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Abstract of the Dissertation 

Automated Planning in Very Large, Uncertain, Partially Observable Environments 

by 

James M. Vaccaro 

Doctor of Philosphy in Electrical Engineering 
(Intelligence, Robotics and Controls) 

University of California, San Diego, 2010 

Professor Clark Guest, Chair 

Automated planning is investigated for very large, uncertain, partially observable 

environments. Experimental analysis is conducted on two widely different applications: 

the classic RISK game and a simulation of an Urban Search and Rescue Operation 

(US&RO). Many aspects of automated planning are explored simultaneously to limit 

assumptions, problem domain requirements, and subject matter expertise. Challenges 

addressed are in search capability, implementation strategy (scalability, modularity and 

extensibility), and machine learning for continual improvement.  

A general architecture is designed for future applications, and includes a 

hierarchical framework, a well-defined set of functions, and a nine-step implementation 

strategy. Metrics are designed and implemented at seven levels of the hierarchy to 

address scalability, modularity and extensibility. Experimental results are analyzed for 

efficiency and effectiveness at three levels of simultaneous machine learning: plan 

generation (plan search and selection), planning cycle operation (incorporates plan-

execution and -assessment as an iterative process), and planners’ utility (measure of 

planners ability to accomplish a mission or win a game). 



 
 

 1   

 

Chapter 1 

Introduction 

 
1.0 Abstract 

In this dissertation, several new extensions to machine intelligence are presented 

that enable autonomous dynamic planning and execution (ADP&E) in very large, 

partially observable, and stochastic (VLPO&S) environments. In considering only 

discrete event space VLPO&S environments, a Partially Observable Markov Decision 

Process (POMDP) [1] has the ability to frame many ADP&E solutions. However, in real-

world planning problems, as in some game problems, where the state space and the 

number of options are both very large, additional features beyond a POMDP must be 

considered: (1) problem domain-dependent plan lengths, (2) observability-dependent 

planning strategies, (3) the temporal cost of planning, (4) risk aversion to avoid plan 

failure, (5) expectation threshold for triggering re-planning, (5) the probability of 

successful plan completion, and (6) traceability for justifying a selected plan of action. In 

this dissertation, a hierarchical framework is constructed that encompasses these modular 

extensions. This approach is formulated, implemented, and demonstrated on two 

dissimilar VLPO&S problem domains. A planner improvement methodology is 

demonstrated on both problems with experimental results, and a general formulation is 

documented to allow future researchers to apply or extend the methodology. 
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1.1 Motivation 

Our motivation for designing and implementing an ADP&E solution for 

VLPO&S planning problems is threefold: (1) there is a large gap between existing top-

down and bottom-up approaches in planning, especially in continuously improving 

systems; (2) many real-world problems are not solvable using current methods; and (3) 

existing methods have left many unanswered questions concerning the design and 

implementation of a large scale ADP&E solution. 

There is a large gap between traditional approaches to seeking emergent behavior 

in planning from a sensor-rich environment (i.e., bottom-up) and to controlling multiple 

agents in a modeled environment (i.e., top-down). More specifically, bottom-up 

approaches are limited in their ability to learn from many distributed actions to better 

pursue long-term goals, while top-down approaches are limited in their ability to apply 

long-term goals to better coordinate a large number of interactions. The class of planning 

problems investigated here is of such size and scope that one cannot use a bottom-up or 

top-down approach alone, because both approaches get too “bogged down” in their own 

pursuits and do not scale well. In other words, bottom-up approaches seldom learn from 

high-level goals, while top-down approaches seldom learn from a large number of 

individual actions. 

This large gap is addressed in several ways. First, to ensure scalability, the real 

world or game environment is modeled as discrete event choices that separate the 

important static and dynamic features, and further subdivide these features into a modular 

framework to easily propagate information top-down and bottom-up. Secondly, to ensure 
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very fast simulation speed, each action response is pre-computed priori to 

implementation, and populates a lookup table for fast retrieval. Third, to avoid a biased 

search, action choice models are implemented to initially choose actions independent of 

goals. Fourth, to ensure a planner improvement capability, learning methods are 

implemented to adapt a planner’s abilities through experience. Finally, to demonstrate 

this solution is amenable to many planning applications, this approach is implemented on 

two dissimilar VLPO&S planning problems. 

Many VLPO&S planning problems cannot be solved using existing technology. 

One particular area of interest is incident management. For example, in natural disasters, 

such as the Indian Ocean tsunami (2004), the Katrina hurricane (2005), the Myanmar 

cyclone (2008), the China’s Sichuan province earthquake (2008), or the Haiti earthquake 

(2010) history has shown that many victims did not get help in a timely manner. Often 

the resources were available, but mobilizing them in an efficient and effective manner 

presents a complex and partially observable planning problem not previously 

implemented in a tractable or automated form.  

Another area of interest are game problems, where there may be stochastic 

outcomes due to rolling dice (e.g., RISK, backgammon), partially observable or hidden 

states, such as cards (e.g., RISK, poker), or board pieces (e.g., Battleship, Stratego). 

Many of these game problems may also have a very large state space (e.g., RISK, Go, 

Chess), or a very large number of action choices (e.g., RISK, Go, Monopoly, Axis & 

Allies). Building on models from a POMDP baseline, this methodology can be extended 

from generating only rudimentary actions to efficiently handling more complex 
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coordinated action plans for both real world planning exercises and in adapting game 

players. 

1.2 Challenges 

Designing and implementing an ADP&E system for a wide range of VLPO&S 

planning problems, three areas are considered: (1) architecture; (2) process flow; and (3) 

continual improvement. The architecture has broad application by minimizing the 

functional components to a minimal set, and including a modular hierarchy that can 

handle large problems without restricting or biasing action choices. The process flow has 

a variety of modes that depend on the current planning phase (e.g., planning, execution, 

assessment) and available information. The continual improvement uses a general 

approach across different applications, independent of individual plans, and 

interdependent on long-term results of completed games or real-world missions 

simulations. 

More specifically, there are several architecture features. First, a minimal set of 

essential functional building blocks is issued in the ADP&E architecture. Second, 

dependencies and functional interactions are explored in this architecture to uncover the 

required behaviors and interactions. Third, a modular scalable representation is found that 

subdivides a large variety of VLPO&S planning problems. Fourth, the static and dynamic 

portions of an application are both encoded into the architecture, considering autonomy 

and very fast simulation speed. Finally, we design and implement virtual and real models, 

one for planning and reassessment and the other for execution and observations, 

respectively.  
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There are six major process flow concerns. First, an end of a plan criterion is 

investigated and developed that is dependent on application type. For example, should the 

system be task completion or resource consumption driven? More specifically, how many 

projected tasks are completed or how much consumption of the available resources 

constitutes a plan? Second, a metric for choosing individual outcomes is investigated. For 

stochastic problems, plans often turn out better or worse than expected.  For these cases, a 

risk aversion parameter can play a role in choosing outcomes that mitigate risk. Choosing 

an acceptable level of risk can save on resources, computational search time, or allow a 

plan to reach goals conventional methods may find unattainable. Third, given a set of 

chosen actions, an algorithm for calculating the probability of successful completion of a 

plan is developed. In other words, how does one mathematically combine outcome 

probabilities with action sequences to propagate the probability of success? Fourth, a 

good way of knowing when to keep a plan or to re-plan is investigated. Fifth, metrics for 

having a cost of planning, and its impacts on re-planning are investigated. Finally, risk 

metrics for balancing between the cost of planning, and the risk of continuing the current 

plans are investigated. 

There are four important continuous improvement issues. First, while initially 

allowing any possible action options, algorithms for coordinating activity of many 

heterogeneous agents are investigated. In other words, how does one balance the breadth 

of choosing from many actions, while slowly improving ability to plan? Second, the pros 

and cons of planning by search and comparison, verses stringing together single action 

choices are investigated. Many times one must incur a short-term cost to achieve a long-

term benefit, because getting into a larger reward region may require suboptimal initial 
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actions. In other cases, stringing together single action choices may be more 

advantageous in an unknown environment, because observations may change plans too 

often for search to be cost effective. Third, the circumstances where individual action 

trials are useful are investigated. Action and state spaces are very large for the problems 

studied here, thus a very small percentage of action-state combinations can be processed 

over the course of many simulations. In other words, given their limited visibility, can 

state-action pairs provide a useful basis for planning improvement? Finally, how a 

planner can improve on its ability to plan, including goals, search, risk, and other 

important variables are investigated. There are many variables in planning that may 

impact the effectiveness and efficiency of a plan. Can these variables be learned from 

experience, and if so, what are the mechanisms that lead to improvement, and what are 

plausible stopping criteria? 

1.3 Accomplishments 

As described above, the motivation and challenges involved in using an ADP&E 

approach for solving VLPO&S planning problems are extensive. There are many design 

and implementation tradeoffs that are inherently necessary. Examination of these 

tradeoffs has led to eight primary accomplishments in this dissertation that address the 

concerns described above: (1) leverage and extend existing POMDP building blocks to 

include adaptable, tractable and traceable planning strategies; (2) design and implement 

an ADP&E scalable framework that handles both partially observable and stochastic 

environments; (3) include risk aversion and probability of success control for planning 

within stochastic environments [2]; (4) develop a more efficient planning search 



7 
 

 

algorithm for large stochastic environments [3]; (5) include the temporal cost of planning 

to autonomously increase planning efficiency [4]; (6) design and implement a 

methodology for adapting internal parameters within the ADP&E framework to improve 

planning effectiveness [5], [6]; (7) demonstrate the utility and versatility of the developed 

ADP&E approach using two dissimilar applications; and (8) formulate a general 

implementation strategy for designing, building and testing new applications.  

