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Abstract: Recent advancements in AI-driven technologies, particularly in protein structure prediction,
are significantly reshaping the landscape of drug discovery and development. This review focuses on
the question of how these technological breakthroughs, exemplified by AlphaFold2, are revolutioniz-
ing our understanding of protein structure and function changes underlying cancer and improve
our approaches to counter them. By enhancing the precision and speed at which drug targets are
identified and drug candidates can be designed and optimized, these technologies are streamlining
the entire drug development process. We explore the use of AlphaFold2 in cancer drug development,
scrutinizing its efficacy, limitations, and potential challenges. We also compare AlphaFold2 with
other algorithms like ESMFold, explaining the diverse methodologies employed in this field and
the practical effects of these differences for the application of specific algorithms. Additionally, we
discuss the broader applications of these technologies, including the prediction of protein complex
structures and the generative AI-driven design of novel proteins.

Keywords: AlphaFold2; cancer; drug discovery; artificial intelligence; generative AI

1. Introduction

ChatGPT, DALL-E, and other tools, driven by recent revolutionary advances in Artifi-
cial Intelligence (AI) technology, have captured widespread attention due to the expanding
capabilities of AI, with the promises and potential threats they bring to our society. How-
ever, AI-driven breakthroughs in various scientific fields have been in progress for some
time. This review delves into a remarkable transformation within structural biology, cat-
alyzed by the introduction of the AlphaFold2 (AF2) deep neural network algorithm in
2021 and followed by other algorithms. Together, these tools have effectively resolved a
long-standing challenge in structural biology: the generation of atomic-level models for
protein structures from sequence information alone [1–3]. This review seeks to investigate
the extent to which these breakthroughs in protein structure prediction have influenced
the drug discovery process, with an initial focus on cancer research, and also discuss
how choices in the architecture and assumptions made by specific algorithms affect and
differentiate their results.

The process of drug discovery is frequently marked by inefficiency, underscored by
rising expenses, prolonged timeframes, and a high frequency of failures. Only a small
fraction of drug candidates make it to clinical trials, and many fail as late as in Phase
3, resulting in an overall success rate of about 10–20% in clinical drug development [4].
Estimations of the overall expenses for research and development prior to product launch
range from $161 million to $4.54 billion in 2019 U.S. dollars per successful drug [5] (Figure 1).
This ineffectiveness is, in part, due to our incomplete understanding of human biology,
especially in the context of disease processes; a dearth of actionable targets for treatment;
and our limited understanding of the varied responses to disease in diverse populations [6].
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Further complicating this process is the inadequacy of preclinical models that accurately
represent the disease and the constraints of overly simplistic disease models, which together
amplify the difficulties in grasping the complexity of human systems. Lack of high quality
structural models of drug targets, a main problem addressed by AlphaFold, is only one of
the challenges in drug discovery. However, as we show in this review, AI is also making
rapid progress in addressing other bottlenecks in drug development.
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Figure 1. Stages of Drug Discovery Process: The drug discovery process comprises several critical
stages. It begins with the “Discovery and Development” phase, where the focus is on target iden-
tification and validation. This stage involves screening potential compounds and further refining
promising candidates through hit-to-lead development and lead optimization. Following this, the
process moves to “Preclinical Development”, which includes a range of lab tests such as in vitro stud-
ies, animal model testing, and ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity)
studies. Based on these results, a decision is made on whether to proceed to the next phase. “Clinical
Trials” ensue, which are categorized into four phases: Phase I assesses safety and dosage; Phase II
examines efficacy and side effects; Phase III involves larger studies to confirm efficacy and monitor
adverse reactions; and the final stage is “Review and Approval”, which consists of a comprehensive
regulatory review, culminating in market authorization and followed by post-marketing monitoring
to ensure long-term safety and effectiveness, constituting a newly defined Phase IV.

Traditionally, the three-dimensional structures of proteins are deciphered using labor-
intensive and costly experimental methods like X-ray crystallography, nuclear magnetic
resonance (NMR), and cryogenic electron microscopy (cryo-EM). While invaluable, these
techniques are limited by speed, cost, and applicability to only certain protein structures.
In contrast, recent advancements in protein structure prediction, culminating in AF2,
have dramatically expanded our capabilities, complementing and occasionally surpassing
experimental approaches.

