
angle relative to the q axis where the reference rate is taken as pulling along the q direction.
(d) Modulation of the dissipated heat with pulling velocity and angle relative to the q axis
labeled as in (c) and reference analogously.

5% across the full range of pulling velocities, as pulling orthogonally to x does not degrade
the barrier, allowing for transition state theory to remain accurate.

In order to understand the protocol dependence of our rate inference, we now imagine that
both pulling directions are accessible. While this is not typically experimentally practical,
such a study provides insight into the convergence properties of the estimators. We consider
the case µq/µx = 1 and vary Θ and v in Figs. 4.2c and 4.2d. As expected, pulling along
coordinate x, Θ = 90o, results in a faster process relative to Θ = 0o, and one which dissipates
less heat as quantified by ∆⟨Q⟩Θ = ⟨Q⟩Θ − ⟨Q⟩0. The rate within the driven dynamics is
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maximized near Θ = 60o, which is in reasonable agreement with the optimal transition state
predicted by multidimensional transition state theory.[116] For small v, near equilibrium,
the dissipated heat approaches zero independent of Θ as expected for a quasi-reversible
process. These results suggest that in systems with multiple spatial dimensions, pulling
along any direction may be sufficient to estimate k0, but geometries that minimize the heat
until rupture may lead to faster convergence of Eq. 4.5 and Eq. 4.6.

4.4 Pulling a semi-flexible polymer

As an example of a non-linear many-particle system, we consider stretching a semi-flexible
polymer with reactive ends[117] that attract each other with a strong, short-ranged potential.
The configuration of the polymer consists of 3N dimensions, r = {r1, . . . , rN}, and evolves
with underdamped Langevin dynamics

mr̈i = −µ−1ṙi −∇iU(r) + λ+ µ−1
√
2Dηi. (4.11)

where m is the mass of a monomer. The monomers interact through a potential that consists
of U(r) = Ub(r)+Ua(r)+Unb(r) where Ub(r) is a harmonic bond potential between adjacent
monomers

Ub(r) =
κb
2

N−1∑
i=1

(ri+1 − ri)
2 (4.12)

with stiffness κb and Ua(r) is a harmonic angular potential that penalizes bending

Ua(r) =
κa
2

N−1∑
i=2

(
ri+1,i · ri,i−1

ri+1,iri,i−1

− 1

)2

(4.13)

where ri,i−1 = ri − ri−1 is the vector between two adjacent monomers, ri,i−1 denotes its
magnitude, and the potential has a stiffness κa. The nonbonding potential Unb(r) has a
short ranged form,

Unb(r) =
1

2

N∑
i ̸=j=1

ϵij

[
5

(
σ

ri,j

)12

− 6

(
σ

ri,j

)10
]

(4.14)

where σ sets the characteristic size of a monomer and ϵij the interaction strength between
monomer i and j. In order to model a reactive linker, we set the two monomers on each
end to interact more strongly than the monomers in the interior of the polymer, and the
cross interactions, between the linker and interior monomers, are neglected. We hold the 1st
monomer fixed at the origin, so the end to end vector is REE = rN, and pull the two ends
apart with λ = −κ(REE · x̂−vt), where x̂ is the unit vector in the x direction. Characteristic
snapshots are shown in Fig. 4.3a). We adopt a unit system with β = m = σ = 1, with a
natural time-scale τ = 1/

√
βmσ2. We set µ = 5, κb = 110, κa = 4.5, κ = 5.5, end monomer
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Figure 4.3: (a) A semi-flexible polymer with reactive ends, highlighted in red, mechanically
unfolded to a large end to end distance during a force ramp experiment. (b) The free energy
of the untethered polymer as a function of the end to end distance. The black dashed line
denotes the absorbing boundary condition. (c) Rate estimates, labeled as in Fig 1c, as a
function of heat.

interactions ϵ1,N = 4.5, and interior monomer interactions ϵ3,N−3 = 1.7, N = 50. We employ
a time step of 10−2τ and estimate averages from 500 trajectories.