1.4 Dissertation Organization 

The dissertation organization is sequential, in that it builds on itself. It is best to 

read the document from start to finish, because many of the later chapters assume 

definitions and descriptions from previous chapters. Chapter 2 describes the problem 

domain in detail, and provides definitions for many planning terms to distinguish this 

work from other planning approaches. Chapter 3 describes related concepts and 

technologies that are already well established and form a baseline from which to build. 

Related research will be discussed in detail in Chapter 4. Given the definition of the 

planning problem in Chapter 2, and the related work in Chapter 4, new challenges are 

described in Chapter 5. These challenges make the automation of planning unique from 

those problems already addressed in the literature. Chapter 6 describes the ADP&E 

approach for general planning problem domains. Chapter 7 describes that approach 

applied to the RISK game, which includes a description of the implementation details and 

application results. Chapter 8 describes that approach applied to an urban search and 

rescue operation (US&RO) mission, which includes a description of the implementation 

details and application results. Chapter 9 describes generalization of the approach based 
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on the implementation strategies and results described in Chapters 7 and 8. Chapter 10 

provides a summary discussion of the dissertation and describes some potential ideas for 

future extensions. 
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Chapter 2 

Problem Domain 

 
2.0 Abstract 

The purpose of this dissertation is to provide a novel ADP&E approach to address 

discrete event space VLPO&S planning problems that are beyond the capabilities of 

existing approaches. The purpose of this chapter is to define each of the terms in the 

preceding sentence and their component parts, so the scope of the problem and its 

solution may be soundly understood.  

First, the general terms of ADP&E solution spaces and VLPO&S planning 

problems are defined. Second, their essential functional objects are defined, followed by 

a detailed description of their component parts. Third, metrics and behavioral analysis 

terms are defined. Finally, the domain requirements are described. 

2.1 General Description 

In an autonomous dynamic planning and execution (ADP&E) solution, planning 

is the generation of a sequence of actions to achieve one or more stated goals, such as 

winning a game or completing a mission [1]. Execution is a process of taking actions 

within an environment. The combination of planning and execution is enhanced by the 

inclusion of assessment. Assessment is the monitoring of action results as they are 

executed. The purpose of assessment is to determine the degree of success of a plan, 
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possibly to trigger re-planning if actual results diverge too far from intended goals. The 

term dynamic refers to both a changing environment, and the process of adaptively 

changing plans while cycling through the planning, execution, and assessment phases. 

The term autonomous refers to a planning system that is self-governing, and continually 

improves based on previous planning experiences [2].  

The problem domains are very large, partially observable and stochastic 

(VLPO&S) planning environments. We are not considering continuous real-time 

systems, but will focus on discrete event space problems that have a well-defined set of 

actions, and a finite state model that represents the environment. Very large refers to both 

the size of the state space representation and the number of action choices per planning 

iteration. Partially observable environments have unknown values of internal state, and 

in turn, uncertain action choices and outcomes. Thus, planned actions may need 

adjustment based on new observations. Stochastic environments have more than one 

probable outcome for a given action; thus planned actions may need to be adapted based 

on unanticipated outcomes. 

2.2 Essential Functional Objects 

In its most primitive form, an ADP&E solution for VLPO&S planning problems 

has two essential functional objects: an environment and a planner. The interaction 

between the planner and environment are fundamental to the study of planning systems. 

Basic terms of environments will now be described, followed by basic planner 

terminology. The following sections will describe more detailed characteristics of 

environments and planners, respectively. 



11 
 

 

The problems of interest here are discrete event space models of environments. 

Discrete event is a measurable change in the state of a system based on actions taken 

within the state space, and includes the time displacement in making that change [3]. 

Discrete space is a representation in which each spatial dimension is divided into discrete 

samples, such as a finite set of regions. States are defined here as a “condition” or 

“status” of the environment, thus the current value of event and space variables is 

considered a state. Actions are defined here as elements of a set of all interactions 

between planners and environments; each action can either change or sense the 

environment, or both. For discrete time and space problems, discrete choice models can 

represent the environment in a simulation. Here, discrete choice models [4] are defined as 

finite state machines that can process actions, track state transitions and update state 

variables with observations. When considering each action, a state transition is a model’s 

action response or the natural time evolution of some model’s state variables, such as 

health of survivors without food supplies.  Observations are the receiving of knowledge 

from an environment through sensed information. In the context of planning within a 

simulation, the environment is an external model, and the actions include sensors that 

acquire knowledge as current values of state variables. 

Environments can either be cooperative or non-cooperative. These terms come 

from game theory [5], and within a game theory context, games are considered equivalent 

to environments. In game theory, cooperative games study coalitions and coordinative 

aspects of players’ interaction, while non-cooperative games study single player options 

based on incentives and the reactions of other players [6]. In terms of planning, players 
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are equivalent to planners within a game theory context. Thus, single or multiple planners 

may be considered, depending on the problem.  

The planner uses a discrete choice model of the environment to generate plans 

and corresponding expectations in an effort to direct the model to a more desirable state 

or goal. Plans are a selected sequence of actions that project state transitions, 

observations, expectations, and schedule. The schedule is the time order for taking each 

action. In a game, the schedule may simply be the order, and for a real world simulation, 

the schedule may be the predicted start time and time length of execution. Expectations 

are measures of state deemed important to represent progress made by the planner. 

Planners develop plans that direct agents to interact within environments. Agents are 

defined here as entities that have actuators and sensors and are controlled by the planner. 

Each agent has agent-resources. In the context of planning, agent-resources are any 

attribute of an agent that is in limited quantity and constrains an agent’s capability to 

carry out a plan, such as the fuel capacity of a vehicle agent. Agents with different 

actuators, sensors, or resource constraints are considered different agent types. Planners 

develop plans that direct the agents of various types and eventually lead to an endgame or 

end-state. Goals are a measure of the endgame or end-state that determines how well the 

planner performed over the course of an entire game or simulation. We refer an endgame 

as the completion of a game simulation and an end-state as the completion of a real world 

simulation. In this dissertation, they will be used interchangeably. 
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2.3 Environment 

In VLPO&S planning problems, a planner interacts with two models. One model 

represents the real environment, where action choices make a permanent change in the 

model during execution. This model is called the real world or execution-model. Another 

model is within the planner, where action choices are both tested and evaluated. This 

model is called the planning-model. Both real world and planning-models are built on a 

static infrastructure and rules. The static infrastructure is the part of the model that does 

not change, such as the board layout for a game or a finite set of discrete locations in a 

real world simulation model. Rules define both the available action options based on the 

current model condition, and the state transitions and observations based on the chosen 

actions.  

Both the real world model and planning-model have the same “very large” finite 

state set. In this context, “very large” often means that the finite state set is beyond 10100 

elements in discrete event space. An important difference in the two models is that the 

real world model holds the “true” state values, since it represents the real environment. 

Many of these state values are partially observable. Thus, the planning-model does not 

know many “true” state values and often must guess these values in lieu of observation. 

Therefore, a planning-model update is where planning model characteristics are updated 

to reflect observations of the real world model so that future plans can make use of a 

more accurate model.  
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2.4 Planners 

The environments considered here are not limited by the number of planners in a 

game or simulation, or the number of agents each planner controls. Thus, one application 

could have a single planner coordinating resources to complete a real world simulation, 

while another application could have multiple planners competing to win a game. These 

applications are referred to as single-planner and multi-planner games or simulations, 

respectively. Likewise, single agent applications are referred to as single-agent games or 

simulations, and multiple agent applications are referred to as multi-agent games or 

simulations. 

In order for planners to be autonomous, they must include all three plan-phases: 

plan-generation, plan-execution, and plan-assessment. The plan-phases are discrete 

portions of the planning cycle. The planning cycle is the iteration of the plan-phases as a 

repeatable ordered sequence. Continual use of the planning cycle until the simulation or 

game is complete ensures that the planning system is autonomous (note that multiple 

planning cycles can be working simultaneously for other planners or agent sets). Plan-

generation is the process of selecting a set of actions using the planning-model with 

predicted outcomes and expectations. Plan-execution is the process of sequentially 

executing each action of a plan in the real world model and observing outcomes. Plan-

assessment is the process of re-enacting the plan-remainders using the planning-model 

with updated observations and then, comparing new expectations with what was 

previously predicted in plan-generation for the same set of agents. Plan-remainders are 

the remaining portion of plans after they are partially executed. In the context of 
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planning, the term predicted refers to indicating results in advance of plan-execution.  

Predictions are only relevant to applications where the model has uncertainties. 

Uncertainties refer to both a model’s aspects of being partially observable and/or having 

stochastic outcomes. The following subsections identify and define all terms related to 

the three-phase planning process. 

2.4.1 Plan-Generation 

In this dissertation, plan-generation comprises many aspects of planning: (1) 

handling different types of agents; (2) choosing the number of each agent type used; (3) 

planning action timing and coordination across agents; (4) choosing a plan length; (5) 

selecting actions; (6) selecting among plans; (7) predicting outcomes under uncertainty; 

(8) determining a plan’s success probability under uncertainty; (9) choosing an 

observation update function for the planning-model; (10) choosing state features for 

measuring progress toward goals and expectations; (11) incorporating a cost of planning; 

and (12) deriving metrics for combining and coordinating these aspects of planning. 

These twelve aspects do not form an exhaustive list, but each aspect has a set of terms, 

which when defined, aids in understanding the many facets of plan-generation. The 

following paragraphs define terms related to these aspects of planning. 

The first three aspects described above deal with agents. The handling of agents, 

choosing which agent types to use, and planning action timing and coordination across 

agents are just a few of the variable choices in plan-generation. Variables choices are 

considered as any choices available to the planner in any of the three phases of planning. 

