UC Irvine
ICS Technical Reports

Title
Data representation and synthesis

Permalink
https://escholarship.org/uc/item/94n072bg

Authors

Tonge, Fred M.
Lawrence, Rowe A.

Publication Date
1975

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/94n072bg
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law

DATA REPRESENTATION AND SYNTHESIS , (Tme 17 U S C)

Fred M. Tonge and Lawrence A. Rowe

—

Technical Report #63
March 1975

Depdrtment of Information and Computer Science
~University of California, Irvine

The substance of this technical report is taken from a research
proposal submitted to the National Science Foundation. The authors
are particularly indebted to Professor Thomas A. Standish who partic-
ipated in many of the discussions Teading to this proposal, contri-
buting both ideas and specific prose.

ABSTRACT

This research concerns the problem of specifying the

information relationships and their transformations
included, explicitly and implicitly, in any problem-solving
procedure. Our view of data representation is that problen

representations (in a problem domain) are mapped to a
machine representation (in an implementation domain) through
various modelling representations (in modelling domains)
Modelling domain representations make easier the discovery
of acceptable implementation representations. we propose to
focus on the study of mappings of data representations and
their transformations from the modelling to implementation
domains. Specifically, our goal is to answer four
questions:

1) what are appropriate formalisms for describing

: modelling domains and implementation domains,
" 2) what knowledge exists of each of these domains and
"how can this knowledge be represented 1in our

-~ formalisns,
3) how do we map specific representations from one

domain to the other, and
4) how can we test the completeness of our formalisms

and mapping process.

In answering the fourth question, we propose to construct an
interactive system for generating alternative implementation
domain representations from a modelling domain
representation and selecting that which comes closest to the
user s desired program performance criteria in an actual
programming context.

INTRODUCTION AND OVERVIEW

Purpose of this Reseérch

The research described 1in this proposal concerns
representing a problem domain for computer solution. The
general problem 1is that of specifying to a machine a
procedure to solve a problem, i.e. the programming problem.

The specific part of this problem of interest here is that

(data) and

‘of representing the information relationships

their transformations which are present, explicitly and
‘implicitly, in the problem specification and in the solution
algorithm.

AThe‘ programming problem, and particularly the
;ubproblem of data representation, will not be soived in a
short time by any single research group. Rakher it requires
a continual effort by a number of people, each contributing
to and building upon other’s results. Accordingly, we wish

to choose a focus for our research which will have leverage

in the sense that its findings can be used by others to

advance the state of the art of programming. This focus is
aimed at deepening our understanding of data
representations. Ultimately, we wish to wunderstand data

representations with sufficient clarity and precision that,
for a significant range of programming problems, we can

describe the choices of data representations ‘available for

their solution and select those representations that yield
the best quantitative performance properties for a given

intended application.
Our View of Data Representation
-Programming problems arise naturally 1in a diverse

collection of problem domains. Some problem domains, such

as orbital mechanics required for space shots, are

understood with sufficient scientific precision that the
formal theories required for writing programs are abundant.
By contrast, some other problem domains, such as medical
diagnosis, are not precisely understood in sufficient detail
to énable us to write\ computer programs that we could
substitute trustfully for specialists. Between these two
extremes 1lie a spectrum of problem' domains with varying

degrees of formalization and theory.

Giveﬁ that problem solution procedures must ultimately
be reduced to data and instructions executable by computers,
the implementation medium chosen provides a domain into
which solutions must eventually be reduced. Implementation .
structures may arise at the machine 1level or at the

programming language level, depending on the choice of

implementation medium. At whatever level chosen,
implementation structures constitute the ultimate target of

reductive transformations which represent algorithms as

executable programs.

Often in the process of devising solutions to
progrémming problems posed in problem domain terms, use is
made of intermediate structures. Such intermediate
"structures serve as media capable of expressing algorithms,
but typically are only indirectly executable by a computer.
Wé call such intermediary domains "modelling domains."

For example, to solve the problem of charging for a
multi—site teletype network, with teletypes placed in
distinct cities; a telephone company might use the concept
of a "minimal spanning tree." A computer program that

computes the charges might represent such a minimal spanning

tree internally using "nodes" and "pointers." In this case, .

