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Abstract

Contributions: We developed a new lossless compression method for WIG data, named smallWig,

offering the best known compression rates for RNA-seq data and featuring random access func-

tionalities that enable visualization, summary statistics analysis and fast queries from the com-

pressed files. Our approach results in order of magnitude improvements compared with bigWig

and ensures compression rates only a fraction of those produced by cWig. The key features of the

smallWig algorithm are statistical data analysis and a combination of source coding methods that

ensure high flexibility and make the algorithm suitable for different applications. Furthermore, for

general-purpose file compression, the compression rate of smallWig approaches the empirical en-

tropy of the tested WIG data. For compression with random query features, smallWig uses a simple

block-based compression scheme that introduces only a minor overhead in the compression rate.

For archival or storage space-sensitive applications, the method relies on context mixing tech-

niques that lead to further improvements of the compression rate. Implementations of smallWig

can be executed in parallel on different sets of chromosomes using multiple processors, thereby

enabling desirable scaling for future transcriptome Big Data platforms.

Motivation: The development of next-generation sequencing technologies has led to a dramatic

decrease in the cost of DNA/RNA sequencing and expression profiling. RNA-seq has emerged as

an important and inexpensive technology that provides information about whole transcriptomes of

various species and organisms, as well as different organs and cellular communities. The vast vol-

ume of data generated by RNA-seq experiments has significantly increased data storage costs and

communication bandwidth requirements. Current compression tools for RNA-seq data such as

bigWig and cWig either use general-purpose compressors (gzip) or suboptimal compression

schemes that leave significant room for improvement. To substantiate this claim, we performed a

statistical analysis of expression data in different transform domains and developed accompanying

entropy coding methods that bridge the gap between theoretical and practical WIG file compres-

sion rates.

Results: We tested different variants of the smallWig compression algorithm on a number of integer-

and real- (floating point) valued RNA-seq WIG files generated by the ENCODE project. The results reveal

that, on average, smallWig offers 18-fold compression rate improvements, up to 2.5-fold compression

time improvements, and 1.5-fold decompression time improvements when compared with bigWig. On

the tested files, the memory usage of the algorithm never exceeded 90 KB. When more elaborate context

mixing compressors were used within smallWig, the obtained compression rates were as much as 23

times better than those of bigWig. For smallWig used in the random query mode, which also supports

retrieval of the summary statistics, an overhead in the compression rate of roughly 3–17% was
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introduced depending on the chosen system parameters. An increase in encoding and decoding time

of 30% and 55% represents an additional performance loss caused by enabling random data access.

We also implemented smallWig using multi-processor programming. This parallelization feature de-

creases the encoding delay 2–3.4 times compared with that of a single-processor implementation, with

the number of processors used ranging from 2 to 8; in the same parameter regime, the decoding delay

decreased 2–5.2 times.

Availability and implementation: The smallWig software can be downloaded from: http://stanford.edu/

~zhiyingw/smallWig/smallwig.html, http://publish.illinois.edu/milenkovic/, http://web.stanford.edu/~tsachy/.

Contact: zhiyingw@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing technologies have resulted in a dramatic

decrease of genomic data sequencing time and cost. As an illustrative

example, the HiSeq X machines introduced by Illumina in 2014 en-

able whole human genome sequencing in less than 15 h and at a cost

of only $1000 (http://www.illumina.com/systems/hiseq-x-sequencing-

system.ilmn). A suite of other-seq techniques has closely followed this

development (for a comprehensive overview, see http://res.illumina.

com/documents/products/research_reviews/), including the by now

well-documented RNA-seq method. RNA-seq is a shotgun sequenc-

ing technique for whole transcriptomes (Marioni et al. 2008) used for

quantitative and functional genomic studies. In addition to generating

sequence-related information, RNA-seq methods also provide dy-

namic information about gene or functional RNA activities as meas-

ured by their expression (abundance) values. This makes RNA-seq

techniques indispensable for applications such as mutation discovery,

fusion transcript detection and genomic medicine (Wang et al. 2009).

As a result, the volume of data produced by RNA-seq methods can be

foreseen to increase at a much faster rate than Moore’s law. It is

therefore imperative to develop highly efficient lossless compression

methods for RNA-seq data.