In the handling of agents, variable choices include selecting a portion of the agents (i.e., 
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number and type) to consider in choosing actions. Not all available agents need to be 

considered at once when generating plans. The chosen agents are directly connected to 

the chosen plans of actions described next, because agents are considered as planner 

resource objects. These resource objects are tangible entities that may also have internal 

resources that indicate the health status of an agent, such as fuel level. 

Many of these variable choices in the plan-generation phase fall under the term 

selection criteria. Selection criteria refer to the methods used when selecting specific 

choices based on a list of options, such as actions and/or plans with their corresponding 

agents. Aspects four through seven above are related to the selection criteria. Selection 

criteria in the domain of projecting future actions are defined in three areas: action-

selection, plan-selection, and plan-termination. Other selection criteria related to an 

uncertain environment will be discussed later in this section. Action-selection entails the 

decision-making methods used to choose an action, given a state. Decision-making refers 

to machine learning technologies used for assigning these actions to states [7]. Plan-

selection refers to methods for choosing a plan among comparable plans. Comparable 

plans are plans that consider the same agent or same group of agents over a similar time 

period.  

Plan-termination refers to methods that determine when a plan is complete. Plan 

length is the number of actions required to complete a plan. Plan length is considered a 

variable choice, so as to not restrict the planner’s ability to plan at variable depths. 

Depending on the type of application problem, plan-termination can either be turn-based 

or task-based. Turn-based plan-termination is used in some multi-player game problems, 
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where a player or planner must pass control to other planners over the course of a game, 

such as in chess or RISK. Task-based plan-termination is used in applications where there 

are no turns, and planners and their agents can operate concurrently in the environment. 

Furthermore, both task- and turn-based planning can restrict plan length through these 

three types of plan-terminations that stop after: (1) a number of task completions, (2) a 

time horizon, or (3) an amount of resource expenditures. Task completions are a task-

driven approach that restricts plan length in terms of meeting expectations, such as 

reaching a tangible milestone. Time horizons are a time-driven approach that restricts 

plan length in terms of projected future time limits, such as an hour or week in real world 

time. Resource expenditures are a resource-driven approach that restricts plan length in 

terms of a limit in portion of resources consumed, such as fuel or agent losses.  

Aspect five above, selecting actions, addresses decision-making methods. 

Decision-making methods for action-selections consider all available options called a 

finite action set [8]. A finite action set is all allowable actions and is dependent on state, 

agent type under consideration, and the number of agents available. This dissertation 

considers only “very large” finite actions sets. In this context, “very large” means that the 

finite action set can exceed103 available options at each action selection step. 

Aspect six, selecting among plans, deals with search. Developing comparable 

plans in plan-selection requires search. In plan-generation, search refers to a three-stage 

operation: generating plans, comparing plans, and selecting a plan based on plan-

selection described earlier. There are many types of search. This dissertation explores 

some search approaches called heuristic search. These heuristic search methods are 
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described in detail in Chapter 3: Background. The plan resulting from search is called the 

selected plan. As in the real world, a player is timed in a game, such as in chess, where 

search for more optimal moves (i.e., plan of actions) is restricted by real time limits. To 

account for these time limits, here the search process is constrained in the number of 

action contemplations per mission or game. Action contemplations are defined here as the 

combination of an action selection, the integration of that action as a step in a plan, the 

evaluation of that action step with reward and probability of success, and a comparison of 

that action’s outcome predictions with previously predicted states. 

Aspects seven through nine deal with an uncertain environment. When planning 

under uncertainty, the selected plan has to consider selecting outcomes, probability of 

successful plan completion, and an observation update function for the planner. Selecting 

outcomes is another selection criterion and refers to choosing a single outcome for each 

action choice when there is more than one probable outcome. For stochastic models, each 

action can have a set of probable outcomes, and based on a selection criterion, an 

outcome can be selected to represent the predicted outcome or local changed state values 

(i.e., selected outcome). The predicted outcome and selected outcome are considered as 

equivalent here, and are used interchangeably throughout this dissertation. The selection 

criterion refers to the methods used in selecting an outcome based on rank-ordering the 

outcomes in terms of reward (a metric described later). Methods can range from taking 

the expected value, the maximum likelihood, or a risk-averse selection of predicted 

outcomes. Here, risk-aversion is defined as a factor (i.e., from 0 to 1), which allows the 

planner to choose outcomes based on perceived risk. A full description of how risk 

aversion is applied is described in Chapter 7.  
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In planning, predicting outcomes is especially important, because taking 

sequential actions requires knowledge of previously predicted outcomes. For stochastic 

models, the probability of successful plan completion refers to combining the 

probabilities of all outcomes to determine the overall probability of success (described in 

detail in Chapter 7). Successfully predicted outcomes are considered as completed tasks 

(both described earlier). For both partially observable and stochastic models, the 

observation update function determines when and how often the planning model should 

be updated by the observations of the real world model. For instance, planning deeply 

without planning model updates in an uncertain environment can be an inefficient use of 

planning resources.  

Whether an approach uses a decision-making method to choose individual actions 

to construct a plan or uses search to construct many plans and then chooses one, there 

must be value metrics to determine progress made by the planner. In economics, value is 

the market worth of goods and services [9], and metrics are systems of measure of 

distance [10]. In the context of planning, value metrics are the desirability placed on the 

outcomes of a generated action or plan. In planning, these value metrics contribute to 

deriving a fitness function, which is used here to select a plan from among searched 

plans. A fitness function for plan selection considers factors such as achievable state, 

probability of successful plan completion, and other factors described more fully in 

Chapter 6. 

Aspects ten and eleven deal with value metrics. For planning systems, the 

measurable commodities are predicted state-features. State-features are some 
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combination of state variables with their corresponding values. These values are used in 

selecting actions and/or plans. State-feature values can reflect the costs and/or rewards of 

carrying out an action or plan. Costs are a function of the state-features that determine a 

negative impact on choosing actions/plans (e.g., time delays, expended resources, etc.), 

while rewards are a function of the state-features that determine a positive impact on 

choosing actions/plans (e.g., completed tasks, high probability of success, etc.). The next 

few paragraphs will describe terms related to state-features, cost, and rewards, 

respectively. 

As described earlier, the goal is to reach an end-state or endgame. However, 

reaching the end-state or endgame on a single plan in a VLPO&S planning environment 

is considered infeasible due to the number of action choices available, the size of the 

state-space, and uncertainties in observations and outcomes. Thus, the many plans that 

are generated over the course of a game or real world problem are given a measure of 

desirability for their selection. Using a set of selected state-features (by SME), costs and 

rewards can be identified that determine this desirability.   

In this dissertation, costs are state-features that measure constraints that thwart 

progress toward winning a game or succeeding in a mission of a real world simulation. In 

the context of planning, costs are the resources used to do something, such as generating, 

selecting, or executing actions and/or plans. Thus, the idea here is to minimize these 

costs. Two state-features considered are the cost of planning, and cost of executing. The 

cost of planning is the required resources it takes to generate and select a plan for 

execution. For example, in a multiplayer turn-based game, the cost of planning could be 
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the amount of search time required to plan a turn in a game. For a real world problem, the 

cost of planning could be a time penalty representing the time to instruct a human to 

delegate a new plan to an agent. There are many feasible ways to penalize a planner 

based on the resources required to generate a plan, depending on the problem under 

consideration. The cost of execution is the predicted resources it takes to execute a plan. 

For example, each action may have a predicted time to execute in the real world model, 

which is based on real world time delays. Also, the cost of execution for a plan could be 

the amount of fuel consumption of a vehicle agent associated with executing all actions in 

that plan.  

Here, rewards are state-features that measure progress toward winning a game or 

optimizing the execution of a real world simulation. Rewards are used to choose actions 

and plans that lead to these circumstances. In choosing actions, rewards are measured as 

weighted action-choice conditions that aid in action-selection. Action-choice conditions 

are functions of state-features that link individual actions to chosen state-features with the 

desire to achieve the goal of a game or mission. In choosing plans, rewards are measured 

as weighted sub-goals to aid in plan-selection. Sub-goals are functions of state-features 

that measure some reward value of a plan that may aid in achieving the overall goal of a 

game or mission. For example, one sub-goal for the game chess is the measure of board 

pieces a player has compared to his opponent. The term weighted refers to the value an 

action-choice condition or a sub-goal has in choosing actions or plans, respectively. For 

example, in chess, the value of a queen is more than a rook, and therefore has a greater 

weight placed on capturing or saving the queen [11].  
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Some state-features can be used as value metrics that measure progress based on 

the uncertainties associated with the differences in predicted-outcomes versus realized-

outcomes of a plan. Realized-outcomes are plan-execution outcomes resulting from the 

real world model. Plan-execution is described in the next subsection. Predicted-outcomes 

are plan-generation or plan-assessment outcomes resulting from using the planning-

model, where there are outcome uncertainties based on partially observable state 

variables and stochastic state transitions. Partially observable state variables need to be 

guessed or predicted in the planning-model, and stochastic outcomes need to be selected 

based on outcome selection in the planning-model.  

Aspect twelve, choosing utility metrics for combining and coordinating the first 

eleven aspects of planning, is central to planning (i.e., plan-generation, plan-execution, 

and plan-assessment). In economics, utility metrics is a measure of desirability of goods 

and services based on their level of consumption [12], [13]. In plan-generation, utility 

metrics refer to the values of planner parameters based on their usefulness in fulfilling 

the ultimate goal of winning a game or optimizing performance of a real world mission 

simulation. The metric function used to determine the success or failure of a mission or 

loss of a game is called the mission value function. Planner parameters refer to all 

control parameters for plan-generation, plan-execution, and plan-assessment. The metric 

function that values the usefulness of these parameters is called the planner utility 

function. The metric function used to evaluate the effectiveness of the overall planning 

cycle is called the planning-cycle assessment function. Plan-execution and plan-

assessment are described in the next two subsections. All metrics used in the ADP&E 

system are described in Section 2.5: Behavioral Analysis. The variable planner 
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parameters chosen are approach dependent, thus they are described in Chapter 6: 

Approach.  