"teletypes" and '"lines" are concepts at the problem domain
level, "minimal spanning tree" is a concept at the modelling
domain levei, and "nodes" and "pointers" are concepts at the
implementation domain 1level.

Thus, the programming process involves a cascade of
reductions from problem domain concepts into implementation

structures perhaps utilizing one or more layers of modelling

structures.

Problem Modelling Implementation
- . -

Domains Domains Domains

Representations

Each time we map a structure at one of these levels
into a structure at a lower level, we invoke the notion of a
"representation.” A representation is a use of a set of

_objects and processes at one level to imitate relevant

behaviors of objects and processes at a higher 1level. The
notion of representation 1is nicely captured through the
notions of "interpretations”™ and "models" in contemporary
mathematical logic [18]. In this research we are

particularly interested in the representations of problem

data.

Some Specific Questions

We propose to focus our efforts on the study of
mappings of representations froﬁ modelling domains to
implementation domains. We see here a number of avenues
that are ripe for exploration and 1likely to yield
significant progress.

More specifically, the goals of our proposed research

are to find answers to the following questions:

What are appropriate formalisms for describing
modelling domains and implementation domains?

¥ What knowledge exists of each of these domains and
how «can this knowledge be represented 1in our
formalisms?)

How do we map specific representations from one
domain to the other?

¥ How can we test the completeness of our formalisms
and mapping process?

Summary of Proposed Research

We have already made progress on the first of the above

questions, that of formally describing modelling domains and

implementation domains. We are pursuing an approach to
describing modelling domains which consists of a language
for expressing structural constraints and required
relationships between elements 1in an abstract structure

together with a set of primitive operators for expressing

* transformations of these structures [22]. The work on this

"modelling structure" formalism has been completed. As

described below, we mnust now assess 1its wusefulness 1in

different applications.

We propose to develop a parallel formalism for

describing implementation domain representations.

With begard to the second of the above questions, what

knowledge do we have of the modelling and implementation

mains, we have begun to construct a taxonomy of modelling

fay
io

étructures using our mnodelling formalism [22]. We are able
to characterize such diverse modelling structures as lists,
graphs, trees, sets and strings in terms of distinct
characteristic features described by the formalism. This
will permit us to catalog and index a wide range of
structures in the modelling domain.

A goal of the proposed research is to build a catalog

of various representations—both-at-the modelling level -and-

at the implementation level.

For each structure described at the abstract
(modeiling) level, there are typically several reasonable
implementation structures that can be used to represent then
accurately at a more concrete (implementation) level. For
example, Schwartz has described various ways of implementing
sets [23]. Numerous papers in the 1literature describe
alternative methods for representing 1lists [13, 16, 29];
and, Knuth characterizes various ¢types of ‘trees, such as
free trees, oriented trees, ordered trees, binary trees and
extended binary trees [15]. At the very least, the
desgriptive adequacy of our formalism mnmust be measured
against these examples. Furthermore, we must demonstrate
how our formalisms can capture and describe significant

differences at both the modelling and implementation levels.

TN

Given success 1in devising an adequate descriptive
formalism, we must then attempt to answer the third of the
above questions, how can we map from modelling domains into
implementation domains? At the very least we can collate
the already considerable body of knowledge of representation
techniques into a relational structure. This cross-index or
catalog would relate specific modelling structures to a

range of possible implementation structures. But this alone

is not enough. Because we can not hope to catalog all

e

possible structures at either the modelling or Lhe
implementation 1level, (and indeed such a goal would be
unreasonable), we must also devise an algorithm for
generating alternative implementation structures for a given
modelling structure. And because the choice among such
alternatives must be made rationally, we must be able to
evaluate alternatives with respect to their requirements for

space and time.

This leads to the 1last question listed above, can we

test the completeness of our achieved understanding? To

test our achieved understanding, we propose to develop a
system which, in concert with the user, generates
alternative implementation level representaticns and selects
a representation meeting the user’s desired program

performance criteria. Our work on this system aims to

illustrate two points: first, the interactive selection and
synthesis of implementation level representations, involving
a dialog with knowledgeable users, and second, the
capability of feediﬁg back to the user measured program
performance properties for his use in refining the choice of

modelling and implementation structures.

More detailed descriptions of these questions and of

our proposed approach are given in the technical discussion

—section below.