The problem of DNA and RNA sequence and expression com-

pression has received much attention in the bioinformatics commu-

nity. Compression methods for whole genomes include direct

sequence compression (e.g. Cao et al. 2007; Pinho et al. 2011;

Tabus and Korodi 2008) and reference-based compression schemes

(e.g. Kuruppu et al. 2011; Pinho et al. 2012; Wang and Zhang

2011). The former class of methods explores properties of genomic

sequences such as small alphabet size and large number of repeats.

The latter techniques use previously sequenced genomes as refer-

ences with which to compare the target genome or sequencing reads,

leading to dramatic reductions in compressed file sizes. Related simi-

larity-discovery-based schemes are usually applied to a large collec-

tion of genomes and they achieve very small per genome

compression rates (e.g. Deorowicz et al. 2013). Moreover, recent

work also includes the compressive genomics paradigm, which

allows for direct computation and alignment on compressed data

(Loh et al. 2012). The aforementioned methods and some informa-

tion-theoretic techniques to biological data compression were re-

viewed in (Vinga 2013).

For every base pair in the genome, an RNA-seq WIG file con-

tains an integer or floating-point expression value. Human tran-

scriptome WIG files may contain hundreds of millions of expression

values, which amounts to GB of storage space (e.g. one of the subse-

quently analyzed WIG files randomly chosen from the ENCODE

(Encode Project Consortium 2004) project has a size of 5 GB). WIG

files are usually compressed by bigWig (Kent et al. 2010), which ba-

sically performs gzip compression on straightforwardly preprocessed

data. Unfortunately, the bigWig format does not appear to offer sig-

nificant data volume reductions and about 10% of the tracks from

the UCSC ENCODE hg19 browser in bigWig format take up 31%

in storage space (Hoang and Sung 2014). Recently, another com-

pression suite, termed cWig (Hoang and Sung 2014), was imple-

mented as an alternative to bigWig. The cWig method outperforms

bigWig in terms of compression rate, and random query time, al-

though it still relies on suboptimal compression techniques such as

Elias delta and gamma coding (Salomon 2007).

This work focuses on transform and arithmetic compression

methods for expression data in the WIG format. Since WIG files

capture expressions of correlated RNA sequence blocks, modeling

these values as independent and identically distributed random vari-

ables is inadequate for the purpose of compression. Hence, we first

perform a statistical analysis of expression values to explore their

dependencies/correlations and then proceed to devise a new suite of

compression algorithms for WIG files. Since the WIG format is not

limited to RNA-seq data, our compression methods are also suitable

for other types of dense data, or quantitative measurements, such as

GC content values, probability scores, proteomic measurements and

metabolomic information. The main analytic and algorithmic con-

tributions of our work are as follows:

i. Devising a new combination of run length and delta encoding

that allows for representing the expression data in highly compact

form. As part of this procedure, we identified runs of locations

with the same expression value and then computed the differences

of adjacent run values. The resulting transformed sequences are

referred to as run difference sequences and specialized statistical

analysis of difference sequences constitutes an important step to-

wards identifying near-optimal compression strategies.

ii. Analyzing the probability distributions of the difference se-

quences and inferring mixture Markov models for the data. As

part of this step, we estimated information-theoretic quantities,

such as the (conditional) entropy, to guide us in our design and

evaluation process. More precisely, we first fitted power-law

distributions to the empirical probability distributions of the

difference sequences. Second, we showed that strong correl-

ations exist between adjacent run differences, while there exists

only a relatively small correlation between the sequences of run

length differences and that of the corresponding run expression

differences. These findings provide a strong basis for performing

separate compression of the run length and the expression

information.

iii. Developing arithmetic encoders for compression of the differ-

ence sequences, including options such as basic arithmetic cod-

ing and context-mixing coding based on the work in Mahoney

(2002). In this step, we were guided by the results of the
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statistical analysis and performed alphabet size reduction in the

difference sequences and subsequent run length and run expres-

sion compression. With this step, we were able to achieve 17-

fold improvements in the compression rate when compared

with bigWig: as an illustration, a typical WIG file of size 5 GB

was compressed to roughly 64–69 MB, depending on the user-

defined operational mode; in comparison, traditional gzip and

the bigWig (Kent et al. 2010) compressors produced files of

sizes 1.1 GB and 1.2 GB, respectively.