2.4.2 Plan-Execution 

After plans are generated and selected in the plan-generation phase, the plan-

execution phase begins. In this dissertation, each planner is restricted to occupy only one 

phase at a time. However, in the multi-planner case, planners can be in different phases. 

Plan-execution attempts each action of a plan in the scheduled order as identified in the 

selected plans. Each agent has a plan, thus the execution of actions are allowed to 

proceed concurrently among agents. Once each action is executed in the real world 

model, the realized outcomes in the model are irreversible. Reversing a plan can only be 

done in the planning-model, which is used in both the plan-generation and plan-

assessment phases. It is assumed that the agent executing the actions retains all 

observations made over the course of plan-execution. The observation update function 

defined earlier determines when the plan-execution phase ends and the plan-assessment 

phase begin.  

2.4.3 Plan-Assessment 

Over the course of executing a plan, due to uncertainty, expectations may not be 

achievable. For instance, in stochastic planning problems, where there is more than one 

probable outcome for a given action, predicted outcomes are often not realized, and the 

model could be steered into an under-achieving state. In partially observable planning 

problems, new information may be acquired through plan-execution that values the plan-

remainder below expectations. In both cases, a planner may consider re-planning if the 
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cost of taking the existing plan outweighs the costs of re-planning. Evaluating this 

tradeoff is the assessment function. The assessment function considers whether 

expectations are acceptable or not for a given plan. If the assessment function decides to 

retain the existing plan-remainder, it is called plan-continuation. If the assessment 

function decides to discard the existing plan-remainder and generate a new plan, it is 

called re-planning. Once all agent plans have been assessed in the plan-assessment phase, 

the plan-generation phase begins again. In the plan-continuation case, that agent’s plan is 

not changed in the next plan-generation phase. In the re-planning case, a new plan is 

generated for that agent from some point in the existing plan.  

2.5 Behavioral Analysis 

There are seven metrics mentioned above that determine: (1) outcome selection 

using a risk sensitive (i.e., risk averse) prediction, (2) action selection using preselected 

feature conditions, (3) whether to re-plan or continue with current plan based on 

achieving an acceptable level of expectations, (4) plan selection using a reward based 

fitness function, (5) monitoring task completion efficiency using planning-cycle 

assessment, (6) comparing planners’ usefulness within a single mission or game using 

planner utility, and (7) comparing planner results across multiple missions or games to 

determine mission value. Likewise, there are seven corresponding behavioral 

justifications for: (1) selecting particular outcomes to be risk-averse (outcome-selection 

justification), (2) selecting particular actions to advance toward desirable states (action-

selection justification), (3) re-selecting or keeping particular plans to meet expectations 

and avoid traps or dead ends (plan-assessment justification), (4) selecting a particular 
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plan to achieve the probable best forecast (plan-fitness justification), (5) balancing 

computational resources throughout the planning cycle to increase cycle efficiency 

(planning-cycle justification), (6) comparing planners’ abilities to meet mission or game 

goals to select the best planners (planner-utility justification), and (7) comparing mission 

or game results to improve future planners (mission-value justification). 

2.6 Domain Requirements 

The environments of concern here have been described above as VLPO&S 

planning problems. The planners have been described as ADP&E solution spaces. The 

interaction of these two objects leads to the following domain requirements: 

• State-space representation (very large > 10100) 

• Finite set of available actions (preferably large > 103) 

• Known state transitions (possibly stochastic) 

• Finite set of measurable state-features (possibly partially observable) 

The four requirements are aspects of a POMDP. However, these attributes go 

beyond a POMDP due to the size and complexity of the problems studied. POMDPs will 

be described further in Chapter 3: Background, and the challenges associated with 

extending current approaches to handle VLPO&S planning problems and ADP&E 

solution spaces is described in Chapter 5: New Challenges. 
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Chapter 3 

Background 

 
3.0 Abstract 

In this background chapter we introduce concepts and technologies used or 

referenced that relate to our research. Related concepts are discrete choice models and 

Markov models used in decision-making within the context of machine learning. Machine 

learning is concerned with the design and development of algorithm-based learning [1]. 

Machine learning algorithms are methods that improve a system’s skill or knowledge in a 

particular domain through experience. Machine learning can include interaction with the 

real world [2], [3], [4] or interaction within a computer-generated world [5], [6]. We 

chose the latter for our study, and our computer-generated worlds are simulations that 

represent real world or game applications. Decision-making is an algorithmic process that 

leads to selecting a course of action (COA) or a plan from among many alternatives [7]. 

In economics, “discrete choice problems” involve choices between two or more discrete 

alternatives [8]. In machine learning, the term “discrete choice models” refers to the use 

of a finite set of states or symbols that represent all alternatives and outcomes [9]. 

Markov models are a subset of discrete choice models, where the future state is only 

dependent on the current state and is independent of past states [10]. 



28 
 

Related technologies within the planning domain are numerous. Depending on 

the application, some algorithms may be more advantageous than others. To maintain a 

manageable scope, only algorithms that are employed in our model, and direct 

competitors to them, are reviewed. New algorithms will be discussed in Chapters 6, 7 and 

8, while well-established algorithms are discussed here. For instance, dynamic Bayesian 

networks (DBN) are used for output processing [11], and a variety of search algorithms 

were examined for deep planning. These algorithms include three broad areas — 

evolutionary, stochastic, and tree search — and, along with the model concepts 

mentioned above, will be described in detail in this chapter. 

3.1 Related Concepts 

The related concepts described here are discrete choice and Markov models. 

Discrete choice models attempt to model the decision process of an individual or agent in 

a particular context [7]. Choice modeling may also be used to estimate non-market 

environmental costs and benefits [9]. A Markov model is a type of quantitative modeling 

that involves a specified set of mutually exclusive and exhaustive states, and for which 

there are transition probabilities of moving from one state to another (including 

remaining in the same state) [10]. 

3.1.1 Discrete Choice Models 

Given that machine learning approaches are studied within a computer simulation, 

a model representation that is discrete in event space and choice is required. As described 

in Chapter 2, discrete choice models for decision-making require a framework with three 

http://en.wikipedia.org/wiki/Choice_Modelling#cite_note-0�
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fundamental functions: (1) state representation of the environment, (2) action options 

available based on state, and (3) an evaluation function to measure progress.  

This simple discrete choice model can be improved through: (1) learning from the 

environment, (2) incorporating human expertise, and (3) maintaining progress toward 

goals. Learning from the environment is often referred to as “data mining”. Data mining 

is the process of sorting through large amounts of state or environmental data and 

extracting relevant and useful information [12]. Human expertise, often encoded as 

“inference rules,” is represented in a symbolic format fit for machine processing [13]. 

Inference rules are logical operators that manipulate a set of premises in order to reach a 

set of conclusions [14]. Maintaining progress toward goals refers to designing metrics 

that measure progress toward achieving goals based on a changing environment [15]. 

These three improvement strategies form a broad and complementary set of approaches 

in machine learning. We will refer to these approaches as data-driven, expert-defined 

and goal-directed, respectively.  

Data-driven approaches fall into two broad classes: supervised and unsupervised 

learning. Unsupervised learning is an autonomous process that requires no oversight and 

is often referred to as self-organization [16]. This approach strictly processes the data 

with a mathematical formulation to achieve some steady state representation, such as 

clustering [17]. These formulations often stem from the principles of self-organization, or 

from statistical [16] or economical analysis [18]. Some well-known unsupervised 

approaches are self-organizing maps [16], statistical classifiers, such as Bayesian 

inference [19], principle component analysis [20], and independent component analysis 

[21]. On the other hand, supervised learning approaches require either a human-in-the-
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loop, or data that is pre-labeled, so as data is analyzed, some generalized associative 

mapping is formed between the data and prescribed labels. Some well-known supervised 

approaches are back-propagation networks (BPN) [22], support vector machines (SVM) 

[23], and recurrent neural networks (RNN) [24]. 

Unsupervised learning approaches are used to a limited extent in our ADP&E 

system. Given the size and complexity of the environments used, geographical clustering 

is done on the terrain environment used in our US&RO application (described in Chapter 

8) to allow for offline processing of all possible planning paths. Self-organization 

techniques are also used in assigning diversity metrics for planning search in the RISK 

game application described in Chapter 7.  

Supervised learning is not used in our approach. Approaches such as BPN, SVM, 

and RNN do not translate to a straightforward methodology for justifying plans of 

actions. In other words, these networks include a complex connectionist model that has 

many eloquent properties [25], but their internal representation requires a complex 

interpreter to extract logical meaning of taking a particular action [26]. In addition, it is 

well known that these models degrade in performance with the length of decision 

sequences [27]. Planning in complex environments often requires long sequences of 

actions.  

Expert-defined approaches can be applied in one of two ways: a priori 

knowledge, where human expertise is encoded as symbolic computational models [28], or 

a posteriori knowledge, where humans sit in judgment over a system to monitor, analyze, 

and correct a plan generated by the planning system. A priori knowledge systems are 
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often classified as inductive or deductive reasoning [29]. Inductive reasoning makes 

generalizations from a set of individual instances. In other words, induction reasons from 

a large number of particular examples to generalized rules. Deductive reasoning is 

drawing a logical conclusion from a set of premises or predetermined conditions. Both of 

these types of reasoning can be translated into a rule- or case-based reasoning (CBR) 

format. CBR is an analogy-making approach where past experiences are encoded to solve 

new similar problems [30]. For example, CBR could form a diagnosis template for an 

auto-mechanic to determine what is wrong with a car based on past experiences of similar 

diagnostic results on similar cars. Rule-based approaches are logical statements of 

judgment or truths that are represented as linked arrangement of premises or antecedents 

to prescribed conclusions or consequences. CBR and rule-based reasoning approaches 

often require a tremendous amount of human knowledge to be useful. Their 

implementation of human knowledge is typically ad hoc in nature and suffers from the 

“curse of dimensionality” [31]. The curse of dimensionality refers to the exponential 

increase in dimensionality of the space when one adds another dimension to the problem.  

