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Factorization Approach for Low-complexity Matrix Completion
Problems: Exponential Number of Spurious Solutions and Failure

of Gradient Methods

Baturalp Yalcin Haixiang Zhang Javad Lavaei Somayeh Sojoudi
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

Abstract

Burer-Monteiro (B-M) factorization ap-
proach can efficiently solve low-rank ma-
trix optimization problems under the Re-
stricted Isometry Property (RIP) condi-
tion. It is natural to ask whether B-
M factorization-based methods can suc-
ceed on any low-rank matrix optimiza-
tion problems with a low information-
theoretic complexity, i.e., polynomial-time
solvable problems that have a unique solu-
tion. We provide negative answer to this
question. We investigate the landscape
of B-M factorized polynomial-time solv-
able matrix completion (MC) problems,
which are the most popular subclass of low-
rank matrix optimization problems with-
out the RIP condition. We construct an
instance of polynomial-time solvable MC
problems with exponentially many spuri-
ous local minima, which leads to the fail-
ure of most gradient-based methods. We
define a new complexity metric that mea-
sures the solvability of low-rank matrix op-
timization problems based on B-M factor-
ization approach. In addition, we show
that more measurements can deteriorate
the landscape, which further reveals the
unfavorable behavior of B-M factorization.

1 INTRODUCTION

The low-rank matrix optimization problem aims to
recover a low-rank ground truth matrix M∗ through

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

some measurements modeled as A(M∗), where the
measurement operator A is a function from Rn×n to
Rd. The operator A can be either linear as in the
linear matrix sensing problem and the matrix com-
pletion problem (Candès & Recht, 2009; Recht et al.,
2010), or nonlinear as in the one-bit matrix sensing
problem (Davenport et al., 2014) and the phase re-
trieval problem (Shechtman et al., 2015). There are
two variants of the problem, known as symmetric
and asymmetric problems. The first one assumes
that M∗ is a positive semi-definite (PSD) matrix,
whereas the second one makes no such assumption
and allows M∗ to be non-symmetric or sign indefi-
nite. Since the asymmetric problem can be equiva-
lently transformed into a symmetric problem (Zhang
et al., 2021), we focus on the latter one.

There are in general two different approaches to
overcome the non-convex low-rank constraint. The
first approach is to design a convex penalty function
that prefers low-rank matrices and then optimize the
penalty function under the measurement constraint
(Candès & Recht, 2009; Recht et al., 2010; Candès
& Tao, 2010). However, this approach works in the
matrix space Rn×n and has a high computational
complexity. The other widely accepted technique
is the Burer-Monteiro (B-M) factorization approach
(Burer & Monteiro, 2003), which converts the origi-
nal problem into an unconstrained one by replacing
the original PSD matrix variable M ∈ Rn×n with
the product of a low-dimensional variable X ∈ Rn×r

and its transpose. The optimization problem based
on the B-M factorization approach can be written as

min
X∈Rn×r

g
[
A(XXT )−A(M∗)

]
,

where g(·) is a loss function that penalizes the
mismatch between XXT and M∗. Using the B-
M factorization, the objective function is generally
non-convex even if the loss function g(·) is convex.
Nonetheless, it has been proved that under certain
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strong conditions, such as the Restricted Isometry
Property (RIP) condition, saddle-escaping methods
can converge to the ground truth solution with a ran-
dom initialization (Zhang et al., 2021; Bi et al., 2021)
and first-order methods with spectral initialization
converge locally (Tu et al., 2016; Bhojanapalli et al.,
2016); see Chi et al. (2019) for an overview.

The B-M factorization is practical due to its low
computational complexity. When it is successful,
the problem is considered to be tractable. Then, it is
natural to ask whether optimization methods based
on the B-M factorization approach can succeed on
general low-rank matrix optimization problems with
a low information-theoretic complexity (i.e., prob-
lems that have a unique global solution and can be
solved in polynomial time), especially when the RIP
condition does not hold. In this work, we focus on
a common class of problems without the RIP con-
dition, namely the matrix completion (MC) prob-
lem. For the MC problem, the measurement opera-
tor AΩ : Rn×n 7→ Rn×n is given by

AΩ(M)ij :=

{
Mij if (i, j) ∈ Ω

0 otherwise,

where Ω is the set of indices of observed entries. We
denote the measurement operator as MΩ := AΩ(M)
for simplicity. An instance of the MC problem, de-
noted as PM∗,Ω,n,r, can be formulated as

find M ∈ Rn×n (PM∗,Ω,n,r)

s.t. rank(M) ≤ r, M ⪰ 0, MΩ = M∗
Ω.

If M∗ is the only solution of this problem, we will
say that PM∗,Ω,n,r has a unique solution. Using the
B-M factorization approach, the MC problem can be
solved via the optimization problem

min
X∈Rn×r

f(X), (1)

where f(X) := g[(XXT − M∗)Ω]. For example, if
the ℓ2-loss function is used, the problem becomes

min
X∈Rn×r

∥∥∥(XXT −M∗)Ω

∥∥∥2
F
. (2)

Contributions. We provide a negative answer to
the preceding question by constructing MC prob-
lem instances for which the optimization complex-
ity of local search methods using the B-M factoriza-
tion does not align with the information-theoretic
complexity of the underlying MC problem instance.
The information-theoretic complexity refers to the

minimum number of operations that the best pos-
sible algorithm takes to find the ground truth ma-
trix, while the optimization complexity refers to the
minimum number of operations that a given opti-
mization method takes to find the ground truth ma-
trix. In general, the optimization complexity of local
search methods depends on the properties of spuri-
ous solutions of the optimization problem, e.g., the
number, the sharpness and the regions of attraction
of spurious solutions. The optimization complexity
predicts the performance of an algorithm and pro-
vides a hint on which algorithm to use for a given
problem. Therefore, the results in this work imply
that the popular B-M factorization approach is not
able to capture the benign properties of the low-rank
problem when the RIP condition does not hold. We
summarize our contributions as follows:

i) Given natural numbers n and r with n ≥ 2r, we
construct a class of MC problem instances with
a deterministic measurement set in L(G, n, r),
whose ground matrix M∗ ∈ Sn+ has rank r. For
every instance in this class, there exists a unique
global solution and the solution can be found in
polynomial time via graph-theoretic algorithms.

ii) Next, we show the existence of an instance in
L(G, n, r) whose B-M factorization formulation
(2) has at least O(2n−2r) equivalence classes of
spurious1 local solutions. This claim holds for
general loss functions under a weak assumption.

iii) For the rank-1 case, we prove that most
gradient-based methods with a random initial-
ization converge to a spurious local minimum
with probability at least 1−O(2−n/2). Numeri-
cal studies verify that the failure of the gradient-
based methods happens for general rank.

iv) We present an instance that has no spurious so-
lution under the B-M factorization formulation
(2), but introducing additional observations of
the ground truth matrix leads to at least ex-
ponentially many spurious solutions. This ex-
ample further reveals the unfavorable behavior
of the B-M factorization approach on general
low-rank matrix optimization problems.

v) Based on these results, we define a new com-
plexity metric that potentially captures the op-
timization complexity of optimization methods
based on the B-M factorization.

Related Work. The low-rank optimization prob-
lem has been well studied under the RIP condition
(Recht et al., 2010). Several recent works (Zhang

1A solution is called spurious if it is a local minimum,
but has a larger objective value than the optimal.
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et al., 2019; Bi & Lavaei, 2021; Zhang et al., 2021)
showed that the non-convex formulation has no spu-
rious local minima with a small RIP parameter. To
understand how conservative the RIP condition is,
we consider a class of polynomial-time solvable prob-
lems without the RIP condition and study the be-
havior of optimization methods on this class. Specif-
ically, we consider the polynomial-time solvable MC
problems with deterministic measurement pattern.
Most existing literature on the MC problem is based
on the assumption that the measurement set is ran-
domly constructed and the global solution is coher-
ent (Candès & Recht, 2009; Candès & Tao, 2010; Ge
et al., 2016, 2017; Ma et al., 2019; Chen et al., 2020).
In comparison, there is a small range of works that
have focused on the deterministic MC problem (Bho-
janapalli & Jain, 2014; Király et al., 2015; Pimentel-
Alarcón et al., 2016; Li et al., 2016). Furthermore,
efficient graph-theoretic algorithms utilizing the spe-
cial structures of a deterministic measurement set
can be designed (Ma et al., 2018). Existing works
on a deterministic measurement set case have fo-
cused on the completability problem and the convex
relaxation approach, while the B-M factorization ap-
proach has not been analyzed. Moreover, there are
several existing works that also provided negative
results on the low-rank matrix optimization prob-
lem. The counterexamples in Candès & Tao (2010);
Bhojanapalli & Jain (2014) have non-unique global
solutions, which make the recovery of the ground
truth matrix impossible. The counterexamples in
Waldspurger & Waters (2020) have a unique global
solution but the objective function must be a linear
function. We refer the reader to Chi et al. (2019) for
a review of the low-rank matrix optimization prob-
lem. Our work is the first one in the literature that
studies the optimization complexity in the case when
the information-theoretic complexity is low.

Notations. The set [n] represents the set of inte-
gers from 1 to n. We use lower case bold letters x
to represent vectors and capital bold letters X to
represent matrices. ∥X∥ and ∥X∥F are the 2-norm
and the Frobenius norm of the matrix X, respec-
tively. Let ⟨A,B⟩ = Tr(ATB) be the inner product
between matrices. The notations X ⪰ 0 and X ≻ 0
mean that the matrix X is PSD and positive defi-
nite, respectively. The set of n × n PSD matrices
is denoted as Sn+. For a function f : Rm×n 7→ R,
we denote the gradient and the Hessian as ∇f(·)
and ∇2f(·), respectively. The Hessian is a four-

dimensional tensor with [∇2f(X)]i,j,k,l =
∂2f(X)

∂Xij∂Xk,l

for all i, k ∈ [m] and j, l ∈ [n]. The quadratic form
of the Hessian in the direction ∆ ∈ Rm×n is defined

as ∆ : ∇2f(X) : ∆ =
∑

i,j,k,l[∇2f(X)]i,j,k,l∆ij∆kl.
We use ⌈·⌉ and ⌊·⌋ to denote the ceiling and flooring
functions, respectively. The cardinality of a set S is
shown as |S|.

