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ABSTRACT 

This research concerns the problem of specifying the 
information relationships and their transformations 
included, explicitly and implicitly, in any problem-solving 
procedure. Our view of data re pre sen ta ti on is that problem 
representations (in a problem domain) are mapped to a 
machine representation (in an implementation domain) through 
various modelling representations (in modelling domains) 
Modelling domain representations make easier the discovery 
of acceptable implementation representations. ~e propose to 
focus on the study of mappings of data representations and 
their transformations from the modelling to implemen ta ti on 
domains. Specifically, our goal is to answer four 
questions: 

1) what are appropriate formalisms for describing 
modelling domains and implenentation domains, 

2) what knowledge exists of each of these domains and 
·how can this knowledge be represented in our 
formalisms, 

3) how do we map specific representations from one 
domain to the other, and 

4) how can we test the completeness of our formalisms 
and mappin~ process. 

In answering the fourth question, we propose to construct an 
interactive system for generating alternative implementation 
domain representations from a modelling domain 
representation and selecting that which comes closest to the 
user's desired program performance criteria in an actual 
programming context. 



INTRODUCTION AND OVERVIEW 

Purpose of this Research 

The research described in this proposal concerns 

representing a problem domain for computer solution. The 

general problem is that of specifying to a machine a 

procedure to solve a problem, i.e. the programming problem. 

The specific part of this problem of interest here is that 

of representing the information relationships (data) and 

their transforrna tions which are present, explicitly and 

implicitly, in the problem specification and in the solution 

algorithm. 

The programming problem, and particularly the 

subproblem of data representation, will not be solved in a 

short time by any single research group. Rather it requires 

a continual effort by a number of people, each contributing 

to and building upon other's results. Accordingly, we wish 

to choose a focus for our research which will have leverage 

in the sense that its findings can be used by others to 

advance the state of the art of programming. This focus is 

aimed at deepening our understanding of data 

representations. Ultimately, we wish to understand data 

representations with sufficient clarity and precision that, 

for a sienificant range of prograr.iming problems, we can 

describe the choices of data re pre sen ta tions ·available for 
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their solution and select those re pre sen ta tions that yield 

the best quantitative performance properties for a given 

intended application .. 

Our View of Data Representation 

E~Q_Q.lem l2_Qms_.in~ 

·Programming problems arise naturally in a diverse 

collection of problem domains. Some problem domains, such 

as orbital mechanics required for space shots, are 

unaersTooa-witffsufficien t---scientific. precision that the 

formal theories required for writing programs are abundant. 

By contrast, some other problem domains, such as medical 

diagnosis, are not precisely understood in sufficient detail 

to enable us to write computer programs that we could 

substitute trustfully for specialists. Between these two 

extremes lie a spectrum of problem domains with varying 

degrees of formalization and theory. 

ImQ.lem~nt.e_t.iQn 12_Qme_irr§. 

Given that problem solution procedures must ultimately 

be reduced to data and instructions executable by computers, 

the implementation medium chosen provides a domain into 

which solutions must eventually be reduced. Implementation 

structures may arise at the machine level or at the 

programming language level, depending on the choice of 

'" 
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implementation medium. At whatever level chosen, 

implementation structures constitute the ultimate target of 

reductive transformations which represent algorithms as 

executable programs. 

Often in the process of devising solutions to 

programming problems posed in problem domain terms, use is 

made of intermediate structures. Such intermediate 

structures serve as media capable of expressing algorithms, 

but typically are only indirectly executable by a computer. 

We call such intermediary domains ''modelling domains." 

For example, to solve the probleD of charging for a 

multi-site teletype network, with teletypes placed in 

distinct cities, a telephone company might use the concept 

of a "minimal spanning tree." A computer program that 

computes the charges might represent such a minimal spanning 

tree internally using "nodes" and "pointers." In this case, , 

0 teletypes" and "lines" are concepts at the problem domain 

level, "minimal spanning tree" is a concept at the modelling 

domain level, and "nodes'' and ''pointers" are concepts at the 

implementation domain level. 