For example, adding an action to a plan typically increases the number of possible 

choices of that action exponentially.  

A very large computer system that relies on this approach is called Cyc 

(pronounced like psych). Cyc has had an incredible amount of effort expended in an 

attempt to build a core artificial intelligence engine by infusing common sense human 

expertise. In spite of this effort, the computer system cannot perform the reasoning 

capability that was initially proposed [32]. Cyc was intended to communicate with 
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humans using natural language and was intended to establish a common vocabulary for 

automatic reasoning [33].  

We have not relied heavily on human expertise in our approach. We only use 

human knowledge to select initial sub-goals and state-features that may be important in 

action and/or plan selection. Based on the experience of simulating results, the system 

can choose to use sub-goals or state features, or not. How the use of sub-goals and state 

features are modified and adapted is described in Chapter 6: Approach. 

A posteriori knowledge systems rely on an individual or team of individuals to 

reliably monitor and correct plans. Humans make mistakes due to fatigue, and often lack 

attention for monotonous tasks. Humans are inherently biased based on their experiences, 

take time to plan, cost money for their efforts, and often have to be trained to make 

practical plans in the particular domain of interest. Including a human-in-the-loop would 

preclude running thousands of autonomous example simulations for training planners. 

Due to these challenges, posterior influence on planning is avoided in our approach. 

Goal-directed approaches are referred to here as those that have a simple long-

term objective, such as winning a game or completing a mission. For the VLPO&S 

planning problems studied, the challenge is finding the near optimal sequences of short-

term action sets that best lead to that objective. Goal-directed approaches for planning are 

numerous, but they can be grouped into two distinct classes: goal-state and sub-goal-

state feedback systems. Goal-states are only those states that represent a completed task 

or endgame situation. Sub-goal-states are a set of features that lead or provide guidance 

to reaching the goal-state. 
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Goal-state feedback systems can rely on direct feedback from the model 

environment, and can be applied to propagate values back from the goal-states to other 

visited states to eventually “value” all states to encode optimal action paths. These 

approaches, such as dynamic programming [34] or reinforcement learning, assume that 

the “values” will eventually converge within a reasonable number of random trials. These 

approaches also assume that the number of state-action pairs in the environment is small 

enough so that each pair can be visited multiple times to ensure convergence on a 

solution [15].  

Sub-goal-state feedback systems rely on selected information about states to 

direct plans to an endgame or mission-accomplished state. Sub-goal-states are a limited 

set of states deemed as important contributors in achieving the goal-state, but are 

available throughout the simulation and not just an end-state. This approach avoids the 

problem of finding the endgame or goal-state, as many games and real world problems 

are not guaranteed to reach the endgame through random actions. For example, in many 

games, such as Monopoly, RISK, or even Chess, random moves may never reach an 

endgame situation. For real world models and other games, these approaches may be sub-

optimal, because the selected sub-goal-states and their relative importance are initially 

based on biased human expertise. To approach a more optimal plan, these approaches 

must not only be able to find the best action sets, but also adapt sub-goal-state parameters 

to improve play.  

In summary, goal-state feedback systems have better convergence properties [35], 

such as reinforcement learning, but are not feasible for large-scale problems. However, 
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subgoal-state feedback systems can limit the number of states searched to ensure an 

endgame solution, but are more difficult to train. Since we are dealing with large-scale 

problems, our emphasis is placed on the multiple stage learning systems of sub-goal-state 

feedback systems. Chapter 4: Related Work, will give a more complete comparison of 

data-driven, expert-defined and goal-directed approaches, and Chapter 6: Approach, will 

provide a detailed description of our sub-goal-state feedback approach. Specific 

application examples are described in Chapters 7 and 8. 

3.1.2 Markov Models 

A Markov model is a probabilistic process, which has the distinct property that, 

given the present state, future states are independent of past states. In other words, the 

present state fully captures the information for evolving future states. This is an important 

property in planning, because one can restrict search to starting from the current state. We 

make this assumption in our approach.  

Markov models can be represented as graphs of states connected by transition 

probabilities. Nodes and edges of a graph can represent a variety of information, 

depending on the type of Markov process in use. Markov models can either be 

explorative, such as Markov chains or hidden Markov models (HMMs), or exploitative, 

such as Markov decision processes (MDPs) or POMDPs. The difference between 

explorative and exploitative Markov models is the use of control.  Exploitative models 

allow the use of control, such as choosing courses of action, while the model parameters 

are fixed. Explorative models do not allow complete control but allow for the learning of 

the model parameters from external sources, such as transition probabilities. The 
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difference between Markov Chains, HMMs, MDPs, and POMDPs is observability [15], 

[36], [37]. Markov chains and MDPs are fully observable, while HMMs and POMDPs 

are only partially observable. In HMMs, one can find the hidden parameters of a model 

from observed parameters, and a HMM is the simplest example of a dynamic Bayesian 

network (DBN).  DBNs are used extensively in our approach for outcome processing and 

are more thoroughly described below in the Section 3.2 Related Technologies. Outcome 

processing in the context of planning are the functions used in calculating probabilities of 

future outcomes. Our approach considers both fully and partially observable models. 

A MDP is a 4-tuple process (S, A, Pa, Ra), where S is the state space, A is the 

action space, Pa is the transition probability space for action a, and Ra is the reward space 

for action a. In dynamic programming or reinforcement learning, the goal is to maximize 

some cumulative function of the rewards. For a POMDP, the process is the same as an 

MDP, except that many states may be unknown. For this purpose, it is useful to define 

the function that corresponds to taking the action a and then continuing to optimize: 

 
(eq. 3.1)

 

where Q(s,a) is the cumulative reward of state action pair s and a, s’ is the projected state, 

γ is the discount rate (0 < γ ≤ 1), R(s) is the reward at state s, and V(s’) is the value of 

state s’. If the discount rate is zero, only immediate rewards are averaged, or if the 

discount rate is one, all previous rewards to the beginning are averaged equally. If the 

discount rate is between zero and one, then reward is weighted by γn where n is the 

number of time steps prior to the current state. In our approach, we use POMDPs to 

represent the unchanging aspects of the environment with variable state values. POMDPs 
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are however incomplete for handling planning problems because of hierarchical and 

dynamical concerns that will be further described in Chapter 6: Approach. 

3.2 Related Technologies 

The related technologies described in this section are outcome processing and 

search algorithms. Outcome processing refers to the algorithms used to handle actions 

with multiple probable outcomes in chains of selected actions. Search algorithms are 

concerned with techniques explained in this dissertation to search for and select plans. 

3.2.1 Outcome Processing 

Outcome processing is performed by combining three technologies: DBN, rank-

based ordering, and data clustering. A Bayesian Network (BN) is a directed acyclical 

graph, where the nodes represent a set of variables, while their connections (edges) 

represent the conditional probabilities among the variables. A DBN is a BN that can 

model sequences of variables, such as a sequence of outcomes from a plan. Sequences of 

variables are processed through a DBN uses Bayes’ Theorem [38]. Bayes’ Theorem is 

represented as P(A/B) = P(B/A)P(A)/P(B) and relates the conditional and marginal 

probabilities of outcomes A and B, where B has probability greater than zero. P(A) is the 

marginal probability of A, since it does not take into account any information about B. 

P(A/B) is the conditional probability of A given B, because A depends on the value of B. 

Likewise, P(B/A) is the conditional probability of B given A. P(B) is the marginal 

probability of B, and acts as a normalizing constant. In our approach, DBNs are 

performed on all action outcomes to calculate each subsequent outcome.  
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Given that subsequent outcomes can grow exponentially in number, and many are 

identical in cost or reward, a rank-based scheme with data clustering is used to 

consolidate the outcomes after each DBN propagation step. Rank-based schemes refer to 

items that can be compared to see which items come first, second, etc., until all items are 

labeled [39]. In planning outcomes, there are various rank-based schemes, but a useful 

way is to use the value given to each outcome. Data clustering is a technique of 

partitioning a data set into groups that have common traits [40]. In the rank-based 

scheme, data is ranked according to its numerical values (i.e., outcome states) or as 

processed reward values (a metric described in Chapter 2). Thus, the values can be 

grouped together via data clustering, which avoids having the number of outcomes grow 

too quickly after each action step. Many elements of planning can be clustered to reduce 

the complexity of the model, such as outcomes, actions, state values, and state nodes. In 

Chapter 7: RISK Game Application, use of clustering on outcome processing will be 

explained in detail. In Chapter 8: Urban Search and Rescue Operation Application, state 

node clustering will be described to reduce the complexity of the state representation.  

3.2.2 Search Algorithms 

The role of the search algorithm within a planning solution is to search an internal 

game (i.e., planning-model) or real world model (i.e., execution-model) to achieve a goal. 

Given a set of possible actions, a search algorithm can sequence these actions together to 

form a plan that explores a path through the internal model. The plan is graded based on a 

prescribed reward system that measures the effectiveness of the plan by predicted 

outcomes. The reward system depends on the application, and the reward systems for 
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RISK and US&RO applications are described in detail in Chapters 7 and 8, respectively. 