Under these conditions, the semi-flexible polymer permits two types of conformations– a
folded state for small REE = |REE| where the linker monomers are bound, and an unfolded
state for large REE where the linker monomers do not interact strongly. To differentiate
between these two regimes, we first computed the work to pull REE reversibly, denoted by
β∆F (REE). This is shown in Fig. 4.3b), and evaluated using the Jarzynski equality[8] within
a steered Brownian dynamics framework.[118] For the free energy calculation we employed
the same constant v protocols, including all of the simulation data shown in Fig. 4.3c). The
free energy exhibits a deep minimum for small end to end distances and a second shallow
basin for large end to end distances. Under a small additional load, −κREE, the two basins
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are separated by a barrier in the free energy. Using this biased free energy we set an absorbing
boundary condition for our pulling calculation to REE

† = 2.5σ.
We pulled the polymer at loading rates over the interval v = {0.001 − 0.2}σ/τ and

measured the dissipative heat and first passage time to REE
†. Shown in Fig. 4.3c), we find

that convergence to the true equilibrium rate is fastest using Eq. 4.6, and as in the 2d model
the estimate converges from above upon the approach to equilibrium. As in both previous
models, the incorporation of the variance of the heat provides an accurate estimate of the
equilibrium over a range of heats that is comparable to a significant fraction of the native
barrier, in this case as long as β⟨Q⟩ < 3. The first order estimate converges to the true
equilibrium rate slowly from below. Over the range of pulling velocities considered, if either
the first-order estimate or the bare rate were fit and linearly extrapolated to v = 0, both
would overestimate the equilibrium rate by about an order of magnitude.

4.5 Conclusion

Our results demonstrate an underlying stochastic thermodynamic basis for Bell’s law under
nonequilibrium driving and a useful means for going beyond it to infer equilibrium transition
rates. Within the context of single molecule force ramp experiments, we have demonstrated a
robust way to infer unfolding rates using the statistics of the heat distribution, conditioned
on ending at an absorbing transition state. While within transition state theory, the full
exponential estimator is most accurate, we suspect that in general its convergence will be
cumbersome, and the perturbative expansions illustrated here will provide an intermediate
means of rate estimation. In the future, this response method may be used to study the rare
kinetics of more detailed protein models, protein unfolding in optical tweezing and atomic
force microscopy experiments, and other rare molecular transitions that can be sped up by
applied force.[119, 120, 121, 122] The nonequilibrium thermodynamic framework developed
here works not only with constant velocity force ramps, but could be used with more complex
protocols. Indeed, protocols can be optimized to allow for rate inferences,[44] or could be
used as a theoretical framework for understanding other approximate methods that use
driven dynamics to infer rates with applied force.[123, 124, 125, 126]

We have shown how forces influence transition rates between states, but it is often the
case in experimental settings that we want to use transition information to learn about the
nature of hidden states. In what is to come, we will explore how single molecule unfolding
trajectories can be used to infer information about hidden intermediate states on the route
to folding and unfolding.
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Chapter 5

The hidden dimensions of single
molecules

The work in this chapter was done in collaboration with Robert Sosa, JeongHoon Kim, Alex
Tong and Carlos Bustamante.

Single molecule force spectroscopy, and in particular optical tweezing, has changed the
way we study molecular function, shifting the paradigm from ensemble bulk assays to trajec-
tories of individual molecules. [127, 119] In optical tweezing experiments, a single molecule,
a protein, is tethered via DNA linkers on either end to two micro-scale beads trapped by
laser light. By manipulating the lasers, the beads can be pulled apart while the distance
between them and the restoring force exerted by the molecule are measured. Pulling on
the protein until the bond network holding it together in its native folded structure breaks
allows for the exploration of how the protein of interest unfolds under physiological forces
and refolds in their absence. [128, 129, 130] Here, we probe the intermediate states of a
globular protein on its unfolding path to unravel how its secondary structure coordinates to
allow it to properly fold.

5.1 Foldon theory of protein folding

The traditional model of protein folding is that of the entropic funnel. [131] In this ’funnel’
model, the unfolded protein starts in a state of high conformational entropy, which decreases
to a global minimum as the protein travels along any one of an infinite number of paths
to its native folded state. This high number of paths allows the protein to initiate folding
from any section along its linear sequence of amino acids and proceed with transitions of
any other section of its sequence after that.

In recent years, a refinement of the funnel model called the ’foldon’ model of protein
folding has been proposed and verified in bulk assays. [132, 133] The foldon model differs
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from the classic funnel model in that it posits that there exist at most a handful of probable
paths the protein traverses from its unfolded to native states. Instead of starting at any
location along its peptide sequence, in the foldon model, folding begins at the location of a
particular foldon, a ∼ 20−30 amino acid long section comprised of a few secondary structural
elements (alpha helices and beta strands). Folding of the first foldon triggers a cascade in
which each subsequent foldon acts as a template to nucleate folding of the next foldon even
at long ranges along the sequence. Critically if one foldon is knocked out, its inability to
fold disrupts the cascade, hindering the folding of the rest of the foldons. [134] In this way,
a protein in the foldon model travels on one of few deep valleys in the entropic funnel, along
a distinct set of well defined intermediates on its way to its native state.