Our new compression algorithm follows the standard require-

ments for expression data representation/visualization by allowing

random access features via data blocking and separate block com-

pression. It also encodes data summary statistics, akin to bigWig

data formats. Furthermore, smallWig has two implementation

modes, one of which runs on a single processor and another which

uses multiple processors in parallel. The parallelized version of the

algorithm offers significant savings in computational time, with

identical rate performance as the serial version.

The remainder of the article is organized as follows. Section 2

provides the idea behind our sequence transformations and coding

methods. Section 3 contains our statistical analysis. A detailed de-

scription of the smallWig algorithm is provided in Section 4.

Compression results and a comparative study of compression meth-

ods is given in Section 5. A discussion of our findings and concluding

remarks are given in Sections 6 and 7, respectively.

2 Methods: sequence transformations

We start our analysis by introducing WIG data transforms that

allow for efficient run length encoding and by explaining how to use

difference values in subsequent compression steps. To illustrate

some of the concepts behind our analysis, we make use of a WIG file

from the ENCODE project (Encode Project Consortium 2004) per-

taining to RNASeq cell line GM12878, for which the RNA fraction

is Long PolyAþ and the compartment is Nucleus.

Throughout, we use capital letters to represent sequences, and

lower case letters to represent elements in sequences. We write

½a� ¼ f1; 2; . . . ; ag, for any positive integer a 2 N
þ, and

½a; b� ¼ fa; aþ 1; . . . ; bg, for two positive integers a�b.

The WIG files of interest comprise two sequences:

• The Location Sequence A ¼ ða1; a2; . . . ; aMÞ, where M denotes

the length of the sequence. Sequence A contains chromosomal

positions (or locations) satisfying ai 2 N
þ for all i 2 ½M�, and

ai < aiþ1 for all i 2 ½M� 1�. This sequence typically contains

consecutive indices of the base pairs, for which aiþ1 ¼ ai þ 1, ex-

cept for skipped locations with expression value equal to zero,

for which aiþ1 > ai þ 1.
• The Expression Sequence B ¼ ðb1; b2; . . . ; bMÞ. The sequence B

contains expression values bi 2 R. The bi’s indicate the number

of RNA transcripts that include location ai. Note that the se-

quences A and B have the same length.

A run is defined as a sequence of consecutive locations with identical

expression value. The number of locations in the run is called the

run length, and the corresponding expression value is called the run

expression. Note that if for some integers i� j, one has atþ1 ¼ at þ 1

for all t 2 ½i; j� 1�, and bi ¼ biþ1 ¼ . . . ¼ bj, then the sequence cor-

responds to a run of length j� iþ 1 with run expression equal to bi.

On the other hand, if for some integer i there exist skipped locations,

i.e. locations for which aiþ1 > ai þ 1, and bi; biþ1 6¼ 0, then the run

is of length aiþ1 � ai � 1 with corresponding run expression value

equal to 0. Thus, there is a 1-1 mapping from the sequences A and B

to the run length and run expression sequences described below:

• The Run length Sequence C ¼ ðc1; c2; . . . ; cNÞ; ci 2 N
þ; i 2 ½N�,

a sequence of run lengths that describes the runs of consecutive

locations with identical expression values. Alternatively, one

may define the sequence by stating that for locations confined to

½
Pi

t¼1 ct þ 1;
Piþ1

t¼1 ct�, the expression values are identical. Here,

N denotes the number of runs. If N0 denotes the number of

skipped runs of value 0 in a WIG file, then
PN

i¼1 ci ¼MþN0.

• The Run Expression Sequence D ¼ ðd1; d2; . . . ;dNÞ; di 2 R,

i 2 ½N�, a sequence of expression values that corresponds to the

runs. More precisely, the sequence specifies that the ith run has

expression value di, for all i 2 ½N�.

For our running example, the original WIG sequences were of length

N ¼ 3:2eþ 8, while the run and difference sequences were of length

M ¼ 3:9eþ 7. Note that a similar transform is used in the bigBed

format, which provides a more succinct representation of sparse

WIG data (we will revisit the Bed format in the results section).

Since adjacent runs tend to have similar lengths and expressions, the

differences between consecutive runs may lead to further compac-

tion of WIG information. To describe the difference sequences, let

c0 ¼ 0; d0 ¼ 0.