Each action within the plan may have multiple possible outcomes. As mentioned earlier, 

outcomes for each action can be ranked-based on value or reward and assigned 

probabilities by the DBN.  

All search strategies used are in the family of heuristic search algorithms. Seven 

search strategies were used to compare and contrast approaches within the stochastic 

RISK Game application. Results of these search algorithm comparisons are given in 

Chapter 7: RISK Game Application. These approaches include classical methods 

(heuristic depth-first, breadth-first and best-first search), random search, gradient search, 

simulated annealing, and evolutionary search.  

3.2.2.1 Classical Tree Search Methods 

Search algorithms for decision-trees use nodes to signify each decision point in 

the tree. Each node represents an action and there is a set of possible outcomes from 

applying that action. For our purposes, a branch in the tree is not an outcome, but another 

action taken from the predicted outcome. Thus, each node represents an action and all the 

probable outcomes with an attached reward based on predicted state and an occurrence 

probability. For the purposes of heuristic search, nodes are either on a closed or open list. 

Nodes on the closed list are either termination nodes or nodes where all subsequent 

actions have been opened. Nodes on the open list are subject to further exploration. 

Expanding nodes in the tree can be done in a variety of ways; for our purposes, we use 

the classical depth-first, breadth-first, and best-first algorithms [41] as described below. 

We include heuristics in the algorithms to strengthen the search toward the goal. 



39 
 

All three algorithms begin the same way. One initially expands all possible initial 

actions from the root node. All initial actions are put on an open list while the root node 

is put on a closed list. From this point, the most rewarded action is chosen. Next, the 

selected action node is expanded for all possible next actions again. The selected node is 

put on the closed list, while all new action nodes are placed on the open list.  

For heuristic depth-first search, the new set of nodes is now the focus of the 

search, and the fittest member (one of greatest reward value) of that group is selected and 

expanded. Then the whole process repeats itself until either a termination node or goal 

node is reached. At a termination node, the search expands the next highest fitness at the 

greatest depth of open nodes and the process repeats itself. At a goal node the search is 

complete and stops. In case of a tie in both depth and fitness level, an action from that 

tied group is selected randomly. 

For heuristic breadth-first search, all the nodes nearest to the root node and still 

open are the focus of the search and the fittest member of that group is selected. The 

whole process repeats itself until either a termination node or goal node is reached.  At a 

termination node, the search expands the next-highest fitness at the least depth area of 

open nodes and the process repeats itself.  At a goal node the search is complete and 

stops. In case of a tie in both depth and fitness level, an action from that tied group is 

selected randomly. 

For heuristic best-first search all the open nodes are the focus of the search and 

the fittest member of that group is selected and expanded.  The whole process repeats 

itself until either a termination node or goal node is reached. At a termination node, the 
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search expands the next highest fitness of open nodes and the process repeats itself.  At a 

goal node the search is complete and stops.  In case of a tie in fitness, an action from that 

tied group is selected randomly. 

3.2.2.2 Random Search Method 

A good baseline for comparison of search algorithms is the random search 

method, where each action is chosen randomly at every step of the plan until the plan 

reaches an end.  In our case, the end is where a task is completed, resources are 

exhausted, or the plan reaches an accomplished mission or endgame. Random search is a 

form of depth first search that does not expand the nodes at each step in the plan. The 

random search of interest here is a random walk [42], where each plan is generated from 

beginning to end, choosing random actions. 

3.2.2.3 Gradient Ascent Search Method 

Gradient search [43] is concerned with ascending up the fitness slope over 

multiple dimensions to reach a goal. The dimension of the planning space can be seen as 

each step in the plan. Since the fitness landscape is not a smooth surface in the planning 

space, gradient search will seldom reach the goal by ascending at each step in the plan. 

Thus, a heuristic form of gradient search was used to get more competitive results. 

Chapter 7: RISK Game Application will describe in detail a gradient ascent search 

method that fits the problem. 

3.2.2.4 Simulated Annealing Search Method 

Simulated annealing [44] uses a declining temperature factor to initially allow 

wide variation in choices and then over time the declining temperature restricts the search 
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to only a few choices. This approach overcomes the rough fitness surfaces of many 

planning spaces, such as observed in the RISK game application. Much like random 

search described above, simulated annealing is only concerned with modifying one 

selection, in this case, one plan. Chapter 7: RISK Game Application will describe in 

detail a simulated annealing search method that fits the problem. 

3.2.2.5 Evolutionary Search Method 

Evolutionary computation has four iterative components: reproduction, 

modification, competition, and selection [45]. Reproduction ensures there are multiple 

plans for comparison. Modification includes both mutation and recombination of plans. 

Mutation is a stochastic variance of a plan, while a recombination or crossover is a 

combination of two or more plans. Competition allows a mechanism for comparison and 

selection and is based on the results of the competition. Random variation is employed in 

all four components to enhance the exploratory aspects of evolution and to keep the 

approach robust in avoiding local minimums. This approach is also a heuristic approach 

and convergence on a solution typically takes many iterations. Chapter 7: RISK Game 

Application will describe in detail an evolutionary search method that fits the problem. 

References: 

1. Mitchell, T.M., 1997, Machine Learning, McGraw-Hill. 
 

2. K.Z. Haigh and M.M. Veloso, “Planning with dynamic goals for robot 
execution,” AAAI Symposium, Nov. 1996, pp. 61-71. 
 

3. J.S. Zelek, “A framework for mobile robot concurrent path planning & execution 
in incomplete & uncertain environments,” Integrating Planning, Scheduling and 
Execution in Dynamic and Uncertain Environments, AAAI Technical Report WS-
98-02, AAAI Press, 1998. 
 



42 
 

4. K. Deb, D.K. Pratihar and A. Ghosh, “Learning to avoid moving obstacles 
optimally for mobile robots using a genetic-fuzzy approach,” PPSN 1998, pp. 
583-592. 
 

5. S. Torma, “A model for the dynamic planning of industrial projects,” Acta 
Polytechnica Scandinavica, Mathematics, Computing and Managament in 
Engineering, Series No. 85, Espoo 1997. 
 

6. G. Armano, G. Cherchi, and E. Vargiu, “An agent architecture for planning in a 
dynamic environment,” Lecture Notes in Computer Science, V. 2175, 2001, pp. 
388-393. 
 

7. Phil Faye & Emily Andrew, “Joint Synthetic Battlespace ‘Applying Simulation to 
Acquisition, Mission Effectiveness, and Course of Action Analyses’,” MSIAC’s 
M&S Journal, V. 3 N. 1, Fall 2001. 
 

8. McFadden, Daniel L.

 

 (1984). Econometric analysis of qualitative response 
models. Handbook of Econometrics, Volume II. Chapter 24. Elsevier Science 
Publishers BV. 

9. Ben-Akiva, M. and Bierlaire, M. (2003). Discrete choice models with applications 
to departure time and route choice, in R. Hall (ed.), Handbook of Transportation 
Science, 2nd

 
 edition, Kluwer. 

10. An Introduction to Hidden Markov Models, L. R. Rabiner and B. H. Juang, IEEE 
ASSP Magazine, Vol. 3, No. 1, pp. 4-16, January 1986.  
 

11. Z. Ghahramani, Learning Dynamic Bayesian Networks (1997), Lecture Notes In 
Computer Science, Vol. 1387, 168-197. 
 

12. 

 

Kantardzic, Mehmed (2003). Data Mining: Concepts, Models, Methods, and 
Algorithms. John Wiley & Sons. 

13. A. Wolf, “A rule-based approach to dynamic constraint satisfaction problems,” 
Proceedings of the 12th

 

 International Conference on Applications of Prolog, 
1999. 

14. Muggleton, S., and De Raedt, L., 1994, Inductive logic programming: theory and 
methods, Journal of Logic Programming, 19-20:629-679. 
 

15. R. S. Sutton & A. Barto, Introduction to Reinforcement Learning, MIT Press / 
Bradford Books, Cambridge, MA, 1998. 
 

16. T. Kohonen, Self-Organizing Maps, Springer-Verlag Berlin Heidelberg, 1995, pp. 
1-50. 

http://en.wikipedia.org/wiki/Daniel_McFadden�


43 
 

 
17. Jain, Murty and Flynn: Data Clustering: A Review, ACM Comp. Surv., 1999. 

 
18. Kahn, Matthew E. and Vaughn, Ryan K. (2009) “Green Market Geography: The 

Spatial Clustering of Hybrid Vehicles and LEED Registered Buildings,” The B.E. 
Journal of Economic Analysis & Policy
 

: Vol. 9 : Iss. 2 (Contributions), Article 2. 

19. Bernardo, José M. and Smith, Adrian F. M.
 

 (1994). Bayesian Theory. Wiley. 

20. Lay, David. (2000). Linear Algebra and It’s Applications. Addison-Wesley, New 
York. 
 

21. Bell, Anthony and Sejnowski, Terry. (1997) “The Independent Components of 
Natural Scenes are Edge Filters.” Vision Research 37(23), 3327-3338. 
 

22. Stuart Russell and Peter Norvig

 

. Artificial Intelligence A Modern Approach. 
p. 578. 

23. Corinna Cortes and V. Vapnik, “Support-Vector Networks”, Machine Learning, 
20, 1995. 
 

24. 

 

Mandic, D. & Chambers, J. (2001). Recurrent Neural Networks for Prediction: 
Learning Algorithms, Architectures and Stability. Wiley. 

25. 

 

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). “Learning internal 
representation by error propagation”, in Parallel distributed processing: 
Exploration in microstructure of cognition, Vol. (1) (D.E. Rumelhart, J.L. 
McClelland and the PDP research groups, edn.) Cambridge, MA: MIT Press, 318-
362. 

26. 