Thus 1 the programr.iing process involves a cascade of 

reductions from problem domain concepts into implementation 

structures perhaps utilizing one or more layers of modelling 
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structures. 

Problem Modelling Implementation 
--> --> 

Domains Domains Domains 

Each time we map a structure at one of these levels 

into a structure at a lower level, we invoke the notion of a 

"representation.'' A representation is a use of a set of 

.objects and processes at one level to imitate relevant 
-"----~-~ i 

behaviors of objects and processes at a higher level. The 
I 

I notion of representation is nicely captured through the 

notions of "interpretations" and "models" in contemporary 

mathematical logic [ 18 J . In this research we are 

particularly interested in the representations of problem 

data. 

Some Specific Questions 

We propose to focus our efforts on the study of 

mappings of representations from modelling domains to 

implementation domains. We see here a number of avenues 

that are r~pe for ex plora ti on and likely to yield 

significant progress. 

More specifically, the goals of our proposed research 

are to find answers to the following questions: 
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* What are appropriate formalisms for describing 
modelling domains and implementation domains? 

* What knowledge 
how can this 
formalisms? 

exists of each of these domains and 
knowledge be represented in our 

* How do we map specific representations from one 
domain to the other? 

* How can we test the completeness of our formalisms 
and mapping process? 

Summary of Proposed Research 

We have already made progress on the first of the above 

We are pursuing an approach to 

describing modelling domains which consists of a language 

for expressing structural constraints and required 

relationships between elements in an abstract structure 

together with a set of prirni ti ve opera tors for expressing 

\" transformations of these structures [ 22]. The work on this 

"modelling structure" formalism has been completed. As 

described below, we must now assess its usefulness in 

different applications. 

We propose to develop a parallel formalism for 

describing implementation doQain representations. 

With regard to the second of the above questions, .!itrn.t. 
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domai_ns, we have begun to construct a taxonomy of modelling 

structures using our Qodelling formalism [22]. We are able 

to characterize such:diverse modelling structures as lists, 

graphs, trees, sets and strings in terns of distinct 

characteristic features described by the formalism. This 

will permit us to catalog and index a wide range of 

structures in the ~odelling domain. 

A goal of the proposed research is to build a catalog 

------~-f-----V-ar-ious.-~e pr-e-Se n ta tions---bo th~-at-the--mod ell i ng---l-eve-l~nd ----

,, 

at the implementation level. 

' For each structure described at the abstract 

(modelling) level, there are typically several reasonable 

implementation structures that can be used to represent them 

accurately at a more concrete (implementation) level. For 

~ example, Schwartz has described various ways of implementing 

sets [23]. Numerous papers in the literature describe 

alternative methods for representing lists [13, 16, 29]; 

and, Knuth characterizes various types of trees, such as 

free trees, oriented trees, ordered trees, binary trees and 

extended binary trees [ 15]. At the very least, the 

descriptive adequacy of our formalism must be measured 

against these examples. Furthermore, we must demonstrate 

how our formalisms can capture and describe significant 

differences at both the modelling and implementation levels. ~) ,_ 
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Given success in devising an adequate descriptive 