The AF2 breakthrough has been quickly followed by other AI tools such as RoseTTAfold [7],
ESMFold [8], and OpenFold [9]. ProGen [10], ProteinMPNN [11], EvoDiff [12], and RFdiffu-
sion [13] extend the AI capabilities to novel protein design, as does DiffDock [14] to molecular
docking. These and many other rapidly developing tools apply novel algorithms and AI ar-
chitectures, each with unique strengths and weaknesses. Here we focus not so much on the
comparison of their predictions, but on the differences in their algorithms and approaches and
the resulting optimal applications.

2. Protein Structure Prediction In Silico before AlphaFold

In the period preceding the advent of AlphaFold, the process of protein structure
prediction generally encompassed several distinct stages, as outlined in the following
discussion (Figure 2).
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Figure 2. Stages of Protein Structure Prediction: The foundational stage involves determining the
DNA sequence that encodes the protein of interest. The next step is to infer the protein sequence from
the DNA sequence. Homology modeling uses known protein structures as templates to predict the
structure of a protein with an unknown structure but similar sequence. Lastly, validation of structure
ensures the predicted structure’s biological plausibility. This involves checks on stereochemical
quality, energy evaluation, and comparison to known structural data.

2.1. Homology and Comparative Modeling

Homology modeling predicts a protein’s 3D structure using the structure of a homol-
ogous protein. It involves four steps: identifying a homologous protein with a known
structure (target identification), aligning the target with the template sequence (alignment),
constructing a model of the target protein from aligned regions (model building), and
enhancing the model’s accuracy and stability (model refinement). Improvements in dis-
tant homology recognition and alignment between distant homologies are exemplified by
the HHpred algorithm and the accompanying suite of programs [15,16]. Predictions of
protein contact maps from coevolution patterns approached this problem from another
angle [17], enhanced by the first applications of deep learning neural networks [18]. In
the late 2010s tools such as Rosetta [19] and I-Tassser [20] crossed the line from homology
to comparative modeling [21]. Rosetta achieved this by using smaller elements of known
structures and a combination of energy-like scoring function and empirical folding rules.
I-TASSER (Iterative Threading ASSEmbly Refinement)’s similarity uses a combination
of template-based modeling and fragment assembly. Other tools’ similarity has started
approaching the level of ab-initio protein structure prediction [21]. These advances di-
rectly led to the development of AlphaFold and the following AI approaches to protein
structure prediction.

2.2. Structure Validation

Structure validation ensures that the predictions are accurate and plausible. Tools
like [22] analyze the geometry of structural features and verify the dihedral angles in the
Ramachandran plot. Energy based evaluations, such as ANOLEA [23], assess potential
energy to evaluate the correctness of folding. Finally, predicted structures can be compared
to the experimental data, if such are available. Such comparisons can be used to benchmark
the prediction methods and establish expected accuracy, but cannot be used to evaluate
predictions for proteins with no known experimental structures. However, functional
predictions based on the predicted 3D structures, such as identity of active site or interaction
interface residues, can be tested in vitro, thus indirectly confirming the structure prediction.

3. Existing Protein Structure Data Sets and Their Applications

Existing protein structure data sets play a pivotal role in protein bioinformatics (Table 1).
Protein structures elucidated through experimental methods by various structural biology
research groups are submitted to the Research Collaboratory for Structural Bioinformatics
(RCSB) Protein Data Bank (PDB) [24]. The practical applications of AI-based structure predic-
tions have been made much easier by the development of the AlphaFold Protein Structure
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Database, which offers precalculated predictions for over 200 million protein structures. Inte-
gration of the AlphaFold2 and the UniProt databases extended access to protein structural
information to a broad community of biologists [25,26]. The ESM Metagenomic Atlas con-
tains predictions for over 700 million protein structures from various microorganisms found
in environments such as soil, seawater, and the human gut. This comprehensive collection of
predicted structures provides valuable insights into the metagenomic landscape [8]. These
data sets collectively support a broad range of research studies and applications, includ-
ing developing and evaluating machine learning models, advancing our understanding of
protein biology, and facilitating drug discovery efforts.