2 EXPONENTIAL NUMBER OF
SPURIOUS LOCAL MINIMA

In this section, we show that MC problem instances
with a low information-theoretic complexity may
have exponentially many spurious local minima if
the B-M factorization is employed. We first con-
struct a class of MC problem instances with a low
information-theoretic complexity and then identify
the problematic instances.

2.1 Low-complexity Class of MC Problems

Suppose that r ≥ 1 and n ≥ 2r are two given inte-
gers. We construct a class of MC problem instances
whose ground truth matrix M∗ ∈ Sn+ is rank-r. For
every instance in this class, the global solution is
unique and can be found in polynomial time in terms
of n and r. Let m := ⌊n/r⌋ ≥ 2. We divide the first
mr rows and the first mr columns of the matrix M∗

into m × m block matrices, where each block has
dimension r × r. For every i, j ∈ [m], we denote
the block matrix at position (i, j) as M∗

i,j . We now
define the block measurement patterns induced by a
given graph.

Definition 1 (Induced measurement set). Let G =
(G1,G2) = (V, E1, E2) be a pair of undirected graphs
with the node set V = [m] and the disjoint edge sets
E1, E2 ⊂ [m] × [m]. The induced measurement set
Ω(G) is defined as: if (i, j) ∈ E1, then the entire block
M∗

i,j are observed; if (i, j) ∈ E2, then all nondiago-
nal entries of the block M∗

i,j are observed; otherwise,
none of the entries of the block is observed. In ad-
dition, the last n − mr rows and the last n − mr
columns of the matrix M∗ are fully observed. We
refer to the graph G as the block sparsity graph.

The following definition introduces a low-complexity
class of MC problem instances.

Definition 2 (Low-complexity class of MC prob-
lems). Define L(G, n, r) to be the class of low-
complexity MC problems PM∗,Ω,n,r with the follow-
ing properties:

i) The ground truth M∗ ∈ Sn+ is rank-r.
ii) Matrix M∗

i,j ∈ Rr×r is rank-r for all i, j ∈ [m].
iii) The measurement set Ω = Ω(G) is induced by

G = (G1,G2), where G1 is connected and non-
bipartite.
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The next proposition states that every MC problem
instance in L(G, n, r) is polynomial-time solvable. A
graph-theoretical algorithm is used to find the solu-
tion within polynomial time by only using the par-
tially observed rank-r matrix.

Proposition 1. The ground truth M∗ is the
unique solution of this problem and can be found in
O(n2/r2+nr2) time for every problem in L(G, n, r).

2.2 Intuition for Rank-1 Case with ℓ2-loss
Function

We start with the case when the rank r is equal to
1 and the loss function g(·) is the ℓ2-loss. We study
two instances in the class L(G, n, 1) with O(n) and
O(n2) observations, respectively. The B-M formu-
lation (2) of both instances contains exponentially
many spurious local minima. Since the decomposi-
tion variableX is a column vector in the rank-1 case,
we write it as x.

Example 1. We first provide an instance with
O(n) observations. Note that the number of blocks,
namely m, is equal to n in the rank-1 case. Let the
graph G = (V, E1, E2) be chosen as V := [n] and

E1 := {(i, j) | i, j ∈ [n], |i− j| ≤ 1}, E2 := ∅.

The measurement set is the induced set Ω := Ω(G).
Namely, we observe the diagonal, sub-diagonal and
super-diagonal entries of the ground truth matrix.
One can verify that the subgraph G1 = (V, E1) is
connected and non-bipartite. Now, we construct a
specific ground truth matrix. We define the vector
x∗ ∈ Rn by

x∗
2k+1 := 1, ∀k ∈ [⌈n/2⌉] , x∗

2k := 0, ∀k ∈ [⌊n/2⌋] ,

and let M∗ := x∗(x∗)T . For the B-M factorization
formulation (2), the set of global minima is given by

X ∗ :=
{
x ∈ Rn | x2

2k+1 = 1, ∀k ∈ [⌈n/2⌉] ,
x2k = 0, ∀k ∈ [⌊n/2⌋]

}
,

which has cardinality 2⌈
n
2 ⌉. For every global solution

x̂ ∈ X ∗ and every ∆ ∈ Rn\{0}, the Hessian satisfies

∆ : ∇2f(x̂) : ∆ = 2
∥∥(x̂∆T +∆x̂T

)
Ω

∥∥2
F

= 8∥∆∥2 − 1[n is even]4∆2
n > 0,

where 1[·] is the indicator function. Therefore, the
Hessian is positive definite at every global minimum.
Then, we perturb the ground truth solution M∗ to

M∗(ϵ) := x∗(ϵ) [x∗(ϵ)]
T
= (x∗ + ϵ)(x∗ + ϵ)T ,

where x∗(ϵ) := x∗ + ϵ and ϵ ∈ Rn is a small pertur-
bation. We denote the associated problem (2) as

min
x∈Rn

f̃(x; ϵ), (3)

where f̃(x; ϵ) := ∥(xxT −M(ϵ)∗)Ω∥2F . For a generic
perturbation ϵ, all components of ϵ are nonzero and
problem PM∗(ϵ),Ω,n,1 belongs to the class L(G, n, 1).
This implies that the global solution of problem (3)
is unique up to a sign flip.

We analyze the relation between the local minima of
the original problem and those of the perturbed prob-
lem. Consider the equation ∇xf̃(x; ϵ) = 0 near an
unperturbed global minimum x̂ ∈ X ∗. Since (x̂; 0)
is a solution to the gradient equation and the Jaco-
bian matrix with respect to x is equal to the positive
definite Hessian ∇2f(x̂), the Implicit Function The-
orem (IFT) states that there exists a unique solution
x̂(ϵ) in a neighbourhood of x̂ for all values of ϵ with
a small norm. In addition, the continuity of Hes-
sian implies that ∇xxf̃(x̂

∗(ϵ); ϵ) ≻ 0. Thus, x̂(ϵ) is
a local minimum of the perturbed problem (3). As a
result, we have proved the existence of a local mini-
mum for the perturbed problem corresponding to each
of the 2⌈n/2⌉ global minima of the unperturbed prob-
lem. Hence, the problem (3) has at least 2⌈n/2⌉ local
minima, while only two of them are global minima.
In summary, an instance in L(G, n, 1) has exponen-
tially many spurious local solutions.

Example 2. Next, we construct an MC problem in-
stance with exponentially many spurious local min-
ima and O(n2) observations. We choose the same
ground truth matrix M∗(ϵ) as in the last example,
but assume that the measurement set Ω is induced by
the graph G = (V, E1, E2) with V := [n], E2 = ∅, and
E1 := {(i, i), (i, 2k), (2k, i) | ∀i ∈ [n], k ∈ [⌊n/2⌋]} .
Since the subgraph G1 = (V, E1) is connected and
non-bipartite, the perturbed problem PM∗(ϵ),Ω,n,1 be-
longs to the class L(G, n, 1). Moreover, one can ver-
ify that the set of global minima of this problem is
still X ∗ and the Hessian at every global solution is
positive definite. By the same argument, IFT im-
plies that problem (3) has at least 2⌈n/2⌉−2 spurious
local minima for a generic and small perturbation ϵ.

Note that the instances analyzed in this section and
those in the remainder of this paper, satisfy the inco-
herence condition (Candès & Recht, 2009) with the
parameter µ = O(1).

2.3 Rank-1 Case with General
Measurement Sets

In this subsection, we estimate the largest lower
bound on the number of spurious local minima for
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the given parameters n and r. We address the prob-
lem by first finding a lower bound on the number of
spurious local minima given a general measurement
set Ω, and then maximizing the lower bound over Ω.
The following theorem utilizes the topology of G to
quantify a lower bound on the number of spurious
solutions for the measurement set Ω(G).
Theorem 1. Let G = (V, E1, ∅) such that G1 =
(V, E1) is connected and non-bipartite with n ver-
tices. Assume that there exists a maximal indepen-
dent set2 S(G1) of G1 such that every vertex in the set
has a self-loop. There exists an instance in L(G, n, 1)
for which the problem (2) has at least 2|S(G1)| − 2
spurious local minima.

In both Examples 1 and 2, a maximal independent
set is S = {2k+1 | ∀k ∈ [⌈n/2⌉]} . Hence, Theorem
1 implies that there are 2⌈n/2⌉ − 2 spurious local
minima, which is consistent with our analysis. Since
a maximal independent set of a connected and non-
bipartite graph can have up to n − 1 vertices, the
number of spurious local minima can be as large as
2n−1 − 2.

Corollary 1. There exist a graph G and an instance
in L(G, n, 1) such that problem (2) has 2n−1−2 spu-
rious solutions. In addition, there exist a graph G
and an instance in L(G, n, 1) with |Ω| = n2 − 2 such
that the problem (2) has spurious solutions.

Corollary 1 implies that the B-M factorization may
not be an efficient approach to the MC problem,
since it has a spurious solution even in the highly
ideal case when almost all entries of the matrix are
measured. Since these results work for almost all
graphs in the rank-1 case, extensions to the random
graph case can be achieved via estimating the size of
the maximum independent set of a random graph.
Generally, the proof of Theorem 1 implies that, as a
necessary condition for not having a spurious solu-
tion in formulation (2), the elements of x∗ associated
with the nodes outside of the maximal independent
set S should not be much smaller than those associ-
ated with the nodes in S.
Corollary 2. Under the setting of Theorem 1, there
exists a function hS(·) : (0,∞) 7→ (0,∞) such that
Px∗(x∗)T ,Ω(G),n,1 has at least 2|S| − 2 spurious local
minima in formulation (2) for every generic x∗ ∈
Rn satisfying

∥x∗
Sc∥ ≤ hS(mini∈S |x∗

i |) · ∥x∗
S∥,

2For a graph G = (V, E), the set S ⊂ V is called
an independent set if no two nodes in S are adjacent.
The set S is called a maximal independent set if it is
an independent set and is not a strict subset of another
independent set.

where Sc := [n]\S and xSc := (xi : i /∈ S).