Expected Significance of the Proposed Research

Today, and for the immediate future, hardware costs
seem to be declining rapidly (by a factor of 10 every 5.7
years according to Roberts [21]), whereas software costs are
an increasingly dominant fraction 'of the cost of new
systens. Currently, the software/hardware cost ratios for
. many new systems run from 3:1 to 7:1, and Boehm estimates
that ‘in the absence of remedial measures, by 1985 these
ratios are likely to approach 9:1 [3]. In fact, every year
since 1966 the Federal Government has spent more on software
than on hardware [20], and software production is at least a
10 billion dollar a year industry (over one percent of the
GNP). Thus, the evolution of an effective science of

programming has important economic consequences.

It is widely recognized that we need to find inmproved
techniques for producing and maintaining reliable software,
especially since saftware requirements seem to Dbecomne
progressively moré ambitious and since software production
is, at present, highly labor intensive. While short-term
improvements in software productivity might well be brought
about - by better management techniques [3], software

production would still be labor-intensive. In the long run,

significant improvements 1in programmer productivity will™

rest upon making thé computer a more talented partner in the
process of program production.

An important ingredient in achieving this partnership
is to develop ways of programming the computer to fill in
nost low-level programming detail by itself, allowing nuch

less detailed specifications of procedures than are required

at present. If the description of programs is made more

~compact by the omission of detail that either programmers or
machines can fill in, then programming tasks of all sorts
are made easier. This 1is partly because there 1is less
low-level mechanical detail to obstruct understanding and
creation in such tasks as composing, reading, editing,
"maintaining and debugging programs.

The research we are proposing 1is aimed at enabling

low-level representation details to be handled either

automatically or interactively with mnuch less detail than

possible at present. Thus, it should be possible

for

programmers to say less to specify a particular product, and

so, for a given amount of effort, to achieve more.

- 10 -

’ TECHNICAL DISCUSSION

In this section we discuss five specific problem areas
in more detail, inciuding related results to date,: other
work in progress, our goals, and steps to achieve these
goals. The first two areas are the modelling structures and
implementation structures formalisms as approaches to
describing modelling and implementation domains. The

taxonomy/catalog as a representation of knowledge about

modelling and implementation domains is the third. The
fourth problem area is the mapping of modelling structures
to a rénge of possible implementation structures. The fifth
is the development »of an interactive system to generate
implementation structures | from spécified mddelling

structures in an actual programming context.

Formalizing Modelling Domain Knowledge

The proposed approach to fbrmalizing modelling domain
knowledge 1is té describe a set of modelling structures and
operations for transforming such structures one into
‘?anbther. We use the term modelling structure to describe a
structure which models the sélient aspects of the
information from a problem domain used by an algorithm to
solve a problem. Because it is a modelling level concept, a

modélling structure is independent of any commitments to the

implementation of the structure. In this approach we
describe a class of abstract objects and abstract operations
having a range | of possible underlying concrete
representations. The formalism provides a convénient
mechanism for selecting subsets of the set of modelling
structures, the desired abstract objects, and a small set of
primitive operators for defining the desired abstract

operations. In a recent report [22] (attached as an

appendix), we describe the modelling structures formalism,
including a rigorous definition of the primitive operators.
While a first version of the formalism is complete from the
standpoint of the.research being proposed here, experience
in using it will dndoubtédly suggest improvements. In the
following section we informally summarize/this descriptive
framework.

Modelling Structures Formalismn

A modelling structure is either a primitive object or a
structured object. A primitive object is ah instance of a
data type provided as primitive by the problem domain.
Thus, in one domain square arrays may be primitive; whereas,
in another domain they are structured objects. Conventional
programming languages provide primitive data types such as
integers, floating points, booleans, and characters.

-~

A modelling structure which is a structured object is

- 12 =

composed of elements and relations arong the elements. The
elements of a modelling structure are instances of modelling
structures. Thus, structured objects may be composed of
primitive and structured objects.

There are six properties used fto describe modelling
structures. Theée are:

1 replication of element values in a structure,

ordering of elements in a structure,

structural relations between elements,

distinguished elements 1in a structure,

referencing of elements in a structure, and

owm o=lw N

operations applied to a structure and its elements.

A structured object may allow replication of elements
and may be ordered (an order predicate defines an ordering
between the elements).