Table 1. Publicly available protein structure data sets and their applications in different phases of
drug discovery.

Resource Utility Data Repository and Reference

Protein Data Bank (PDB)

Provides 3D structures of proteins,
nucleic acids, and complex assemblies

which can be used for drug target
identification, ligand design, and

understanding protein–ligand
interactions.

RCSB PDB [27]

AlphaFold Protein Structure Database

Contains protein structure predictions for
entire proteomes of several organisms. It
can be used for target identification and

understanding protein function.

AlphaFold DB [25,26]

CASP (Critical Assessment of protein
Structure Prediction)

Hosts protein structure prediction models
from the CASP competition, useful for

evaluating and improving structure
prediction methods.

CASP [28]

SWISS-MODEL Repository

A database of annotated 3D protein
structure models generated by the

SWISS-MODEL homology-modeling
pipeline, useful for structure prediction

and drug design.

SWISS-MODEL [29]

ESM Metagenomic Atlas

The ESM Metagenomic Atlas displays
more than 700 million predicted protein

structures from microorganisms in
environments like soil, seawater, and the

human gut, accessible through an
interactive page.

ESM Atlas [8]

4. Disease Understanding—Examples of the Applications of AI-Based
Structure Predictions
Understanding Pathogenic Mutations

AF2 protein structure predictions can help identify pathogenic missense variations
in hereditary cancer genes. In a study by Karakoyun et al. [30], AF2-predicted structures
and five protein stability predictors were used to evaluate the pathogenicity of more than a
thousand missense variants from ClinVar and a breast cancer patient cohort. Their find-
ings indicated that protein stability predictors show moderate effectiveness in identifying
pathogenic variants. However, the AF2 confidence score, pLDDT, demonstrated a supe-
rior ability to predict pathogenicity, highlighting AF2’s potential in pinpointing genetic
variations linked to cancer.

AF2 can also help us understand the role of the paralogs of disease proteins. For
example, dysfunction of human diacylglycerol kinase (DGK) is linked to multiple diseases,
including cancer and autoimmune disorders. However, the exact mechanism of how DGK
dysfunction contributes to the development of these diseases is not fully understood due
to the lack of high-resolution structures for any of the 10 human DGK paralogs. In a recent
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study [31], the researchers used AF2 to predict the three-dimensional structures of all the
human DGK paralogs and conducted structural alignment of the predictions to reveal the
conserved domains and their spatial arrangement relative to each other. The study also
used docking studies to corroborate the existence of a conserved ATP-binding site between
the catalytic and accessory domains and to investigate the spatial arrangement of DGK
with respect to the membrane.

AF2 can aid drug discovery by accurately predicting protein 3D structures and identi-
fying potential allosteric binding sites. Allosteric drugs, which bind the allosteric rather
than the active sites, can induce conformational changes in proteins, affecting their activ-
ities. This enables the design of more effective drugs that can synergize with traditional
orthosteric drugs to enhance efficacy. A study from Nussinov, R., et al. [32] illustrated how
allosteric drugs can alter the conformation of an active site that a drug-resistant mutation
has created, permitting a blocked orthosteric drug to bind. This suggests that a combination
of allosteric and orthosteric drugs can be more effective than either drug type alone. In
another study from Weng, Y., et al. [33], AF2 was used to predict the protein structure of
WSB1. The predicted structure was then optimized using molecular dynamics simulations
and validated using software. After that, virtual screening was performed using AutoDock-
GPU and Glide to filter compounds using ligand- or structure-based methods. Finally,
four compounds with different compound scaffolds were selected as potential inhibitors
of WSB1.

In a recent development, AlphaMissense, a computational tool devised by Google
DeepMind, was shown to correctly assess the pathogenic potential of missense variants [34].
By utilizing the structural insights from AlphaFold, AlphaMissense evaluates the effects of
mutations on the functionality of proteins. In the realm of cancer drug discovery, this tool
holds significant promise in aiding researchers to efficiently select genetic mutations for in-
depth study. This could expedite the process of identifying novel drug targets. Furthermore,
AlphaMissense has the potential to enhance our comprehension of less-explored segments
of the genetic code, especially genes that play crucial roles in human health but whose
functions are yet to be fully understood.