• The Run length Difference Sequence, X ¼ ðx1; x2; . . . ; xNÞ, is

defined by xi ¼ ci � ci�1, so that xi 2 Z for all i 2 ½N�.
• Run Expression Difference Sequence, Y ¼ ðy1; y2; . . . ; yNÞ, is

defined by yi ¼ di � di�1, so that yi 2 R for all i 2 ½N�.

Here, we also point out that a related run length transformation

has been investigated in BedGraph format, while the idea of run

length and difference-value transformations has been studied in

(Hoang and Sung 2014). In the latter work, the authors also demon-

strated the potential benefit of using these transformations on WIG

data.

3 Methods: statistical data analysis

In what follows, we describe how to fit empirical probability mass

functions and compute empirical entropies for the run length and

run expression difference sequences X, Y. Moreover, we study

higher order dependencies of adjacent elements within the sequences

X and Y, as well as dependencies between the sequences X and Y.

3.1 Fitting empirical probability mass functions
We computed the empirical frequencies for the run expression and

run length difference sequences. Both sequences roughly follow a

power-law distribution, with probability density function

pðxÞ ’ a� 1

b
x

b

� ��a

;

which can consequently be used to approximate the empirical prob-

ability mass function [similar to the method in Pavlichin et al.

(2013)]. Therefore, we can parameterize the two empirical distribu-

tions with only two parameters, a and b. Goodness of fit may be

estimated via the standard Kolmogorov-Smirnov statistics or some

other means. For a more detailed analysis of the empirical probabil-

ity distributions, the reader is referred to the Supplementary

Material.

smallWig: parallel compression of RNA-seq WIG files 175

as
to
 MB - 
(
))
,
paper
Section 
Sequence Transformations
,
etal.(
))
&plus;,
,
,
,
. 
,
,
.
,
. 
.
.
,
,
,
.,
,
,
,
,
. 
, ,
i-th
.
,
.
. 
,
,
. 
,
,
.
(
)).
Statistical Data Analysis
,
. 
Empirical Probability Mass Functions
(
(
))).
.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv561/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv561/-/DC1


3.2 Empirical entropy computation
Next, we propose three correlation models for the difference se-

quences X, Y and estimate the entropy of their underlying

distributions.

A detailed description of these models may be found in the

Supplementary Material.

Let Z, W be discrete random variables with alphabet Z;W, re-

spectively. The Shannon entropy of Z is defined as

HðZÞ ¼ �
X
z2Z

PZðzÞlog2PZðzÞ:

Similarly, the conditional entropy of Z given W is defined as

HðZjWÞ ¼ �
X
w2W

PWðwÞ
X
z2Z

PZjWðzjwÞlog2PZjWðzjwÞ:

In what follows, we assume that X, Y are two random sequences of

length N of the form ðX1;X2; . . . ;XNÞ and ðY1;Y2; . . . ;YNÞ.
Independent run difference model. Assume that the sequences X,

Y are independent and that the elements of X (Y) are independent

and identically distributed. The entropy in this case reads as

HI ¼ HðX1Þ þHðY1Þ:
Markov run difference model. Again we assume that the se-

quences X, Y are independent, but let X (Y) be a first order Markov

sequence. We write the entropy under this model as

HM ¼ HðX2jX1Þ þHðY2jY1Þ:
Paired sequence model. We assume the sequence of pairs ððX1;

Y1Þ; ðX2;Y2Þ; . . . ; ðXN ;YNÞÞ is a first order Markov sequence.

Thus, the entropy formula reads as HP ¼ HðX2;Y2jX1;Y1Þ:
In the Supplementary Material, we list the entropies of all the afore-

mentioned models and for 14 Wig and 10 different BedGraph files,

computed using the information theoretic tools described in (Jiao et al.

2015). As one may see, the entropy is 19–56% smaller for the Markov

model than the independent run difference model. In most cases, this

reduction in entropy may be attributed to dependencies in the run

length differences. In other words, run length values are more likely to

be affected by adjacent run length values. On the other hand, consider-

ing dependencies between the run length differences and run expression

differences only reduces the entropy by about 5–16%. As a result, the

most effective compression strategy appears to be separate compression

of the difference sequences X and Y.

Because of the large variations in the run expression and run

length difference values, computing and storing all conditional prob-

abilities (about 1010 such entries) under the Markov model requires

very large memory. Hence, we first focus on a compression algo-

rithm for the independent model and then discuss our generalized

compression scheme based on context mixing, which requires speci-

alized means for overcoming the memory overflow problem.