Because the maximal independent set of a graph G is
not necessarily unique, the set of functions hS,M (·)
over all maximal independent sets S designates a
necessary condition for the nonexistence of spurious
local minima given a measurement set Ω(G).

2.4 Extension to General Rank-r Case

We generalize the results to the case when the
ground truth matrix has a general rank. Eisenberg-
Nagy et al. (2013) showed that the rank-r MC
problem is NP-hard in the worst case for every
r ≥ 2. However, we focus on instances in the low-
complexity class L(G, n, r) and show that there are
instances in this class whose B-M factorization for-
mulation (2) has a highly undesirable landscape. We
cannot simply extend the proof of the rank-1 case to
the rank-r case since there exist an infinite num-
ber of matrices X∗ such that M∗ = X∗(X∗)T when
r > 1. The global optimality of a solution X∗ is
not lost under any orthogonal transformation. This
implies that the Hessian at the global solutions of
problem (2) cannot be positive definite, which fails
the applicability of IFT. Therefore, we consider the
quotient manifold Mr

n,r(R)/Or, where Or is the lie
group of r×r orthogonal matrices and Mr

n,r(R)/Or

is the the open-submanifold of rank-r matrices of
size n× r. To simplify the analysis, we instead con-
sider the following lower-diagonal subspace

Wn×r := {X ∈ Rn×r | Xij = 0, ∀i ∈ [n], j ∈ [r]

s.t. i < j}.
We define an embedding of the manifold
Mr

n,r(R)/Or into Wn×r and composite it with
the quotient map.

Definition 3 (Restriction map). Given a matrix
X ∈ Rn×r, we define the embedding ϕemb([X]) :=
R ∈ Wn×r, where X = RQ is the RQ decomposi-
tion with Q being an orthogonal matrix and R hav-
ing non-negative diagonal elements. The restriction
map is defined as ϕ(X) := ϕemb([X]).

The properties of the RQ decomposition ensure that
ϕemb(·) is a bijection in a small neighborhood of each
matrixX whose first r rows are linearly independent.
Consider the restricted version of problem (2):

min
X∈Wn×r

f(X), (4)

Results in Section 2.3 can be extended to the prob-
lem (4), and be translated back to the problem (2).

Lemma 1. Consider a graph G = (V, E1, E2) with
m = ⌊n/r⌋ vertices for which the subgraph G1 =



Exponential Number of Spurious Solutions and Failure of Gradient Methods

(V, E1) is connected and non-bipartite. Assume that
there exists a maximal independent set S(G1) of G1

whose vertices each have a self-loop. If the induced
subgraph3 G2[S] is connected, then there exists an
instance in L(G, n, r) for which the problem (4) has
at least 2r|S(G1)| − 2r spurious local minima. In ad-
dition, the first r rows of each local minimum are
linearly independent.

The Hessian at each local minimum of the unper-
turbed problem is positive definite along the tangent
space of Wn×r, where the off-diagonal observations
of Ω(G) play a key role. If the first r rows of a

local minimum X̂ are linearly independent, the di-
agonal elements of X̂ are nonzero. Therefore, by
flipping the signs of columns, we can find an equiv-
alent local minimum X̃ with positive diagonal el-
ements, i.e., X̃ lies in the range of ϕemb(·). By
symmetry, the total number of such local minima
is 2r(|S(G1)|−1)−1. Since the restriction map ϕemb(·)
is a bijection in a neighborhood of X̃, the equiva-
lence class [X̃] ∈ Mr

n,r(R)/Or is a local minimum
of problem (2) on the quotient manifold and thus
X̃ is a local minimum of problem (2). The above
argument leads to Theorem 2.

Theorem 2. Consider a graph G = (V, E1, E2) sat-
isfying the conditions of Lemma 1. There exists an
instance in L(G, n, r) for which problem (2) has at
least 2r(|S(G1)|−1) − 1 equivalence classes of spurious
solutions.

Finally, we give an estimate on the largest lower
bound for the number of spurious local minima.

Corollary 3. There exists an instance in L(G, n, r)
for which the problem (2) has at least 2n−2r − 1
equivalence classes of spurious solutions. In ad-
dition, there exists an instance in L(G, n, r) with
|Ω| = n2 − 2r for which the problem (2) has spu-
rious solutions.

Low-rank matrix optimization problems are easier
to solve as the rank-r approaches the dimension
n. However, the above generalization demonstrates
that the undesired behavior of the B-M factoriza-
tion is still valid for arbitrary ranks and they never
become easy to solve using this method.

2.5 General Loss Functions

In this part, we generalize the preceding results to
the problem (1). To extend the constructions to a
general loss function g(·), we require a few weak as-
sumptions on the loss function g(·).

3See Harary (2018) for the definition.

Assumption 1. The following conditions hold for
the function g(·):

i) g(·) is twice continuously differentiable;
ii) the matrix 0n×r is the unique minimizer of g(·);
iii) the Hessian of g(·) at 0n×r is positive definite.

We can extend the results in Section 2.4 to the gen-
eral loss function case under the above assumption.

Theorem 3. Consider a graph G = (V, E1, E2) sat-
isfying the conditions of Lemma 1 and suppose that
Assumption 1 holds. There exists an instance in
L(G, n, r) for which the problem (1) has at least
2r(|S(G1)|−1) − 1 equivalence classes of spurious lo-
cal minima.

We note that the ℓ2-loss function g(·) = ∥ · ∥2F sat-
isfies the conditions in Assumption 1. As another
example, regularizers are ubiquitously used in the
low-rank matrix optimization literature (Ge et al.,
2016, 2017; Fattahi & Sojoudi, 2020). As a corol-
lary to Theorem 3, the regularized version of the
problem (2) also suffers from the same issue. In this
case, the loss function is equal to

g(X) :=
∥∥∥(XXT −M∗)Ω

∥∥∥2
F
+Q(X),

where Q(X) := λ (∥Xi∥ − α)
4
+ is from Ge et al.

(2016), (x)+ := max{x, 0} and α, λ > 0 are con-
stants. Since the regularizer does not change the
landscape around global solutions with a large α,
Assumption 1 is satisfied and Theorem 3 is applica-
ble to the regularized problem.

3 MORE OBSERVATIONS LEAD
TO SPURIOUS LOCAL MINIMA

In Section 2, we showed that the B-M factorization
formulation (2) has an exponential number of spu-
rious local minima on low-complexity MC problem
instances. In this section, we exhibit another un-
favorable behaviour of the B-M factorization. We
identify an MC problem instance in L(G, n, r) with
some pattern Ω that has no spurious solution while
adding observations to Ω leads to spurious solutions.
Let m and r be natural numbers with m ≥ 2r. We
define n := mr and let the graph be Gk := (V, Ek)
where k ∈ [m] is an arbitrary index and

V := [m], Ek := {(k, j), (j, k) | ∀j ∈ [m]}.
In the measurement set Ωk, we observe the blocks
Mi,j for all (i, j) ∈ Ek; see Figure 1. Ωk contains
only full block observations induced by Gk. The next
proposition states that if the ground truth matrix
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MΩk
=


0

M1,k

...
0

Mk,1 · · · Mk,k · · · Mk,m

0
...

Mm,k

0



Figure 1: Measurement operator AΩk
on matrix M.

is generic, every second-order critical point4 of the
problem (2) is a global minimum.

Proposition 2. Given an index k ∈ [m], let the
measurement set Ω be equal to Ωk. Assume that the
block M∗

i,j of the ground truth matrix M∗ has rank
r for all i, j ∈ [m]. Then, every SOCP of problem
(2) is a global minimum.

Next, we construct a graph G̃k := (V, Ẽk, E2), where
Ẽk := Ek ∪ {(i, i) | ∀i ∈ [m]},
E2 := {(i, j) | ∀i, j ∈ [m], i ̸= j}.

Namely, we have included all self-loops and nondi-
agonal observations of each block in the new graph.
A maximal independent set for the subgraph G̃k,1 :=

(V, Ẽk) is S := [m]\{k}. We define a new measure-
ment set Ω̃k := Ω(G̃k). Since Ẽk is a superset of Ek,
the measurement set Ω̃k is larger than Ωk. Using
Theorem 2, we obtain the following result.

Corollary 4. Every instance of the MC problem
with the measurement set Ω̃k and full rank blocks
M∗

i,j for all i, j ∈ [m] belongs to L(G, n, r). The
formulation (2) of an instance of the problem has at
least 2r(m−2)−1 equivalence classes of spurious local
minima, while all spurious solutions disappear when
using the smaller set Ωk.

Results of Proposition 2 and Corollary 4 conclude
that the landscape of the problem (2) deteriorates
when the number of observations is increased. This
phenomenon further reveals the unfavorable behav-
ior of the B-M factorization on low-rank matrix opti-
mization problems, even if the information-theoretic
complexity is low.