5. Target Identification

The next step after understanding the molecular mechanism of disease is identifying
targets for therapeutic intervention. Again, knowledge of the structure of proteins involved
in pathways or networks mutated or modified in cancer is an important step in identifying
best drug targets. Understanding the molecular mechanisms of disease at the molecular
level, including the functional, interactive, and mechanistic implications of gene product
alterations, is essential for developing targeted therapeutic strategies for cancer. By model-
ing these aspects, researchers can evaluate and compare different strategies to correct the
adverse outcomes caused by gene mutations. Such molecular models are instrumental in
the design of effective cancer therapies [35].

5.1. Prediction of Structures of Protein Complexes

Accurate prediction of protein complex structures is vital for cancer drug discovery,
offering insights into the molecular mechanism of signal transduction (where physical
interactions between up- and down-stream elements of the signaling pathway are used
to pass on the signal) or indirect mutation effects (when a mutation in another element of
the complex is modifying the function of a critical protein). Structure-based approaches
are instrumental in developing specific and effective drugs, as well as in addressing drug
resistance issues. They also support personalized treatments by identifying unique vul-
nerabilities in cancer cells of specific patients and aid in minimizing drug side effects
and interactions.

In a study by Zhang, J., et al. [36], AF2 was used to predict the structures of protein
complexes involved in cancer protein–protein interactions (PPIs). The researchers utilized
AF2 to explore the protein–protein interactome associated with cancer, identifying 1798 po-
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tential protein–protein interactions (PPIs) related to cancer driver proteins. These proteins
play roles in various cellular functions, including transcription regulation, signal transduc-
tion, DNA repair, and cell cycle processes. For the predicted binary protein complexes, they
constructed spatial models, revealing that 1087 of these complexes had not been previously
characterized in terms of their 3D structures. In addition, the top AF2 contact probability
between residues of a protein pair can be used to distinguish true PPIs from false ones
in yeast.

Vasoactive intestinal peptide receptor 2 (VIPR2), a class B G-protein-coupled receptor,
plays a role in numerous physiological processes through its interaction with vasoactive
intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP).
VIPR2 has garnered interest as a potential therapeutic target in the fields of psychiatry,
oncology, and immunology. In a study by Sakamoto, K., et al. [37], the researchers combined
AF2 with molecular dynamics (MD) simulation techniques to construct models of the
VIPR2/KS-133 and VIPR2/vasoactive intestinal peptide (VIP) complex and to understand
their binding modes. The VIPR2/KS-133 and VIPR2/VIP complex models were constructed
using AF2 and molecular dynamic simulations.

5.2. Biomarker Discovery

Novel protein structure prediction algorithms provide information about the proteins’
structures that previously resisted attempts at experimental structure determination. A
study published in Chemical Science applied AlphaFold to identify a new drug for hepato-
cellular carcinoma (HCC), the most common form of primary liver cancer [38]. This study
used AlphaFold to predict the structure of CDK20 (Cyclin-Dependent Kinase 20), which is
involved in cell cycle regulation; its abnormal activity can lead to uncontrolled cell growth,
a hallmark of cancer. The researchers then identified potential inhibitor molecules using AI
platforms developed by Insilico Medicine. They synthesized and tested these molecules,
finding one, ISM042-2-048, with promising inhibitory activity against CDK20.

6. Comparative Analysis of Protein Structure Prediction Algorithms and Tools
6.1. Overview of the AlphaFold2 Algorithm

AlphaFold2 (AF2) is a state-of-the-art computational framework specifically designed
to predict the three-dimensional structures of proteins. It uses a combination of sequence
and structural databases to gather the necessary information for its predictions. Sequence
databases such as UniRef90, BFD, and the Mgnify microbiome database [39] provide
access to amino acid sequences used to build a multiple sequence alignment (MSA) for
the query sequence; AF2 then uses the experimental structures from the PDB [24] to train
the “structural module” that builds the final model. MSA of the sequences of the query
homologs is used to predict pairwise distances between residues (a distance map), which
are later refined in several rounds of iterations reconciling initial distance predictions with
the constraints of the subsequent models of the query. AF2’s architecture and training
methodology contributed to its high accuracy in 3D protein structure prediction and
allowed it to dramatically improve the quality of protein structure predictions. At the same
time, its singular focus on structure prediction and extensive use of multiple MSAs may
have limited its ability to predict changes to structure caused by small changes in sequence
(single point mutations) and affected its accuracy in predictions for “orphans”, proteins
with few or no known homologs (Figure 3).