formal ism, we must then at tempt to answer the third of the 

At the very least we can collate 

the already considerable body of knowledge of representation 

techniques into a relational structure. This cross-index or 

catalog would relate specific modelling structures to a 

range _of possible implementation structures. But this alone 

is not enough. Because we can not hope to catalog all 
~~~~~~~~~~~--~~~~~~~ 

possible structures at either the modelling or the 

implementation level, (and indeed such a goal would be 

unreasonable), we must also devise an algorithm for 

generating alternative implementation structures for a given 

modelling structure. And because the choice among such 

alternatives must be made rationally, we must be able to 

evaluate alternatives with respect to their requirements for 

space and time. 

This leads to the last question listed above, Q§Jl w_~ 

test our achieved understanding, we propose to develop a 

system which, in concert with the user, generates 

alternative implementation level representations and selects 

a representation meeting the user's desired program 

performance criteria. Our work on this system aims to 
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illustrate two points: first, the interactive selection and 

synthe$is of implementation level representations, involving 

a dialog 

capability 

with knowledgeable 

of feeding back to 

users, 

the user 

and second, the 

measured program 

performance properties for his use in refining the choice of 

modelling and implementation structures. 

More detailed descriptions of these questions and of 

our proposed approach are given in the technical discussion 

· s1:fcti on--bel ow-::----··---·---------·------~-------------~--·------- --- -- -

Expected Significance of the Proposed Research 

Today, and for the immediate future, hardware costs 

seem to be declining rapidly (by a factor of 10 every 5. 7 

years according to Roberts [21]), whereas software costs are 

an increasingly dominant fraction of the cost of new 

systems. Currently, the software/hardware cost ratios for 

many new systems run 

that in the absence 

from 3:1 to 7:1, and Boehm estimates 

of remedial measures, by 1985 these 

ratios are likely to approach 9:1 [3]. In fact, every year 

since 1966 the Federal Government has spent more on software 

than on hardware [20], and software production is at least a 

10 billion dollar a year ind us try (over one percent of the 

GNP). Thus, the evolution of an effective science of 

programming has important economic consequences. 
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It is widely recognized that we need to find ir.iproved 

techniques for producing and maintaining reliable soft ware, 

especially since software requirements seem to become 

progressively more am bi tio us and since software production 

is, at present, highly labor intensive. While short-term 

improvements in software productivity might well be brought 

about by better management techniques [3], software 

production would still be labor-intensive. In the long run, 

significant improvements in programr.Jer prod ucti vi ty - }fill 

rest upon making the computer a more talented partner in the 

process of program production. 

An important ingredient in achieving this partnership 

is to develop ways of programming the computer to fill in 

most low-level programming detail by itself, allowing much 

less detailed specifications of procedures than are required 

at present. If the description of programs is made more 

compact by the omission of detail that either programmers or 

.machines can fill in, then programming tasks of all sorts 

are made easier. This is partly because there is less 

low-level mechanical detail to obstruct understanding and 

creation .in such tasks as composing, reading, editing, 

maintaining and debugging programs. 

The research we are 

low-level representation 

proposing is 

details to 

- 9 -
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autorna ti call y or in terac ti vel y with much less de tail than 

possible at present. Thus, it should be possible for 

programmers to say less to specify a particular product, and 

so, for a given amount of effort, to achieve more. 

I 

------ -- --- -·------~------------- ··-~--j 
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TECHNICAL DISCUSSION 

In this section , we discuss five specific problem areas 

in more detail, including related results to date, other 

work in progress, our goals, and steps to achieve these 

goals. The first two areas are the modelling structures and 

implementation structures formalisms as approaches to 

describing modelling and implementation domains. The 

taxonomy/catalog as a representation of knowledge about 

modelling and implementation domains is the third. The 

fourth problem area is the mapping of modelling structures 

to a range of posstble implementation structures. The fifth 

is the development of an interactive system to generate 

implementation structures from specified modelling 

structures in an actual programming context. 