5.2 Probing unfolding intermediates in a globular

protein

We aim to dissect the (un)folding pathway of a small highly stable single domain globular
protein called Ross. [135, 136] Ross gets its name from its Rossmann fold, which is found in
most DNA binding domains and consists of a four-strand beta sheet wedged between four
alpha helices, as shown in Fig 5.1 a. To study (un)folding paths, we locate and examine the
intermediates along the transition path of the protein as it is forced open during force ramp
experiments, in which the optically trapped beads are pulled apart to a large fixed extension
and brought back together at constant speed. [137]

The raw data is typically visualized with a force-extension curve, as shown in Fig. 5.2 a.
To transform from extension to protein contour length Lc, we need a model that links force
F and extension x. The Marko-Siggia model

βF (x)P =
1

4

(
1− x

L
+
F

K

)−2

− 1

4
+
x

L
− F

K
(5.1)

works well at describing such a relationship in the context of stretching a worm-like chain
such as DNA. [138] This model relies on two material fitting parameters: the persistence
length of the polymer P and its stretch modulus K. In the case that the polymer is highly
extended under large force, Eq. 5.1 can be inverted [139] to give

x

L
= xWLC(F ) = 1− 1

2
√
βFP

+
F

K
. (5.2)

When the protein is folded, the force extension curve reflects the stretching of bare DNA and
can be fit to Eq. 5.2, xWLC

folded = xWLC
DNA with parameters LDNA, PDNA and K. The unfolded

extension is that of the DNA and the protein combined

xunfolded(t) = LDNAx
WLC
DNA(PDNA, K) + Lpx

WLC
p (Pp), (5.3)
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Figure 5.1: (a) Optical tweezers set-up: a single molecule tethered to DNA handles is
trapped between two micro-scale beads held in place by laser light. The molecule is unfolded
by force as the lasers are separated and the beads pulled apart. (b) The synthetically designed
Ross protein. Atomic structure from the protein data base (top) and a visualization of the
Rossmann fold secondary structure (bottom). Beta strands are shown as triangles and alpha
helices as circles. We refer to secondary structures as numbers 1 (purple inner beta strand)
to 8 (yellow outer alpha helix).

where we take the Kp → ∞ limit as the protein is non-extensible. Once the five free
parameters LDNA, PDNA, K, Lp and Pp are fit, we have described the typical force extension
relationship for the folded and unfolded states, shown as blue and red dashed curves in Fig.
5.2 b. Along the transition path that connects the unfolded state to the folded state, the
contour length of the protein varies Lp → Lc(t) and can be solved for explicitly from Eq. 5.4
as

Lc(t) =
xunfolded(t)− LDNAxWLC

DNA(F )

xWLC
p (F )

. (5.4)

The contour length along the transition path corresponding to the rip in Fig. 5.2 a is shown
in Fig. 5.2 b and exhibits two well defined intermediate states, which we will call I1 and I2.
We separate the folded and unfolded portions of the force extension data by the temporal
location of the transition, found by applying a step-finding algorithm [140] to the (folded)
contour length x/xWLC(F ), where x and xWLC include the entire extension and force time-
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Figure 5.2: Analysis of a single molecule unfolding trajectory. (a) A force extension curve.
Fits to wormlike chains, DNA and combined DNA and protein, are shown as dashed blue
and red curves, respectively. (b) Contour length of the protein as a function of time along
the transition path from folded to unfolded states, from transforming force-extension data
with worm-like chain polymer theory.

series, respectively, and xWLC is evaluated with parameters P = 50nm and K = 900pN−1

typical of DNA. [141]
Each cycle of pulling and relaxing is analysed in this way to produce a contour length

transition path, which we histogram to arrive at the transition path probability p(Lc). [142,
143] The transition path probability for wild-type ROSS is shown in Fig. 5.3 (blue).