Relations between elements describe how the structure
is put together. Associated with each relation is a set of
attributes, each attribute representing a piece of
information associated with the relation between two
specific elements in a structure. The number of relations
defined on-a structure and the number of attributes for a
parficular value of a given relation are not 1limited. For
example, to mnodel a road map composed of cities and roads

between cities, we might define a modelling structure in

which the -elements represent the c¢ities and a relation,
ROAD, represents the-roads. Associated with each road would
be several attributes describing that particular road, such
as the distance between the cities, the highway number or
numbers, and the speed limit. This data is represented by
attributes associated with the ROAD relation.

| Associated with each structured object are two means of

referencing elements in the structure, external accesses and

distinguished elements. External accesses are references to

.particular elements in a structure. Distinguished elemehts
are element references based on the relations defined for
'thé structure. They are bound to elements by way of the
structure and thus may chénge as the structure changes. In
éontrast, regardless of how a structure chénges, an external
access references the same element as long as it remains in
the structure unless explicitly changed. Distinguished
elements are useful for représenting such structural conepts
‘as the head of a 1list. External accesses are useful for
moving through a structure from element to element along
relation links.

The primitive operators for transforming one instance
of a modelling structure into another include: 1insert an
object into a structure (insert), delete an object from a

structure (delete), replace one object 1in a structure by

- 14 -

another (replace), create an external access to an object in
a structure (createaccess), felate two objects by a given
relation (relate, indludes_insert if either object isvnot a
member of the structure), unrelate objects within a

structure (unrelate), return one or all objects related to a

attribute of a relation (readattr), and store an attribute

of a relation (storeattr).

To illustrate this formalism, we will define a set, a

l-way list, and a stack.

A set does not allow replication nor may an ordering be
defined on its elements (otherwise it would be an ordered
set). There are mno relations or distinguished elements.
Elements in the structure are referenced by quantification
(essentially universal, "“for Call ...," and existential,
"there exists ...," quantifiers). The operations allowed on

a set are read, insert, delete, and replace.

A df-way list is different from a set in that
replication is allowed, there is a defined relation, and two
distinguished elements. The relation is SUC, which is 1-1,
has a single element not in the doéain of SUC, has a single
element not in the range of SUC, and is connected (all
elements may be reached by S3UC or its implicit inverse).

The. two distingished elements are an element not in the

range of SUC, "head," and an element not in the domain of
SUC, "tail." Furthermore, the forms of referencing and
operations allowed afe different than for a set. El?ments
are referenced by external accesses and distinguished
elements rather than by quantification. The operations

allowed are read, delete, replace, createaccess, relate, and

~related.

s

The third example is a stack. A stack is 1identical to

a 1-way 1list except Tfor the way elements are referenced
(limited to the distinguished element "“head") and the

permitted operations (constrained to read, delete, and a

limited form of relate). These examples show how this
formalism can be used to provide a taxonomical framework for
modelling structures.

Thér‘e has been a significant amount of work on data
representation in the last few years. The work by D Imperio
[7, 8], Kapps [14], Mealy [17] and Turski [27] is directed
towards a theory of data structures emphasizing the meaning
of data and the fundamentals of structures and computation.
Many of the concepts represented in these models are used in
our modelling structures formalism. Bobrow and Raphael [2],
Earley [10], Shneiderman and Scheuermann [25], Taft and
Standish [26], van Wijngaarden [31], Wegbreit [30], and

-

Wirth [33] are representative of the extensive work on data

- 16 -

definitional facilities and structure operations in

programming languages:.

Formalizing Implementation Domain Knowledge

A formalism for expreésing possible implementations of
modelling level representations must include the notions of
indivisible cells (capable of representing primitive values)
and of groupings of cells into structures. Such structures
may be implemented wusing contiguous groupings of cells
(referenced by a conventional indexing mechanism), cells
which point explicitly to other cells or groups of cells
(referenced by a conventional indirect mechanism), and cells
whose value serves as an argument to a structure-defining
function (referenced by a hashing mechanism). Because at
the machine level these ceils are not unconnected entities,
they must also be treated as belonging to an ordered memory.

There are two types of implementation domain knowledge
we need to represent: 1) alternative implementation
Estructures ~for particular modelling structures, and 2)
methods of organizing several implementation structures into
a coherent whole (e.g. a region of ordered memory).