4 MEASURE OF COMPLEXITY

In Section 2, we showed that if there is an MC prob-
lem with a non-unique completion, a slightly per-

4Second-order critical points are defined as those
points that satisfy the first-order and the second-order
necessary optimality conditions.

turbed problem will have exponentially many spu-
rious local minima in the B-M factorization for-
mulation (1). Hence, bifurcation behaviors appear
around measurement matrices M∗

Ω that are associ-
ated with multiple global solutions. For a given mea-
surement operator A, a measurement matrix A(M)
that allows multiple global solutions designates an
unacceptable region in the space of ground truth so-
lutions. Based on that, we define a metric to cap-
ture the extent of the bifurcation behavior. The set
of measurements that allow d non-unique solutions:

T d
A :=

{
A(M) : ∃{Xi}di=1 ∈ Rn×r

s.t. XiX
T
i ̸= XjX

T
j ,∀i, j ∈ [d], i ̸= j,

A(M) = A(XiXi
T ),∀i ∈ [d]

}
.

Then, we define a complexity metric below.

Definition 4 (Complexity metric). The complexity
metric for operator A and ground truth M∗ is de-
fined as τdA,M∗ = 1/dist(A(M∗), T d

A) where

dist(A(M∗), T d
A) := min

A(M)∈T d
A

∥A(M∗)−A(M)∥F .

Analysis in Section 2 implies if the complexity met-
ric τdA,M∗ is large, there exist O(d) spurious solu-
tions. Hence, the optimization complexity of al-
gorithms based on the B-M factorization approach
may be aligned with the corresponding information-
theoretic complexity for instances with a small com-
plexity metric τ2A,M∗ . For example, if the RIP condi-
tion is satisfied, the set T is empty and the complex-
ity metric is always 0. Ge et al. (2017) show when
the incoherence condition is small and the measure-
ment graph is random, the B-M factorization is suc-
cessful with high probability. Since a small incoher-
ence condition requires balanced columns and rows
while the non-unique completion occurs when the
columns and rows of the matrix are less balanced,
we have a small complexity metric for matrices with
small incoherence parameters. This implies that our
complexity metric supports the existing results on
the success of the B-M factorization approach under
incoherence conditions. Oppositely, the instances
studied in Section 2 with spurious solutions all have
very large complexity metrics. Consequently, the
complexity metric is a possible measure of the op-
timization complexity for the MC problem with the
B-M factorization: the optimization problem should
be more difficult if the complexity metric is higher.

5 GRADIENT METHODS FAIL

We show that the exponential number of spuri-
ous local minima in preceding instances will make
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most randomly initialized gradient-based methods
fail with a high probability. The existence of spuri-
ous local minima does not necessarily imply the fail-
ure of gradient-based methods; see Ma et al. (2018);
Chen et al. (2020). The analysis in this section is
based on the gradient flow

Ẋ(t) = −∇Xf(X(t)), X(0) = X0. (5)

It is known that the trajectories of gradient-based
methods with a small enough step size are close to
those of the gradient flow. We can view a variety
of gradient-based methods as ordinary differential
equation (ODE) solvers applied to the gradient flow
(5). Then, the convergence of the discrete trajec-
tories when the step size goes to 0 can be guaran-
teed by the consistency and the stability of the ODE
solver. Scieur et al. (2017) proved that the consis-
tency and stability conditions are satisfied by several
commonly used gradient-based methods, such as the
gradient descent, the proximal point and the accel-
erated gradient descent methods. Although Scieur
et al. (2017) considered minimizing a strongly con-
vex function, the consistency and stability condi-
tions only depend on the ODE solver and the Lips-
chitz continuity of the underlying gradient flow. We
need the following assumption on the loss function
to characterize the global landscape.

Assumption 2. The loss function g(·) satisfies the
sparse (δ, r)-RIP condition in the Ω-norm for some
constant δ ∈ [0, 1) and integer r ≥ 1. Namely, the
inequality

(1− δ)∥NΩ∥2F ≤ N : ∇2g(MΩ) : N ≤ (1 + δ)∥NΩ∥2F

holds for all matrices M and N with rank at most
2r.

The sparse RIP condition is remarkably different
from the conservative RIP condition. For exam-
ple, the ℓ2-loss function satisfies the sparse (0, r)-
RIP condition for every r, while the RIP condition
does not hold if Ω is not a complete graph. Under
the above assumption, we show that for the unper-
turbed example constructed in Section 2, the gradi-
ent flow will converge to each global minimum with
equal probability in the rank-1 case. The main dif-
ficulty is to show that all saddle points of the ob-
jective function f(X) are strict and therefore their
region of attractions (ROAs) have measure zero (Lee
et al., 2016).

Lemma 2. Suppose that Assumption 2 holds for r =
1 and δ = O(1/n), where n ≥ 3 is the size of the
ground truth matrix. There exists an MC problem
instance such that the following statements hold for
the problem (1):

• there are 2⌈n/2⌉ equivalent global minima;
• if the gradient flow (5) is initialized with an
absolutely continuous radial probability distribu-
tion, it converges to each global minimum with
the equal probability 2−⌈n/2⌉,

where a probability distribution with respect to the
Lebesgue measure is called radial if its density func-
tion at point x only depends on ∥x∥.

Examples of absolutely continuous radial probability
distributions include zero-mean Gaussian distribu-
tions and uniform distributions over a ball centered
at the origin. Note that the ℓ2-loss function satisfies
the assumption of Lemma 2. Next, we show that
with a sufficiently small perturbation to the previ-
ous instance of the problem, the ROA of each local
minimum will not shrink significantly. Therefore,
the gradient flow will converge to each global min-
imum or spurious solution with approximately the
same probability.

Theorem 4. Under the setting of Lemma 2, con-
sider an absolutely continuous radial probability dis-
tribution. There exists an instance in L(G, n, 1) for
which the problem (1) satisfies the following proper-
ties:

• the global minima are unique up to a sign flip;
• if the gradient flow (5) is initialized with the
given distribution, it converges to a global min-
imum associated with the ground truth solution
with probability at most O(2−⌈n/2⌉).

The results of Theorem 4 imply that, in the rank-
1 case, most gradient-based methods with a small
enough step size and a suitable random initializa-
tion will converge to a spurious solution with an
overwhelming probability. The proof works for the
general rank case if it can be shown that there is
no degenerate saddle points for the above-mentioned
unperturbed instances of the problem.

Remark. We remark that the trajectories of
stochastic gradient descent (SGD) methods cannot be
approximated by those of the gradient flow. Hence,
our analysis cannot automatically imply the failure
of SGD. However, the proof of Lemma 2 can be
adopted to conclude that SGD methods with a ran-
dom initialization will converge to each global mini-
mum with equal probability in the unperturbed case.
Since the trajectories of SGD methods will not vary
dramatically with a sufficiently small perturbation,
they still converge to each solution with approxi-
mately the same probability. Therefore, we also ex-
pect the SGD methods to fail with high probability.
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6 EXPERIMENTS

Numerical results are presented to support the fail-
ure of the gradient descent algorithm. Each MC
problem with the B-M factorization formulation (2)
is solved by the gradient descent algorithm with a
constant step size, where the step size is chosen to be
small enough to guarantee that the algorithm con-
verges to a stationary point. Regarding the mea-
surement set, the graph G1 := (V, E1) is generated
randomly by the Erdos-Renyi model G(m, p), where
V := [m] and each edge of the graph is included
independently with probability p. If G1 is not con-
nected or a node in the maximal independent set S
does not have a self-loop, the missed edges are added
to satisfy these conditions. In addition, a connected
subtree G2 = (S, E2(S)) is generated for nondiagonal
observations. We define G := (V, E1, E2) and subse-
quently the measurement set Ω(G). In addition, the
unperturbed ground truth matrix M∗ = X∗(X∗)T

is defined as M∗
i,j := Ir for all i, j ∈ S, and

M∗
i,j := 0r×r otherwise. Lastly, a Gaussian ran-

dom perturbation matrix ϵ ∈ Rn×r is generated and
normalized, e.g. ∥ϵ∥F = 1. Then, the perturbed
ground truth matrixM∗(ϵ) := (X∗ + γϵ)(X∗ + γϵ)T

is generated, where γ > 0 is the perturbation size.
We evaluate the success rate of the algorithm at 100
equally distributed values of γ ∈ (0, 0.5) with 300
random initializations of the gradient algorithm for
each instance and each γ.

The top figure in Figure 2 illustrates the success
rate of the gradient descent algorithm with the rank
r = 1, dimension n = 20 and various maximum inde-
pendent set sizes |S|. The results conform to The-
orem 4 implying that the success rate is less than
1/(2|S|−1) when the perturbation size γ is small.
The bottom figure in Figure 2 makes similar obser-
vations with different ranks and maximum indepen-
dent set sizes |S| when m is equal to 10. These ob-
servations imply that Theorem 4 can be extended to
the general rank case, since the success rate is less
than 1/(2r(|S|−1)) when γ is small. We note that
the behavior of the algorithm may change when γ is
large. Specifically, significant improvements in suc-
cess rate are observed when γ > 0.2 for most prob-
lem instances. This is in accordance with our notion
of complexity metric.

