
UC San Diego
Technical Reports

Title
Bitmap algorithms for counting active flows on high speed links

Permalink
https://escholarship.org/uc/item/94p735xh

Authors
Estan, Cristian
Varghese, George
Fisk, Mike

Publication Date
2003-03-13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/94p735xh
https://escholarship.org
http://www.cdlib.org/

1

Bitmap algorithms for counting active flows on high

speed links
Cristian Estan, George Varghese, Mike Fisk

Computer Science and Engineering Department

University of California San Diego

cestan,varghese,mfisk@cs.ucsd.edu

Abstract—

In this paper we present a family of algorithms that ad-

dress the problem of counting the number of distinct header

patterns (flows) seen on a high speed link. Such counting

can be used to detect DoS attacks and port scans, and to

solve measurement problems. The central difficulty is that

count processing must be done within a packet arrival time

(8 nsec at OC-768 speeds) and, hence, must require only a

small number of memory references to limited, fast mem-

ory. A naive solution that maintains a hash table requires

several Mbytes because the number of flows can be more

than a million. By contrast, our new algorithms take very

little memory and are fast. The reduction in memory is par-

ticularly important for applications that run multiple con-

current counting instances. For example, we used one of our

new algorithms to replace the port scan detection compo-

nent of the popular intrusion detection system Snort. Doing

so reduced the memory usage on a ten minute trace from

50 Mbytes to 5.6 Mbytes while maintaining a 99.5% proba-

bility of alarming on a scan within 9 seconds of when the

large-memory algorithm would alarm. By contrast, the best

known prior algorithm (probabilistic counting) takes 4 times

more memory on the port scan application and 8 times more

memory on a measurement application. Our algorithms also

lead to a reduction by a factor of seven in the total memory

usage of a traffic analysis application from the CoralReef

suite. Fundamentally, this is because our algorithms can be

customized to take advantage of special features of appli-

cations such as a large number of instances that have very

small counts or prior knowledge of the likely range of the

count.

I. INTRODUCTION

Internet links operate at high speeds, and past trends

predict that these speeds will continue to increase rapidly.

Routers and intrusion detection devices that operate at up

to OC-768 speeds (40 Gigabits/second) are currently be-

ing developed. While the main bottlenecks (e.g., lookups,

classification, quality of service) in a traditional router are

well understood, what are the corresponding functions that

should be hardwired in the brave new world of security and

measurement? Ideally, we wish to abstract out functions

that are common to several security and measurement ap-

plications. We also wish to study efficient algorithms for

these functions, especially those with a compact hardware

implementation.

Toward this goal, this paper isolates and provides solu-

tions for an important problem that occurs in various net-

working applications: counting the number of active flows

among packets received on a link during a specified pe-

riod of time. A flow is defined by a set of header fields;

two packets belong to distinct flows if they have different

values for the specified header fields that define the flow.

For example, if we define a flow by source and destination

IP addresses, we can count the number of distinct source-

destination IP address pairs seen on a link over a given

time period. Our algorithms measure the number of active

flows using a very small amount of memory that can easily

be stored in on-chip SRAM or even processor registers. By

contrast, naive algorithms described below would require

massive amounts of memory necessitating the use of slow

DRAM.

For example, a naive method to count source-destination

pairs would be to keep a counter together with a hash table

that stores all the distinct 64 bit source destination address

pairs seen thus far. When a packet arrives with source and

destination addresses say < S,D >, we search the hash

table for < S,D >; if there is no match, the counter is

incremented and < S,D > is added to the hash table.

Unfortunately, given that backbone links can have up to

a million flows [5] today, this naive scheme would mini-

mally require 64 Mbits of high speed memory1. Such large

SRAM memory is expensive or not feasible for a modern

router.

There are more efficient general-purpose algorithms for

counting the number of distinct values in a multiset. In

this paper we not only present a general-purpose count-

ing algorithm – multiresolution bitmap – that has better

accuracy than the best known prior algorithm, probabilis-

tic counting [6], but introduce a whole family of counting

algorithms that further improve performance by taking ad-

1It must at least store the flow identifier, which in this example is 64

bits, for each of a million flows.

2

vantage of particularities of the specific counting applica-

tion. Our adaptive bitmap, using the fact that the num-

ber of active flows doesn’t change very rapidly, can count

the number of distinct flows on a link that contains any-

where from 0 to 100 million flows with an average error

of less than 1% using only 2 Kbytes of memory. Our trig-

gered bitmap, optimized for running multiple concurrent

instances of the counting problem many, of which have

small counts, is suitable for detecting port scans and uses

even less memory than running adaptive bitmap on each

instance.

A. Problem Statement

A flow is defined by an identifier given by the values

of certain header fields2. The problem we wish to solve

is counting the number of distinct flow identifiers (flow

IDs) seen in a specified measurement interval. For exam-

ple, an intrusion detection system looking for port scans

could count for each active source address the flows de-

fined by destination IP and port and suspect any source IP

that opens more than 3 flows in 12 seconds of performing

a port scan. Other applications such as packet scheduling

could prefer an alternate way of defining the number of

active flows without using measurement interval: consider

active the flows that have at least one packet in a queue

that packets are added to and removed from dynamically.

In this paper we mainly focus on the definition based on

measurement intervals.

Also, while many applications define flows at the granu-

larity of TCP connections, one may want to use other def-

initions. For example when detecting DoS attacks we may

wish to count the number of distinct sources, not the num-

ber of TCP connections. Thus in this paper we use the

term flow in this more generic way.

As we have seen, a naive solution using a hash table of

flow IDs is accurate but takes too much memory. In high

speed routers it is not only the cost of large, fast memories

that is a problem but also their power consumption and

the board space they take up on line cards. Thus, we seek

solutions that use a very small amount of memory and have

high accuracy. Usually there is a tradeoff between memory

usage and accuracy, but we want to find algorithms where

these tradeoffs are favorable. Also, since at high speeds per

packet processing time is very limited it is important that

the algorithms use few memory accesses per packet. We

describe algorithms that use only 1 or 2 memory accesses3

2We can also generalize by allowing the identifier to be a function

of the header fields (e.g., using prefixes instead of addresses, based on

routing tables).
3Actually, larger numbers of memory accesses are perfectly feasible

at high speeds using SRAM and pipelining, but this increases the cost

Fig. 1. The flow count provided by Dave Plonka’s FlowScan is

used to detect denial of service attacks.

and are simple enough to be implemented in hardware.

B. Motivation

Why is information about the number of flows useful?

We describe five possible categories of use.

Detecting port scans: Intrusion detection systems

warn of port scans when a source opens too many con-

nections within a given time4. The widely deployed Snort

intrusion detection system (IDS) [15] uses the naive ap-

proach of storing a record for each active connection. This

is an obvious waste since most of the connections are not

part of a port scan. Even for actual port scans, if the IDS

only reports the number of connections we don’t need to

keep a record for each connection. Since the number of

sources can be very high, it is desirable to find algorithms

that count the number of connections of each source us-

ing little memory. Further, if an algorithm can distinguish

quickly between suspected port scanners and normal traf-

fic, the IDS need not perform expensive operations (e.g.,

logging) on most of the traffic, thus becoming more scal-

able in terms of memory usage and speed. This is particu-

larly important in the context of the recent race to provide

wire-speed intrusion detection [1].

Detecting denial of service (DoS) attacks: FlowS-

can by David Plonka [14] is a popular tool for visualiz-

of the solution.
4While distributed port scans are possible, they are harder because the

attacker has to control many endhosts it can scan from. If the number

of hosts is not very large, each will have to probe many port-destination

combinations thus running the risk of being detected.

3

ing network traffic. It uses the number of active flows

(see Figure 1) to detect ongoing denial of service attacks.

While this works well at the edge of the network (i.e., the

link between a large university campus and the rest of the

Internet) it doesn’t scale to the core. Also it relies on mas-

sive intermediate data (NetFlow) to compute compact re-

sults – could we obtain the useful information more di-

rectly? Mahajan et al. propose a mechanism that allows

backbone routers to limit the effect of (distributed) DoS

attacks [10]. While the mechanism assumes that these rou-

ters can detect an ongoing attack it does not give a concrete

algorithm for it. Estan and Varghese present algorithms

that can detect destination addresses or prefixes that re-

ceive large amounts of traffic [4]. While these can identify

the victims of attacks it also gives many false positives be-

cause many destinations have large amounts of legitimate

traffic. To differentiate between legitimate traffic and an

attack we can use the fact that DoS tools use fake source

addresses chosen at random5. If for each suspected vic-

tim we count the number of sources of packets that come

from some networks known to be sparsely populated, a

large count is a strong indication that a DoS attack is in

progress.

General measurement: Counting the number of ac-

tive connections and the number of connections associated

with each source and destination IP address is part of the

CoralReef [9] traffic analysis suite. Other ways of count-

ing the number of distinct values in given header fields

can also provide useful data. One could measure the num-

ber of sources using a protocol version or variant to get an

accurate image of protocol deployment. Alternatively, by

counting the number of connections associated with each

of the protocols generating significant traffic we can com-

pute the average connection length for each protocol thus

getting a better view of its behavior. Dimensioning the var-

ious caches in routers (packet classification caches, multi-

cast route caches for source-group (S-G) state, and ARP

caches) also benefits from prior measurements of typical

workload.

Estimating the spreading rate of a worm: From

Aug 1 to Aug 12 2001, while trying to track the Code Red

worm [11], collecting packet headers for Code Red traffic

on a /8 network produced 0.5 GB per hour of compressed

data. In order to determine the rate at which the virus was

spreading, it was necessary to count the number of distinct

Code Red sources passing through the link. This was ac-

5If the attack uses a small number of source addresses than it can be

easily filtered out once those addresses are identified. Identifying those

addresses can be done using previous techniques [4] because those few

source addresses must send a lot of traffic each for the attack to be

effective.

tually done using a large log and a hash table which was

expensive in time and also inaccurate (because of losses in

the log).

Packet scheduling: Many scheduling algorithms try to

ensure that all flows can send at the current “fair share” of

the available bandwidth. At high speeds it is not feasible

to keep per-flow state. While there are scheduling algo-

rithms that compute the fair share without using per-flow

state (e.g., CSFQ [17], XCP [8]), they require explicit co-

operation of edge routers or end hosts. Being able to count

the number of distinct flows that have packets in the queue

of the router might allow the router to estimate the “fair

share” without outside help and could lead to schedul-

ing algorithms that are less vulnerable to misbehaving end

hosts or edge routers.

Thus, while counting the number of flows is usually in-

sufficient by itself, it can provide a useful building block

for complex tasks that range from detecting DoS attacks to

fair packet scheduling.