4 Compression algorithms

We start by describing our basic compression algorithms based on

arithmetic coding and then show how to enable random queries

within the given algorithmic coding framework. In addition, we de-

scribe how to reduce the compressed file sizes even further via con-

text-mixing methods. We conclude this section by introducing

parallelization techniques for the proposed algorithms. Diagrams of

our compression and decompression architectures are given in the

Supplementary Material.

To compress the RNA-seq expressions, we used two individual

arithmetic encoders and decoders for the difference sequences X, Y

defined in Section 2. We observe that since expression values can be

real valued, any errors in computing the expression differences may

cause error propagation during decompression. As a result, the ex-

pression difference alphabet has to be stored as well, with a preci-

sion large enough to allow for correct decompression.

Arithmetic compression (Rissanen and Langdon 1979) is an en-

tropy coding method that converts the entire input sequence into a

range of values (interval) determined by its cumulative frequency.

On length-n sequences in Zn, one defines a total order W � Z by

requiring that W precedes Z lexicographically. For a sequence Z, its

code word is the binary representation of a real number betweenP
W:W�Z PðWÞ and

P
W:W�Z PðWÞ þ PðZÞ. For sequences with in-

dependent and identically distributed entries, arithmetic coding is an

entropy-approaching compression scheme, given that the distribu-

tion of the sequence is known.

To ensure small computational complexity, we used arithmetic

compression algorithms with range encoding (Martin 1979) and

some techniques from the package rangemapper by Polar (http://

ezcodesample.com/reanatomy.html?Source¼Toþarticleþandþsour

ceþcode). Our implementation is similar to the original version of

arithmetic coding, except that the underlying probabilities are repre-

sented with binary sequences of fixed length, which allows for more

efficient computations. Moreover, encoding/decoding may be per-

formed in a streaming fashion. A buffer is used to store the “unre-

solved range” depending on the yet unobserved part of the sequence.

In our implementation, the precision of the buffer was limited to 30

bits so as to control the number of operations performed. Unlike

range encoding, in which the calculations are performed base 256,

we used base 2 so as to achieve the best compression rate.

To facilitate random queries during decompression, we divided

the difference sequences into blocks of fixed length. The length—

subsequently termed block size—can be chosen by the user, to allow

for desired trade-offs between compression rate and query time.

Since the compressed sequences have lengths that vary from block to

block, we also store the address of each block. Moreover, to quickly

obtain the original sequences from the difference sequences, we also

store the (start location, expression, run length) triple ðai;bi; cjÞ for

every starting element in a block. For this purpose, we implemented

a simple binary search procedure originating from the start location

to identify the blocks corresponding to a random query.

For fast visualization of the WIG data and summary statistics

analysis, we stored an additional summary vector for every block.

The summary vector contains the following six values: (i) the min-

imum expression value in the block; (ii) the maximum expression

value in the block; (iii) the mean value of the block; (iv) the standard

deviation of the block; (v) the number of locations covered in the

block and (vi) the total number of locations within the block. If a

random region is queried, the aggregated summary vector for

the queried region is computed as follows. First, all blocks that are

completely included in the queried region are identified, and their

summary information is computed from the summary vectors of the

blocks; then, the starting and ending blocks partially contained

within the query region are retrieved and their summary information

is computed directly from the symbols in the blocks. The complexity

of the statistics query is linear in the number of queried blocks and

in the block size.

To explore dependencies among elements in the run sequences,

we used the context-mixing algorithm implemented as part of the

lpaq1 package (Mahoney 2002). To illustrate the idea behind con-

text mixing, we focus on context-tree weighting (Willems et al.