7 CONCLUSION AND
DISCUSSION

In this paper, we provided a negative answer to the
question of whether the B-M factorization approach

Figure 2: Success rate of gradient descent method
for (top) rank-1 and (bottom) rank-r MC problem in-
stances with randomly generated measurement sets.

can capture the benign properties of low-complexity
MC problem instances. More specifically, we defined
a class of MC problem instances that could be solved
in polynomial time. We showed that there exist MC
problem instances in this class that have exponen-
tially many spurious local minima in the B-M factor-
ization formulation (1). The results hold for a gen-
eral class of loss functions, including the commonly
used regularized formulation. The incoherence con-
dition determines the number of random samples
required to guarantee a high probability of conver-
gence. Nevertheless, there are ground truth matrices
that satisfy the incoherence condition and belong to
the low-complexity class of problems L simultane-
ously. Moreover, there exist convex optimization
methods that solve those problems in polynomial
time if the incoherence condition is sufficiently small
whereas our results indicate that the B-M factoriza-
tion still fails even with very few missing observa-
tions. Furthermore, for the rank-1 case, we proved
that gradient-based methods fail with high probabil-
ity for such instances. Numerical results verify that
similar behaviors also hold for higher rank. These
results imply that the optimization complexity of
methods based on the factorized problem (1) are
not aligned with the information-theoretic complex-
ity of the MC problem. Furthermore, we derived a
complexity metric that potentially captures the com-
plexity of the B-M factorization formulation (1).
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A PROOFS IN SECTION 2

A.1 Proof of Proposition 1

Proof. The condition PM∗,Ω,n,r ∈ L(G, n, r) implies that G1 = (V, E1) is connected and non-bipartite. Since
the graph is non-bipartite, there exists a cycle with an odd number of vertices Codd = (Vodd, Eodd) in G1

in which Eodd ⊂ E1. To numerically find an odd cycle, the breadth first search method requires O(|V| +
|E1|) = O(m2) operations. Without loss of generality, we assume that the set of vertices of the cycle is
Vodd = {1, 2, . . . , 2k + 1} and the set of edges is Eodd = {(1, 2), (2, 3), . . . , (2k + 1, 1)}, where k is a non-
negative integer. Suppose that the matrix X∗ ∈ Rn×r satisfies M∗ = X∗(X∗)T . We denote the i-th r × r
block of X∗ as X∗

i for all i ∈ [m], i.e.,

M∗ = X∗(X∗)T =

X
∗
1
...

X∗
m

 [(X∗
1)

T . . . (X∗
m)T

]
.

Since PM∗,Ω,n,r ∈ L(G, n, r), the block X∗
i is nonsingular for every i ∈ [m], which further implies that the

block M∗
i,j is nonsingular for all i, j ∈ [m]. Using the relation that M∗

i,j = X∗
i (X

∗
j )

T , we can calculate that[
k∏

i=1

(
M∗

2i−1,2i

(
M∗

2i,2i+1

)−T
)]

M∗
2k+1,1 = X∗

1(X
∗
1)

T ,

Since the left-hand side only contains observed blocks, the matrix X∗
1(X

∗
1)

T can be computed via observed
blocks. Since computing the inverse of an r×r matrix and computing the product of two r×r matrices both
require O(r3) operations, the total number of operations required for computing X∗

1(X
∗
1)

T is O[(2k+1)r3] =
O(mr3). In addition, computing the Cholesky decomposition of X∗

1(X
∗
1)

T requires O(r3) operations, which
produces a matrix X∗

1R for some orthogonal matrix R ∈ Rr×r.

With the knowledge of X∗
1R, we can recursively compute the block X∗

i using the connectivity of G1. More
specifically, we use P ⊂ [m] to denote the set of vertices i or which we have computed X∗

iR. We start with
P = {1}. At each iteration, we choose indices i ∈ P and j /∈ P such that (i, j) ∈ E1. Such a pair of indices
always exists unless P = [m], since the graph G1 is connected. Then, using the observation

M∗
j,i = X∗

j (X
∗
i )

T = (X∗
jR)(X∗

iR)T ,

we first compute the matrix X∗
jR with O(r3) operations and then add j to the set P. We stop the iteration

when P = [m]. After this process, we can concatenate X∗
iR for all i ∈ [m] to obtain the matrix X∗R. The

number of iterations is m− 1 and thus the total number of operations is O(mr3).

Summarizing the two parts, the total number of operations to compute the matrix X∗U is O(m2 +mr3) =
O[n2/r2 + nr2].

A.2 Gradient and Hessian of the Problem (2)

Before proceeding with the analysis for the proofs in the remainder of this paper, we first derive the gradient
and the Hessian of the objective function of the problem (2). We omit the proof since the calculation can
be done via basic calculus. The gradient of the objective function can be written as

∇f(X) = 2(XXT −M∗)ΩX. (6)

Similarly, the quadratic variant of the Hessian can be written as

∆ : ∇2f(X) : ∆ = 4⟨(XXT −M∗)Ω,∆∆T ⟩+ 2
∥∥(X∆T +∆XT

)
Ω

∥∥2
F
. (7)
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A.3 Proof of Theorem 1

Proof. Let S(G1) be a maximal independent set of G1 such that every vertex in the set has a self-loop. We
define the global solution as M∗ := x∗(x∗)T , where

x∗
i := ci, ∀i ∈ S, x∗

i := 0, ∀i ̸∈ S

and {ci | ∀i ∈ S} is a set of nonzero constants. We note that in the case when r = 1, the factor X ∈ Rn is a
vector. Therefore, we represent it using the notation for vectors, i.e., x. Considering the problem instance
PM∗,Ω(G),n,1, the set of global solutions of the problem (2) is given by

X ∗ :=
{
x ∈ Rn | x2

i = c2i , ∀i ∈ S, xi = 0, ∀i /∈ S
}
,

which has the cardinality |X ∗| = 2|S|. For every global solution x̂ ∈ X ∗, we have x̂x̂T = M∗. Thus, we
know that x̂ is a first-order critical point of the problem (2). For every ∆ ∈ Rn, the quadratic form of the
Hessian (7) can be written as

∆ : ∇2f(x̂) : ∆ = 2
∥∥(x̂∆T +∆x̂T

)
Ω

∥∥2
F
=
∑
i∈S

2(∆ix̂i + x̂i∆i)
2 +

∑
j ̸∈S

∑
i∈S

(i,j)∈E1

[
2(∆j x̂i)

2 + 2(x̂i∆j)
2
]

=
∑
i∈S

4(∆ix̂i)
2 +

∑
j ̸∈S

∑
i∈S

(i,j)∈E1

4(∆j x̂i)
2 =

∑
i∈S

4x̂2
i ·∆2

i +
∑
j ̸∈S

(∑
i∈S

(i,j)∈E1

4x̂2
i

)
·∆2

j .

The first term in the above expression corresponds to self-loops in S, while the second term corresponds
to the edges between S and Sc := V\S. We note that the edges whose endpoints are both in Sc do not
contribute to the quadratic form. Since S is a maximal independent, we know that

{i ∈ S | (i, j) ∈ E1} ≠ ∅, ∀j /∈ S.

As a result, it holds that
∆ : ∇2f(x̂) : ∆ > 0, ∀∆ ∈ Rn\{0},

which implies that the Hessian at the global solution x̂ is positive definite. Then, we perturb the global
solution of the above problem to be

M∗(ϵ) := x∗(ϵ) [x∗(ϵ)]
T
= (x∗ + ϵ)(x∗ + ϵ)T ,

where x∗(ϵ) := x∗ + ϵ and ϵ ∈ Rn is a small perturbation. We denote the problem (2) after perturbation as

min
x∈Rn

f̃(x; ϵ),

where f̃(x; ϵ) := ∥(xxT −M(ϵ)∗)Ω∥2F . For a generic perturbation ϵ, all components of ϵ are nonzero and the
problem PM∗(ϵ),Ω,n,1 belongs to the class L(G, n, 1). This implies that the global solution of the problem (3)
is unique up to a sign flip.

The earlier argument implies that ∇xf̃(x̂; 0) = 0 and ∇xxf̃(x̂; 0) ≻ 0. Now, we analyze the relationship
between the local minima of the original problem and those of the perturbed problem. We consider the
equation ∇xf̃(x; ϵ) = 0 near an unperturbed global minimum x̂ ∈ X ∗. Since (x̂; 0) is a solution to the
gradient equation and the Jacobian matrix with respect to x is equal to the positive definite Hessian ∇2f(x̂),
the Implicit Function Theorem (IFT) states that there exists a unique solution x̂(ϵ) in a neighbourhood of
x̂ for every ϵ with a small norm. In addition, the continuity of the Hessian implies that ∇xxf̃(x̂(ϵ); ϵ) ≻
0. Otherwise, we can find a sequence of ϵk → 0 and another sequence {yk} with ∥yk∥ = 1 such that
(yk)T∇xxf̃(x̂(ϵ); ϵ)y

k < 0. By taking the limit along a convergent subsequence of {yk}, we arrive at a
contradiction. Therefore, every point in x̂∗(ϵ) still satisfies the second-order sufficient conditions. Since
there are 2|S| global minima for the unperturbed problem, an analysis through the IFT implies that there
are 2|S| strict local minima for the problem (3). Hence, there are 2|S| − 2 spurious local minima for the
perturbed problem (3).
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A.4 Proof of Corollary 1

Proof. We first prove the claim about the largest lower bound. Theorem 1 implies that there are at least
2|S(G1)| − 2 spurious local minima for a problem instance in L(G, n, 1). For an arbitrary connected and non-
bipartite graph G1 with n vertices, the maximal possible size of a maximal independent set with self-loops is
n−1. More specifically, the graph G∗

1 that attains this maximal value is the star graph K1,n−1 complemented
with self-loops for the n − 1 independent vertices. Hence, Theorem 1 imples that there exists a problem
instance in L(G∗, n, 1) with at least 2n−1 − 2 local minima, where we define G∗ := (G∗

1 , ∅).

We then consider the second claim of this corollary. Consider the measurement set Ω that observes all entries
of the ground truth M∗ except M∗

12 and M∗
21. In this case, we have |Ω| = n2 − 2. Choose the set of vertices

to be V := [n] and the set of edges to be E1 := [n] × [n]\{(1, 2), (2, 1)}. Then, the graph G := (V, E1, ∅)
satisfies that Ω = Ω(G) and the maximal independent set is S := {i, j}. Therefore, Theorem 1 implies that
there exists a problem instance in L(G, n, 1) that has at least 2|S| − 2 = 2 spurious local minima.

A.5 Proof of Corollary 2

Proof. For a generic vector x∗ ∈ Rn, all elements of x∗ are nonzero and we can decompose x∗ into x0 + x1,
where

x0
i := x∗

i , ∀i ∈ S, x0
i := 0, ∀i /∈ S,

x1
i := 0, ∀i ∈ S, x1

i := x∗
i , ∀i /∈ S.