II. RELATED WORK

The networking problem of counting the number of dis-

tinct flows has a well-studied equivalent in the database

community: counting the number of distinct database

records (or distinct values of an attribute). Thus, the major

piece of related work is a seminal algorithm called proba-

bilistic counting, due to Flajolet and Martin [6], introduced

in the context of databases. We use probabilistic counting

as a base to compare our algorithms against. Whang et al.

address the same problem and propose an algorithm [18]

that is equivalent to the simplest algorithm we describe (di-

rect bitmap).

The insight behind probabilistic counting is to compute

a metric of how uncommon a certain record is and keep

track of the most uncommon record seen. If the algorithm

sees very uncommon records, it concludes that the num-

ber of records is large. More precisely, for each record the

algorithm computes a hash function that maps it to an L
bit string (L is configurable). It then counts the number of

consecutive zeroes starting from the least significant posi-

tion of the hash result. If the algorithm sees records that

hash to values ending in 0, 1 and 2 zeroes it concludes

that the number of distinct records was c22 (c is a statisti-

cal correction factor), if it also sees hash values ending in 3

zeroes it estimates c23 and so on. This basic form can have

an accuracy of at most 50% because possible estimates are

a factor of 2 from each other. By dividing the hash values

into nmap groups (nmap is configurable), and running

a separate instance of the basic algorithm for each group

and averaging over the estimates for the count provided

by each of them, probabilistic counting reduces the error

4

of its final estimate. We describe a family of algorithms

that each outperforms probabilistic counting by an order

of magnitude by exploiting application-specific character-

istics.

In networking, there are general-purpose traffic mea-

surement systems such as Cisco’s NetFlow [12] or

LFAP [13] that report per-flow records for very fine-

grained flows. This is useful for traffic measurement. The

information can be used to count flows (and this is what

FlowScan [14] does), but is not optimized for such a pur-

pose. Besides the large amount of memory needed, in

modern, high-speed routers updating state on every packet

arrival is infeasible at high speeds. Ideally, such state

should be in high speed SRAM (which is expensive and

limited) to allow wire-speed forwarding.

Because NetFlow state is so large, Cisco Routers write

NetFlow state to slower DRAM which slows down packet

processing. For high speeds sampling needs to be turned

on: only the sampled packets result in updates to the flow

cache that keeps the per flow state. Unfortunately, sam-

pling has problems of its own since it affects the accuracy

of the measurement data. Sampling works reasonably for

estimating the traffic sent by large flows or large traffic

aggregates, but has extremely poor accuracy for estimat-

ing the number of flows. This is because uniform sam-

pling produces more samples of flows that send more traf-

fic, thereby biasing any simple estimator that counts the

number of flows in the sample and applies a correction.

Duffield et al. present two scalable methods for count-

ing the number of active TCP flows based on samples of

the traffic [3]. They rely on the fact that TCP turns the

SYN flag on only for the packets starting a connection.

The estimates are based on counts of the number of flows

with SYN packets and the number of flows with non-SYN

packets in the sampled data. While this is a good solution

for TCP connections it cannot be applied to UDP or when

we use a different definition for flows (e.g., when looking

at protocol deployment statistics, we define a flow as all

packets with the same source IP). Also counting flows in

the sampled data can still be a memory-consuming opera-

tion that needs to be efficiently implemented.

The Snort [15] intrusion detection system (IDS) uses a

memory-intensive approach similar to NetFlow to detect

port scans: it maintains a record for each active connection

and a connection counter for each source IP. More elabo-

rate algorithms have been used in other settings. When

controlling the medium access in wireless networks, some

protocols rely on an estimate of the number of senders.

The GRAP protocol [19] uses techniques equivalent to our

direct bitmap and virtual bitmap to estimate this number,

but has no equivalent of our more sophisticated multireso-

lution, adaptive, or triggered bitmap algorithms.

III. A FAMILY OF COUNTING ALGORITHMS

Our family of algorithms for estimating the number of

active flows relies on updating a bitmap at run time. Diffe-

rent members of the family have different rules for updat-

ing the bitmap. At the end of the measurement interval (1

second, 1 minute, or even 1 hour), the bitmap is processed

to yield an estimate for the number of active flows. Since

we do not keep per-flow state, all of our results are esti-

mates. However, we prove analytically and show through

experiments on traces that our estimates are close to ac-

tual values. The family contains three core algorithms and

three derived algorithms. Even though the first two core

algorithms (direct and virtual bitmap) were invented pre-

viously, we present them here because they form the basis

of our new algorithms (multiresolution, adaptive, and trig-

gered bitmaps), and because we present new applications

in a networking context (as opposed to a database or wire-

less context).

We start in Section III-A with the first core algorithm,

direct bitmap, that uses a large amount of memory. Next,

in Section III-B we present the second core algorithm

called virtual bitmap that uses sampling over the flow ID

space to reduce the memory requirements. While virtual

bitmap is extremely accurate, it needs to be tuned for a

given anticipated range of the number of flows. We re-

move the “tuning” restriction of virtual bitmap with our

third algorithm called multiresolution bitmap, described in

Section III-C, at the cost of increased memory usage. Fi-

nally, in Section III-D we describe the three derived algo-

rithms. In this section we only describe the algorithms; we

leave an analysis of the algorithms to Section IV.

A. Direct bitmap

The direct bitmap is a simple algorithm for estimating

the number of flows. We use a hash function on the flow ID

to map each flow to a bit of the bitmap. At the beginning of

the measurement interval all bits are set to zero. Whenever

a packet comes in, the bit its flow ID hashes to is set to 1.

Note that all packets belonging to the same flow map to the

same bit, so each flow turns on at most one bit irrespective

of the number of packets it sends.

We could use the number of bits set as our estimate of

the number of flows, but this is inaccurate because two or

more flows can hash to the same bit. In Section IV-A,

we derive a more accurate estimate that takes into account

hash “collisions”6 . Even with this better estimate, the

6We assume in our analysis that the hash function distributes the

flows randomly. In an adversarial setting, the attacker who knows the

hash function could produce flow identifiers that produce excessive col-

5

algorithm becomes very inaccurate when the number of

flows is much larger than the number of bits in the bitmap

and the bitmap is almost full. The only way to preserve ac-

curacy is to have a bitmap size that scales almost linearly

with the number of flows, which is often impractical.

B. Virtual bitmap

The virtual bitmap algorithm reduces the memory usage

by storing only a small portion of the big direct bitmap one

would need for accurate results (see Figure 2) and extrap-

olating the number of bits set. This can also be thought of

as sampling the flow ID space. The larger the number of

flows the smaller the portion of the flow ID space we cover.

Virtual bitmap generalizes direct bitmap: direct bitmap is

a virtual bitmap which covers the entire flow ID space.

Unfortunately, a virtual bitmap does require tuning the

“sampling factor” based on prior knowledge of the num-

ber of flows. If it differs significantly from what we con-

figured the virtual bitmap for, the estimates are inaccurate.

If the number of flows is too large the virtual bitmap fills

up and has the same accuracy problems as an underdimen-

sioned direct bitmap. If the number of flows is too small

we have another problem: say the virtual bitmap covers

1% of the flow ID space and there are 50 active flows -

if none of them hashes to the virtual bitmap, the algorithm

will suppose the number of flows is 0, if 1 hashes, the algo-

rithm will estimate 100, but it will never estimate 50. The

optimal sampling factor obtains the best tradeoff between

“collision errors” and “extrapolation errors”.

While, in general, one wants an algorithm that is accu-

rate over a wider range, we note that even an unadorned

virtual bitmap is useful. For example, consider a security

application where we wish to trigger an alarm when the

number of flows crosses a threshold. The virtual bitmap

can be tuned for this threshold and uses less memory

than other algorithms that are accurate not just around the

threshold, but over a wider range for the number of flows.

In Section IV we derive formulae for the average error

of the virtual bitmap estimates. The analysis also provides

insight for choosing the right sampling factor. Perhaps sur-

prisingly, the analysis also indicates that the average error

depends only on the number of bits and not on the number

of flows as long as the sampling factor is set to an optimal

value. For example with 215 bytes the average error is 3%.

C. Multiresolution bitmap

The virtual bitmap is simple to implement, uses little

memory, and gives very accurate results, but requires us to

lisions thus evading detection. This is not possible if we use a random

seed to our hash function.

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

����������������������������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

Multiple bitmaps

Virtual bitmap

Direct bitmap

000* 001* 010* 011* 100* 101*

Multiresolution bitmap

Entire flow ID space

Part covered by virtual bitmap

11000*

1111000

111111111101*

Fig. 2. The multiresolution bitmap from this example uses a

single 7-bit hash function to decide which bit to map a flow

to. It gives results no less accurate than the 3 virtual bitmaps,

thus covering a wide range for the number of flows, but it

performs a single memory update per packet. Note that all

the unfilled “tiles” from these bitmaps, despite their different

sizes represent one bit of memory.

know in advance a reasonably narrow range for the num-

ber of flows. An immediate solution to this shortcoming

is to use many virtual bitmaps, each using the same num-

ber of bits of memory, but different sampling factors, so

that each is accurate for a different range of the number

of active flows (different “resolutions”). The union of all

these ranges is chosen to cover all possible values for the

number of flows. When we compute our estimate, we use

the virtual bitmap that is most accurate based on a simple

rule that looks at the number of bits set. The “lowest res-

olution” bitmap is a direct bitmap that works well when

there are very few flows. The “higher resolution” bitmaps

cover a smaller and smaller portion of the flow ID space

and work well when the number of flows is larger. The

problem with the naive approach of using several virtual

bitmaps of differing granularities is that instead of updat-

ing one bitmap for each packet, we need to update several,

causing more memory accesses.

The main innovation in multiresolution bitmap is to

maintain the advantages of multiple bitmaps configured

for various ranges while performing a single update for

6

each incoming packet. Figure 2 illustrates the direct

bitmap, virtual bitmap, multiple bitmaps and multireso-

lution bitmap. Before explaining how the multiresolution

bitmap works it can help to switch to another way of think-

ing about how the virtual bitmap operates. We can consi-

der that instead of generating an integer, the hash function

covers a continuous interval. The virtual bitmap covers a

portion of this interval (the ratio of the sizes of the inter-

val covered by the virtual bitmap and the entire interval

is the sampling factor of the virtual bitmap). We divide

the interval corresponding to the virtual bitmap into equal

sized sub-intervals, each corresponding to a bit. A bit in

the virtual bitmap is set to 1 if the hash of the incoming

packet maps to the sub-interval corresponding to the bit.

The multiple bitmaps solution is shown below the virtual

bitmap solution in Figure 2.

A multiresolution bitmap is essentially a combination of

multiple bitmaps of different “resolutions”, such that a sin-

gle hash is computed for each packet and only the highest

resolution bitmap it maps to is updated. Thus each bitmap

loses a portion of its bits which are covered by higher res-

olution bitmaps. But those bits can easily be recovered

later (during the analysis phase) from the finer grained bit-

maps by OR-ing together the bits in the higher resolution

bitmaps that correspond to individual bits in the lower res-

olution bitmap. We call these regions with different reso-

lutions components of the multiresolution bitmap. When

we compute the estimate, based on the number of bits set

in each component, we choose one of them as “base”, es-

timate the number of flows hashing to it and all finer com-

ponents and extrapolate.