6.2. Overview of the ESMFold Algorithm

The ESMFold model [8] is built upon a BERT-like architecture, which is a type of large
language model that utilizes stacked Transformer encoder layers. It is trained using a
technique known as masked residue prediction, where certain amino acids in the protein
sequence are hidden from the model during training, forcing it to predict these residues
based on the surrounding context. This training process enables ESMFold to develop
intricate internal representations of protein sequences. A notable feature of the ESM
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language model is its ability to infer structural information from protein sequences without
relying on MSAs or known protein homologies.
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The model’s attention maps, derived from sequence embeddings, are used to predict
the contact map. This capability is based solely on the amino acid sequence of the protein,
making ESMFold a valuable tool for studying proteins that are difficult to analyze using
traditional methods that depend on evolutionary comparisons (Figure 4).
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6.3. Overview of the RoseTTAFold Algorithm

Developed by David Baker’s group at the Institute for Protein Design at the University
of Washington, RoseTTAFold [7] is an extension of the older Rosetta family of tools, en-
hanced by the deep learning technology. It employs a unique ‘three-track’ neural network
and integrates three types of information: the sequential patterns in proteins, the interplay
between amino acids, and the probable three-dimensional configurations. RoseTTAFold
has recently been updated to model complete biological assemblies, including a range of
biomolecules such as proteins, DNA, and RNA. This enhancement broadens the potential
uses of protein structure prediction algorithms [40].

6.4. Overview of the OpenFold Algorithm

The OpenFold Consortium introduced OpenFold, an open-source, trainable version of
AF2, alongside OpenProteinSet, a database of 5 million diverse MSAs. This eliminates the
massive computational barrier—millions of CPU hours—required for large-scale training.
When trained from scratch using OpenProteinSet, OpenFold matches AF2’s prediction
quality but offers advantages like faster processing, lower memory usage for handling
longer proteins on a single GPU, and compatibility with the widely used PyTorch ma-
chine learning framework. This makes OpenFold easily accessible to a broad developer
community [9].

Using OpenFold, researchers explored the model’s protein-folding learning process,
identifying distinct behavioral phases during intermediate training stages. They discovered
that OpenFold learns spatial dimensions and structural elements in an interleaved fashion.
With OpenFold achieving 90% accuracy in just 3% of the training time as AF2, its retraining
on pruned data sets showcased robustness and varied generalization capabilities. Training
on smaller, diverse data sets further enhanced OpenFold’s performance. These findings
provide valuable insights into AF2-type models and pave the way for advancements in
biomolecular modeling algorithms.

6.5. Comparing AlphaFold2 vs. ESMFold vs. RoseTTAFold vs. OpenFold

In protein structure prediction, utilizing individual sequences without relying on
co-evolutionary data like MSA emerges as a promising strategy. This method potentially
eliminates the time needed for homology searches and MSA building and may enhance
prediction accuracy for orphan proteins. Although explored in earlier research by Chowd-
hury et al. and Wang et al. [41,42], the results were initially less than ideal. However, recent
ESMFold results indicate that larger pre-trained models alongside techniques inspired
by AF2’s distillation method can enhance prediction accuracies. This improvement is
attributed to two primary factors. First, the size of the sequence pre-trained models has
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been significantly increased, with ESMFold now using a 15B model that encapsulates more
co-evolutionary information. Second, instead of employing self-distillation, a technique
known as AF2 distillation has been adopted. In this approach, AF2 is utilized to perform
structure predictions on a large sequence database, and the predicted structures are then
used as training data for ESMFold. This innovative method of utilizing AlphaFold2’s
predictive power to enrich the training data has contributed to the enhanced performance
of ESMFold in protein structure prediction. For instance, ESMFold, with fewer parameters,
predicts a protein with 384 residues in just 14.2 s on a single NVIDIA V100 GPU, about 6
times faster than AF2.