Formalizing Modelling Domain Knowledge 

The proposed approach to formalizing modelling domain 

knowledge is to describe a set of modelling structures and 

operations for transforming such structures one into 

' .. ~ }i ' · another. We use the term modelling structure to describe a 

structure which models the salient aspects of the 

information from a problem domain used by an algorithm to 

solve a problem. Because it is a modelling level concept, a 

modelling structure is independent of any commitments to the 
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implementation of the structure. In this approach we 

describe a class of abstract objects and abstract operations 

having a range of possible underlying concrete 

representations. The formalism provides a convenient 

mechanism for selecting subsets of the set of modelling 

structures, the desired abstract objects, and a small set of 

primitive opera tors for defining the desired abstract 

operations. In a recent report (22] (attached as an 

including a rigorous definition of the primitive operators. 

While a first version of the formalism is complete from the 

standpoint of the research being proposed here, experience 

in using it will undoubtedly suggest improvements. In the 

following section we informally summarize this descriptive 

framework. 

Modelling Structures Formalism 

A modelling structure is either a primitive object or a 

structured object. A primitive object is an instance of a 

data type provided as primitive by the problem domain. 

Thus, in one domain square arrays may be primitive; whereas, 

in another domain they are structured objects. Conventional 

programming languages provide primitive data types such as 

integers, floating points, booleans, and characters. 

A modelling structure which is a structured object is 
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composed of elements and relations among the elements. The 

elements of a modelling structure are instances of modelling 

structures. Thus, structured objects may be composed of 

primitive and structured objects. 

There are six properties used to describe modelling 

structures. These are: 

1 replication of element values in a structure, 

2 ordering of elements in a structure, 

3 structural relations between elements, 
------ -------- --·-·-------- --

4 distinguished elements in a structure, 

5 referencing of elements in a structure, and 

6 operations applied to a structure and its elements. 

A structured object may allow replication of elements 

and may be ordered (an order predicate defines an ordering 

between the elements). 

Relations between elements describe how the structure 

is put together. Associated with each relation is a set of 

attributes, each attribute representing a piece of 

information associated with the rel a ti on between two 

specific elements in a structure. The number of relations 

defined on a structure and the number of attributes for a 

particular value of a given relation are not limited. For 

example, to model a road map composed of cities and roads 

between cities, we might define a modelling structure in 
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which the elements represent the cities and a relation, 

ROAD, represents the roads. Associated with each road would 

be several attributes describing that particular road, such 

as the distance between the cities, the highway number or 

numbers, and the speed limit. This data is represented by 

attributes associated with the ROAD relation. 

Associated with each structured object are two means of 

referencing elements in the structure, external accesses and 

distinguished elements. External accesses are references tq ---------~ 

particular elements in a structure. 

are element references based on the 

Distinguished elements 

relations defined for 

the structure. They are bound to elements by way of the 

structure and thus may change as the structure changes. In 

contrast, regardless of how a structure changes, an external 

access references the same element as long as it remains in 

the structure unless explicitly changed. Distinguished 

elements are useful for representing such structural conepts 

as the head of a list. External accesses are useful for 

moving through a structure from element to element along 

relation links. 

The primitive opera tors for transforming one instance 

of a modelling structure into another include: insert an 

object into a structure (!_11ser:.t), 

str·ucture (.9..Ell<it.El), replace one 

- 1'-1 -

delete an object from a 

object in a structure by 



another (repl£Q~), create an external access to an object in 

a structure (.Qr~£1~~cc~§.§.), relate two objects by a given 

relation (rel£te, includes insert if either object is not a 

member of the structure) , unrela te objects within a 

structure (Qn£~la1~), return one or all objects related to a 

particular object by a specified relation (£~1~ted), read an 

attribute of a relation (read~t:1£), and store an attribute 

of a relation (st~reat.t.r). 

To illustrate this ·formalism, we will define a set, a 