1995). In this model, we assume that every element xt 2 f0; 1g in a

sequence is generated based on a suffix set S, which can be repre-

sented by a degree-two tree of depth not more than D. Here, D is a

parameter that indicates the dependency between symbols at a
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Entropy Computation
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv561/-/DC1
,
. 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv561/-/DC1
(
)).
 &ndash; 
 &ndash; 
. 
Due to
,
A
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv561/-/DC1
Jr(
))
,
codeword
.
In order to
(
)),
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
http://ezcodesample.com/reanatomy.html?Source=To+article+and+source+code
``
''
In order to
 &ndash; 
 &ndash; 
 in order
 in order
in order 
;
(
)). In order to
(
)).
,


certain distance in the sequence and consequently determines the mem-

ory requirements of the algorithm. The root of the tree is indexed by

the empty string, while the left (or right) edge of every node represents

a 1 (or 0), and every node corresponds to the string associated with its

path to the root. Each suffix/leaf s is associated with a parameter hs,

which equals the probability of the next source symbol xtþ1

being equal to 1 conditioned on the suffix of the semi-infinite sequence

. . . xt�2xt�1xt beings. Let hsðxt
1Þ ¼ Pðxtþ1 ¼ 1jxt

t�jsjþ1 ¼ sÞ denotes

the conditional probability of a symbol given the preceding jsj symbols

being equal to s, where we denote by xj
i the string

xi; xiþ1; . . . ;xj; for i� j.

The probability hs (called the model parameter) is usually not

known but can be estimated using the Krichevsky–Trofimov (KT)

method (Krichevsky and Trofimov 1981). Moreover, the actual tree

generating the sequence (called the model) is also unknown. The

context-tree weighting algorithm takes a weighted sum over all tree

models with depth not exceeding D. The redundancy introduced by

the lack of knowledge of both the parameter and the model is

bounded, and context-tree weighting is optimal since it achieves the

lower bound of redundancy derived in Rissanen (1984). More de-

tails regarding this method are provided in the Supplementary

Material.

The context-mixing algorithm lpaq1 (Mahoney 2002) that we

used in our implementation predicts the next bit based on the previ-

ous six bytes, as well as the last matching context. Hash tables are

built to store the history and the context. During compression, the

algorithm adaptively updates the probability distribution of the next

bit based on its current prediction and uses arithmetic coding with

time varying probability values. Since adaptive schemes perform

poorly for short sequence lengths, the context-mixing scheme is only

recommended in the one-block compression mode which does not

allow random query. As a result, context-mixing compression

should be used for archival storage.

To speed up compression/decompression, we also implemented a

parallel scheme for arithmetic coders with random query. The

scheme partitions the original sequences based on its chromosome

index and compresses each substring on a separate processor.

Details of this implementation and its performance are discussed in

the Results Section.

5 Results

We tested our compression algorithm on 14 integer-valued WIG

files with sizes ranging from 1.5 to 5.3 GB and on 10 integer and

real-valued BedGraph files. All Wig files contain human transcrip-

tome RNA-seq data from the ENCODE hg19 browser. Since

smallWig is designed for WIG files, here we mainly focus on the 14-

file set. A more detailed report on the performance of smallWig on

both file sets can be found in Supplementary Material.

We measured the performance of smallWig and other existing al-

gorithms through the:

• Compression rate (compression ratio), the compressed file size

divided by the original file size.
• Running time of: (i) the encoding, (ii) the decoding and (iii) the

random query process.

Figure 1 shows the compression rates achieved by various vari-

ants of smallWig, compared with the rates of gzip, bigWig and cWig

through BedGraph. The depicted entropy is under the independent

run difference model. With arithmetic coding, our algorithm offers

18-fold rate improvements compared with bigWig. In fact, the com-

pressed file size of our running example is only 1/80 of the original

WIG file. Furthermore, the compression rate is only 1.6% larger

than the empirical entropy and may be attributed to storing the em-

pirical probabilities. With context-mixing, one can further improve

the compression rate to 23 times compared with bigWig. For com-

pression with random queries, smallWig offers 17-fold rate improve-

ments compared with bigWig.

According to the report in Hoang and Sung (2014), the compres-

sion rate of the state-of-the art cWig method is about 3.1 times bet-

ter than that of bigWig. However, we found that one can obtain an

even better rate by first converting a WIG file into a BedGraph file

and then converting the BedGraph file to cWig with some simple

additional processing (BedGraph files are compact representations

of WIG files that fundamentally rely on run length coding). Our se-

quential WIG-BedGraph-cWig pipeline performs about 8.5 times

better than bigWig. The newly introduced smallWig method still

performs twice as well as the proposed modification of cWig. For

databases containing TB/PB of WIG files, a 2-fold reduction in file

sizes may lead to exceptionally important storage cost savings.