In Section IV-C we answer questions such as: how

many bits should each component have, how many com-

ponents do we need and what is the best ratio between the

resolutions of neighboring components? In Appendix C

we show that multiresolution bitmaps are easy to imple-

ment even in hardware that can keep up with line speeds.

In Appendix E we compare our multiresolution bitmap to

probabilistic counting showing that while both algorithms

use nearly identical hashes to set bits, they interpret the

data very differently, thus the differences in the accuracy

of the results.

D. Derived algorithms

In this section we describe two derived algorithms for

counting the number of active flows. Adaptive bitmap de-

scribed Section III-D.1 achieves both the accuracy of vir-

tual bitmap and the robustness of multiresolution bitmap

by combining them and relying on the stationarity of

the number of flows. Triggered bitmap described in

Section III-D.2 combines direct bitmap and multiresolu-

tion bitmap to reduce the total amount of memory used

by multiple instances of flow counting when most of the

instances count few flows. We defer to Appendix A the

discussion of further changes to the basic algorithms that

allow them to operate on packet queues (that support arbi-

trary addition and deletion of packets) instead of measure-

ment intervals, operate at multiple timescales or compute

flow arrival rates.

D.1 Adaptive bitmap

It would be nice to have an algorithm that provides the

best of both worlds: the accuracy of a well tuned virtual

bitmap with the wide range of multiresolution bitmaps.

Adaptive bitmap is such an algorithm that combines a large

virtual bitmap and a small multiresolution bitmap. It re-

lies on a simple observation: measurements show that the

number of active flows does not change dramatically from

one measurement interval to the other (so it is not suit-

able for tracking say attacks where sudden changes are ex-

pected). We use the small multiresolution bitmap to detect

changes in the order of magnitude of the count, and the

virtual bitmap for precise counting within the currently ex-

pected range. The number of flows we expect is the num-

ber of flows measured in the previous measurement inter-

val. Assuming “quasi-stationarity”, the algorithm is accu-

rate most of the time because it uses the large, well-tuned

virtual bitmap for estimating the number of flows. At

startup and in the very unlikely case of dramatic changes

in the number of active flows the multiresolution bitmap

provides a less accurate estimate.

Updating these two bitmaps separately would require

two memory updates per packet, but we can avoid the

need for multiple updates by combining the two bitmaps

into one. Specifically, we use a multiresolution bitmap

in which r adjacent components are replaced by a single

large component consisting of a virtual bitmap (where r
is a configuration parameter). The location of the virtual

bitmap within the multiresolution bitmap (i.e. which com-

ponents it replaces) is determined by the current estimate

of the count. If the current number of flows is small, we

replace coarse components with the virtual bitmap. If the

number of flows is large, we replace fine components with

the vuirtual bitmap. The update of the bitmap happens

exactly as in the case of the multiresolution bitmap, except

that the logic is changed slightly when the hash value maps

to the virtual bitmap component.

D.2 Triggered bitmap

Consider the concrete example of detecting port scans.

If one used a multiresolution bitmap per active source

to count the number of connections, the multiresolution

7

bitmap would need to be able to handle a large number

of connections because port scans can use very many con-

nections. The size of such a multiresolution bitmap can be

quite large. However, most of the traffic is not port scans

and most sources open only one or two connections. Thus

using a large bitmap for each source is wasteful.

The triggered bitmap combines a very small direct

bitmap with a large multiresolution bitmap. All sources

are allocated a small direct bitmap. Once the number of

bits set in the small direct bitmap exceeds a certain trigger

value, a large multiresolution bitmap is allocated for that

source and it is used for counting the connections from

there on. Our estimate for the number of connections is

the sum of the flows counted by the small direct bitmap

and the multiresolution bitmap. This way we have accu-

rate results for all sources but only pay the cost of a large

multiresolution bitmap for the sources that open many con-

nections.

As described so far, this algorithm introduces a subtle

error that makes a small change necessary. If a flow is ac-

tive both before and after the large multiresolution bitmap

is allocated it gets counted by both the direct bitmap and

the multiresolution bitmap. Only using the multiresolu-

tion bitmap for our final estimate is not a solution either

because than we would not count the flows that were ac-

tive only before the multiresolution bitmap was allocated.

To avoid this problem we change the algorithm the fol-

lowing way: after the multiresolution bitmap is allocated,

we only map to it those flows that do not map to one of

the bits already set in the direct bitmap. This way if the

flows that set the bits in the direct bitmap send more pack-

ets, they will not influence the multiresolution bitmap. It’s

true that the multiresolution bitmap doesn’t catch all the

new flows, just the ones that map to one of the bits not set

in the direct bitmap. This is equivalent to the “sampling

factor” of the virtual bitmap and we can compensate for it

(see Section IV-A).

IV. ALGORITHM ANALYSIS

In this section we provide the analyses of the statisti-

cal behavior of the bitmaps used by our algorithms. We

focus on three types of results. In Section IV-A, we de-

rive formulae for estimating the number of active flows

based on the observed bitmaps. In Section IV-B, we an-

alytically characterize the accuracy of the algorithms by

deriving formulae for the average error of the estimates.

In Section IV-C, we use the analysis to derive rules for

dimensioning the various bitmaps so that we achieve the

desired accuracy over the desired range for the number of

flows.

A. Estimate Formulae

Direct bitmap: To derive a formula for estimating the

number of active flows for a direct bitmap we have to take

into account collisions. Let b be the size of the bitmap. The

probability that a given flow hashes to a given bit is p =
1/b. Assuming that n is the number of active flows, the

probability that no flow hashes to a given bit is pz = (1 −
p)n ≈ (1/e)n/b. By linearity of expectation this formula

gives us the expected number of bits not set at the end of

the measurement interval E[z] = bpz ≈ b(1/e)n/b. If the

number of zero bits is z, Equation 1 gives our estimate n̂
for the number of active flows. Whang et al. also show that

this is the maximum likelihood estimator for the number of

active flows [18].

n̂ = b ln

(
b

z

)
(1)

Virtual bitmap: Let α be the “sampling factor” (the ra-

tio of the sizes of the interval covered by the virtual bitmap

b and the entire hash space h). The probability for a given

flow to hash to the virtual bitmap is equal to the sampling

factor pv = α = b/h. Let m be the number of flows that

actually hash to the virtual bitmap. Its probability distri-

bution is binomial with an expected value of E[m] = αn.

We can use Equation 1 to estimate m and based on that we

obtain Equation 2 for the estimate of the number of active

flows n.

n̂ =
1

α
b ln

(
b

z

)
= h ln

(
b

z

)
(2)

Multiresolution bitmap: The multiresolution bitmap

is a combination of many components, each tuned to pro-

vide accurate estimates over a particular range. When we

compute our estimate we don’t know in advance which

component is the one that provides the most accurate es-

timate (we call this the base component). As we will see

in Section IV-B, we obtain the smallest error by choos-

ing as the base component the coarsest component that

has no more than setmax bits (lines 1 to 5 in Figure 3).

setmax is a precomputed threshold based on the analysis

from Section IV-B. Once we have the base component, we

estimate the number of flows hashing to the base and all

the higher resolution ones using Equation 1 and add them

together (lines 13 to 17 in Figure 3). To obtain the result

we only need to perform the multiplication corresponding

to the sampling factor (lines 18 and 19). Other parameters

used by this algorithm are the ratio k between the resolu-

tions of neighboring components and blast the number of

bits in the last component (which is different from b).

Adaptive bitmap: The algorithm for adaptive bitmap

8

ESTIMATEFLOWCOUNT

1 base = c − 1
2 while base > 0 and bitsSet(component[base]) ≤ setmax

3 base = base − 1
4 endwhile

5 base = base + 1
6 if base == c and bitsSet(component[c]) > setlastmax)

7 if bitsSet(component[c]) == blast

8 return “Cannot give estimate”

9 else

10 warning “Estimate might be inaccurate”

11 endif

12 endif

13 m = 0
14 for i = base to c − 1
15 m = m + b ln(b/bitsZero(component[i]))
16 endfor

17 m = m + blast ln(blast/bitsZero(component[c]))
18 factor = kbase−1

19 return factor ∗ m

Fig. 3. Algorithm for computing the estimate of the number of active flows for a multiresolution bitmap. We first pick the base

component that gives the best accuracy then add together the estimates for the number of flows hashing to it and all higher

resolution components and finally extrapolate.

is very similar to multiresolution bitmap. The main differ-

ence is that we use different threshold for selecting the big

component as base. For brevity, we omit the algorithm.

Triggered bitmap: If the triggered bitmap did not allo-

cate a multiresolution bitmap, we simply use the formula

for direct bitmaps (Equation 1). Let’s use g for the num-

ber of bits that have to be set in the direct bitmap before

the multiresolution bitmap is allocated and d for the total

number of bits in the direct bitmap. If the multiresolution

bitmap is deployed, we use the algorithm from Figure 3

to compute the number of flows hashing to the multires-

olution bitmap, multiply that by d/(d − g) and add the

estimate of the direct bitmap.

B. Accuracy

To determine the accuracy of these algorithms we look

at the standard error of our estimate n̂, that is the standard

deviation of the ratio n̂/n. We also refer to this quantity

as the average (relative) error SD[n̂/n] = SD[n̂]/n. One

parameter that is useful in these analyses is the flow den-

sity ρ defined as the average number of flows that hash to

a bit.

Direct bitmap: While our formula for estimating the

number of active flows accounts for the expected collisions

it doesn’t always give exact results because the number

of collisions is random. Equation 3 approximates the aver-

age error of a direct bitmap based on the Taylor expansion

of Equation 1 as derived by Whang et al. [18]. The result

is not exact because because less significant terms of the

Taylor expansion were omitted. Whang et al. also show

that the approximation does not lead to serious inaccura-

cies for configurations one expects to see in practice. They

also show that the distribution of the number of bits set is

asymptotically normal so errors much larger than the stan-

dard error are very unlikely [18]. For example, for a direct

bitmap configured to operate at an average error of 10%

for flow densities up to 2, the value of the average error we

get by including the next term of the Taylor series is only

2% away from the approximation (i.e., the actual average

error can be at most 10.2% instead of 10%). The inaccu-

racy introduced by the approximation decreases further as

the number of bits increases.