- ----- ------- ---~-----

1-way list, and a stack. 

A set does not allow replication nor may an ordering be 

defined on its elements (otherwise it would be an ordered 

set). There are ·no relations or distinguished elements. 

Elements in the structure are referenced by quantification 

(essentially universal, "for all " and existential, ... ' 
"there exists ... , " quantifiers). The operations allowed on 

A 1-way list is different from a set in that 

replication is allowed, there is a defined relation, and two 

distinguished elements. The rel a ti on is sue, which is 1-1 , 

has a single element not in the domain of sue, has a single 

element not in the range of sue, and is connected (all 

elements may be reached by sue or its implicit inverse). 

The .. two distingished elements are an element . not in the 
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range of sue, "head," and an element not in the domain of 

sue, "tail." Furthermore, the forms of referencing and 

operations all owed are different than for a set. Elem en ts 

are referenced by external accesses and distinguished 

elements rather than by quantification. The operations 

allowed are re£Q., delet~, reQl_ace, g_r_eat_~acc~§.§., rel at~, and 

. related. 

The third example is a stack. A stack is identical to 

a.---r·.;:wa.y-ri·s·t--exc-ept:--Tor· - -the--way- -elements - are referenced 

(limited to the distinguished element "head") and the 

permitted operations (constrained 

limited form of r.glate). These 

to re£Q, delete, and a 

examples show how this 

formalism can be used to provide a taxonomical framework for 

modelling structures. 

There has been a significant amount of work on data 

representation in the last few years. The work by D'Imperio 

[ 7, 8], Kapps [ 14], Mealy [ 17] and Tur ski [ 27] is directed 

towards a theory of data structures emphasizing the meaning 

of data and the fundamentals of structures and .computation. 

Many of the concepts represented in these models are used in 

our modelling structures formalism. Bobrow and Raphael [2], 

Earley [10], Shneiderman and Scheuermann [2-5], Taft and 

Standish [26], van Wijngaarden [31], Wegbreit [30], and 

Wirth [33] are representative of the extensive work on data 
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definitional facilities and structure operations in 

programming languages·. 

Formalizing Implementation Domain Knowledge 

A formalism for expressing possible irnplemen ta tions of 

modelling level representations must include the notions of 

indivisible cells (capable of representing primitive values) 

and of groupings of cells into structures. Such structures 

.may be implemented using contiguous groupings of~9e~l~ 

(referenced by a conventional indexing r.iechanism) , cells 

which point explicitly to other cells or groups of cells 

(referenced by a conventional indirect mechanism), and cells 

whose· value serves as an argument to a structure-defining 

function (referenced by a hashing mechanism). Because at 

the machine level these cells are not unconnected entities, 

they must also be treated as belonging to an ordered memory. 

There are two types of implementation domain knowledge 

we need to represent: 1 ) alternative implementation 

structures for particular modelling structures, and 2) 

methods of or~anizing several implementation structures into 

a coherent whole (e.g. a region of ordered memory). 

As an example of the first type, a stack may be 

represented either using contiguous cells to represent 

elements .in the stack and an index to the top· of the stack, 

or using non-contiguous groups of two cells to represent 
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elements in the stack, each group including the stack 

element and a pointer, to the group representing the previous 

element in the stack, together with a pointer to the group 

representing the top element in the stack. Examples of 

knowledge about representing structures in a region of 

memory are described in Knuth [15]. 

The formalism for representing alternative 

implementations is relatively straight forward. In fact, 

_____ __,,,c~onventiona-r---------aata--ci-e-fi-ni~"iornd---fac±lities -- -in extensi-ble 

programming languages, such as PPL or ECL, may be adequa.te. 

An adequate descriptive formalism for knowledge about 

organizing implementation structures into coherent wholes i~ 

not so obvious. In this research we plan to collect 

examples of such knowledge and incorporate it into a system 

for generating implementation structures from modelling 

structures (see below). Whether this knowledge is to be 

incorporated as "expert" procedures or whether it can be 

distilled into a general process operating on a detailed 

knowledge base is an open question at present. 

Representing Modelling and Implementation Domain Knowledge 

One phase of this research program is to collect and 

organize the diverse body of knowledge on modelling and 

implementation structures available in the computer science 

1 i tera ture. This knowledge is a part of the information 