5.3 Dynamics of structure based protein models

The dynamics of proteins with known atomic structure can be studied on long timescales
with molecular dynamics of structure-based models (SBMs). The most simple course grained
SBMs work at the resolution of single amino acids, the alpha-carbons that comprise the
protein backbone, and posit that particles experience vibrations around equilibrium bonds
and angles, a torsional potential, attraction between native contacts which take the place
of a hydrogen bond network in the protein and steric repulsion between particles not in
native contact with one another. To simulate ROSS, we employ SMOG to generate the
course grained coordinates and native contacts from the all atom equilibrium configuration
of the protein.[144] We then feed the coordinates and contacts to the open source molecular
dynamics software SMBopenmm from which we can run customized simulations.[145] We
run over-damped Brownian dynamics

ẋi(t) = µFi[x(t), t] + ηi(t) (5.5)

⟨ηiα(t)ηjβ(t′)⟩ = 2µkBTδijδαβδ(t− t′) (5.6)
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Figure 5.3: Unfolding transition path distributions of wild-type Ross

Fi = −∇xi
V (x)− δα,1δi,1k(x11 + vt)− δα,1δi,Nk(xN1 − vt) (5.7)

to pull the protein apart from either end along the x-axis. As in the SMBopenmm docu-
mentation, the total potential is

V (x) =
∑
bonds

Vbond+
∑
angles

Vangle+
∑

torsions

Vtorsion+
∑

contacts

Vcontact+
∑

non−contacts

Vnon−contact, (5.8)

where

Vbond =
kb
2
(r − r0)2, (5.9)

Vangle =
ka
2
(θ − θ0)2, (5.10)

Vtorsion = kt(1− cos(ϕ− ϕ0))−
1

2
(1− cos(3(ϕ− ϕ0))), (5.11)

Vcontact = ϵc

(
5

(
σij
rij

)12

− 6

(
σij
rij

)10
)
, (5.12)
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Figure 5.4: Ross extension (a) and force (b) transition path distributions exhibit two
intermediate states, as observed in experiments. Typical conformations in each intermediate
shown as insets (a). Force extension traces inset in (b).

and

Vnon−contact = ϵnc

(
σnc
rij

)12

. (5.13)

Here r0 is the equilibrium bond distance between adjacent particles, θ0 is equilibrium angle
between three particles, ϕ0 is the equilibrium dihedral angle between 4 particles, and σij is
the equilibrium contact distance between particles i and j that are in contact in the native
state. The parameters r0, θ0 and ϕ0, as well as the contacts ij are set by the reference
native structure of the protein, in this case from the protein data base. The parameters
kb, ka and kt are the bond and angle stiffnesses, and ϵc and ϵnc the repulsive and attractive
energy scales that determine the interaction between particles not in native contact and those
that are in native contact, respectively. The parameters are set to predetermined values:
kb = 2× 104kJ/(mol×nm2), ka = 40kJ/(mol× rad2), kt = 1kJ/(mol), ϵc = ϵnc = 1kJ/mol,
σnc = 0.4nm. For our simulations, we set the temperature to T = 300k, take a time step
of ∆t = 0.5fs, a relatively weak trap spring constant k = 0.1kJ/(mol) and a fast pulling
speed v = 2×1012nm/s, so that the center of the traps are displaced by 60nm over 104 time
steps. Though v is extremely large, with such small trap spring constants the protein takes
∼ 108∆t = 100ns to rupture.

We perform constant speed force ramp experiments with harmonic traps, beginning each
trajectory in the equilibrium native state ensemble and ending once the protein has been
pulled apart to a predefined length, 40nm. We histogram these transition paths, as shown
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in Fig. 5.4, and confirm the presence of the two intermediates we found in experiments.
We examine the simulated trajectories and show representative snapshots of the observed

intermediates in Fig. 5.4. Specifically, we see that the first intermediate corresponds to
the tethered 8th secondary structure, the outside alpha helix shown in yellow in Fig. 5.1,
unfolding. We next observe that the second, shorter lived intermediate corresponds to the
7th and 6th secondary structures, an outside beta strand (brown) and the alpha helix next
to it (blue), unfolding. From here our simulations suggest that the rest of the secondary
structures comprising ROSS unfold cooperatively, all at once. This unfolding pathway seems
plausible considering that the tension on the protein is applied to the 1st and 8th secondary
structures. This would perhaps lead one to guess the 1st or 8th secondary structures would
unravel first, but since the 1st secondary structure is part of a beta sheet in the core of the
protein, it would have to be sheared to unfold first, which requires significantly more applied
force than ripping an outside alpha helix off the protein.