We first consider the problem Px0(x0)T ,Ω(G),n,1. Using a similar proof as Theorem 1, we can prove that this

problem has 2|S| equivalent global solutions in formulation (2), which are described by the set

X ∗ :=
{
x ∈ Rn | x2

i = (x∗
i )

2, ∀i ∈ S, xi = 0, ∀i /∈ S
}
.

In addition, the Hessian is positive definite at every global solution x̂ ∈ X ∗. Using a similar argument as
the proof of Theorem 1, we conclude that there exists a small constant rx0 > 0 such that the conditions

∥ϵ∥ ≤ rx0 , ϵi ̸= 0, ∀i ∈ [m] (8)

imply that the problem Px0(ϵ)[x0(ϵ)]T ,Ω(G),n,1 has at least 2|S| − 2 spurious local minima in formulation (2),
where x0(ϵ) := x0 + ϵ. Moreover, the MC problem is “scale-free” in the sense that the formulation (2) of
the problem Px′(x′)T ,Ω(G),n,1 has spurious local minima if and only if that of the problem P(cx′)(cx′)T ,Ω(G),n,1
has spurious local minima, where x′ ∈ Rn is an arbitrary vector and c ̸= 0 is a constant. Therefore, we have
the relation

rcx0 = c · rx0 , ∀c ̸= 0. (9)

Hence, it suffices to consider vectors x0 ∈ X0, where

X0 := {x ∈ Rn | xi ̸= 0, ∀i ∈ S, xi = 0, ∀i /∈ S, ∥x∥ = 1} .

Now, we consider a vector x̂0 ∈ Rn satisfying

∥x̂0 − x0∥ < rx0/2.

Then, as long as the generic perturbation ϵ satisfies ∥ϵ∥ ≤ rx0/2, the condition (8) implies that the problem
Px̂∗(ϵ)[x̂∗(ϵ)]T ,Ω(G),n,1 has at least 2|S| − 2 spurious local minima in formulation (2), where x̂∗(ϵ) := x̂0 + ϵ.
This verifies the existence of a function hS on the open set

N (x0) :=
{
x ∈ Rn | ∥x− x0∥ < rx0/2

}
, ∀x0 ∈ X0.

Now, we consider the compact set

Xk :=

{
x ∈ Rn | min

i∈S
|xi| ≥ 1/k, xi = 0, ∀i /∈ S, ∥x∥ = 1

}
, k = 1, 2, . . .
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The open set family {N (x0) | x0 ∈ X0} comprises an open covering of the compact set Xk. Hence, there
exists a finite covering of the compact set Xk and thus there exists a small constant ϵk such that

hS(x
0) ≥ ϵk, ∀x0 ∈ Xk.

Moreover, using the relation

Xk−1 ⊂ Xk, ∀k ≥ 2, X0 =

∞⋃
k=1

Xk,

we can decrease the value of the function hS to be

h(x0) := ϵk, ∀x0 ∈ Xk\Xk−1, k ≥ 2.

Using this definition, hS reduces to mini∈S |xi| and, with a little abuse of notations, we still write the new
function as hS(mini∈S |xi|).

Now, we can view the problem Px∗(x∗)T ,Ω(G),n,1 as the perturbed problem, where the generic perturbation
is given by x1. The above analysis implies that the following condition holds

∥xSc∗∥ = ∥x1∥ ≤ hS

(
min
i∈S

|xi|
)
· ∥x0∥ = hS

(
min
i∈S

|xi|
)
· ∥x∗

S∥

which demonstrates the existence of at least 2|S| − 2 spurious local minima in formulation (2).

A.6 Proof of Lemma 1

Proof. We follow a similar proof construction as in Theorem 1. Let D be the set of full-rank diagonal
matrices and D{1,−1} be the set of diagonal matrices with the diagonal entries being +1 or −1. Suppose
that S is a maximal independent set of G1 in which every node has a self-loop. Then, we define the ground
truth matrix M∗ := X∗(X∗)

T
, where X∗ ∈ Rn×r satisfies

X∗
i = 0, ∀i ̸∈ S, X∗

i ∈ D, ∀i ∈ S,

where Xi is the i-th block of X ∈ Rn×r; see the definition in the proof of Proposition 1. Then, the set of
global solutions is given by

X ∗ :=
{
X ∈ Rn×r | Xi = X∗

iD, ∀i ∈ S, D ∈ D{1,−1}, Xi = 0, ∀i ̸∈ S
}
,

For every global solution X̂ ∈ X ∗, we have X̂X̂T = M∗. Thus, every global solution is a first-order critical
point of the problem (2). In addition, let ∆ ∈ Rn×r be an arbitrary direction matrix with its r × r block
matrices denoted as ∆1,∆2, . . . ,∆m. Then, the quadratic variant of the Hessian (7) in the direction ∆ can
be written as

∆ : ∇2f(X̂) : ∆ = 2
∥∥∥(X̂∆T +∆X̂T

)
Ω

∥∥∥2
F

(10)

=
∑
i∈S

∥∆iX̂
T
i + X̂i∆

T
i ∥2F + 2

∑
j ̸∈S

 ∑
i∈S

(i,j)∈E1

∥∆jX̂
T
i ∥2F +

∑
i∈S

(i,j)∈E2

∥(∆jX̂
T
i )nd∥2F


+ 2

∑
j∈S

∑
i∈S

(i,j)∈E2

∥(∆jX̂
T
i + X̂j∆

T
i )nd∥2F

where (·)nd is the projection onto the matrix space with a zero diagonal. We note that the first term in
(10) corresponds to self-loops in G1, while the second term corresponds to edges between S and Sc. The
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edges whose endpoints are both in Sc do not contribute to the quadratic form. Moreover, the last term
corresponds to partial observations with nondiagonal entries within the independent set S.

Now, we aim to prove that the Hessian at X̂ is positive definite in the tangent space of Wn×r, namely,

∆ : ∇2f(X̂) : ∆ > 0, ∀∆ ∈ Rn×r\{0}, ∆1 is lower triangular.

We assume that ∆ : ∇2f(X̂) : ∆ = 0 for some ∆ ∈ Rn×r such that ∆1 is lower triangular. Under this

assumption, all three terms in (10) are equal to zero. Considering the second term, since X̂i is full-rank, we
have

∆j = 0, ∀j /∈ S.

For the first term, ∥∆iX̂
T
i + X̂i∆

T
i ∥2F is zero only if ∆iX̂

T
i = −X̂i∆

T
i , i.e., ∆iX̂

T
i is skew-symmetric. Since

X̂i is a diagonal matrix with nonzero diagonal entries, the diagonal entries of ∆i must be zero for all i ∈ S.
Without loss of generality, we assumed that vertex 1 ∈ S. This is because we can equivalently fix the block
Xi to be lower-diagonal for any i ∈ S and consider a similarly constrained optimization problem. Then,
since ∆1 must be lower triangular, we have

∆1 = 0,

We define the set
S0 := {i ∈ S | ∆i = 0} .

We have shown that i ∈ S0 and aim to prove that S0 = S. Since the induced subgraph G2[S] is connected,
there exists a vertex j ∈ S such that (1, j) ∈ E2. Considering the third term in (10), we have

(∆jX̂
T
1 + X̂j∆

T
1 )nd = (∆jX̂

T
1 )nd = 0,

which implies that ∆j = 0 because X̂j is a diagonal matrix with nonzero diagonal entries. Hence, we have
proved that j ∈ S0. By the connectivity of G2[S], we can inductively prove that all elements in S belong to
S0. Therefore, it holds that ∆ = 0 and the quadratic form of Hessian is zero only when ∆ = 0. As a result,
the Hessian is positive definite at every global solution X̂ ∈ X ∗ of the problem (4).

Then, we perturb the ground truth of the above problem instance to be

M∗(ϵ) := X∗(ϵ) [X∗(ϵ)]
T
= (X∗ + ϵ)(X∗ + ϵ)T ,

whereX∗(ϵ) := X∗+ϵ and ϵ ∈ Rn×r is a small perturbation. Similar to Theorem 1, for a generic perturbation
ϵ, all block components of ϵ are nonzero and full-rank. Therefore, the problem PM∗(ϵ),Ω,n,r belongs to the
class L(G, n, r). This implies that the global solution of the problem (4) is unique up to a right-multiplication
with D ∈ D{1,−1}. Since there are 2r|S| global minima for the unperturbed problem, IFT implies that there

are 2r|S| strict local minima for the perturbed problem. Hence, there are 2r|S| − 2r spurious local minima
for the perturbed problem.

A.7 Proof of Corollary 3

Proof. We first consider the largest lower bound on the number of spurious local minima. Similar to Corollary
1, since an instance in L(G, n, r) can have a maximum independent set of size at most |S(G1)| = m − 1 =
n/r − 1, Theorem 2 implies that the largest lower bound on the number of spurious local solution classes is
2r(n/r−2) − 1 = 2n−2r − 1.

We prove the second part of this corollary next. We choose G1 to be a graph with m vertices and
(
m
2

)
− 1

edges, where (i, j) is the only missing edge. Then, the maximal independent set is S := {i, j}. Since G2[S]
must be connected, the nondiagonal entries of the block M∗

i,j are observed. Thus, only 2r entries are not

observed and |Ω| = n2−2r. Furthermore, Theorem 2 implies that there exists a problem instance in L(G, n, r)
with at least 2r(|S|−1) − 1 = 2r − 1 equivalence classes of spurious local minima.

A.8 Proof of Theorem 3

Proof. The proof is similar to those of Theorems 1 and 2. We can prove that the Hessian is positive definite
at all global solutions for each loss function g(·) satisfying Assumption 1.
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B PROOFS IN SECTION 3

B.1 Proof of Proposition 2

Proof. For every matrix X ∈ Rn×r, we denote Xi as the i-th r × r block of X for all i ∈ [m]. Because
each block M∗

i,j is assumed to be full rank, the block X∗
i is also full rank for all i ∈ [m], where X∗ satisfies

M∗ = X∗(X∗)T . It is desirable show that every first-order critical point is either a global solution or a
saddle point with a strict descent direction. For every i ∈ [m], the gradient of the problem (2) with respect
to the i-th block Xi is

∇Xif(X) =

{
2(XiX

T
k −X∗

i (X
∗
k)

T )Xk, if i ̸= k∑m
j=1 2(XkX

T
j −X∗

k(X
∗
j )

T )Xj , if i = k.