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base which the proposed implemention structure generation 

system uses. The formalism developed for modelling 

structures and that, to be developed for implementation 

structures will serve as the basis for organizing this 

knowledge. A start on describing modelling structures in 

this formalism has been made [22]. 

We do not believe that this taxonomy/catalog will be 

precise, in the sense th_a t all users will agree with its 

descriptions and classifications. (Note the current variety 

of definitions of ·such concepts as "stack" or "list".) 

Rather, we anticipate a situation similar to that in biology 

where the overall focus and major divisions of plants and 

animals are agreed on, but particular plants or animals are 

classified in different ways by different people. As in 

biology, the importance is not the particular 

taxonomy/catalog, the importance is how well we can use it. 

Mapping Modelling Level to Irnplemen ta ti on Level 
Representations 

A major problem area is that of describing a number of 

possible implementation structures for a given modelling 

structure. This can be viewed as mapping modelling domain 

knowledge to implementation domain knowledge. For those 

modelling structures that are classified in the 

taxonomy I ca ta log, specific al terna ti ve implemen ta ti on level 
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representations as described in the implementation 

structures formalism can be associated in the catalog. For 

those modelling structures not so classified, an alternative 

implementation structure generator is needed. Space and 

processing time costs (probably relative figures of merit) 

associated with different implementation structures can also 

be stored in the catalog or generated for use in alternative 

evaluation, as discussed in the following section. 

Results to date on this problem of re la ting modelling 

to implemen ta ti on domain knowledge include the weal th of 

alternative implementation structures used in different 

programming language trans la tors [ 11, 12, 27, 32] and which 

have appeared in the literature [4, 6, 15, 19]. Recent work 

by Shneiderman [ 24] can possibly be adapted as the 

alternative implementation structure generator. 

Generating and Selecting Implementation Level 
Representations for Modelling Level Representations 

To test the representational approach described above, 

we propose to construct a system which, operating in concert 

with the user, can produce an implemen ta ti on level 

re pre sen ta ti on for a given program which meets the desired 

performance criteria. If successful, such a system could 

improve both the programmer's productivity and the quality 

of programs produced. 
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Diffi_cuJ_ties k!ilh Cur:r~Jlt. Er:actig_~ 

Currently programs are written partly at the modelling 

level (the program control structure and some operations) 

and partly at the implementation level (the data structures 

and related operations). This occurs because the formalisms 

available for expressing information relationships and data 

in programming languages actually represent specific 

implementation structures. Therefore a programmer must 

----s-elect impfemen ta tion -structures at the time he produces a 

program level representation. 

Forcing the programmer to choose an implementation 

structure at this stage of the programming process causes 

several problems. The first problem has to do with the 

clarity of the program. Most modelling structures have 

several natural underlying implementation structures. These 

"natural" implementations are often easy to understand. 

However, the mapping of a modelling structure by a 

particular language translator may result in an inefficient 

implementation. In fact, the natural implementation 

structure might not even be supported by the language. 

Consequently, the modelling structure cannot be described 

directly in the language, but rather must be "twisted," 

possibly obscuring the intent of the program. Because 

model ling structures, and hence implemen ta tio.n structures, 
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appear partly in the data and partly in the program, a 

change in implementation structure may require substantial 

change in the program. 

A second problem concerns the time at which 

implementation structures are chosen. Since the choice is 

usually made before any coding of the program, the 

programmer may not clearly understand all the implications 

of the different possibilities and he may overlook soL1e 

important detail. Also at this stage the programmer is • 

often interested only in getting a correct representation. 

Thus, he may ignore or postpone decisions concerned with 

efficiency. 

Another problem concerns debugging and proving the 

program correct. If a modelling structure must be 

represented in terms of lower level primitives, then the 

modelling structures and operations on them must be 

reprogrammed and proved correct with each usage. It is true 