5.4 Secondary structure contact indicators

A proteins’ native contacts to large part determine the paths it takes both to collapse into
its native state and be pulled out of it by force. [146, 147, 148, 149] To quantitatively track
the movement of individual secondary structures within the protein, we compute a switching
function which reports on the percent contact for each amino acid pair in the protein. The
switching function

f(rij) =
1

1 + e−δ(rij−r∗)
(5.14)

f(rij) interpolates between f(rij) ≈ 1 when amino acid i is within a radius rij < 1nm from
amino acid j and f(rij) ≈ 0 when rij > 2.5nm for δ = 5nm−1 and r∗ = 1.7nm.

We then calculate what percent of contact each secondary structure σ1 is with every other
secondary structure σ2 as

%c(σ1, σ2) =

∑
i∈σ1

∑
j∈σ2 f(rij)∑

i∈σ1
∑

j∈σ2 1
. (5.15)

In Fig. 5.5 we show heat maps of Eq. 5.16 at the beginning (left) of a force ramp
trajectory when the protein is folded in its native structure, and towards the end of the force
ramp when most of the native contacts have been broken. It is our hope that by visualizing
how the secondary structural contacts change in time as the protein is unfolded at low enough
pulling speed, we will be able to detect groups of secondary structures that loose or maintain
contact together. These secondary structural groups would be our purported foldons.
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Figure 5.5: Secondary structural percent-contact maps at the beginning (left) and close to
the end (right) of a fast force ramp trajectory.

5.5 Work propagation during forced extension reveals

secondary structure dynamics

In order to visualise unfolding of different parts of Ross along a single dimensional coordinate,
we studied how work propagates through the alpha-carbon bonds connecting the back bone
of the protein under increasing tension. To compute the work transduced through the bonds,
for each bond i in the protein,

βẆi(t) =
fi(t) + fi(t+∆t)

2
(ri(t+∆t)− ri(t)) (5.16)

with distance ri, we measure how it extends or shortens over a single timestep as well as
the net force fi along the bond. We average trajectories Ẇi(t) as the protein is unfolded by
force to visualize how dissipation travels along the backbone in real time, with the expectation
that as a portion of the protein is unfolded and its constituent bonds stretched, the large
restoring forces should increase the power delivered through those bonds.

This is illustrated in Fig. 5.6, where we show typical snapshots of βẆi(t) (top) and the
protein conformation (bottom) as it is pulled open from left to right. The vertical dashed
lines in Fig. 5.6 mark the boundaries between the secondary structures of the protein. As
the protein begins to unfold (left) from the 8th helix, the corresponding dissipation along its
alpha carbon bonds begins to increase. As those 8th helix bonds are increasingly stretched
while the adjacent secondary structure remains primarily folded, the power through them
increases sharply (middle). At the same time (middle), at the extremely high loading rate
at which these force ramp experiments were performed, the 1st (beta strand) and second
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Figure 5.6: Top: dissipation profiles along the alpha-carbon backbone bonds as the protein
is pulled open quickly (left to right). Borders between secondary structures shown as black
dashed lines. Middle: representative snapshots of the protein at simulation times corre-
sponding to Top. Bottom: secondary structures are shaded in grey as they are unraveled.

(alpha helix) secondary structures are pried from the center of the protein. Finally, when
the protein is fully unfolded (right), the alpha-carbon dissipation profile exhibits a standing
wave pattern, where the peaks and troughs are marked by alternating secondary structures.
The alpha helices experience an increased dissipation as their bonds undergo higher restoring
forces.

We have shown that the dissipation transduced along the backbone of a protein as it is
pulled open can be leveraged as a coarse grained single-dimensional reporter of how each
secondary structure unfolds in real time. We expect this easy to compute observable will
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find future use in studying the mechanical unfolding process of more complex proteins.

5.6 Conclusion

We have studied single molecule trajectories from optical tweezing experiments and coarse-
grained molecular simulations to infer information about intermediate states on the path
a small protein takes as it folds and unfolds. We developed an experimental data analysis
pipeline and explored new computational coordinates that could be used to investigate the
temporal order of protein folding in simulations.
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Chapter 6

Minimum variance free energy
estimation

The work in this chapter was done in collaboration with Adrianne Zhong.

Given two potential energy landscapes VA(x) and VB(x), equilibrium probability distri-
butions are defined as ρA(x) = Z−1

A exp(−β VA(x)) and ρB(x) = Z−1
B exp(−β VB(x)) respec-

tively, with inverse temperature β = (kBT )
−1 and partition functions ZA =

∫
dx exp(−β VA(x))

and ZB =
∫
dx exp(−β VB(x)). The free energy difference ∆F = β−1 ln (ZA/ZB) encodes,

through detailed balance, how forward and backward transition rates are related in equilib-
rium.