The strategies employed by AF2, ESMFold, RoseTTAFold and OpenFold in protein
structure prediction offer distinct advantages and limitations. ESMFold’s approach of using
individual sequences for predictions is time-efficient and particularly beneficial for orphan
proteins, which lack homologs in current databases. ESMFold, demonstrates a significant
speed advantage over AF2, enabling the rapid construction of predicted structures, a crucial
factor given the vast amount of available sequence data.

On the other hand, AF2’s methodology, as summarized in the overview, leverages
MSA and structural databases to interpret coevolutionary correlations between mutations
for its predictions. However, this approach may pose challenges in handling novel single-
point mutations or orphan proteins and concerns regarding data leakage in evaluation
data sets.

RoseTTAFold can predict protein–nucleic acid complexes, though its precision in this
area is not as high as when dealing with protein structures alone. To enhance this capability,
the RoseTTAFoldNA extension has been developed, specifically focusing on improving the
predictions of protein-nucleic acid complexes [43].

The contrasting approaches among AF2, ESMFold, RoseTTAFold and OpenFold
highlight the trade-offs between prediction speed and accuracy and need for additional
input data (Table 2). We compared the algorithms used by AF2, ESM2 and OpenFold
focusing on the input and frameworks in Supplementary Table S1.

Table 2. Capabilities of and differences between these four protein structure prediction models.

Model Speed Accuracy [44] Use of MSA Strength

AlphaFold2
Requires high-powered

and high-capacity
computing resources

AlphaFold2 attains a mean
GDT-TS score of 73.06.

Yes, leverages MSA for
rich evolutionary

context
High accuracy

ESMFold 6× faster than a single
AlphaFold2 model.

ESMFold attains a mean
GDT-TS score of 61.62.

No, predicts structures
from a single sequence Fast prediction speed

RoseTTAFold

Vary depending on the
specific protein and

computational
resources, compared to

AlphaFold2.

In over 80% of cases,
RoseTTAFold’s

performance was lower
than ESMFold, with the
latter achieving a higher

mean GDT-TS score.

Yes, uses MSAs
predicting protein

complexes with RNA
or DNA

OpenFold Slightly faster than
AlphaFold2 [45]. Yes, uses MSAs

Allows for
application-specific

training

6.6. AI Tools in Protein Sequence Generation and Structure Design

Generating protein sequences for novel proteins with designed structures and func-
tions is an interesting extension of the protein structure prediction problem, pave the way
for novel treatment options. Computational models like ProGen, ProteinMPNN, EvoDiff,
and RFDiffusion are being leveraged to accelerate this process.

ProGen, short for Protein Generator, is a protein language model developed by Sales-
force AI Research that generates protein sequences with predictable functions [10]. ProGen,
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a 12-billion-parameter neural network, generates protein sequences for specific biological
functions. It uses functional tags from the Pfam database and is trained on 280 million
protein sequences. Researchers have fine-tuned it with distinct enzyme families, resulting
in millions of sequences that closely resemble natural enzymes.

ProteinMPNN [11] is a deep learning algorithm designed for protein sequence design.
It extends the message-passing neural network (MPNN) framework, which is a machine
learning technique that can predict the properties of properties by simulating how residues
send and receive information to and from their neighbors. ProteinMPNN has been extended
to design protein–nucleic acids and protein–small molecules, which will greatly increase its
utility.

EvoDiff, a general-purpose diffusion framework developed by Microsoft [12], is tai-
lored for generating protein sequences and evolutionary alignments. It capitalizes on
large-scale evolutionary data and the unique conditioning strengths of diffusion models. A
prominent attribute of EvoDiff is its ability to generate proteins based solely on their se-
quence information. This streamlines the protein design process, as it negates the necessity
for comprehensive structural data.