that this difficulty can be somewhat alleviated through the 

use of libraries of common routines; however, it is often 

the case that the library routines are not widely known, are 

not well documented, or do not quite provide the facility 

that the programmer desires. 

Finally, programmers often do not spend the time and 

effort necessary to carry out analyses of different 

- 22 -



\ 
•. 

implementation structures. Frequently, it is not until 

after the program is running and fails to meet efficiency 

criteria that an analysis is conducted. 

late. 

~QIDillit.~r. 
~t.r.!!Q. t.!! r. ~§_ 

This is much too 

Qf 

Our proposal to solve some of these problems is to 

provide representation of information relationships and data 

at ·the modelling structure level in a program, and then to 

use the computer to assist in searching for acceptable 

implementation structure representations. This solution 

embodies the philosophy that programmers should write their 

procedures in a machine independent formalism and, where 

possible, should not explicitly represent low level 

implementation decisions. Under this approach, the problem, 

not the permissible language structures, detercines the 

appropriate modelling structures for a program. 

The second part of this solution, using the computer to 

assist in selecting efficient implementation structures, 

involves both ill-defined objects (the different problem 

solution procedure representations at the modelling and 

implementation levels) and an ill-defined objective function 

for selecting ar.:iong the objects. When faced with this type 

of ill-structured problem there are two possible approaches. 
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The first is to define constrain ts on the objects and the 

objective function so that the problem is no longer 

ill-defined. The second approach is to define some partial 

constraints and allow the user to interact with the systen 

to guide it in the search for a solution. The first 

approach is appropriate when a reasonable set of constraints 

can be established which allows the syster1 to solve a 

meaningful subset of the overall problem. The second 

approach is appropriate when a reasonable set of 

constraints, or formalism, cannot be found. Because of the 

difficulty of defining acceptable constraints 1 we feel a 

solution along the lines of the se~ond approach has the 

greater po ten ti al~ The approach is a mixture of a 

man-machine interaction which allows cooperation bet ween the 

two parties in order to improve the problem solving process. 

A system for generating and selecting among alternative 

implementation structures is yet another tool in a 

programming environment. 

includes a 

translators, 

wide variety 

debugging 

A good programming environment 

of fa c i 1 it i es , n a rn e 1 y , editors, 

tools, documentation aids and 

measurement facilities for the 

the 

development, testing, and 

proposed system, programs maintenance of programs. 

are, written and debugged 

using modelling structure 

In 

in an 

level 

- _?ll . 

interpretive environment, 

representations. After a 



program has been debugged, it can be compiled to produce a 

more efficient implementation. The (temporary) 

implementation structures used in the interpretive mode for 

the different modelling structures are not particularly 

important. At this stage the user is concerned with 

developing a correct program and thus is more interested in 

minimizing elapsed time for the trans la ti on than in 

efficiency of the execution. The result of this program 

writing phase is a complete prograr.i and r.iodelling domain 

re pre sen ta ti on for the problem solution. The second phase, 

or compilation, takes this representation as input and 

produces an implementation domain representation for the 

problem solution based on the efficiency criteria given by 

the user. The two phases are called, respectively, the 

program writing and implementation-selection phases. 

In the program writing phase the 

user enters statenents to the system. The statements can be 

program statements, direct commands interrogating or 

changing the system environment, or a request to enter the 

implementation-selection phase. Statements describing the 

properties of different modelling structures are direct 

commands which change the environment of the system. 

In formation .is maintained on the mod ell ing structures used 

by the program as statements are entered. The system 
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anticipates 

structure 

structures. 

structure and 

definitions in 

tries to 

terms 

complete the modelling 

of known (cataloged) 

It also tests the consistency of structure 

definitions and accessing. Thus the user may specify his 

structure definitions before writing his program, as he 

writes it, or when he has finished writing it. Definitions 

can be examined and changed at any time. Examples of 

properties of a structure being defined that the system 

tries to fill in are whether the structure is ordered, the 

types of objects ,in the structure, and the maximum size of 