As an example of the first type, a stack may be
represented either wusing contiguous cells to represent
elements in the stack and an index to the top of the stack,

or using non-contiguous groups of two cells to represent

- 17 -

elements in the stack, each group including the stack
element and a pointer to the group representing the previous
element in the stack; together with a pointer to the group
representing the top element 1in the stack. Examplés of
knowledge about repre;enting structures in a region of
memory are described in Knuth [15].

The formalism for representing alternative

implementations is relatively straight forward. In fact,

conventional—data definitional—facilities in —extensible
programming languages, such as PPL or ECL, may be adeqﬁate.
An adequate descriptive formalism for knowledge about
organizing implemeqtation structures into éoherent wholes is
'nqt so obvious. in this brésearch we plan to collect
examples of such knowledge and incorporate it into a system
for generating implementation structures from modelling
structures (see below). Whether this kﬁowledge is to be
incorporated as "expert" procedures or whether it can be
distilled into a general process operating on a detailed

knowledge base is an open question at present.

Repﬁesenting Modelling and Implementation Domain Knowledge
One phase of this research program is to collect and

organize the diverse body of knowledge on modelling and

implementation structures available in the computer science

literature. This knowledge 1is a part of the information

base which the proposed implemention structure generation
system uses. The formalism developed for modelling
structures and that to be developed for implementation
structures will serve as the basis for organizing: this
knowledge. A start on describing modelling structures in
this formalism has been made [22].

He do not believe that this taxonomy/catalog will be
precise, Vin thé sense that all users will agree with its

s

descriptions and classifications. (Note the current variety

of definitions of "such concepﬁé ‘as ‘"stack" or "ifgt“.)”
Rather, we anticipate a situation similar to that in biology
where fhe overall focus and major divisions of plants and
animals are agreed on, but particular plants or animals are
classified 1in different ways by different people. As in
biology, the importance is not the particular
taxonomy/catalog, the importance is how well we can use it.

Mapping 'Modellihg Level to Implementation . Level
Representations

A major problem area 1is that of describing a number of
possible implementation structures for a given modelling
>structure. AThis can be viewed as mapping modelling domain
knleedge to implementation domain knowledge. For those
modelling structures that are classified in the

taxonomy/catalog, specific alternative implementation level

-

representations as described in the implementation
structures formalism can be associated in the catalog. For
those modelling struciures not so classified, an alternative
implementation structure generator 1is needed. Spadé and
processing time costs (pfobably relative figures of merit)
associated with different implementation structures can also
be stored in the catalog or generated for use in alternative

evaluation, as discussed in the following section.

Results to date on this problem of rg}gting modelling

to implementation domain knowledge include the wealth of
alternative implementation structures used 1in different
programming language translators [11, 12, 27, 32] and which
have appeared in the literature (4, 6, 15, 19]. Recent work
by Shneiderman [24] can poséibly be adapted as the
alternative implementation structure generator.
Generating and Selecting Implementation Level
Representations for Modelling Level Representations

To test the representational approach described above,
we propose to construct a system which, operating in concert
with the user, can produce an implementation level
representation for a given program which neets the desired
‘performance criteria. If successful, such a system could
improve both the programmer’s productivity and the quality

of programs produced.

Difficulties with Current Practice

Curhently programs are written partly at the modelling
level (the program control structure and some operaﬁions)
and partly at the implementation level (the'data structures
and related operations). This occurs because the formalisms
available for expressing ipformation relationships and data
in programming languages actually represent specific

implementation structures. Therefore a programmer must

T select implementation structures at the time he produces a

program level representation.

Forcing the programmer to choose an implementation
structure at this stage of the programming process causes
several problems. The first problem has to do with the
clarity of the progran. HMost modeliing structures have
several natural underlying implementation structures. These
"natural" implementations are often easy to understand.
However, the mapping of a modelling structure by a
particular language translator may result in an inefficient
implementation. In fact, the natural implementation
structure might not even be supported by the 1language.
Consequently, the modelling structure cannot be described
directly in the language, but rather must be "twisted,"

possibly obscuring the intent of the program. Because

modelling structures, and hence implementation structures,

appear partly in the data and partly in the program, a
change in implementation structure may require substantial
change in the progran.