RFDiffusion, used in protein engineering, leverages generative AI to generate novel
protein sequences and structures. RFDiffusion is a generative model that creates protein
sequences and structures using denoising diffusion probabilistic models [13]. RFDiffusion
takes a unique approach by adding Gaussian noise independently to the rotation and
translation matrices of the protein’s 3D coordinates to generate training data. This results
in a model with higher-dimensional representation capabilities and global rotational in-
variance, which in turn enables more stable model training. During the denoising process,
each step of the model predicts the structure after local denoising for the subsequent step.
This predicted structure then serves as the initial coordinate and structural template for
further predictions. Ablation studies have confirmed the importance of these templates
in generating high-quality protein structures. Additionally, RFDiffusion incorporates a
sequence information channel. Sequences that are masked during the diffusion process
gradually recover, mirroring a training task approach from a previous model, RFjoint [46].
This allows RFDiffusion to predict amino acid distributions at masked string positions,
and it has led to speculation that RFDiffusion might essentially be an evolved version
of RFjoint, enhanced by adding structural template noise. Moreover, RFDiffusion offers
different versions tailored to specific tasks, such as fixing known or functional segment
structures, broadening its applicability in protein research (Figure 5).
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Figure 5. Model structure of RFDiffusion. Use of the diffusion model approach for training and
fine-tuning the protein structure prediction model, enabling a more refined depiction of the hidden
relationship between protein sequences and structures.

6.7. AI Tools in Docking Used in Drug Discovery

Docking, a computational strategy, predicts how two molecules form a stable complex
and is usually separated into ligand docking and protein–protein docking. AI boosts
this process’s speed and precision. Deep Docking (DD), an AI enabled methodology for
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virtual screening of ultra-large chemical libraries, significantly accelerates structure-based
virtual screening. DD iteratively docks subsets of a chemical library, synchronized with
ligand-based predictions, to enhance virtual hit enrichment without substantial loss of
potential drug candidates [47]. DiffDock, an AI-driven tool from MIT, frames molecular
docking as a generative modeling problem. It maps the manifold of ligand poses to the
product space of the degrees of freedom involved in docking (translational, rotational, and
torsional) and develops an efficient diffusion process on this space [14].

7. Generative AI: A Catalyst in Cancer Drug Development

Generative AI has emerged as a transformative force in the life sciences sector (Figure 6),
powering innovative research, optimizing workflows, and providing new insights. Its
applications are extensive and varied: We previously discussed de novo design of pro-
teins [48,49], the creation of novel antibodies [50], and the building of comprehensive mod-
els for single-cell multi-omics [51], which can provide a deeper understanding of the cellular
heterogeneity in tumors and inform the development of personalized cancer treatments.
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Figure 6. Generative AI in Life Sciences: A Comprehensive Overview of Applications and Inno-
vations. Generative AI is revolutionizing various aspects of life sciences. It is accelerating drug
discovery, aiding in antibody development, and enhancing single-cell multi-omics models for disease
understanding. The technology also plays a role in personalized medicine, population genetics,
and viral evolution. Beyond biology, it is pivotal in data science for generating synthetic data and
in scientific visualization through text-to-image technologies. Overall, generative AI’s impact is
expansive and transformative across life sciences.
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Moreover, generative AI also plays a role in genomic variant effect prediction [52] and
identifying statistical patterns in DNA sequences [53], which can help in understanding
the genetic basis of cancer. It is instrumental in predicting and reconstructing the evolution
of viruses [54], thus offering valuable insights for epidemiology and vaccine development.
Additionally, this technology can generate synthetic data to augment existing data sets [55],
providing a valuable resource for researchers and scientists. Even in the realm of data
visualization, generative AI can be used for text-to-image generation [56,57], translating
complex textual descriptions into accurate, understandable biological images. Overall,
by enabling a deeper understanding of biological systems and accelerating the discovery
process, it holds great promise in advancing the fight against cancer.

8. Beyond Cancer: AI Driven Drug Discovery for Other Diseases

Researchers at MIT used AI to discover a new antibiotic, named “halicin”, effective
against E. coli and drug-resistant Acinetobacter baumannii. They trained a neural network
on a data set of 2335 molecules that inhibit E. coli and refined the model with feature
engineering and other techniques. The AI model analyzed over 107 million molecules to
identify potential antibiotics against E. coli. Using the model’s predictions, a shortlist of
the most promising candidates was created and empirically tested for their antibacterial
properties [58].

In early 2020, Exscientia reported the initiation of Phase 1 clinical trials for DSP-1181, a
compound designed to address obsessive-compulsive disorder. Developed through AI, the
compound was identified by screening chemical libraries for the most pertinent candidates.
DSP-1181 is reported to be the first drug of its kind to reach the clinical trial stage [59].
It was the first AI-designed drug candidate to enter clinical trials, which was a pivotal
moment in AI drug discovery.