SD

[
n̂

n

]
≈

√
eρ − ρ − 1

ρ
√

b
(3)

Virtual bitmap: Besides the randomness in the col-

lisions, there is another source of error for the virtual

bitmap: we assume that the ratio between the number of

flows that hash to the physical bitmap and all flows is ex-

actly the sampling factor while due to the randomness of

9

0.5 1 1.5 2 2.5 3 3.5 4

Flow density (flows/bit)

0.04

0.05

0.06

R
el

at
iv

e
er

ro
r

o
f

es
ti

m
at

e

Measured error
Predicted error

Effect of the flow density on accuracy

Fig. 4. When the flow density is too low, the “sampling error”

takes over, when it is too high “collision error” is the main

factor. We get the best accuracy for a flow density of around

ρ = 1.6. The estimate from Equation 4 matches well the ex-

perimental results being slightly conservative (larger). See

Appendix F for details on the experiment that produced this

result.

the process the number can differ. In Appendix B we ana-

lyze these two errors and how they interact. Equation 4

takes into account their cumulative effect on the result.

When the flow density is too large the error increases ex-

ponentially because of the collision errors. When it is too

small, the error increases as the sampling errors take over.

Our analysis also shows that the terms ignored by the ap-

proximations do not contribute significantly and that the

bound is tight. Figure 4 presents a typical result compar-

ing the measured average error from simulations on traces

of actual traffic to the value from Equation 4.

SD

[
n̂

n

]
/

√
eρ − 1

ρ
√

b
(4)

Multiresolution bitmap: To compute the average error

of the estimate of the multiresolution bitmap, we should

take into account separately the collision errors of all com-

ponents finer than the base. This would result for a dif-

ferent formula for each component that would be used as

base. Equation 5 is a slightly weaker bound that holds for

all components but the last one as long as the number of

bits in the last component blast is large enough. The details

of its derivation can be found in Appendix B. Equation 5

bounds quite tightly the average error for a normal compo-

nent. For the last component of the multiresolution bitmap

we use Equation 4 directly.

1000 10000 1e+05 1e+06 1e+07 1e+08

Number of flows

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
v

er
ag

e
er

ro
r

Multiresolution bitmap

Virtual bitmap replaces 9 to 16

Virtual bitmap replaces 10 to 17

Virtual bitmap replaces 11 to 18

Accuracy for an adaptive bitmap

Fig. 5. The large virtual bitmap replaces 6 of the components of

the multiresolution bitmap. The size of the normal compo-

nents is b = 64 bits and the size of the large virtual bitmap is

v = 1627 bits. The adaptive bitmap guarantees an average

error of at most 10% over the whole range, but if the number

of flows falls into the “sweet spot” the average error can be

as low as 3.1%

SD

[
n̂

n

]
/

√
k−1

k

(
eρ + eρ/k − 2

)
+ eρ/k2 − 1

ρ
√

bk
k−1

(5)

Adaptive bitmap: The error of the estimates of the

adaptive bitmap depends strongly on the number of flows:

the errors are much larger if the number of flows is un-

expectedly large or small. The exact formulas, omitted

for brevity are not very different from the ones seen so

far. We give an example instead. Figure 5 gives the av-

erage error as predicted by our formulae for the adaptive

bitmap we use in for measurements (Section V-C). We first

represent the average error of the original multiresolution

bitmap and then the average error we obtain by replacing

various groups of 8 consecutive components with the vir-

tual bitmap. It is apparent from this figure that by changing

which components are replaced by the virtual bitmap we

can change the range for which the adaptive bitmap is ac-

curate.

C. Configuring the bitmaps

In this section we address the configuration details and

implicitly the memory needs of the bitmap algorithms. All

measurement results are in Section V. The two main pa-

rameters we use to configure the bitmaps are the maxi-

mum number of flows one wants them to count N and the

acceptable average relative error ǫ. We base our computa-

tions on the formulas of the previous section.

10

Algorithm Memory (bits)

Direct bitmap > N/ln(Nǫ2 + 1)

Virtual bitmap 1.54413865/ǫ2

Multiresolution bmp. 0.9186ln(Nǫ2)/ǫ2 + ct.

Adaptive bitmap ' 1.54413865/ǫ2

TABLE I

THE SIZE OF THE DIRECT BITMAP SCALES SUBLINEARLY

WITH N BUT WORSE THAN N/ln(Nǫ2 + 1), THE SIZE FOR

THE VIRTUAL BITMAP IS PROPORTIONAL TO THE INVERSE

OF THE SQUARE OF THE AVERAGE ERROR, THE SIZE OF THE

MULTIRESOLUTION BITMAP SCALES AS THE LOGARITHM OF

THE NUMBER OF FLOWS OVER THE SQUARE OF THE

AVERAGE ERROR AND THE ADAPTIVE BITMAP DELIVERS

UNDER CERTAIN ASSUMPTIONS THE ACCURACY OF THE

VIRTUAL BITMAP BY ADAPTING DYNAMICALLY TO THE

NUMBER OF ACTIVE FLOWS.

Direct bitmap: If we would keep ρ = N/b constant

as N increased ǫ would improve proportionally to 1/
√

N
(which is proportional to 1/

√
b). So as N increases the

flow density that gives us the desired accuracy also in-

creases. Therefore by ignoring the constant term under

the square root in Equation 3 we get a tight bound on how

b scales. ǫ2
/ (eρ − ρ)/(ρ2b) so ǫ2N + 1 / eρ/ρ < eρ.

From here ρ < ln(ǫ2N +1) and thus b > N/ln(ǫ2N +1).
We claim that for large values of N while this closed

form bound is not tight it is not very far off either. For

example for N = 1, 000, 000 and ǫ = 10% the bound

gives 108,572 bits while the actual value is 85,711 bits.

Of course, for configuring a direct bitmap we recommend

solving Equation 3 numerically for b (with ρ replaced by

N/b).

Virtual bitmap: The average error of the virtual

bitmap given by Equation 4 is minimized by a certain

value of the flow density. Solving numerically we get

ρoptimal = 1.593624 and this corresponds to around

20.3% of the bits of the bitmap being not set. By sub-

stituting, we obtain the average error for this “sweet spot”

flow density ǫ / 1.242633756330/
√

b. By inverting this

we obtain the formula from Table I for the number of bits

of physical memory we need to achieve a certain accuracy.

When we need to configure the virtual bitmap as a trigger,

we set the sampling factor such that at the threshold the

flow density is 1.593624. For this application, if we have

155 bits, the average error of our estimate is at most 10%

no matter how large the threshold is. If we have 1,716,

the average error is at most 3%, and if we have 15,442 it

is at most 1%. If we want the virtual bitmap to have at

k ρmin ρmax coefficient f(k) f(k)/ln(k)

2 1.3372 2.6744 0.6367 0.9186

3 0.9750 2.9250 1.0318 0.9392

4 0.7856 3.1426 1.3470 0.9717

5 0.6660 3.3301 1.6199 1.0065

6 0.5822 3.4935 1.8674 1.0423

7 0.5196 3.6378 2.0977 1.0780

8 0.4708 3.7664 2.3155 1.1135

TABLE II

THE OPERATING RANGE OF THE COMPONENTS OF THE

MULTIRESOLUTION BITMAP IS BETWEEN ρmin AND ρmax .

THE COEFFICIENT AND THE DESIRED ACCURACY

DETERMINE THE SIZE OF THE COMPONENTS b = f(k)/ǫ2.

THE LARGER THE RATIO BETWEEN THE RESOLUTIONS OF

NEIGHBORING COMPONENTS k, THE WIDER THE RANGE

COVERED BY A SINGLE COMPONENT AND THE LARGER THE

COMPONENT.

most a certain error for a range of flow counts between

Nmin and Nmax, we need to solve the problem numeri-

cally by finding a ρmin < ρoptimal and a ρmax > ρoptimal

so that ρmax/ρmin = Nmax/Nmin and ρmin and ρmax

produce the same error. Once we have these values, we

can compute the sampling factor for the virtual bitmap and

the number of bits.

Multiresolution bitmap: For the multiresolution

bitmap, we have to ensure that the average error doesn’t

exceed the desired value over the whole range from 0 to

N . We divide the range among components. Configuring

a component is very much like configuring a virtual bitmap

for a range, except we use Equation 5. We find two flow

densities ρmin and ρmax that give the same error under the

constraint that ρmax/ρmin = k (k is the ratio between the

resolutions of neighboring components). We choose the

bitmap size b for the normal components (all except the

last one) such that at ρmin and ρmax the we get the desired

accuracy b = f(k)/ǫ2 where the coefficient f(k) depends

on k. Table II contains the values of ρmin, ρmax and the

coefficient used for determining the bitmap size for some

values for k. The base component is the one with a flow

density between ρmin and ρmax, so the threshold used by

the algorithm (Figure 3) to select the base component is

setmax = b(1 − e−ρmax).

The ratio f(k)/ln(k) gives the asymptotic memory

usage for a certain choice of k and we can see from Table II

that k = 2 is asymptotically the best choice. Appendix D

presents the actual algorithm we use for finding configu-

rations for the multiresolution bitmap that achieve the de-

11

r v/b improvement

2 2.3626 1.1725

3 4.4861 1.4488

4 8.0602 1.8468

5 14.3253 2.4029

6 25.5512 3.1709

7 45.9411 4.2265

8 83.3331 5.6754

9 152.4219 7.6641

10 280.8636 10.3959

11 520.9041 14.1524

12 971.5306 19.3240

TABLE III

AS WE INCREASE THE NUMBER OF COMPONENTS r

REPLACED BY THE VIRTUAL BITMAP, THE SIZE OF THE

VIRTUAL BITMAP v ALMOST DOUBLES FOR EACH NEW

COMPONENT REPLACED. THE RATIO BETWEEN THE

AVERAGE ERROR OF THE LARGE VIRTUAL BITMAP AND THE

MULTIRESOLUTION BITMAP ALSO INCREASES

EXPONENTIALLY, BUT AT A SLOWER RATE THAN THE SIZE

OF THE VIRTUAL BITMAP.

sired accuracy for the desired number of flows. We note

that for concrete instances k = 2 gives almost always the

lowest memory usage thus confirming the asymptotic re-

sults from Table II.

Adaptive bitmap: For brevity we omit the detailed dis-

cussion of the configuration of the adaptive bitmap. In

Table III we report the costs and benefits of the adaptive

bitmap. The first column lists the number r of normal com-

ponents we replace with the large one. The next column

lists the number of bits the large component needs to have

(compared to the number of bits of a normal component) to

ensure that the adaptive bitmap never has a worse average

error than the original multiresolution bitmap. The third

column lists the ratio between the average error of mul-

tiresolution bitmap and the best average error the adaptive

bitmap can ensure. The memory usage reported in Table I

is derived based on the observation that most of the mem-

ory of the adaptive bitmap is used by the “virtual bitmap”

component.

V. MEASUREMENT RESULTS

We group our measurements into 4 sections corre-

sponding to the 4 important algorithms presented: virtual

bitmap, multiresolution bitmap, adaptive bitmap and trig-

gered bitmap. Part of the measurements are geared toward

checking the correctness of the predictions of our theo-

Name No. of flows Length Encr.