AA second problen concerns the time at which
implementation structures are chosen. Since the choice 1is
usually made before any coding of the program, the
programmer may not clearly understand all the implications
~of the different possibilities and he may overlcok sone
importaht detail. Also at this stage the programmer is
often interested only in getting a correct répresentation.
Thus, he may ‘ignore or postpone decisions concerned with
efficiency.

l Another problem concerns' debugging andA proving the
program correct. If a modelling structure must Dbe
represented 1in terms -ofy lower level primitives, then the
modelling structures and operations on them must Dbe
_reprogrammed and proved correct with each usage. It is true
that this difficulty can be somewhat alleviated through the
use of libraries of common routines; however, it 1is often
the case that the library routines are not widely known, are
not well documented, or do not quite provide the facility
that the programmer desires.

Finally, programmers often do not spend the time and

effort necessary to carry out analyses of different

implementation structures. Frequently, it 1is not until
after the program is running and fails to meet efficiency

criteria that an analysis 1is conducted. This 1is much too

late.
mputer Assisted Selection of Implementation
r

Our proposal tc solve some of these problems 1is to
provide representation of information relationships and data
~at ‘the modélling structure level 1in a program, and then to
use the computer to assist 1in searching for acceptable
implementation structure representations. This solution
embodies the philosophy that programmers should write their
procedures in a machine independent formalism and, where
possible, should not explicitly represent low 1level
implementation decisions. Under this approach, the problem,
not the permissible language structures, deternines the
appropriate modelling structures for a progran.

The sécond part of this solution, using the computer to
assist 1in selecting efficient 1implementation structures,
inyolves both 1ill-defined objects (the different problem
solution proéedure representations at the modelling and
implementation levels) and an ill-defined objective function
for selecting among the objects. Hhen faced with this type

of ill-structured problem there are two possible approaches.

- 23 -

The first is to define constraints on the objects and the
_objective function fso that the problem is no longer
ill-defined. The second approach is to define some partial
constraints and allow the user to interact with the systen
to guide it in the search for a solution. The first
approach is appropriate when a reasonable set of constraints
can be ‘established which allows the system to solve a
_ meaningful subset of the overall problen. The second
approach is appfopriate when a reasonable set of
constraints, or formalism, cannot be found. Because of the
difficulty of defining acceptable constraints, we feel a
solution along the 1lines of the second approach has the
greater potential. The approach 1is a mnmixture of a
man-machine interaction which allows cboperation between the
two parties in order to improve the problem solving process.

A system for generating and selecting among alternative
-implementation structures 1is yet another tool in a
programming environment. A good programming environment
includes a wide variety of facilities, namely, editors,
translators, debugging tools, documentation aids and
measurement facilities for the development, testing, and
maintenance of programs. In the proposed system, programs
are_ written and debugged in an 1interpretive environment,

using modelling structure 1level representations. After a

- 20 -

program has been debugged, it can be compiled to produce a
more efficient :implementation. The (temporary)
implementation structures used in the interpretive mode for
the different modelling structures are not partiéﬁlarly
important. At this stage the user 1is concerned with
developing a correct program and thus is more interested in
minimizing elapsed time for the translation than 1in
efficiency of the execution. The result of this program
-writing phase is a complete program and nodelling domain
representation for the problen solution. The second phase,
or compilation, takes this representation as input and
préduces an 1implementation domain representation for the
problem solution based on the éfficiency criteria given by
the user. The two phases are called, respectively, the

program writing and implementation-selection phases.

Writing the Program. In the program writing phase the
user enters statements to the system. The statements can be
program statements, direct commands interrogating or
changing the system environment, or a request to enter the
implementation-selection phase. Statements describing the
properties of different modelling structures are direct
commands which change the environment of +the system.
Information 1is maintained on the modelling structures used

~

by the program as statements are entered. The system

- 25 =

anticipates structure and tries to complete the modelling
structure definitions in terms of known (cataloged)
structures. It also tests the consistency of structure
definitions and accéssing. Thus the user may specify his
structure definitions before writing his program, as he
writes it, or when he has finished writing it. Definitions
can be examined and changed at any time. Examples of
properties of a structure being defined ihat the system
tries to fill in are whether the structure is ordered, the
types of objects .in the strdcture, and the maxiﬁum size of
the structure. | |