In February 2023, Insilico Medicine received the FDA’s first-ever Orphan Drug Desig-
nation for a medication discovered and developed through AI technology. The drug, named
INS018_055, is designed as a small molecule inhibitor for treating idiopathic pulmonary
fibrosis (IPF). Utilizing their proprietary Pharma.AI platform, Insilico not only identified a
new target but also generated innovative small molecules. Following the successful com-
pletion of Phase 0 and Phase I safety studies, the drug has now advanced to multi-regional
Phase II clinical trials in the United States and China [60,61].

AI has been employed in the quest for COVID-19 therapeutics. Researchers combined
AI with fragment-based drug design to speed up the identification of potential drugs
against SARS-CoV-2. Using a molecular library of known SARS-3CLpro inhibitors; they
utilized AI to generate new compounds targeting the virus’s essential 3CL protease. These
AI-generated molecules were then screened for their ability to inhibit viral replication by
binding covalently to the 3CL protease [46]. In a different study, deep neural networks
were used to create new small molecules targeting SARS-CoV-2’s 3CL protease. Utilizing
transfer and reinforcement learning, the generative model was fine-tuned to focus on
known protease inhibitors. The training data came from the ChEMBL database of viral
protease inhibitors [62].

9. Limitations and Challenges

AF2 demonstrates high accuracy in predicting the three-dimensional structures of
proteins, particularly when sequences of multiple homologs are available in sequence
databases to construct an MSA. However, along with other AI tools, it requires substan-
tial computational resources. This can limit its accessibility for researchers with limited
computational capabilities [63]. The integration of AI into the drug discovery process also
presents regulatory and implementation challenges. These include ensuring data privacy
and security, validating the effectiveness of AI-based predictions, and adapting existing
workflows and systems to incorporate AI tools [64].

The challenge of ligand-induced folding, especially in regions of proteins that are
intrinsically disordered or “floppy”, has been a significant obstacle in drug discovery and
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development [35]. AF2, despite its groundbreaking contributions to protein structure
prediction, primarily predicts a single static state of a protein. This approach overlooks
the dynamic conformational changes critical for enzyme function and drug interaction,
such as adjustments at the binding site or domain shifts. These dynamic changes are
essential for understanding how a protein functions in its natural environment and how
it interacts with potential drug molecules [35]. The study by Fernández [65] introduced a
deep learning approach to address the challenge of binding-induced folding in a protein’s
intrinsically disordered regions. However, the conformational change induced by drug
folding in proteins with multiple domains or involved in protein–protein interactions
remains a challenge [66].

Finally, it is important to note that in drug discovery, understanding a protein’s
structure, while insightful, is seldom the primary bottleneck; the process is driven more by
empirical data from assays, pharmacokinetics, metabolism, and toxicology, emphasizing
that the success of drug discovery hinges on multiple factors.

As the field of protein structure prediction continues to evolve, it is expected that
further advancements will be made in the accuracy and applicability of AI tools. These
improvements may include enhanced performance on challenging protein classes and
complexes, better handling of protein dynamics and conformational changes, and reduced
reliance on homologous templates for accurate predictions [35]. Additionally, incorporating
experimental constraints and other sources of information into the modeling process may
help to increase the accuracy and reliability of structure predictions for a wider range of
protein targets.

10. Conclusions

AI is poised to significantly transform the landscape of drug development, offering
ways to streamline the process, reduce costs, and enhance success rates at various stages.
The process started with AF2, which has achieved remarkable success in predicting protein
structures, marking a milestone for AI applications in structural biology. By providing
accurate predictions of protein structures, AF2 can accelerate the development of new
cancer drugs and therapies, and more effectively identify and validate novel drug targets,
particularly for those lacking substantial structural information. Perhaps more importantly,
AF2 has inspired a wave of AI-driven tools in protein structure prediction, engineering,
docking, and generating novel proteins with desired structures and functions. These tools
exemplify the role of AI in advancing drug development by enabling the generation of
novel protein sequences and structures, predicting the effects of genomic variants, and
providing new insights into the mechanisms of cancer.
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