(min/avg/max) (s)

MAG+ 93,437/98,424/105,814 4515 no

MAG 99,264/100,105/101,038 90 no

COS 17,716/18,070/18,537 90 yes

IND 1,964/2,164/2,349 90 yes

TABLE IV

THE TRACES USED FOR OUR MEASUREMENTS

retical analysis and part are geared toward comparing the

performance of our algorithms with probabilistic counting

or other existing solutions.

For our experiments, we used 3 packet traces, an unen-

crypted one from CAIDA captured on the 6th of August

2001 on an OC-48 backbone link and two encrypted traces

from the MOAT project of NLANR captured on the 11th

of November 2002 on the connection points of two uni-

versity campuses to the Internet. The unencrypted trace is

very long; for some experiments we also used a 90 second

slice of the unencrypted trace as a fourth trace. We usually

set the measurement interval to 5 seconds. We chose 5 sec-

onds because it appears to be a plausible interval someone

would use when looking at the number of active flows: it is

larger than the round-trip times we can expect in the Inter-

net and it is above the rate a slow modem link sends pack-

ets. In all experiments we defined the flows by the 5-tuple

of source and destination IP addresses, ports, and proto-

col. Table IV gives a summary description of the traces we

used. All algorithms used the H3 hash functions [2].

A. Virtual bitmap

We performed experiments to check the validity of

Equation 3 for various configurations on many traces.

Figure 4 shows a typical result. Full results are pre-

sented in Appendix F. Our measurements confirm that

Equation 3 gives a tight and slightly conservative bound

on the average error (conservative in the sense that actual

errors are usually somewhat smaller than predicted by the

formula). The results also confirm that we get the best av-

erage error for a virtual bitmap of a given size when the

flow density is around ρ = 1.6.

We also compare the average error of the virtual bitmap

to probabilistic counting using the same amount of mem-

ory for a variety of configurations and traces. Because our

major contributions are the remaining schemes, we pro-

vide here only one sample result. For the COS Trace, us-

ing 1,716 bits our analysis predicts an expected error 3%.

Over 20 runs, for the 18 measurement intervals, the ac-

12

tual average error (computed as square root of the aver-

age of squares) for virtual bitmap is only 2.773% with a

maximum of 9.467%. This is not just a further confir-

mation that Equation 3 gives a tight bound on the aver-

age error, but it also shows that errors much larger than

the average error are very unlikely. On the other hand,

probabilistic counting configured to handle up to 100,000

flows had an average error of 6.731% with a maximum of

27.336%. While this is an unfair comparison in general

(virtual bitmap requires knowing in advance the range of

final count values), it does fairly indicate our major mes-

sage: a problem-specific counting method for a specific

problem like threshold detection can significantly outper-

form a one-size-fits-all technique like probabilistic count-

ing.

B. Multiresolution bitmap

This set of experiments compares the average error of

the multiresolution bitmap and probabilistic counting. A

meaningful comparison is possible if we compare the two

algorithms over the whole range for the number of flows.

Since our traces have a pretty constant number of flows,

we use a synthetic trace for this experiment. We used the

actual packet headers from the MAG+ trace to generate a

trace that has a different number of flows in each measure-

ment interval: from 10 to 1,000,000 in increments of 10%

with a jitter of 1% added to avoid any possible effects of

“synchronizations” with certain series of numbers.

We ran experiments with multiresolution bitmaps tuned

to give an average error of 1%, 3% and 10% for up to

1,000,000 flows (b/c/blast were 64/12/186, 708/8/2,490

and respectively 6,367/5/21,007) and probabilistic count-

ing configured for the same range with the same amount

of memory (the configurations and corresponding errors

mnap/maxlen/ǫ were 47/19/11.377%, 496/15/3.502%

and respectively 3,575/13/1.305%). We had 500 runs for

each configuration of both algorithms with different hash

functions.

Figures 6 to 8 show the results of the experiments.

We can see that in all three experiments, the average er-

ror of the multiresolution bitmap is better than predicted

for small values, because we have no “sampling error”

when the number of flows is small. We explain the peri-

odic “fluctuations” of average error from Figure 6 by occa-

sional incorrect choice of the base component. The peaks

correspond to where components are least accurate and

hand off to each other. The peaks are more pronounced

in this table than the others because due to the small num-

ber of bits in each component, it happens more often that

not the best component is used as a base for the estimation.

In Figure 7 and especially in Figure 8 there is a visible de-

10 100 1000 10000 1e+05 1e+06

Number of flows (log scale)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
v
er

ag
e

er
ro

r

Multiresolution bitmap (b=64, c=12)

Probabilistic counting (nmap=47, L=19)

Fig. 6. Configured for an average error of 10%

10 100 1000 10000 1e+05 1e+06

Number of flows (log scale)

0

0.01

0.02

0.03

0.04

0.05

A
v
er

ag
e

er
ro

r

Multiresolution bitmap (b=708, c=8)

Probabilistic counting (nmap=496, c=15)

Fig. 7. Configured for an average error of 3%

10 100 1000 10000 1e+05 1e+06

Number of flows

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

A
v
er

ag
e

er
ro

r

Multiresolution bitmap (b=6367, c=6)

Probabilistic counting (nmap=3575, L=13)

Fig. 8. Configured for an average error of 1%

crease in the error for the multiresolution bitmap when the

number of flows approaches the upper limit. The reason

is that the last component is much larger than the normal

ones and provides more accurate results.

Probabilistic counting is worse than the multiresolu-

tion bitmap, especially for small values. We show in

Appendix E that the data collected by the two algorithms

is equivalent, so it might be surprising that their accuracies

are so different. We attribute the large errors of proba-

bilistic counting for low values to the way it evaluates the

collected data. The ability of multiresolution bitmap to be

accurate on the low end of the range too can lead to sim-

pler, more robust systems. We attribute the worse error of

13

-3.924 1.061 4.533

Trace Adaptive bitmap Probabilistic counting

(min/avg/max) (min/avg/max)

MAG+ -3.924/1.061/4.533% -10.731/2.824/12.271%

COS -2.221/0.653/1.966% -7.020/2.763/8.260%

IND -1.986/0.616/1.444% 2.305/9.898/18.024%

TABLE V

COMPARISON OF ADAPTIVE BITMAP AND PROBABILISTIC

COUNTING, EACH USING 16KBITS OF MEMORY

probabilistic counting for higher values mostly to the sub-

optimal dimensioning of the algorithm (as recommended

in [6]).

C. Adaptive bitmap

The experiments from this section compare adaptive

bitmap and probabilistic counting on all three traces. The

results are presented in Table V. All of the algorithms were

configured to use 16 Kbits of memory. For each algorithm

we report the largest errors in both directions and the aver-

age error based on 20 runs with different hash functions.

The algorithms were configured to give the best possi-

ble average error and work up to 100,000,000 flows. For

the adaptive bitmap we used as a base a multiresolution

bitmap with an average error of 10% with k = 2, b = 64,

c = 19 and blast = 169. The virtual bitmap component is

15, 063 bits large and replaces 9 components of the mul-

tiresolution bitmap. For the adaptive bitmap we did not

include in our computations the first measurement inter-

val when the adaptive bitmap was not tuned to the traffic.

For the probabilistic counting we used nmap = 744 bit-

maps of L = 22 bits each. Adaptive bitmap is roughly 3

times more accurate than probabilistic counting. For the

IND trace which has a very small number of active flows

probabilistic counting has very bad error and is actually

biased towards overestimating. This is the same as the

problem we noticed the previous section. The major mes-

sage here is that an adaptive bitmap can achieve almost the

same benefits of virtual bitmap (e.g., order of magnitude

reduction in memory for same accuracy) when the number

of flows does not vary dramatically, as seems common in

many networking applications.

D. Triggered bitmap

So far, all our measurements have focused on one in-

stance of the counting problem to be used as a building

block for solving more complex problems. The experi-

ments from this section give a better image of how using

one of our algorithms can affect the resource consumption

of an entire system.

We first address port scan detection that uses a large

number (one per source) of instances of the counting prob-

lem multiplying the impact of any memory our algorithm

can save. We use a definition of a port scan equivalent to

the definition in the default Snort configuration: a source

is flagged as a port scanner if it has at least 4 connections

in a 12 second measurement interval. In the second experi-

ment we extend the measurement interval to 10 minutes to

evaluate the algorithms against this more demanding def-

inition. We ignore many of the details of the operation of

Snort (e.g., reliance on TCP flags to classify connections)

and concentrate on the core task of counting connections.

For the triggered bitmap we chose a configuration that

is convenient to implement on a 32-bit machine: a direct

bitmap of 4 bytes and a multiresolution bitmap with 11

components of 4 bytes each (except the last one which is 8

bytes). The multiresolution bitmap is allocated after 8 bits

are set in the direct bitmap. By our analysis the multires-

olution bitmap should ensure an average error of at most

14.1% for up to 43,817 connections and at most 15.5% for

up to 175,269 connections.

We compute memory usage of Snort based on the num-

ber of sources and connections active during the measure-

ment interval. What we actually use is a not an accurate

model of the actual memory usage of Snort (which uses

inefficient structures such as multiple linked lists) but the

minimum that any implementation using the naive algo-

rithm would have to allocate: 8 bytes for the IP address

and a counter for each source and 9 bytes (destination IP,

source port, destination port, type) for the identifier of each

active connection. We also compute the memory usage

of a solution directly applying probabilistic counting with

a configuration similar to our multiresolution bitmap (48

bytes for the algorithm + 4 bytes for the IP address for

each source). Our triggered bitmap algorithm consumes

8 bytes for each active source (the IP address + the direct

bitmap) plus the additional 48 bytes for the sources that

trigger the allocation of the multiresolution bitmap.

We used two configurations, one with a 12 second prefix

and one with a 600 second prefix of the MAG trace. For

each configuration we had 20 runs of with the triggered

bitmap algorithm, using different random hash functions.

The average of the error for flows that had at least 4 con-

nections was 15.39%.7 Our algorithm reported 80.4% of

7This is an average over all sources. We did notice some “peculiari-

ties”: for sources that had 4 connections the average error was around

12.5% , for those with 5 around 13.5%, for those with 6 connections it

was around 19.5%, for those with 8 around 14.5% while for all others

14

Measurement Snort Prob. Triggered

interval count. bmp.

12 sec 1,968K 2,474K 495K

600 sec 50,791K 22,876K 5,723K

TABLE VI

THE MEMORY USAGE OF PORT SCAN DETECTION

ALGORITHMS (KBYTES)

the sources with 4 connections as reaching the threshold,

95.7% of those with 5, more than 99% of the sources that

had between 7 and 11, connections, more than 99.99% of

those with between 12 and 15 and all those with at least 16.

In Table VI we report the maximum of triggered bitmap

over the 20 runs. Triggered bitmap uses roughly 4 times

less memory than snort with the first configuration. For the

more ambitious second configuration the gain increases to

a factor of 9. With both configurations triggered bitmap

used less memory than probabilistic counting.