The modelling structures formalism, as described above,
allows wusers to define a structure either as some Kknown
modelling structure maintaiﬁed in a catélog or to create a
structure by defining the properties it must have. LExamples
of modelling structures in the catalog are arrays, stacks,
queues, and 1lists. Properties by which a structure may be
defined are the size of the structure, the manner in which
it 1is referenced, ordering of the structure, types of
objects in the structure, and whether elements in the
structure may be repeated. Those users who know which
specific modelling structure they want may specify it by
name. Those users who are not aware of the full catalog of

specific modelling structures, or who do not know exactly

- 26 -

which modelling structure they want, may define the
properties of their modelling structure for the system. In
either case the system is continually checking the

consistency of and gathering information about the

structures.

Generating and Selecting Implementation Structures

The implementation-selection phase generates the
implementation structure representation of the program. The
"systen »generates a set of altehnative implementation
structures for each distinct instance of a modelling
structure used in the program. Then an evaluation algorithm
selects one implementation structuﬁe for each modelling
structure and the program . is compiled using these
implementation structures and - appropriate accessing
routines.

‘Alternative implementation structures are generated by
first matching each modelling structure used in the program
with'those defined in the catalog of known structures. The
catalog 1includes a complete definition for each modelling
structure and a set of alternative implementations. For
those modelling structures which do not match a structure in
the catalog, a general alternative generation algorithm is
used. The catalog of modelling structures is used to embody

detailed knowledge about possible implementations, since

- 27 -

knowing what a specific modelling structure is may result in
a more efficient implementation structure than would be
prqvided by the general alternative generator. Thus a major
componént in the system is the algorithm for deducing what
modelling structure is being used. This matching is trivial
when a modelling structure used in a program is named, for
example stack, 1list, array, set or queue. The difficult
case 1is when the structure is described by/properties that
must hold for the structure (e.g. relationships between
elements in the structure and how the structure and its
elements are referenced) and by the manner in which the
structure is operated upon.

The alternative selection component gathers information
needed to analyze the possible implementation sets. (An
"implementation set" 1is a set containing a choice of one
implementation structure for each modelling structure.)
Sources for this information are modelling structure
definitions and declarations, static flow analysis of the
program, sample runs and interactive interrogation of the
user. The expected costs, both in space and time, for each
alternative implementation set is éalculated and that which
comes closest to meeting the desired efficiency is selecfed.
If the estimated cost is not acceptable to the user, a set

of heuristics 1is used for suggesting <changes 1in the

-~

- 28 -

modelling structure definitions which might lead to less
costly implementations.

- Often the user day not have approximate values for some
inputs to the estimated cost function. In thése cases the
user may ohoose.to have the system provide data gathering
routines in some test runs to allow the user to perform ah
experiment to estimate the parameters. The system inserts
the appropriate data gathering routines, and the user then
‘executes the program supplying sample test data. Examples
of the types of data which might be gathered are the
frequencies of insertions, deletions, searches and changes

to a structure.

" Other Approaches

.There have been other proposals to build this type bf
system, but to our knowledge none has been completed [1, 5,
9, 10]. Our approach to this goal factors a large
ill-structured problem into several smaller, more structured
probléms which are more amenable to formalism and analysis.
At the same time, while we intend to pursue the introduction
of formalism and analysis as vigorously as possible, we do
so in the context of allowing and indeed soliciting

interaction with the problem-solver.

- 29 -

10

11

S

REFERENCES

Balzer, R. Datdless Programming. Proc. AFIPS FJCC,
vol. 31 (1967), pp. 535-544.

Bobrow, D. G. and B. Raphael. New Programming
Languages for Artificial Intelligence Research.
Computing Surveys, vol. 6, no. 3 (September 1974),
pp. 155-174.

Boehm, B. W. Software and Its Impact: A Quantitative
Assessment. Datamation, vol. 19, no. 5 (May 1973),
pp. 46-59.

Brooker, R. A., D. Morris and J. S. Rohl. Trees and
Routines. Computer Journal, vol. 5, no. 4 (April

1962), pp. 33-47.

Cheathanmn, T. The Recent Evolution of Programming
Languages. Proc. IFIP Congress (1971), pp -

I.116-1.134.