6.1 Nonequilibrium free energy estimation

There are many nonequilibrium estimators for equilibrium free energy differences. One of
the simplest uses the microscopic fluctuation theorem[6]

PF (WF ) = PR(−WR)e
−β(W−∆F ) (6.1)

to find the work value at which the forward and backward work distributions overlap, but
poor overlap between distributions in the fast switching regime can prohibit its use. The
maximum likelihood estimator for the free energy difference ∆F = β−1 ln (ZA/ZB) uses the
Bennett acceptance ratio (BAR) and is given implicitly as the value ∆F that satisfies [150,
151, 152]

h(∆F ) =

〈
1

1 + eβ(W−∆F )

〉
F

−
〈

1

1 + eβ(W+∆F )

〉
R

= 0. (6.2)

where W is the work done over a stochastic trajectory transforming between VA(x) and
VB(x) in finite time. Here, the brackets denote ensemble averages from forward (F ) and
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reverse (R) measurements respectively, and we have assumed for simplicity an equal number
of forward and reverse samples nF = nR = ntot/2 are made, though it is straightforward to
extend to nF ̸= nR. In the forward process, trajectories are initialized with the equilibrium
distribution ρA(x) and the time-varying potential V F (x, t) begins at VA(x) at t = 0 and ends
at VB(x) at finite time t = tf ; while in the reverse they are initialized with ρB(x) and the
time-varying potential is the time-reversal of the forward process V R(x, t) = V F (x, tf − t).

Given finite samples, the average information per sample ι(∆F ) = I(∆F )/ntot is given
by

ι(∆F ) =
β2

4

[〈
1

1 + cosh(β(W −∆F ))

〉
F

+

〈
1

1 + cosh(β(W +∆F ))

〉
R

]
, (6.3)

and related to the estimator variance by σ2 = n−1
tot(ι

−1 − 4β−2) – protocols that give yield
ι correspond to low estimator variance σ2 and are more efficient, i.e. on average requiring
fewer samples to obtain a desired level of estimator error. [151]

In general the variance of the BAR estimator depends on the particular time-dependent
potential energy V F (x, t) that transforms from VA(x) and VB(x), which we denote as BAR
estimator protocol, with different protocols yielding different values of the information-per-
measurement in Eq. (6.3). In this paper, we study optimal protocols, i.e. those that maximize
ι and thus minimize σ2.

To make finite-time work measurements, we consider overdamped Langevin dynamics,
though it is possible to extend our work to the underdamped regime. We generate stochastic
trajectories x(t) for time t ∈ [0, tf ] by integrating the equations of motion

γẋ = −∇Vθ(x, t) +
√
2γkBTη(t)

x(0) ∼ ρ0(·)
(6.4)

where γ is the friction coefficient, ∇ denotes the spatial gradient, Vθ(x, t) is a time-varying
potential energy parameterized by some set of scalar parameters θ ∈ RM , and each compo-
nent of η(t) is an independent instance of delta-correlated white noise with unit variance;
and ρ0(·) is the probability distribution from which x(0) is drawn.

For an individual trajectory x(t) generated from the above dynamics, the work up to
time tf is given by

Wθ[x(t)] :=

∫ tf

0

(
∂Uθ
∂t

)
dt (6.5)

integrated along the trajectory x(t).

6.2 Protocol optimization

Forward protocols have trajectories initialized from the equilibrium distribution ρF0 (x) =
ρA(x) and the dynamics are under the forward protocol V F

θ (x, t) satisfy V F
θ (x, 0) = VA(x)
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and V F
θ (x, tf ) = VB(x). We consider affine control protocols

V F
θ (x, t) =


VA(x) for t = 0∑

n λ
n
θ (t)Vn(x) for t ∈ (0, tf )

VB(x) for t = tf ,

(6.6)

where {Vn(x), } is a set of control potentials, each with a control λnθ (t) that is parameterized
as a linear combination of orthogonal Legendre polynomials

λnθ (t) =
mmax∑
m=0

θnmPm

(
2t

tf
− 1

)
, (6.7)

with argument scaled to be in the range [−1, 1], though in theory any other temporal
basis functions may be used. To allow for jump discontinuities at the start and end of
the protocols commonly observed in optimal protocols, we do not impose the constraints
limt→0+ V

F
θ (x, t) = VA(x) and limt→t−f

V F
θ (x, t) = VB(x).