What do these results mean to a security analyst? Snort,

of course, uses the classical measure of detecting n con-

nections with a maximum inter-event spacing of t. By de-

fault, Snort uses values such as n=4, t=3. Our technique

uses significantly less memory at the expense of possibly

missing port scanners. However, the probability of a port

scanner not being detected decreases exponentially with

the number of connections it opens. For example, the pro-

bability is 4.34% at 5 connections, 1.75% at 6, 0.5% at 7,

etc. Using Snort’s timing requirements, a fifth event must

arrive within t = 3 seconds of the fourth event if the scan

continues. Thus, we detect a continuing scan with proba-

bility 95.66% within 3 seconds and 99.50% within 9 sec-

onds. Note also that port scans are usually the result of a

brute-force network exploration such as Nmap [7] or Code

Red [11]. Such tools frequently touch not just a handful

of addresses, but an entire block of contiguous addresses.

Thus, it is reasonable to expect a scan to continue after 4

events.

We also note here preliminary results on the use of trig-

gered bitmap in an application computing per-IP source

and destination statistics that is part of the CoralReef traf-

fic analysis suite [9]. The implementation and measure-

ments reported here are the work of Ken Keys with con-

tribution from David Moore, both from Caida. On a

10 minute OC-48 trace, the original application uses 316

megabytes of main memory. The improved version used

a triggered bitmap with a 128 bit direct bitmap that allo-

the averages were roughly in the range 15.5%- 17%. We explain these

as effects of having such a small direct bitmap.

cated a multiresolution bitmap configured for an error of

5% after 4 bits were set. The memory usage decreased to

44 megabytes while the average error was 4.41%. The av-

erage running time was 349 seconds which is 29% below

the running time of the original application (491 seconds).

Finally, note that because our algorithms reduce the

memory usage by as much as an order of magnitude, they

also enable detection of stealthy slow scans using the same

amount of memory that naive algorithms use for fast scans.

Because the memory required for each source is greatly

reduced with our algorithms, we can afford to count more

sources at a time. As a result, we can avoid timing-out

state as aggressively as Snort and keep counting sources

with longer inter-arrival times between events. By doing

so, we can detect more stealthy port scans, a goal of many

detection systems [16].

VI. CONCLUSIONS

Using a suitably general definition of a flow, counting

the number of active flows is at the core of a wide variety

of security and networking applications such as detecting

port scans and denial of service attacks, tracking virus in-

fections, calibrating caching, etc. In this paper we provide

a family of bitmap algorithms solving the flow counting

problem using extremely small amounts of memory. Most

of the algorithms can be implemented at wire speeds (8

nsec per packet for OC-768) using SRAM since they ac-

cess at most one memory location per packet, and can be

implemented using simple hardware (H3 hash functions,

multipliers, and multiplexers). With the exception of direct

and virtual bitmap, the other algorithms are introduced for

the first time in this paper.

The best known algorithm for counting distinct values is

probabilistic counting. Our algorithms need less memory

to produce results of the same accuracy. This can translate

into savings of scarce, fast memory (SRAM) for hardware

implementations. It can also help systems that use cheaper

DRAM to allow them to scale to larger instances of the

problem.

In comparing head-on with probabilistic counting, our

multiresolution algorithm works under the same assump-

tions and provides an error orders of magnitude lower

when the number of flows is small and is slightly bet-

ter for higher values. However, we believe our biggest

contribution is as follows. By exposing the simple build-

ing blocks and analysis behind multiresolution counting,

we have provided a family of customizable counting algo-

rithms (Table VII) that application and hardware designers

can use to reduce memory even further by exploiting app-

lication characteristics.

Thus, virtual bitmap is well-suited for triggers such as

15

Setting Algorithm Application

General counting Multiresolution bitmap Tracking virus infections

Accuracy important only Virtual bitmap Triggers (e.g. for

over a narrow range detecting DoS attacks)

Count is probably in a Adaptive bitmap Measurement

narrow range (stationarity)

Small memory usage as Triggered bitmap Detecting port scans

long as count is small

Flows dynamically added Increment-decrement Scheduling

and deleted algorithms

TABLE VII

THE FAMILY OF BITMAP COUNTING ALGORITHMS: EACH ALGORITHM IS BEST SUITED FOR A DIFFERENT SETTING.

detecting DoS attacks, and uses 215 bytes to achieve an

error of 2.773% compared to 2,076 bytes for probabilistic

counting. Adaptive bitmap is suited to flow measurement

applications and exploits stationarity to require 8 times

less memory than probabilistic counting on sample traces.

Triggered bitmap is suited to running multiple instances

of counting where many instances have small count val-

ues (e.g., port scanning) requiring only 5.6 Mbytes on a 10

minute trace compared to the 49.6 Mbytes required by the

naive algorithm and 22.3 Mbytes required by probabilistic

counting. Using triggered bitmap resulted in a reduction

by 29% in the running time and a factor of seven in the to-

tal memory usage of a traffic analysis application from the

CoralReef suite. Given that low-memory counting appears

to be useful in applications beyond networking which have

different characteristics, we hope that the base algorithms

in this paper will be combined in other interesting ways in

architecture, operating systems, and even databases.

VII. ACKNOWLEDGEMENTS

We thank Vern Paxson, David Moore, Philippe Flajolet,

Marianne Durand, Alex Snoeren, K. Claffy, Stefan Savage

and Florin Baboescu for extremely valuable conversations.

This work was made possible by a grant from NIST for the

Sensilla Project.

REFERENCES

[1] Cisco offers wire-speed intrusion detection, December 2000.

http://www.nwfusion.com/ reviews/ 2000/ 1218rev2.html.

[2] J. Lawrence Carter and Mark N. Wegman. Universal classes of

hash functions. In Journal of Computer and System Sciences,

volume 18, April 1979.

[3] Nick Duffield, Carsten Lund, and Mikkel Thorup. Properties and

prediction of flow statistics from sampled packet streams. In SIG-

COMM Internet Measurement Workshop, November 2002.

[4] Cristian Estan and George Varghese. New directions in traffic

measurement and accounting. In Proceedings of the ACM SIG-

COMM, August 2002.

[5] Wenjia Fang and Larry Peterson. Inter-as traffic patterns and their

implications. In Proceedings of IEEE GLOBECOM, December

1999.

[6] Philippe Flajolet and G. Nigel Martin. Probabilistic counting al-

gorithms for data base applications. Journal of Computer and

System Sciences, 31(2):182–209, October 1985.

[7] Fyodor. Remote OS detection via TCP/IP stack fingerprinting.

Phrack, (54), December 1998.

[8] Dina Katabi, Mark Handley, and Charlie Rhors. Congestion con-

trol for high bandwidth-delay product networks. In Proceedings

of the ACM SIGCOMM, August 2002.

[9] Ken Keys, David Moore, R. Koga, E. Lagache, M. Tesch, and

K. Claffy. The architecture of coralreef: an internet traffic moni-

toring software suite. PAM2001, Workshop on Passive and Active

Measurements, RIPE, 2001.

[10] Ratul Mahajan, Steve M. Bellovin, Sally Floyd, John Ioannidis,

Vern Paxson, and Scott Shenker. Controlling high bandwidth

aggregates in the network. http://www.aciri.org/pushback/, July

2001.

[11] David Moore. Personal conversation. also see caida analysis of

code-red, 2001. http://www.caida.org/ analy-

sis/ security/ code-red/.

[12] Cisco netflow. http://www.cisco.com /warp

/public /732 /Tech /netflow.

[13] Riverstone Networks. Lfap:

Lightweight flow accounting protocol.

http://www.riverstonenet.com/ technol-

ogy/ accounting for profitability.shtml.

[14] David Plonka. Flowscan: A network traffic flow reporting and

visualization tool. In LISA, pages 305–317, December 2000.

[15] Martin Roesch. Snort - lightweight intrusion detection for net-

works. In Proceedings of the 13th Systems Administration Con-

ference. USENIX, 1999.

[16] Stuart Staniford, J. Hoagland, and J. McAlerney. Practical auto-

mated detection of stealthy portscans. Journal of Computer Secu-

rity, (10), 2002.

[17] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair

queueing: A scalable architecture to approximate fair bandwidth

allocations in high speed networks. In Proceedings of the ACM

SIGCOMM, September 1998.

[18] Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M.

16

Taylor. A linear-time probabilistic counting algorithm for

database applications. ACM Transactions on Database Systems,

15(2):208–229, 1990.

[19] Ming-Young You and Cheng-Shang Chang. Resampling for wire-

less access. In Proceedings of IEEE PIMRC, June 1996.

APPENDIX

I. FURTHER BITMAP VARIANTS

In this appendix we describe modifications to the dir-

tect bitmap, virtual bitmap and multiresolution bitmap that

would allow us to apply them in new settings.

A. Handling packet removals

We said earlier that counting the number of flows that

have packets in the queue of a router can help determine

the “fair share” used by the scheduling algorithm. In this

case, we need to not only handle the case of new packets

arriving but also the case of packets getting removed. Our

core bitmap algorithms can be easily modified to handle

this case by replacing every bit with a counter. The width

of the counters is given by the maximum number of pack-

ets the queue can accommodate (which also puts a limit on

the number of distinct flows that can have packets in the

queue). When the queue is empty all counters are 0. When

a new packet arrives, the counter it maps to is incremented.

When a packet is removed from the queue, the counter is

decremented. We use the number of counters with value

zero to compute our estimate of the number of active flows

exactly the same way we use the number of zero bits in the

case with measurement intervals. A counter will be zero if

and only if no active flows map to it.

B. Combining or comparing multiple measurement inter-

vals

The bitmaps have a useful property we can exploit in

many ways: if we have two bitmaps generated using the

same hash function reflecting the state of the algorithm af-

ter it was run on wto measurement intervals, performing a

bitwise OR on them will give us the state the bitmap would

have been in after running over both intervals. Based on

this bitmap we get the number of flows that were active in

either of the intervals. We can generalize this to more than

two bitmaps.

An immediate application of this property is to compute

the number of active flows at multiple timescales, by only

updating a single bitmap at packet arrival time. We still

need to keep bitmaps for the coarser timescales, but we

only update them at the end of the measurement interval.

For example we keep a bitmap for 5 second intervals and

at the end ot every 5 second interval we OR it together with

the bitmap counting the number of flows active in the one

minute measurement interval. A similar use is staggered

intervals: often we don’t want to divide up the time into

measurement intervals, but to always have an estimate for

the number of flows over the last say minute. By using say

5 second intervals and keeping the last 11 intervals as well

we can always compute the number of flows active since

the start of the first interval (which is always between 55

and 60 seconds earlier than the current time).