Deuel, P. On a Storage HMapping Function for Data
Structures. Comm. of the ACH, vol. 9, no. 5 (HMHay
1966), pp. 344-347.

D Imperio, M. E. Data Structures and their
Representation in Storage. In Annual Review in Automati.
Programming 5, Pergamon Press, New York, NY (1969), pp.
1-75.

D Imperio, M. E. Information Structures: Tools in
Problem Solving. Unpublished paper (July 1969).

J. Towards an Understanding of Data Structures.
f the ACH, vol. 4, no. 10 (October 1971),

Earley,
Comm.

0
pp. 617-627.

Earley, J. Relational Level Data Structures for
Programning Languages. ACTA Informatica, vol. 2

(1973), pp. 293-309.

- 30 -

12

13

14

15
16

17

18
19

20

21
22

23

24

Hopgood, F. R. A. Compiling Technigues. American,

Elsevier Publishing Co. Inc., New York, NY (1969).

Iverson, K. E. A Programming Language. Wiley, New
York, HY (1962).

Kapps, C. A. SPRINT A Programming Language with General
Structure. PhD Thesis tloore School EReport lo. 71=18,
The Moore School of Electrical Engineering, Univ. of
Penn. (August 1970), pp. 94-123.

Knuth D. E. The Art of Computer Programming, Vol. 1.
Addiscon-Wesley, Reading, MA (19668).

A

MeCarthy, J. et. al. VLisp Programmer’'s Manual. HMIT,
Cambridge, MA (August 1962).

Mealy, G. M. Another Look at Data. Proc. AFIPS FJCC,
vol. 31 (1967), pp. 525-534.
Mendelson, E. Introduction to Mathematical Logic. Van

Nostrand, Princeton, NJ (1964).

Morris, R. Scatter Storage Techniques. Comm. of the
ACM, vol. 11, no. 1 (January 1968), pp. 38=-44.

Pierce, J. R. Computers in Higher Education. Report of
the President’s Science Advisory Committee (february

1967).
Roberts, L. G. Personal comnmunication.

Rowe, L. A. Modelling Structures Formalism. Technical
Report #52, Dept. of Information and Computer Science,
U. C. Irvine (November 1974).

Schwartz, J. T. Automatic Data Structure Choice 1in a
Language of Very High Level. To appear Proc. Second ACH
Symposium on Principles of Programming Languages, Palo
Alto, CA (January 1975).

Shneiderman, B. Towards a Theory of Encoded Data
Structures and Data Translation. Technical Report #13,
Computer Science Department, Univ. of Indiana (July
1974).

-~ 31 -

25

26

27
28

29
30

31
32

33

Shneiderman, B. and P. Scheuermann. Structured Data
Structures. Comn. of +the ACl{, vol. 17, no. 10
(October 1974), PP 566-574

Taft, E. A. and T. A. Standish. PPL User’s Manual.
Aiken Lab, Harvard University (January 1971).

Tonge, F. M. List Processing Techniques and Languages
-- Design Decisions. Proc. Univ. of HMichigan
Engineering Summer Conf. (1967).

Turski, W. M. A IModel for Data Structures and its
Applications. ACTA Informatica, vol. 1 (1971), PP
26-34. : '

Weizenbaum, J. Symmetric List Processor. Comm. of the
ACH, vol. 6, no. 9 (September 1966), pp. 524-543.,

Wegbreit, B. The ECL Programming Systenmn. Proc. AFIPS
FJCcC, vol. 39 (1971'), pp. 253-202.

van VWijngaarden, A. et al. Report on the Algorithmic
Language ALGOL68. lNumerische Mathematik, vol. 14, no.
1 (February 1969), PP 79-218.

Wirth, N. The Design of a PASCAL Compiler. Software =--

'Practlce and Experience, vol. 1, no. 4 (1971), pp.
309-333. ﬂ

Wirth, N. The Programming Language PASCAL (Revised
Report). Berichte der Fachgruppe
Computer-Wissenschaften, Eidgenossische Technische

Hochschule, Zurich (December 1973).

- 32~

APPENDIX

The Modelling Structures Formalism (reference 22 of this paper),

technical report #52, is available form the Department of Information

and Computer Science, University of California, Irvine.

-33 -