 

Warner, B. and Misra, M. (1996). Understanding neural networks as statistical 
tools. American Statistician, 50, 284-93. 

27. Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with 
gradient descent is difficult,” IEEE Transactions on Neural Networks

 

, 5(2), 1994, 
pp. 157-166. 

28. Greenberg, Robert. “Kant’s Theory of A Priori Knowledge,” Penn State Press, 
2001. 
 

29. Hurely, P. J. (2000) A Concise Introduction to Logic - 7th

 
 Edition. 

30. An, A. and N. Cerone. 1998. Multimodal reasoning with rule induction and case-
based reasoning. In Multi-modal Reasoning: Papers from the 1998 AAAI Spring 
Symposium. AAAI Press, Menlo Park, CA pp. 118-123. 

http://citeseer.ist.psu.edu/jain99data.html�
http://en.wikipedia.org/wiki/Jos%C3%A9-Miguel_Bernardo�
http://en.wikipedia.org/wiki/Adrian_Smith�
http://en.wikipedia.org/wiki/Stuart_Russell�
http://en.wikipedia.org/wiki/Peter_Norvig�


44 
 

 
31. H.J. van den Herik, J. W.H.M. Uiterwijk & J. van Rijswijck, “Games solved: now 

and in the future,” Artificial Intelligence V. 134, 2002, pp. 277-311. 
 

32. D.B. Lenat, Cyc: A Large-Scale Investment in Knowledge Infrastructure. 
Communications of the ACM 38, no. 11, November 1995.  
 

33. M. Witbrock, E. Coppock, and R. C. Kahlert, Uniting A Priori and A Posteriori 
Knowledge: A Research Framework in Knowledge Representation (IR-KR): 
Proceedings of the IJCAI-09 workshop, pp. 22-28, Pasadena, CA. 2009.  
 

34. Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, 
Princeton, NJ. 
 

35. Singh, S., Kearns, M. (2002). Near-Optimal Reinforcement Learning in 
Polynomial Time. Machine Learning journal, Volume 49, Issue 2, pages 209-232, 
2002. 
 

36. N. L. Zhang & W. Zhang, “Speeding up of convergences of value iteration in 
partially observable Markov decision processes,” Journal of Intelligence 
Research, V. 14, 2001, pp. 29-51. 
 

37. B. Bakker, “Reinforcement learning with long short-term memory,” Advances in 
Neural Information Processing Systems, V. 14, 2001. 
 

38. T. Bayes. (1763). “An Essay towards solving a Problem in the Doctrine of 
Chances.” Philosophical Transactions of the Royal Society of London 53: 370–
418. 
 

39. Blickle, T., Thiele, L.: A comparison of selection schemes used in genetic 
algorithms. Technical Report 11, Swiss Federal Institute of Technology (ETH), 
Computer Engineering and Communication Networks Lab, Zurich, Switzerland, 
December (1995). 
 

40. Jain, Murty and Flynn: Data Clustering: A Review, ACM Comp. Surv., 1999. 

41. N. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann 
Publishers, Inc., San Francisco, CA 1998. 

42. Barry D. Hughes (1996), Random walks and random environments, Oxford 
University Press. 

43. Jan A. Snyman (2005). Practical Mathematical Optimization: An Introduction to 
Basic Optimization Theory and Classical and New Gradient-Based Algorithms. 
Springer Publishing. 

http://www.cyc.com/technology/whitepapers_dir/Uniting_A_Priori_and_A%20_Posteriori_Knowledge.pdf�
http://www.cyc.com/technology/whitepapers_dir/Uniting_A_Priori_and_A%20_Posteriori_Knowledge.pdf�
http://citeseer.ist.psu.edu/jain99data.html�


45 
 

44. E. Weinberger, Correlated and Uncorrelated Fitness Landscapes and How to Tell 
the Difference, Biological Cybernetics, 63, No. 5, 325-336 (1990). 

45. D. B. Fogel. Evolutionary Computation. Toward a New Philosophy of Machine 
Intelligence. IEEE Press, Piscataway, NJ, 1995. 

 



 46 

 

Chapter 4 

Related Work 

 
4.0 Abstract 

Solving VLPO&S planning problems within an ADP&E solution space can be 

attempted by a broad range of technologies. VLPO&S planning problems include many 

games, such as RISK, Poker, or Stratego, and real world navigation, wargaming, or 

logistical operations problems, respectively. Our focus is on finite event space domain 

problems. Related work within this domain is judged based on whether the technology 

can handle the complexity of VLPO&S planning problems, and whether it fits within the 

ADP&E solution space.  

Related work includes all technologies that can: be captured within a state, option, 

value construct; have autonomous interaction with a simulated environment; address 

some of the POMDP limitations; and address some of the current machine learning 

challenges. Many of these characteristics are discussed in detail in Chapters 2 and 3. Our 

goal here is to systematically present planning solutions that fit within this domain. In 

other words, we examine tools or techniques that could autonomously generate, execute 

and assess plans, and improve on their behavior. 

As discussed in Chapter 3: Background, there are three broad design, 

development, and improvement approaches in implementing a planning solution. The 
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approaches of data-driven, expert-defined, and goal-directed cover a broad range of 

solutions. Here, we will discuss these three solution domains in more detail and present 

their general characteristics, example methods, and their strengths and weaknesses. 

Secondly, we will present hybrid solutions that attempt to extend these approaches to 

improve on their strengths for solving a set of game problems. Finally, we will present a 

summary of important characteristics for the presented approaches. 

4.1 General Approaches 

ADP&E solutions represent a large area of study, and thus we first examined 

general approaches with broad appeal, such as data-driven, expert-defined, and goal-

directed introduced in Chapter 3. These three approaches are fundamentally different and 

complimentary. The following paragraphs describe the pros and cons of using these 

methods within an ADP&E solution. This includes: how each approach fits within the 

state, options, value construct; a general description of each methodology; example 

techniques; and their advantages and limitations.  
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VLPO&S planning problems by their nature cannot be solved deterministically, 

or without interactive feedback from the environment. Thus, attempted approaches 

require a methodology that includes a complete concept and cyclical framework, such as 

a state, options, value construct. The state, options, value construct is defined here, and 

can be represented within the block diagram shown in Figure 4.1. The first four parts of 

the model colored blue comprise the evaluation function. The second part is the 

actions/plans block in yellow, and the final five-part section represents the state in green. 

Value is calculated within the “Evaluation Function” block, options are selected within 

the “Actions/Plans” block, and state is represented within the “Observations” block. Note 

that value and options primarily represents the ADP&E solution space, while the state 

primarily represents the VLPO&S planning problem domain. This diagram is not 

universal, but is a simplified representation that captures the nature of the problem 

domain, and solution possibilities. This diagram shows the iterative nature of applying 

ADP&E solutions to VLPO&S planning problems, and is general-purpose enough to fit 

all three broad approaches.  

The data-driven, expert-defined and goal-directed approaches are different in the 

way they make decisions. The significant difference among these approaches is in the 

value construct described next. As shown in Figure 4.2, depending on the approach 

chosen, the value is made up of different components. Expert-defined systems require 

experts’ knowledge to define rules (discrete or fuzzy) and through the use of these rules, 

inferences are made about what actions to take [1]. Data-driven systems require data in 

the form of labeled quantities from both environmental observations and selected actions 

[2] [3]. Goal-directed systems have a goal that is measurable, either by reward or fitness 
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[4] [5] [6] [7] [8].  This value function is a policy for choosing future actions based on the 

desirability of future states or proximity to achieving goals.  

 

Another alternative is a hybrid approach, where techniques are combined among 

the three approaches [2] [9] [10] [11] [12] [13] [14].  Next, we will describe these three 

approaches in detail, followed by a comparison of hybrid approaches. 

4.1.1 Expert-Defined Approach 

As introduced in Chapter 3, expert-defined approaches are techniques used to 

represent human knowledge, where the knowledge is entered by hand, organized in a 

tractable form, and accessed upon request. Representations for these systems are typically 

discrete rules [1], fuzzy-logic [9], or case-based [15], and are usually represented as 

decision-trees of if-then-else statements or finite state logic [16]. These systems work 

well on domain specific problems of limited size, however, they fail to handle the ‘curse 

of dimensionality’ and grow exponentially when many actions are considered at each 

time step and in succession [17]. Thus, expert methods cannot handle VLPO&S planning 
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problems of sufficient breadth necessary to associate a large number of simultaneous 

observations with action choices.  

Another drawback of rule, fuzzy, and case-based approaches is their inability to 

adjust or adapt to circumstances unfamiliar to the expert embedding the knowledge. In 

other words, when the environment changes outside the prescribed domain, rules become 

useless and modifying these rules to fit the new situations is difficult [18]. There are 

many approaches that attempt to alleviate this deficiency, but they all still fail to handle 

the ‘curse of dimensionality’ [17]. 

4.1.2 Data-Driven Approach 

As described in Chapter 3, data-driven approaches fall into one of two categories: 

supervised or unsupervised learning. Both of these categories are within the realm of 

associative networks, where data is linked based on its underlying characteristics. 

Associative networks represent a highly connected network or graph of symbols or 

qualitative nodes, which are either connected to the environment (i.e., inputs), to actions 

(i.e., outputs), or with each other (i.e., internal state representation). Supervised learning 

approaches clamp the output nodes (i.e., best known action) to learn the links between 

states and actions by back-propagating error into the network (i.e., back propagation 

networks (BPNs)) [12]. Unsupervised learning approaches use statistical metrics to learn 

connection strengths among the nodes to form classification clusters [19] or to do pattern 

recognition [20]. These associative or connectionist networks, such as statistical 

clustering, Bayesian networks (BNs), support vector machines (SVMs), BPNs, or 
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recurrent neural networks (RNNs), are built to mine large amounts of data, and to 

generalize (reason via induction) over these datasets.  