Reverse protocols on the other hand have trajectories initialized from ρR0 (x) = ρB(x),
given by the time-reversal of the forward protocol V R

θ (x, t) = V F
θ (x, tf−t) =

∑
n λ

n
θ (t)Vn(x).

There are infinitely many choices of the set of control potentials {Un(x), }, but for sim-
plicity we consider the two-dimensional case V F

θ (x, t) = λAθ (t)VA(x) + λBθ (t)VB(x). This
is a generalization of the linear interpolation Vλ(x) = (1 − λ)VA(x) + λVB(x) with single-
dimension control λ(t) commonly considered. Thus, altogether our set of parameters is

θ = {θnm, |n ∈ {A,B},m ∈ {0, 1, ...,mmax}} (6.8)

containing 2(mmax + 1) parameters in total.
We note that both the constraint equation that defines the BAR estimator Eq. (6.2) and

our objective function Eq. (6.3) are given in terms of expectations of path observables of the
form O(W,∆F ), formally written as

⟨O⟩ =
∫
D[X(t)]Pθ[X(t)]O(Wθ[x(t)],∆F ). (6.9)

where
∫
D[X(t)] a path integral, and Pθ[X(t)] is the path probability. The work functional

for a path Eq. (6.5) is dependent on the protocol explicitly through θ, and the probability
of observing a path x(t) from Eq. (6.4) is

Pθ[x(t)] ∝ p0(x(0)) exp(Uθ[x(t)]). (6.10)

Here, Uθ[x(t)] is the Onsager-Machlup action

Uθ[x(t)] = −
∫ tf

0

|γẋ(t′) +∇Vθ(x(t′), t′)|2

4γkBT
dt′. (6.11)
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Algorithm 2 Forward-Reverse time Malliavin weights for Free energy estimation

1: inputs Legendre polynomial coefficients for a general force λθ(x, t)
2: parameters learning rate l; total optimization steps I; trajectory length tf consisting

of J timesteps of duration ∆t each; number of trajectories N
3: initialize choose initial weights θ, define iteration variables i and j, loss-function gradi-

ents ∇⟨O(W,∆F )⟩θ
4: i← 0
5: repeat
6: Generate forward [X(t)] and reverse time [X̃(t)] trajectories with first-order Euler

propagation starting from uncorrelated steady-state configurations in state A and com-
pute a work values for each trajectory. Configurations, times, noises (with variance
2γkBT∆t) and Malliavin weights are denoted xj, tj,ηj, y

F
θ (tj) and yRθ (tj), respectively.

Time reversal of configurations, times and noises is denoted by a tilde.
7: j ← 0
8: ∇⟨O⟩θ ← 0
9: yFθ (t0)← 0
10: yRθ (tJ)← 0 For each trajectory
11: repeat
12: yRθ (t̃j+1)← yRθ (t̃j) + η̃j · ∇θλθ(x̃j, t̃j)/2kBT
13: yFθ (tj+1)← yFθ (tj) + ηj · ∇θλθ(xj, tj)/2kBT
14: j ← j + 1
15: until j = J
16: ∆F ← argmin∆F ⟨(1 + eβ(W−∆F ))−1⟩F − ⟨(1 + eβ(W+∆F ))−1⟩R
17: average yFθ and yRθ over N trajectories to get ȳFθ and ȳRθ
18: ∇⟨O⟩θ ← ⟨∇O⟩θ + ⟨O(yFθ − ȳFθ + yRθ − ȳRθ )⟩θ
19: note the above averages will include sums over forward and reverse trajectories
20: θ ← θ − l∇⟨O⟩θ
21: i← i+ 1
22: until i = I

The partial derivative of expectations in Eq. (6.9) with respect to a parameter θµ is

∂⟨O⟩
∂θµ

=

〈
∂O

∂W

∂Wθ

∂θµ
+O

∂ lnPθ
∂θµ

〉
, (6.12)

6.3 Forward-Reverse time Algorithm

The path probability for observable expectations (6.9) are protocol-dependent, i.e. θ-dependent,
the BAR estimator Eq. (6.2) and information-per-sample Eq. (6.3) are functions of both the
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estimated free energy and the protocol parameters h(∆F, θ) and ι(∆F, θ).
For each stochastic trajectory x(t) generated through Eq. (6.4) with the forward/reverse

protocol, we keep track of additional dynamical variables, Malliavin weights, q
F/R
µ (t) with

µ ∈ {(n,m)}.
Keeping track of qµ(t) incurs a trivial amount of additional cost in memory and com-

putation time: the most expensive part of simulating Langevin dynamics Eq. (6.4) for a
multi-dimensional system is the evaluation of the energy and gradient forces, Vn(x) and
−∇Vn(x) for each control potential n. In total, 2M additional variables are needed. As
illustrated in Algorithm 2, we first calculate Malliavin weights for all trajectories, forward
and reverse. Next we calculate the BAR estimate of the free energy with work values for all
trajectories and use this to calculate the observable O(W,∆F ) and its trajectory gradients
∇⟨O⟩θ, and propogate the parameters forward iteration by iteration.