A maybe less obvious benefit of this property is that we

can estimate the arrival rate of flows. For each interval we

can define the arrival rate as the number of flows active in

that interval that were not active in the previous one. To

compute it, we just estimate the number of flows from the

previous interval and the number of flows over the combi-

nation of the two intervals and the difference between the

two is the number of new flows.

II. AVERAGE ERROR FOR THE VIRTUAL AND

MULTIRESOLUTION BITMAPS

We first determine the variance of the estimate for the

number of flows hashing to the virtual bitmap V AR[m̂].
The number of flows hashing to the bitmap m is a ran-

dom variable distributed binomially. For this analysis we

will assume that there are two independent hash functions

one that decides which flows map to the virtual bitmap

and one that decides how those get mapped to individual

bits8. Therefore the analysis of the direct bitmap from sec-

tions IV-A and IV-B describes the conditional distribution

of the random variable m̂ given the value of m.

E[m̂|m = i] = i

V AR[m̂|m = i] ≈ b
(
ei/b − i/b − 1

)

E[m̂2|m = i] = E[m̂|m = i]2 + V AR[m̂|m = i]

≈ i2 + b
(
ei/b − i/b − 1

)

To obtain V AR[m̂] we need E[m̂] and E[m̂2].

8Any reasonable hash function will make the two processes indepen-

dent, so in practice we can use a single hash function.

17

E[m̂] =

n∑

i=0

P (m = i)E[m̂|m = i]

=

n∑

i=0

P (m = i)i = E[m] = αn

E[m̂2] =
n∑

i=0

P (m = i)E[m̂2|m = i]

≈
n∑

i=0

P (m = i)
(
i2 + b

(
ei/b − i/b − 1

))

= E[m2] + bE
[
em/b

]
− bE[m/b] − bE[1]

= E[m2] + bE
[
em/b

]
− E[m] − b

To compute E
[
em/b

]
, we use the Taylor expansion of

f(x) = ex/b around the value E[m].

ex/b = eE[m]/b +
1

b
eE[m]/b(x − E[m])

+
1

2b2
eE[m]/b(x − E[m])2 + . . .

E
[
em/b

]
≈ eE[m]/b +

1

b
eE[m]/bE[m − E[m]]

= eE[m]/b +
1

b
eE[m]/b(E[m] − E[m])

= eE[m]/b

To see how far off we are with this approximation, we

compute below the value of the expectation of the third

term of the Taylor expansion, the first term we ignore. Its

ratio to our approximate result gives some indication of

how much we are off. For example with b = 200 which

is smaller than what we expect to be used in practice and

a flow density of ρ = 8 which is much above the flow

densities virtual bitmaps would be expected to operate ac-

curately in, we are off by less than 2%. We also note here

that the contribution of further terms is even smaller be-

cause they have higher powers of b at the denominator.

E
[
eE[m]/b(x − E[m])2

]
= eE[m]/bE

[
(x − E[m])2

]

= eE[m]/bV AR[m]

= eE[m]/bnα(1 − α)

< eE[m]/bnα

= E[m]eE[m]/b

E
[

1
2b2

eE[m]/b(x − E[m])2
]

eE[m]/b
<

E[m]

2b2
=

ρ

2b

Now substituting our approximate value for E[em/b] we

get E[m̂] which we use to compute V AR[m̂].

E[m̂2] ≈ E[m2] + beE[m]/b − E[m] − b

V AR[m̂] = E[m̂2] − E[m̂]2

≈ E[m2] − E[m]2 + beE[m]/b − E[m] − b

= V AR[m] + benα/b − nα − b

= nα(1 − α) + beρ − nα − b

= beρ − nα2 − b < b (eρ − 1)

SD

[
n̂

n

]
=

SD[m̂]

nα
/

√
b (eρ − 1)

nα
=

√
eρ − 1

nα/b
√

b

=

√
eρ − 1

ρ
√

b

The tightness of the bound depends on the term nα2.

Since the whole variance V AR[m̂] is at least nα(1 − α),
we are off by a factor of at most 1 − α, therefore if α is

small (i.e. the virtual bitmap covers only a small portion of

the hash space), this bound is tight, but as α approaches 1

the bound is not tight anymore. Indeed for α = 1 we have

a direct bitmap whose accuracy is described by Equation 3

which can be significantly lower Equation 4 when the flow

density is low.

The multiresolution bitmap bases its estimate of the

number of active flows on its estimate m̂ for the number

of flows hashing to the base component and all finer ones.

We use mb for the number of flows hashing to the base

component and mf for the number of flows hashing to all

finer components (m = mf + mb). For this analysis we

do not treat the finer components individually, but replace

them with a single component: we extend the next compo-

nent after the base to cover all the finer components, thus

its size increases from b to bk/(k − 1). This is equivalent

to or-ing together the bits of all the finer components until

they are all at the granularity of the first component after

the base. The benefit of this simplification is that the re-

sult will not depend on the number of finer components,

thus it will apply no matter which component we use as

base. While it is intuitively obvious that or-ing bits to-

gether leads to loss of information and thus increases the

variance of m̂f we can also derive it. What we need to

show is that given a number of flows mf that hash to the t
finer components, the collision error we get when adding

the estimates if these components is no bigger than the col-

lision error of the component we get by collapsing them

together. With ρ = mf/(b(k − 1)/k), using the assump-

18

tion that the collision errors are independent, we can write

out the condition the two variances have to satisfy.

bk

k − 1
(eρ − ρ − 1) ≥

t−2∑

i=0

b
(
eρ/ki − ρ

ki
− 1

)
+

bk

k − 1

(
eρ/kt−1 − ρ

kt−1
− 1

)

The terms linear in ρ cancel out and the rest can be

proven by summing inequalities of the type 1/ki(eρ−1) ≥
eρ/ki − 1 which hold for all positive values of k, i and ρ
based on simple calculus.

As with the virtual bitmap, we assume that the hash

function deciding which component a flow gets mapped

to and the two hash functions deciding to which of the

bits of the component the flow is mapped are independent.

While the sampling errors of m̂b and m̂f are correlated,

the correlation is negative and its value is small when the

sampling factor is large, so we ignore it. Because of the

independence of mapping flows to bits, the collision errors

are uncorrelated.

V AR[m̂b] / b (eρb − 1) = b (eρ − 1)

V AR[m̂f] /

bk

k − 1
(eρf − 1) =

bk

k − 1

(
eρ/k − 1

)

V AR[m̂] = V AR[m̂b] + V AR[m̂f] + COV [m̂b, m̂f]

< V AR[m̂b] + V AR[m̂f]

/ b

(
eρ − 1 +

k

k − 1

(
eρ/k − 1

))

=
bk

k − 1

(
k − 1

k
(eρ − 1) + eρ/k − 1

)

SD

[
n̂

n

]
=

SD[m̂]

nα
=

SD[m̂]

ρbk/(k − 1)

SD

[
n̂

n

]
/

√
k−1

k (eρ − 1) + eρ/k − 1

ρ
√

bk
k−1

(6)

Is the error introduced by collapsing all finer compo-

nents into a single one acceptable? To answer this ques-

tion we derived two formulas similar to Equation 6: one

that maintains one finer component and collapses all the

rest (thus working with 3 bitmaps) and one maintaining

two finer bitmaps and collapsing the rest (thus working

with 4 bitmaps). We plugged in all three formulas into the

algorithm for computing the sizes of the components of

the multiresolution bitmaps. The more accurate (and more

complicated) formulas always resulted in lower sizes for

the bitmaps, but the differences were significant only for

+Res[0,1]

Offset[0..2]
Delay

X 6
Hash[0..3]

resolution
Select

Addr[0..4]

Res[0,1] Base[0..3]

Select
offset

Hash[0..6]

Hash[0..6]

Fig. 9. Hardware for selecting the bit to be set

low values of k. Thus the formula using 3 bitmaps re-

duces the bitmap size with respect to Equation 6 by 3.9%

for k = 2 and 1.0% for k = 3. Using 4 bitmaps reduces

the bitmap size (with respect to the formula with 3 bit-

maps) by 0.8% even for k = 2. As a tradeoff between

accuracy and simplicity we decided to use in this paper the

formula derived based on 3 bitmaps which is Equation 5

from Section IV-B.

III. A HARDWARE IMPLEMENTATION OF THE

MULTIRESOLUTION BITMAP

While the analysis of the statistical behavior of multires-

olution bitmap can look complicated, its implementation

is simple. The most time critical part of the algorithm,

that has to be performed for each packet is updating the

bitmap. Computing the address of the bit to get updated is

quite simple in hardware if three constraints are met: ratio

of the resolutions of neighboring components k, the size

of the last component and bk/(k − 1) need to be powers

of two. Thus for the multiresolution bitmap example in

Figure 2 (b = 6, k = 4) one can map the incoming pack-

ets to the proper sub-interval by computing a 7-bit hash

function and using simple additional combinatorial logic.

If the first two bits of the hash are not “11”, the first 3 bits

decide which of the sub-intervals in the coarsest compo-

nent the packet maps to. Otherwise if the third and fourth

bit are not 11 (but the first two are), bits from 3 to 5 de-

cide which sub-interval in the intermediate component the

packet maps to. If the first 4 bits are 1, bits from 5 to 7

map the packet to the appropriate subinterval in the finest

component.

Figure 9 presents a possible hardware implementation

for the logic circuit that computes the address of the bit the

current packet maps to. It is based on the operations de-

scribed in the previous paragraph. The input to the circuit

is the 7 bit hash function Hash[0..6] that based on the flow

ID of the packet. Its output is a 5 bit address Addr[0..4]

of the bit that will be set. The leftmost bit in the mul-

tiresolution bitmap of figure 2 has an address of 0 and the

rightmost has an address of 19. The “select resolution”

block selects the component with the appropriate resolu-

tion based on the first 4 bits of the hash. If the coarsest

19

component is used, the output Res[0,1] will have a value

of 0 and if the finest component is used its value will be

2. This block can be implemented with few gates. The “X

6” block multiplies this value by 6 because there are 6 bits

in each component. Since this block performs multiplica-

tion with a constant value, it can be implemented using an

adder and a shift register. The “Select offset” block selects

which of the bits within the hash to be used to find the off-

set Offset[0..2] of the bit within the component. It can be

implemented with a 16:4 multiplexer. The final adder adds

together the base and the offset to get the address of the

bit.

IV. CONFIGURING THE MULTIRESOLUTION BITMAP

Figure 10 presents the algorithm for numerically com-

puting the optimal configuration for a multiresolution

bitmap: the one that achieves the required average relative

error ǫ up to the given number of flows N using the smal-

lest amount of memory. The algorithm checks four con-

figurations. The first configuration (lines 4 to 7) assumes

that the last two components are never used as base compo-

nent for estimating the number of active flows. Equation 5

guarantees this configuration delivers the desired accuracy,

but it turns out to be a wasteful one. The second configu-

ration we consider (lines 8 to 12) also uses the last normal

component as base (thus reducing the nuymber of compo-

nents needed by one) and increases the size of the last com-

ponent until the accuracy of using the penultimate compo-

nent (as given by Equation 6) is good enough. This also

turns out to be a wasteful configuration. The third config-

uration (lines 13 to 21) increases the size of the last com-

ponent up to the point where it can take over as base com-

ponent (based on Equation 4). Increasing the last com-

ponent even further reduces the number of components by

one more and this results sometimes in lower memory con-

sumption. This is the fourth configuration we consider

(lines 22 to 29). The algorithm for hardware configura-

tions is very similar except that it takes care that bk/(k−1)
and blast be powers of two.