In Figure 2, we present the running time of smallWig encoding/

decoding schemes, as well as those of gzip, bigWig and cWig. With

arithmetic coding, smallWig has a 2.5 times smaller encoding and

1.5 times smaller decoding time compared with that of bigWig.

Arithmetic coding with random query has 1.9 times smaller encod-

ing time than bigWig. Context-mixing algorithms are computation-

ally intensive compared with arithmetic coding and require

significantly longer running time.

To compare the effect of different block sizes used for random

query on compression rate and encoding/decoding time, we refer the

reader to Figure 3. In the experiments, the block sizes ranged from

512 to 4096. To enable random query, we introduced a 3–17%

overhead in compression rate and a 30% and 55% overhead in

encoding and decoding time, respectively.

Table 1 lists the random query time. Note that the start positions

(and for long queries the end positions) of the queries were gener-

ated uniformly at random among all allowed chromosomal loca-

tions for every chromosome. For short queries, the query length was

fixed to 1000, so that one query falls within a single block; in this

case, the query time corresponds to the time needed to retrieve the

corresponding block. One can see that smallWig is comparable in

performance to bigWig for short queries and runs about three times

faster for long queries. It is also comparable to cWig for both types

Fig. 1. Compression rates achieved by gzip, bigWig (Kent et al. 2010), cWig

(Hoang and Sung 2014) through BedGraph and smallWig methods, which en-

compass arithmetic coding, arithmetic coding on blocks of size 1024 and con-

text-mixing algorithms using lpaq1 (Mahoney 2002). To test cWig, we

constructed our own WIG-BedGraph-cWig pipeline. All presented results are

averaged over 14 sample files taken from ENCODE hg19. A more detailed

table is included in the Supplementary Material
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of queries. Moreover, to facilitate visualization, in the random query

functions, smallWig outputs the exact summary information to-

gether with the queried location-expression pairs. On the other

hand, the bigWig summary function only outputs information cor-

responding to the overlapped blocks but not to that of the exact

queried region.

We observe that for all the tested files, smallWig with arithmetic

coding had a relatively small memory usage, as listed in Table 2. In

particular, during most of the compression tests, the memory usage

was less than 10 KB. With different user-defined parameters,

smallWig with context mixing had higher and more variable mem-

ory usage, ranging from 90 KB to 1200 MB. We note here that since

gzip does not offer random access and summary information, its

memory usage is smaller than that of the other algorithms.

In Figure 4, we show the running time of parallel multiprocessor

compression methods. The encoding time is decreased by 2–3.4

times as the number of processors increases from 2 to 8.

Furthermore, the decoding time is decreased by 2–5.2 times. The

time does not decrease linearly since we used a uniform sequence

partition procedure for individual chromosomes, and chromosomes

have largely different lengths. Moreover, after every step in the algo-

rithm (e.g. sequence transformation, empirical probability computa-

tion, arithmetic coding), some components of the pipeline have to

pause until all processors have finished their computations and their

information is aggregated.

We also tested smallWig on 10 WIG files that were generated

from BedGraph files including integer-valued as well as floating-

point-valued expressions. The average compression rates are shown

in Figure 5. Note that BedGraph already takes into account the run

length transformations and hence the compression rate improve-

ments for these files are not as large as those for WIG files. For inte-

ger-valued files, smallWig is 5 and 1.8 times more efficient than

bigWig and cWig, respectively. For floating point-valued files,

smallWig is 4.3 and 1.9 times more efficient than bigWig and cWig,

respectively. More details about these tests can be found in

Supplementary Material.

6 Discussion

In what follows, we describe the differences in compression strategies

used by various methods and attempt to intuitively explain the

improved performance of smallWig compared with cWig and bigWig.

All three algorithms—bigWig, cWig and smallWig—use run

length encoding. Both cWig and smallWig use delta encoding.

Moreover, all three algorithms use blocks of a certain size for ran-

dom query purposes: bigWig and cWig only operate with fixed
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time is expressed in seconds per MB in the original file. The y-label is for both

the rate and the speed (s/MB). All the results are averaged over 14 sample

files from ENCODE hg19

Table 1. Comparison of smallWig, bigWig and cWig with respect to

random query time

Query Type Measure bigWig cWig smallWig

Long query Average (s/bp) 1.99E-7 5.20E-8 5.87E-8

std 4.74E-6 6.48E-8 6.08E-7

Short query Average (s) 0.0565 0.0574 0.0711

std 0.0515 0.1360 0.0176

We list the average query time in seconds per queried location for long

queries, and the average query time in seconds for short queries, together with

the corresponding standard deviations, over all 14 WIG files and 240 queries

on each file.