6.4 Biased symmetric double well

We consider a protocol that switches the bias on a symmetric double well with barrier height
∆V from one side to another, as shown in Fig. 6.1 a. The ground truth free energy difference
in this system is ∆F = 0 by the underlying symmetry of the system. The equation of motion
is

γẋ = −∂xV (x, t) +
√
2γkBTη (6.13)

with white noise ⟨η⟩ = 0, ⟨η(t)η(t′)⟩ = δ(t− t′) and potential

V (x, t) = ∆V/4(x− xA)2(x− xB)2 −∆V λ(t)x, λA(0) = −λB(tf ) = −1, (6.14)

where we fix β∆V = 16 and xB = −xA = β = γ = D = 1. We optimize the control
force λ(t) over 100 iterations of gradient descent each consisting of 2000 forward trajec-
tories and 2000 reverse time trajectories, using a basis set of 15 Legendre polynomials to
represent λ(t). Taking time in units of τ = x2A/D = 1 we study a switching time tf = 5τ
with time step ∆t = τ/100. We use an Euler-Maruyama discretization of the equations
of motion. Initial conditions for forward and backward trajectories were sampled from
long equilibrium simulations under potentials VA = ∆V/4(x − xA)

2(x − xB)
2 − ∆V x and

VB = ∆V/4(x − xA)2(x − xB)2 + ∆V x. At each iteration we compute the BAR estimator
free energy difference ∆F by minimizing h(∆F ) over our current and previous work samples
with the SciPy minimize function[108], and the BAR variance Eq. 6.3 is calculated with
work samples and ∆F . We use a learning rate of 0.1 to propagate the control parameter
gradients from iteration to iteration. We initialize our coefficients to a linear ramp 2∗t/tf−1
that interpolates between λA(0) = −1 and λB(tf ) = 1. The details of how we update the
Malliavin weights with forward and backward trajectory data is provided in Alg. 2.

The optimized control force λ(t) is shown in Fig. 6.1; it is approximately symmetric in
time about the midpoint and qualitatively agrees with the minimum work protocol of Sivak
and Crooks, with a plateau bridging two linearly increasing portions.[153, 154] On iteration
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0, before the optimization, the distributions of forward and reverse time work measurements
in Fig. 6.1 c have little overlap at the value of the free energy ∆F = 0. After 100 iterations
of optimization however, after the BAR variance has been sufficiently minimized, the work
distributions in Fig. 6.1 d have been transformed to exhibit significant overlap at W = 0.
In Fig. 6.1 e we show the BAR variance per sample, both cumulatively using all previous
trajectories in red and per iteration using only trajectories generated with the current control
force. We use the same color scheme in Fig. 6.1 to illustrate how the free energy estimate
becomes better as training progresses, both cumulatively and, although more noisily, per
iteration.

6.5 Conclusion

Whether by Malliavin weights, neural networks or some other stochastic optimization pro-
tocol, we expect BAR variance minimization, and work minimization, to be of use in esti-
mating free energy differences in noisy physical systems, such as the free energy differences
between the bound and unbound states of enzymes and substrates, and drug targets and
small molecules, as well as the folded and unfolded states of proteins. When the control
parameter is an order parameter, such as is the case in the mechanical extension of proteins,
free energy profiles (potentials of mean force) can be constructed with our method.
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Figure 6.1: (a) A biased double well A, red, is transformed to B, blue, using a finite time
control protocol with net free energy difference ∆F = 0. (b) The optimized control protocol
linearly increases until the double well is symmetric, pauses, and linearly increases again. (c,
d) Work distributions before and after optimization. Before (c) there is little overlap at the
free energy value; after optimization (d) the overlap is significant. (e) Cumulative and per
iteration BAR variance per sample across iterations. (f) Cumulative and per iteration free
energy estimate across iterations.
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