Table II shows that k = 2 is asymptotically the best

choice. There are some very rare cases when k = 3 gives

a slightly smaller memory usage. This is because the num-

ber of components cannot be fractional and the compo-

nents for k = 3 “fit better” to the given N and ǫ. The

multiresolution bitmap is very easy to implement in hard-

ware if k, bk/(k − 1) and blast are powers of two. Under

these constraints, sometimes the choice of k = 4 gives a

smaller memory usage because the size b of the compo-

nents it needs to achieve the desired average error ǫ “fits

better” the powers of two. Therefore when configuring the

algorithm for a hardware implementation that has these

limitations it is best to check both values of k = 2 and

k = 4. We found no set of parameters N ,ǫ for which the

hardware configuration with k = 8 used less memory than

the smallest of k = 2 and k = 4.

V. MULTI-RESOLUTION BITMAP VERSUS

PROBABILISTIC COUNTING

Even though it might seem surprising at first, the data

collected by a multi-resolution bitmap with k = 2 and no

stretching of the last component is isomorphic to the data

collected by a probabilistic counting algorithm configured

in a certain way (assuming we have good hash functions).

The probability of the incoming packet to hash to compo-

nent i is 1/2i for all components but the last for which it is

1/2c−1. Each component but the last has b/2 bits.

The probability that the packet hashes to a given bit at

component i is 1/2i ∗ 2/b = 1/(b ∗ 2i−1) (this also holds

for the last component). Therefore, for each i from 1 to

c − 1 we have b/2 bits that have a probability of 1/(b ∗
2i−1) of “catching” the incoming packet plus we have b
bits that have the probability 1/(b ∗ 2c−1) of “catching”

the incoming packet. All incoming packets map to exactly

one bit.

Probabilistic counting of Flajolet and Martin uses nmap
bitmaps of size L. Each bitmap has a probability of

1/nmap of “catching” a random database record. Within

each bitmap, bit i has a probability of 1/2i of catching the

record. The last bit acts as a “catch-all” for all numbers of

consecutive zeroes of L or more in the hash, so it has a pro-

bability of 1/2L−1 of catching the packet. Overall for each

i from 1 to L − 2 we have nmap bits that have a probabi-

lity of 1/(nmap∗2i) of “catching” the record plus we have

2 ∗ nmap bits that have a probability of 1/(nmap ∗ 2L−1)
of “catching” the record.

We can see in Figure 11 that when b = 2 ∗ nmap and

c = L − 1 the two algorithms have the same number of

bits and the probability distribution of bits getting set is

the same. Therefore we conclude that the data collected

by the two algorithms is equivalent. What is the differ-

ence then? The most important difference is the way the

collected data is interpreted. As both analysis and exper-

iments show this leads to our algorithm being more accu-

rate when the number of flows is small. Another difference

is that we have different rules for configuring the algorithm

which, as experiments show, result in somewhat more ac-

curate estimates when the number of flows is large.

VI. AVERAGE ERROR OF DIRECT AND VIRTUAL

BITMAP

In this appendix we present various experiments that

evaluate how well direct bitmap and virtual bitmap behave.

20

CONSIDERCONFIGURATION(c, k, b, blast)

1 Mem = b(c − 1) + blast

2 if Mem < lowestMemorySoFar
3 (bestk, bestb, bestc, lowestMemorySoFar) = (k, b, c,Mem)
4 endif

5 return

COMPUTECONFIGURATION(N, ǫ)

1 lowestMemorySoFar = ∞
2 for k = 2 to 16
3 (ρmin, ρmax) = (ρmin[k], ρmax[k])
4 b = ⌈errorCoefficient[k]/ǫ2⌉
5 c = 3 + ⌈logk(N/(bρmax))⌉
6 blast = ⌈errorCoefficient(k)/ǫ2 k/(k − 1)⌉
7 CONSIDERCONFIGURATION(c, k, b, blast)

8 c = c − 1

9 while

q

b(eρmax−1)+blast(eρmax/(k−1)b/blast−1)
bρmaxk/(k−1) > ǫ or

q

b(eρmin−1)+blast(eρmin/(k−1)b/blast−1)
bρmink/(k−1) > ǫ

10 blast = blast + 1
11 endwhile

12 CONSIDERCONFIGURATION(c, k, b, blast)

13 while

q

blast(eρmax/(k−1)b/blast−1)
bρmax/(k−1) > ǫ

14 blast = blast + 1
15 endwhile

16 ρmaxlast = 1.6

17 while

q

(eρmaxlast+0.00001
−1)

(ρmaxlast+0.00001)
√

blast
< ǫ

18 ρmaxlast = ρmaxlast + 0.00001
19 endwhile

20 c = 1 + ⌈logk(N/(blastρmaxlast))⌉
21 CONSIDERCONFIGURATION(c, k, b, blast)

22 while c − 1 < ⌈logk(N/(blastρmaxlast))⌉
23 blast = blast + 1

24 while

q

(eρmaxlast+0.00001
−1)

(ρmaxlast+0.00001)
√

blast
< ǫ

25 ρmaxlast = ρmaxlast + 0.00001
26 endwhile

27 endwhile

28 c = 1 + ⌈logk(N/(blastρmaxlast))⌉
29 CONSIDERCONFIGURATION(c, k, b, blast)

30 endfor

31 return (bestk, bestb, bestc, lowestMemorySoFar)

Fig. 10. The algorithm for numerically computing the best configuration for a multi-resolution bitmap considers four configurations

for each value of k and returns the one using the least memory. For all software configurations we tested, the algorithm chose

the third (line 21) or the fourth (line 29) configuration. For all hardware configurations it chose the third.

We first look at how well 3 and 4 match the actual average

error of direct and respectively virtual bitmaps. We use a

bitmap of 1000 bits and measure the average relative error

for flow densities ρ from 0.1 to 4 for the direct bitmap and

from 0.4 to 4 for the virtual bitmap. Also for the virtual

bitmap we use two configurations with “sampling factors”

of 10 and 100. For each of these setups, we generated

synthetic traces based on packet headers from the MAG

21

Bit with probability 1/64

Bit with probability 1/32

Bit with probability 1/16

n
m

ap
=

8
 b

it
m

ap
s

o
f

L
=

4
 b

it
s

ea
ch

Coarsest compunent

Intermediate component

Finest component

Fig. 11. Probabilistic counting groups the bits horizontally into

bitmaps that contain bits with different probabilities of be-

ing set, while multiresolution bitmaps group bits vertically

with bits with the same probability of being set in the same

component

with the exact number of active flows required to reach

the desired flow density. Each trace had 100 measurement

intervals and we repeated each experiment 10 times with

different hash functions, thus getting 1000 data points for

each density for each configuration. Figures 12 and 13

show the relative errors we measured and how they com-

pare to the values predicted by our analysis. We can see

that observed behavior follows very closely the predictions

of our theoretical analysis. As the flow density approaches

4, the measured error is very slightly above the predicted

0.5 1 1.5 2 2.5 3 3.5 4

Flow density (flows/bit)

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
er

ro
r

o
f

es
ti

m
at

e

Theoretical result
Actual error

Fig. 12. Average relative error of a direct bitmap with 1000 bits

0.5 1 1.5 2 2.5 3 3.5 4

Flow density (flows/bit)

0.035

0.04

0.045

0.05

0.055

0.06

0.065

R
el

at
iv

e
er

ro
r

o
f

es
ti

m
at

e

Theoretical result
Actual error with sampling factor of 10

Actual error with sampling factor of 100

Fig. 13. Average relative error of a virtual bitmap with 1000

bits

0.5 1 1.5 2 2.5 3

Flow density (flows/bit)

0.08

0.1

0.12

0.14

R
el

at
iv

e
er

ro
r

o
f

es
ti

m
at

e

Theoretical result
Actual error

Fig. 14. Direct bitmap with 100 bits

one. This can be explained with the effect of the terms of

the Taylor series we ignored in the analysis.

22

0.5 1 1.5 2 2.5 3

Flow density (flows/bit)

0.1

0.12

0.14

0.16

0.18

0.2

R
el

at
iv

e
er

ro
r

o
f

es
ti

m
at

e

Theoretical result
Actual error with sampling factor of 10

Actual error with sampling factor of 100

Fig. 15. Average relative error of a virtual bitmap with 100 bits

0.5 1 1.5 2 2.5 3 3.5 4

Flow density (flows/bit)

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

R
el

at
iv

e
er

ro
r

o
f

es
ti

m
at

e

Direct bitmap

Virtual bitmap sampling factor 10

Virtual bitmap sampling factor 100

Fig. 16. Bias for the 1000 bit bitmaps

We next look at what happens as we decrease the num-

ber of bits. Figures 14 and 15 show the results for bitmaps

with 100 bits. The results are very similar except that by

the time the flow density reaches 3, there are cases where

the bitmap gets full and therefore cannot produce an es-

timate. We excluded from the results any data point for

which at least one of the 10*100 measurement intervals

produced a full bitmap. Reducing the bitmap size to 10 the

direct bitmap to occasionally fill up as soon as we reach 10

active flows and the virtual bitmap for flow densities as low

as 0.6.

We also measured the bias of the estimates. The results

are presented in figures 16 and 17. The biases are statis-

tically significant but much smaller than the average rela-

tive error of the respective configurations. The general ten-

dency is to have a negative bias at low flow densities and

have it increase to positive values as the flow density in-

creases. We observe that the configurations that have par-

ticularly bad and consistent negative bias, 100 bit virtual

0.5 1 1.5 2 2.5 3

Flow density (flows/bit)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

R
el

at
iv

e
er

ro
r

o
f

es
ti

m
at

e

Direct bitmap

Virtual bitmap sampling factor 10

Virtual bitmap sampling factor 100

Fig. 17. Bias for the 100 bit bitmaps

bitmap with a sampling factor of 100 and 1000 bit virtual

bitmap with a sampling factor of 10, are those whose av-

erage errors were slightly above the theoretical analysis in

figures 13 and 15. Those configurations used the same

random hash functions. Our explanation for this slight

anomaly is that some of those hash functions were more

likely to produce collisions than the perfect hashes our

analysis assumed thus causing the estimates to be sligltly

lower on average. Use of weaker CRC based hash func-

tions instead of H3 lead to results significantly further from

the theoretical analysis.