Let X̂ ∈ Rn×r be a first-order critical point of problem (2).

We first consider the case when X̂k is nonsingular. For every i ∈ [m]\{k}, the condition ∇Xi
f(X) = 0

implies that
X̂iX̂

T
k −X∗

i (X
∗
k)

T = 0.

Substituting the above equations into the equation ∇Xk
f(X) = 0, we obtain

(XkX
T
k −X∗

k(X
∗
k)

T )Xk = 0,

which implies that X̂kX̂
T
k = X∗

k(X
∗
k)

T . Therefore, the matrix X̂ is a global solution of the problem (2) in
this case.

Now, we consider the case when X̂k is singular. We choose a vector yk ∈ Rn such that

X̂kyk = 0, ∥yk∥ = 1.

Given a small constant ϵ > 0, the i-th block direction ∆ ∈ Rn×r is defined as

∆i :=

{
ziy

T
k , if i ̸= k

ϵyky
T
k , if i = k,

where zi ∈ Rn is arbitrary. The above definition directly implies that X̂k∆
T
i = 0 for all i ∈ [m]. Then, we

obtain

4
〈
(X̂X̂T −X∗(X∗)T )Ω,∆∆T

〉
= −4tr

[
X∗

k(X
∗
k)

T∆k∆
T
k

]
−

m∑
j=1,j ̸=i

8tr
(
X∗

j (X
∗
k)

T∆k∆
T
j

)
=

m∑
j=1,j ̸=i

−8tr
[
X∗

j (X
∗
k)

Tykz
T
j

]
· ϵ+O(ϵ2),

and

2∥(X∆T +∆XT )Ω∥2F = 8∥Xk∆
T
k ∥2F + 4

m∑
j=1,j ̸=k

∥Xj∆
T
k ∥2F = O(ϵ2)

Combining two estimates above, the quadratic form of the Hessian (7) can be written as

∆ : ∇2f(X̂) : ∆ =

m∑
j=1,j ̸=i

−8tr
[
X∗

j (X
∗
k)

Tykz
T
j

]
· ϵ+O(ϵ2).

Since X∗
i is nonsingular for all i ∈ [m], it holds that X∗

j (X
∗
k)

Tyk ̸= 0. Choosing

zj := X∗
j (X

∗
k)

Tyk,
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we obtain

∆ : ∇2f(X̂) : ∆ =

m∑
j=1,j ̸=i

−8∥X∗
j (X

∗
k)

Tyk∥2 · ϵ+O(ϵ2).

Hence, the quadratic form of the Hessian is negative with a sufficiently small ϵ and X̂ is a strict saddle point.

Combining the two cases, we conclude that every second-order critical point of the problem (2) is a global
minimum.

C PROOFS IN SECTION 5

C.1 Proof of Lemma 2

In this proof and the following proofs for Section 5, we consider the instance of the MC problem constructed
in Section 2. For completeness, we repeat the instance here. In the unperturbed case, the ground truth
matrix is defined as M∗ := x∗(x∗)T ∈ Rn×n, where vector x∗ ∈ Rn satisfies

x∗
2k−1 = 1, ∀k = 1, . . . , ⌈n/2⌉, x∗

2k = 0, ∀k = 1, . . . , ⌊n/2⌋.

The measurement set Ω is given by

Ω := {(j, j), (2k, j), (j, 2k) | j = 1, . . . , n, k = 1, . . . , ⌊n/2⌋} .

It has been proved in Section 2 that the problem (1) has 2⌈n/2⌉ global solutions, which are given by the set

X ∗ :=
{
x ∈ Rn | x2k = 0, k = 1, . . . , ⌊n/2⌋, x2

2k+1 = 1, k = 1, . . . , ⌈n/2⌉
}
.

For each vector x ∈ Rn, we denote

xo := (x1, x3, . . . , x⌈n/2⌉), xe := (x2, x4, . . . , x⌊n/2⌋).

Before presenting the proof of Lemma 2, we first state three technical lemmas.

Lemma 3. Suppose that Assumption 1 holds with (δ, 1), and that x̂ is a first-order critical point of the
problem (1). Then, it holds that

∥x̂e∥∥x̂∥ ≤ 2
√
2δ∥ (M−M∗)Ω ∥F ,

where we define M := x̂x̂T .

Proof. Utilizing the first-order optimality condition and the gradient in (6), it holds that

〈
∇g
[(
x̂x̂T − x∗x∗)

Ω

]
, x̂∆T

〉
=

∫ 1

0

(M−M∗) : ∇2g [(M∗)Ω + t (M−M∗)Ω] : x̂∆
T dt = 0, ∀∆ ∈ Rn,

where the first equality is from Taylor’s expansion. For every fixed number t ∈ [0, 1], the proof of Theorem
1 in Bi & Lavaei (2021) implies that

(M−M∗) : ∇2g [M∗
Ω + t (M−M∗)Ω] : x̂∆

T

≥
〈
(M−M∗)Ω ,

(
x̂∆T

)
Ω

〉
− 2

√
2δ∥ (M−M∗)Ω ∥F ∥

(
x̂∆T

)
Ω
∥F .

Integrating over t, it follows that〈
(M−M∗)Ω ,

(
x̂∆T

)
Ω

〉
≤ 2

√
2δ∥ (M−M∗)Ω ∥F ∥

(
x̂∆T

)
Ω
∥F . (11)

By choosing
∆2k+1 = 0, k = 1, . . . , ⌈n/2⌉, ∆2k = x̂2k, k = 1, . . . , ⌊n/2⌋,
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we obtain 〈
(M−M∗)Ω ,

(
x̂∆T

)
Ω

〉
= ∥x̂e∥2∥x̂∥2, ∥

(
x̂∆T

)
Ω
∥F = ∥x̂e∥∥x̂∥.

Substituting the above two equalities into (11), we have

∥x̂e∥2∥x̂∥2 ≤ 2
√
2δ∥ (M−M∗)Ω ∥F ∥x̂e∥∥x̂∥.

The above inequality implies that

∥x̂e∥∥x̂∥ ≤ 2
√
2δ∥ (M−M∗)Ω ∥F or x̂e = 0,

since ∥x̂e∥∥x̂∥ = 0 if and only if x̂e = 0. In both cases, the claim of this lemma holds.

Lemma 4. Let D be the set of r × r diagonal matrices and D{1,−1} be set of r × r diagonal matrices with
the diagonal entries +1 or −1. Under the same setting as Lemma 1, consider the n×n ground truth matrix
M∗ := X∗(X∗)T such that n = mr, where

X∗
i ∈ D, ∀i ∈ S(G1), X∗

i = 0, ∀i /∈ S(G1).

Let D ∈ Rn×n be an arbitrary matrix with its diagonal blocks denoted as D1,D2, . . . ,Dm such that Di ∈
D{1,−1} for all i ∈ [m]. Then, the problem instance PM∗,Ω(G),n,r in formulation (2) satisfies that

∇f(DX) = D∇f(X), ∀X ∈ Rn×r.

Proof. Since the graph G satisfies the conditions in Lemma 1, the gradient ∇f(X) for problem (2) can be
written as

∇Xk
f(DX) = 2

{
(XkX

T
k −X∗

k(X
∗
k)

T )Xk +
∑

(k,j)∈E1
XkX

T
j Xj +

∑
(k,j)∈E2

(XkX
T
j −X∗

k(X
∗
j )

T )ndXj , if k ∈ S∑
(k,j)∈E1

XkX
T
j Xj +

∑
(k,j)∈E2

(XkX
T
j )ndXj , if k ̸∈ S,

where (·)nd is the projection onto the matrix space with the zero diagonals. Note that blocks of the trans-
formed variable DX are DiXi for all i ∈ [m]. First, we consider the change in the i-th block of the gradient
function for i ∈ S:

∇Xi
f(DX) = 2

(
(DiXiX

T
i D

T
i −X∗

i (X
∗
i )

T )DiXi +
∑

(i,j)∈E1

DiXiX
T
j D

T
j DjXj+ (12)

∑
(i,j)∈E2

(DiXiX
T
j Dj

T −X∗
i (X

∗
j )

T )ndDjXj

)
.

Using DT
i Di = I and X∗

i ∈ D, the first term in (12) can be written as

(DiXiX
T
i D

T
i −X∗

i (X
∗
i )

T )DiXi = DiXiX
T
i Xi −X∗

i (X
∗
i )

TDiXi

= Di(XiX
T
i −X∗

i (X
∗
i )

T )Xi,

where the second equality is justified by the commutative property of diagonal matrix multiplication. Simi-
larly, the second term in (12) can be written as∑

(i,j)∈E1

DiXiX
T
j D

T
j DjXj = Di

∑
(i,j)∈E1

XiX
T
j Xj .

For the last term in (12), we use the relation X∗
i ∈ D and the fact that (·)nd is nonzero only at positions

associated with the nondiagonal entries to obtain∑
(i,j)∈E2

(DiXiX
T
j Dj

T −X∗
i (X

∗
j )

T )ndDjXj =
∑

(i,j)∈E2

Di(XiX
T
j −X∗

i (X
∗
j )

T )ndD
T
j DjXj

= Di

∑
(i,j)∈E2

(XiX
T
j −X∗

i (X
∗
j )

T )ndXj .
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Thus, we have
∇Xif(DX) = Di∇Xif(X), ∀i ∈ S.