Table 2. Maximum memory usage during encoding and decoding

in bytes for gzip, bigWig, cWig, smallWig and smallWig with

context mixing on the tested files

gzip bigWig cWig smallWig smallWig cntx

enc. 664 2315M 1935M 89K 90K–1200M

dec. 932 24K 45K 19K 90K–1200M

Fig. 4. Compression time versus the number of processors used in smallWig.

The time is expressed in seconds per MB of the original WIG file. The block

size is 512, and the results are averaged over 14 sample files from ENCODE

hg19. Error bars indicate the standard deviation
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blocks of size 512, while smallWig allows for variable sizes.

Furthermore, smallWig also allows for flexible indexing density,

with indexing used to record the chromosomal locations that corres-

pond to the blocks. Compared with bigWig and cWig, smallWig al-

gorithms use a fairly simple data structure for indexing data and

block addresses. As a combined result of these properties, for all the

files compressed during testing, smallWig had a comparable running

time for random query to that of bigWig.

To compress the run sequences, bigWig uses gzip [based on

LZ77 (Ziv and Lempel 1977)] on each block. As already pointed

out, gzip is a universal source coding scheme that does not rely on

prior knowledge about the probability distributions. It approaches

the entropy rate if the source is stationary and ergodic and as the se-

quence length goes to infinity. Since the alphabet sizes of the se-

quences are fairly large (a few thousand to several tens of thousand)

but the block sizes are only 512, gzip offers somewhat poor per-

formance. On the other hand, cWig uses Huffman codes for fre-

quent values, and Elias delta codes for less frequent values. Both

codes perform symbol-by-symbol encoding.

Assume that the data source is producing independent and iden-

tically distributed outputs with probability mass function pð�Þ. Since

the code word of a symbol x must be represented by a binary se-

quence, say of length ‘ðxÞ, the individual symbol redundancy rðxÞ
¼ ‘ðxÞ � log2

1
pðxÞ is a real number in ½0;1Þ. Even for Huffman

encoding (i.e. the optimal prefix encoding), the expected per-symbol

redundancy may be large enough to create “visible” rate losses.

There exist a number of results on the upper and lower bounds of

the expected redundancy r ¼ EXðrðXÞÞ for a random variable X. For

example, Gallager (1978) showed an upper bound based on the larg-

est symbol probability; Capocelli and De Santis (1991) bounded the

redundancy both from above and below based on the largest and the

smallest symbol probability and Mohajer et al. (2012) showed a

tight upper and lower bound based on one known symbol probabil-

ity p. In particular, in the latter case, the redundancy is lower

bounded by r�mp�HðpÞ � ð1� pÞlog2ð1� 2�mÞ; where m>0 is

either d�log2peorb�log2pc, depending on which value minimizes

the overall expression. Here, H denotes the binary Shannon entropy

function: HðpÞ ¼ �plog2p� ð1� pÞlog2ð1� pÞ. For our running

example, the run expression difference x¼ –1 has the largest prob-

ability, pð�1Þ ¼ 0:3374, which leads to the corresponding redun-

dancy of Huffman coding r�0:0275: For a given distribution and a

given symbol-by-symbol codebook which may not be optimal, there

exists a non-negative and non-negligible coding redundancy r; on

blocks of length 512, the overall redundancy equals 512r, which is

at least 14 bits per block for Huffman codes. If a different subopti-

mal code or unmatched Huffman code is used, this redundancy may

be even larger. At the same time, arithmetic coding only causes a re-

dundancy up to 2 bits per block if the probability distribution is

known. As a result, smallWig files are significantly smaller than

cWig files. Furthermore, smallWig is flexible in terms of the block

size and enables context-mixing as well as parallel processing.

7 Conclusions

We studied compression methods for RNA-seq expression data. We

proposed a new algorithm, termed smallWig, which achieves a com-

pression ratio that is at least one order of magnitude better than cur-

rently used algorithms. At the same time, the algorithm also improves

the running time and flexibility of random access. The presented results

included detailed performance evaluations of smallWig in the standard,

random access, context mixing and parallel operation mode.
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