the structure. 

The modelling structures formalism, as described above, 

allows users to define a structure either as some known 

modelling structure maintained in a catalog or to create a 

structure by defining the properties it must have. Examples 

of modelling structures in the catalog are arrays, stacks, 

queues, and lists. Properties by which a structure may be 

defined are the size of the structure, the manner in which 

it is referenced, ordering of 

objects in the structure, and 

the structure, types 

whether elements in 

of 

the 

structure may be repeated. Those users who know which 

specific modelling structure they want may specify it by 

name. Those users who are not aware of the full catalog of 

specific modelling structures, or who do not know exactly 

- 26 -



which modelling structure they want, may define the 

properties of their modelling structure for the system. In 

either case the ~ystem is continually checking the 

consistency 

structures. 

of and gathering 

The 

Gener~ting anQ Seleciing 

implementation-selection 

information about the 

Im2lem~n~ation S~~uctyLes. 

phase generates the 

implementation structure representation of the program. The 

·system generates a set of alternative implementation 

structures for each distinct instance of a modelling 

structure used in the program. Then an evaluation algorithm 

selects one implementation structure for each modelling 

structure and the program is compiled using these 

implementation structures and . appropriate accessing 

routines. 

Al terna ti ve implemen ta ti on structures are generated by 

first matching each modelling structure used in the program 

with those defined in the ca ta log of known structures. The 

ca ta log includes a complete definition for each modelling 

structure and a set of alternative implementations. For 

those modelling structures which do not match a structure in 

the ca ta log, a general al terna ti ve genera ti on algorithm is 

used. The catalog of modelling structures is used to embody 

detailed knowledge about possible implementations, since 
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knowing what a specific modelling structure is may result in 

a more efficient implementation structure than would be 

provided by the general alternative generator. Thus a major 

component in the sys tern is the algorithm for deducing what 

modelling structure is being used. This matching is trivial 

when a modelling structure used in a program is named, for 

example stack, list, array, set or queue. The dif fie ult 

case is when the structure is described by properties that 

must hold for the structure (e.g. relationships between 

elements in the structure and how the structure and its 

elernen ts are referenced) and by the manner in which the 

structure is operated upon. 

The ,alternative selection component gathers inforrJation 

needed to analyze the possible implementation sets. (An 

11 implemen ta ti on set 11 is a set containing a choice of one 

implementation 

Sources for 

structure for 

this information 

each 

are 

modelling structure.) 

modelling structure 

definitions and dee.Iara tions, static flow analysis of the 

program, sample runs and interactive interrogation of the 

user. The ex pee ted cos ts, both in space and time, for each 

al terna ti ve implemen ta ti on set is calculated and that which 

comes closest to meeting the desired efficiency is selected. 

If the estimated cost is not acceptable to the user, a set 

of heuristics is used for suggesting changes in the 
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modelling structure definitions which might lead to less 

costly implementations. 

---- - -- - Often the user may not have approximate values for some 

inputs to the estimated cost function. In these cases the 

user may choose to have the sys tern provide data gathering 

routines in some test runs to allow the user to perform ah 

experiment to estimate the parameters. The system inserts 

the appropriate data gathering routines, and the user then 

-executes the program supplying sample test data. 

of the types of data which might be gathered 

Examples 

are the 

frequencies of insertions, deletions, searches and changes 

to a structure. 

Othec Approaches 

There have been other proposals to build this type of 

system, but to our knowledge none has been completed [ 1, 5, 

9, 10]. Our approach to this goal factors a large 

ill-structured problem into several smaller, more structured 

problems which are more amenable to formal ism and analysis. 

At the same time, while we intend to pursue the introduction 

of formalism and analysis as vigorously as possible, we do 

so in the context of allowing and indeed soliciting 

interaction with the problem-solver. 
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APPENDIX 

The Modelling Structures Formalism (reference 22 of this paper), 

technical report #52, is available form the Department of Information 

and Computer Science, University of California, Irvine. 
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