Now, we consider the change in the i-th block of the gradient function for i ̸∈ S:

∇Xif(DX) = 2

 ∑
(i,j)∈E1

DiXiX
T
j D

T
j DjXj +

∑
(i,j)∈E2

(DiXiX
T
j D

T
j )ndDjXj


= 2Di

 ∑
(i,j)∈E1

XiX
T
j Xj +

∑
(i,j)∈E2

(XiX
T
j )ndXj

 = Di∇Xif(X),

where the second equality holds by a similar argument as in the case of i ∈ S. Consequently, we have

∇Xif(DX) = Di∇Xif(X), ∀i ̸∈ S.

Combining the two cases, it follows that

∇f(DX) = D∇f(X).

Lemma 5. Consider the case r = 1. Given an arbitrary point x0 ∈ Rn, let x̂ ∈ Rn denote a point with the
property that the gradient flow (5) initialized at x0 converges to x̂. For every diagonal matrix D ∈ Rn×n

that satisfies
D2

ii = 1, ∀i ∈ [n],

the gradient flow initialized at Dx0 will converge to Dx̂.

Proof. By the results of Lemma 4, we obtain

∇f(Dx) = D∇f(x), ∀x ∈ Rn. (13)

Hence, we know that the gradient flow initialized with Dx0 is equal to Dx(t) at time t, for all t ≥ 0. This
leads to the conclusion that the new gradient flow will converge to Dx̂.

Proof of Lemma 2. Since it is already known that the problem (1) has exponentially many global solutions,
it remains to prove that the gradient flow with a radial random initialization will converge to one of the
above global solutions with equal probability, i.e., with probability 2−⌈n/2⌉. It has been proved in Lee et al.
(2016) that the gradient flow will only converge to local minima if the objective function does not have
degenerate saddle points, i.e., the Hessian of every saddle point has a negative curvature. Since the global
solutions of the problem (1) are symmetric with respect to a radial probability distribution, it follows from
Lemma 5 that we only need to prove that the objective function of this problem does not have degenerate
saddle points. Equivalently, we prove that all second-order critical points are global minima.

Suppose that x̂ is a second-order critical point of the problem (1) that is not a global minimizer. Let
M := xxT . Due to the symmetry of the landscape, we can assume without loss of generality that

x̂k ≥ 0, k = 1, . . . , n.

We define the direction ∆ ∈ Rn as

∆2k+1 = x̂2k+1 − 1, k = 1, . . . , ⌈n/2⌉, ∆2k = x̂2k, k = 1, . . . , ⌊n/2⌋.

Then, Lemma 7 in Ge et al. (2017) implies that

∆ : ∇2f [x̂] : ∆ =∆∆T : ∇2g
[(
x̂x̂T − x∗x∗)

Ω

]
: ∆∆T − 3(M−M∗) : ∇2g

[(
x̂x̂T − x∗x∗)

Ω

]
: (M−M∗)

≤(1 + δ)∥
(
∆∆T

)
Ω
∥2F − 3(1− δ)∥ (M−M∗)Ω ∥2F ,
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where the last inequality is from the assumption that g(·) satisfies the sparse RIP condition with (δ, 1).
Combining with the second-order necessary optimality condition, we obtain

(1 + δ)∥
(
∆∆T

)
Ω
∥2F ≥ 3(1− δ)∥ (M−M∗)Ω ∥2F . (14)

Using the expression

∥ (M−M∗)Ω ∥2F − ∥
(
∆∆T

)
Ω
∥2F =

⌈n/2⌉∑
k=1

[
4x̂2k+1 · (x̂2k+1 − 1)2 + ∥x̂e∥2(2x̂2k+1 − 1)

]
,

the inequality (14) can be written as

−
⌈n/2⌉∑
k=1

[
4x̂2k+1 · (x̂2k+1 − 1)2 + ∥x̂e∥2(2x̂2k+1 − 1)

]
≥ 2− 4δ

1 + δ
∥ (M−M∗)Ω ∥2F . (15)

The above inequality gives that

2− 4δ

1 + δ
∥ (M−M∗)Ω ∥2F ≤ −

⌈n/2⌉∑
k=1

[
4x̂2k+1 · (x̂2k+1 − 1)2 + ∥x̂e∥2(2x̂2k+1 − 1)

]
≤ −

⌈n/2⌉∑
k=1

[
0− ∥x̂e∥2

]
= ⌈n/2⌉ · ∥x̂e∥2 ≤ (n+ 1)/2 · ∥x̂e∥2

≤ (n+ 1)/2 · ∥x̂e∥∥x̂∥ ≤
√
2(n+ 1)δ∥ (M−M∗)Ω ∥F ,

where the second inequality is from the assumption that x̂2k+1 ≥ 0 and the second last inequality is from
Lemma 3. The above inequality implies that

∥ (M−M∗)Ω ∥F ≤
√
2(n+ 1)δ(1 + δ)

2− 4δ
.

Recalling the condition

n ≥ 3, δ ≤ 1

2n
,

we obtain

∥ (M−M∗)Ω ∥F ≤ 1

2
.

Checking the diagonal entries of M−M∗ = x̂x̂T − x∗(x∗)T , we have

|x̂2k+1 − 1| ≤ 1

2
, k = 1, . . . , ⌈n/2⌉,

which gives

x̂2k+1 ≥ 1

2
, k = 1, . . . , ⌈n/2⌉.

Applying this condition to inequality (15), the left-hand side of the inequality is non-positive while the
right-hand side is non-negative, which implies that

∥ (M−M∗)Ω ∥F = 0.

This contradicts the assumption that x̂ is not a global solution. Hence, we have completed the proof that
all second-order critical points of the problem (1) are global minima.

Furthermore, using Lemma 5, we know that the region of attraction (ROA) of each global minimum is
symmetrical. Since the randomly initialized gradient flow converges to a second-order critical point with
probability 1 and all second-order critical points are global minima, the gradient flow with a radial random
initialization will converge to each global minimum with equal probability.
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C.2 Proof of Theorem 4

Proof. In the unperturbed case, the curvature of the Hessian at each global minimum is given by

∆ : ∇2f(x) : ∆ ≥ (1− δ)∥
(
x∆T +∆xT

)
Ω
∥2F , ∀∆ ∈ Rn, x ∈ X ∗,

which has been proved to be positive in Section 2. Therefore, we know that the Hessian at each global
solution is positive definite and global minima are asymptotically stable for the gradient flow. We choose
R > 0 to be a large enough constant such that

P [∥x0∥ ≤ R] ≥ 1− 2−⌈n/2⌉,

where the probability is chosen with respect to the initialization distribution. We consider the level set

LR := {x ∈ Rn | f(x) ≤ cR},

where cR := max{f(x) | ∥x∥ ≤ R}. Since the function f(x) is continuous and coercive, the level set LR is
compact and the gradient flow will not leave LR if it is initialized inside it. In addition, it holds that

P [x0 ∈ LR] ≥ 1− 2−⌈n/2⌉.

Conditioning on the event that x0 ∈ LR, Lemma 2 implies that the gradient flow will converge to each global
minimum with the same probability. Let x̂ ∈ X ∗ be an arbitrary global minimum and Rx̂ be its ROA of the
gradient flow on LR. Therefore, Lemma 2 implies that

P [x0 ∈ Rx̂ | x0 ∈ LR] = 2−⌈n/2⌉.

By Theorem 4.17 in Khalil (2002), there exist a smooth positive definite function V (x) and a continuous
positive definite function W (x) such that every level set of V (x) is compact and

V (x) → +∞, ∀x → ∂Rx̂,〈
dV (x)

dx
,−∇xf(x)

〉
≤ −W (x), ∀x ∈ Rx̂,

where x → ∂Rx̂ means that the distance between x and ∂Rx̂ goes to zero, and ∂Rx̂ denotes the boundary
of the region of attraction of the solution x̂. We choose a large enough constant M such that

P [x0 ∈ VM | x0 ∈ Rx̂] ≥ 1− 2−⌈n/2⌉,

where we define the level set VM := {x ∈ Rn | V (x) ≤ M}. Since the level set VM is compact, there exists
a small enough constant ϵ0 such that

W (x) ≥ ϵ0, ∀x ∈ VM .

Now, we consider the perturbed case. We denote the new objective function as f̃(x; η), where η ∈ R is the
perturbation to the global solution. More explicitly, the objective function is defined as

f̃(x; η) :=
∥∥(xxT − (x∗ + η)(x∗ + η)T

)
Ω

∥∥2
F
.

It has been proved in Section 2 that the global minimum of the perturbed problem is unique up to a sign flip
if the perturbation is sufficiently small and generic, and that there exist 2⌈n/2⌉ − 2 spurious local minima.
Since the gradient of f̃(x; η) is a uniformly continuous function of η on the compact set VM , there exists a
small enough r > 0 such that for any generic η0 satisfying ∥η0∥ ≤ r, it holds that〈

dV (x)

dx
,−∇f̃(x; η0)

〉
≤ −ϵ0/2 < 0, ∀x ∈ VM .

This implies that the gradient flow on the perturbed problem will not leave VM and will converge to a local
minimum inside VM if x0 ∈ VM . Therefore, if the initial point x0 is initialized with the given distribution,
we have

P
[

lim
t→+∞

x(t) ∈ VM

]
≥ 2−⌈n/2⌉

(
1− 2−⌈n/2⌉

)2
≥ 2−⌈n/2⌉

(
1− 2−⌈n/2⌉+1

)
.
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By choosing r to be the minimum over all points x̂ ∈ X ∗, the gradient flow on the perturbed problem will
converge to a spurious minimum with probability at least(

2⌈n/2⌉ − 2
)
· 2−⌈n/2⌉

(
1− 2−⌈n/2⌉+1

)
= 1−O

(
2−⌈n/2⌉

)
.

Thus, we can conclude that the gradient flow on the perturbed problem will fail with probability at least
1−O(2−⌈n/2⌉).