In planning problems, these data-driven approaches can be used to handle many 

action choices (i.e., breadth) well by generalizing observations to actions. However, for 

very large problems, these approaches degrade as plans increase in sequential depth [21]. 

In other words, if a plan requires many sequential actions to complete a task or turn, a 

data-driven approach will fail to recognize each action’s significance and optimize over a 

few actions without sufficiently considering the overall plan. For example, an RNN could 

be a viable approach for functionally approximating the next best action, and learn the 

connections to subsequent and preceding actions via back-propagation through time [5]. 

However, it has been shown that RNNs degrade in their results when generating multiple 

action choices without direct or full-state feedback from the environment [21]. Since we 

are dealing with VLPO&S planning problems, where the environment may not always be 

observable or have direct feedback after each action is executed, data-driven approaches 

cannot be considered in developing long-term plans.  

Another drawback of a data-driven approach is its inability to improve over a 

supervisor. In other words, supervised approaches are trained via a priori knowledge, 

which may be biased, or the appropriate action may be unknown given current 

observations. For example, a BPN would be a viable approach for functionally 

approximating the next best action provided a supervisor is available to train the network 

[22]. However, the network would not improve over the supervisor’s ability, nor explore 

alternative action choices that may lead to a better strategy in generating plans. 
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4.1.3 Goal-Directed Approach 

By definition, goal-directed approaches assume a goal is known to exist, and that 

goals can be sought through a ‘trial and error’ process to achieve them. For some 

applications, many states have a perceived value (i.e., reward value) that can guide a 

planner to the end-goal, such as winning a game. For example, in chess, each board-piece 

has a perceived value if captured. In other applications, state values can be approximated 

by their relevance to other nearby states that do have value. For instance, when achieving 

a single goal state such as an endgame situation, backtracking through preceding states 

can lead to learning a path to that goal by distributing reward along the way. Note this is 

only the case if the goal state can be reached by reasonable chance in action selections 

[23]. For example, applying random actions in a backgammon game reaches the endgame 

with almost certainty [12]. In other games, such as Monopoly or RISK, there is no 

guarantee of a winner with random action choices. The five goal-directed approaches 

listed in Figure 4.3 are described below. 

Depending on the size and scope of a problem, some goal-directed approaches are 

more useful than others. For example, when a planning problem is deterministic and of 

limited size, a dynamic programming (DP) approach has been shown to converge to an 

optimal strategy [5]. DP requires a perfect model of the environment, and an extensive 

search through the action space to converge on an optimal solution [5]. DP is heavily 

reliant on having a small set of action choices at each interval in time. For problems of 

great breadth (i.e., action choices are numerous at each instance), DP fails due to the 
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imposed computational burden. Problems this method solves well are deterministic 

games such as freecell, or Sudoku. 

 

For planning problems that are larger in size and possibly stochastic, the DP 

approach has been modified into a reinforcement learning (RL) or Q-learning approach 

[5]. This approach does not require perfect knowledge of every state as in the DP 

approach, but it can still guarantee an optimal strategy if sufficient exploration is done on 

state-action pairs that lead to a goal [5]. RL algorithms, such as Q-learning, try to 

effectively balance the depth and breadth search of a problem by rewarding each action 

based on not only its immediate reward (i.e., current state-action pair), but also on the 

rewards near in temporal sequence to that action [13] [24]. This approach works well for 
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problems of great depth and breadth where the state space representation or set of action-

choices is not too large. RL is often used in simpler planning problems, such as path 

planning for robots [25], and card games such as Blackjack [5]. If the state space is too 

large, where every state cannot be represented, a function approximator can be included 

to confine the search, as in the backgammon game [12]. This game example will be 

discussed in more detail later in this chapter. These RL approaches fail for very large 

problems, because they assume that a goal can be reached by random chance, and that 

enough state-action pairs can be encountered to learn the optimal strategy in a reasonable 

time. 

Another goal-directed approach that does not depend on learning the value of 

state-action pairs is a Monte Carlo (MC) method. MC methods are very general statistical 

techniques [26]. MC methods have three basic processes: (1) define a set of options, (2) 

generate a random draw from this set, and (3) aggregate the results of the chosen options 

into the final result [27]. These three processes can be applied in principle to the planning 

problem as a goal-directed approach. A MC method can randomly select actions from a 

set of possible options and continue selecting until a plan is formed. For instance, if each 

action is selected based on equal probabilities, then it can be referred to as a ‘random 

walk’ [28]. Only after the entire plan is formed does the algorithm evaluate the resulting 

plan’s value, if a state can be evaluated. Several plans are usually generated using this 

method, because many will not reach a high valued state. These techniques are used in 

handling high dimensional problems with great breadth, such as the ‘Go’ game problem 

[29], [30] discussed later in this chapter. However, they often fail to converge on an 

optimal solution when the planning depth is great, because these methods do not 
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associate relationships well among near time action choices in the pursuit of a goal [5] as 

do RL methods. 

Another goal-directed approach is the application of evolutionary computation 

(EC) or genetic algorithms (GA) to planning. EC and GA work well for problems of great 

depth and breadth, but require an explicit reward space for every possible state 

encountered [31], because unlike RL, EC and GA do not associate one state with the 

next. Instead, EC and GA concentrate on exploring the space more broadly by comparing 

sets of competing solutions (e.g., plans vs. single actions). The reward system used is 

called an evaluated state space and for many problems a fitness function can be 

prescribed for this purpose. However, these fitness functions are seldom optimal for they 

are usually expert-defined. In addition, since EC and GA methods require many offspring 

to compare and contrast, the methods scale linearly in their use of computational 

resources in proportion to the number of offspring, in comparison to RL methods. In 

other words, instead of learning from single plans, as RL does, EC and GA compare and 

contrast many plans. When the problem is of significant size, however, these methods can 

be made more efficient [31], because they do not need to converge on a value-function, 

and do not require a function approximator for high dimensional spaces when there are a 

great many possible states or action choices.  

The balancing of exploration and exploitation to achieve a goal is fundamental 

and essential in designing an ADP&E solution. Learning Classifier Systems (LCS) 

methods attempt to balance exploration and exploitation by combining the RL 

methodology in exploiting existing rules, while using EC or GA methodology to explore 
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new rules that map states to actions [32], [33]. Both LCS and the Extended Classifier 

Systems (XCS) approaches divide each prescribed condition of a state-space into three 

categories: each condition has a positive, negative, or none impact within a rule. A 

prescribed condition is a binary feature of the state-space considered important by the 

‘trial and error’ of attempting rule-action pairs. The actions that produce the greatest 

value over many trials become most strongly linked to the corresponding condition rule. 

Since this approach is similar in scope to RL problems, in the sense they map rule-action 

pairs as opposed to state-action pairs, LCS or XCS methods may suffer when the state-

space and action choice sets are very large. XCS has been used in Poker [34], [35] and 

other applications [36] with some success. The poker example will be discussed in more 

detail later. 

In summary, the five goal-directed approaches have particular advantages and 

limitations. (1) The advantages of DP methods are that they guarantee convergence, 

handle stochastic problems, are deterministic and tractable. The limitations of DP 

methods are that they require a perfect model of the environment, grow exponentially 

with action choices, and can handle only domain specific problems well. (2) The 

advantages of RL methods are that they handle both large depth and breadth search, 

include incremental learning, handle stochastic problems, are deterministic and tractable, 

and can incorporate a temporal difference factor that links rewards over time. The 

limitations of RL methods are that they do not scale well for very large problems due to 

the size of state-action pairs. (3) The advantages of Monte Carlo methods are that they 

require limited a priori knowledge, require only sample transitions and are non-

deterministic yet tractable. The limitations of Monte Carlo methods are that they require 
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much exploration, their convergence properties are not well-defined, and they cannot 

handle associative tasks well. (4) The advantages of EC methods are that they can search 

very large combinatorial spaces, can handle stochastic problems, and are tractable [4]. 

The limitations of EC methods are that they require expert knowledge in the form of 

prioritized goals (a fitness function), require exploitation and exploration parameters that 

are domain specific [5], and do not take into account state transition probabilities, thus 

results can be overly optimistic and consequently not risk averse (defined in Chapter 2). 

(5) The advantages of LCS methods are that they can handle large depth and breadth 

problems and learn a small set of rules that link states to actions. The limitations are that 

they are not well understood mathematically and have not been proven contributors to 

very large problems due to the size of rule-action pairs. 

Goal-directed approaches have been used to bridge the gap between having either 

too much information from environmental sensors [37] (data-driven) or too biased 

information from domain experts (expert-defined). Figure 4.3 provides a summary of the 

architectures, technologies and relationships among the three general approaches. Expert-

defined approaches handle sequential tasks well, but cannot handle large breadth spaces 

or their associative properties well. They rely on human expertise that is often incomplete 

and biased, and fail to address scalability or the curse of dimensionality. Data-driven 

solutions handle associative tasks well, but degrade when the sequential depth of the task 

becomes too long to integrate without providing prescribed guidance, such as a 

supervisor. Also, data-driven approaches cannot learn beyond the supervisor. Goal-

directed efforts aim at finding a compromise among these approaches in an attempt to 

better provide more flexible ADP&E solutions to VLPO&S planning problems.  
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4.2 Hybrid Approaches 

By definition, hybrid approaches are methodologies that use two or more 

technologies to achieve an objective. In attempting to solve VLPO&S planning problems, 

applying two or more techniques can have advantages. One way to understand the 

advantages of using multiple techniques is through the study of game problems that 

reflect some of the VLPO&S planning problem characteristics. As opposed to real world 

problems that have many different possible interpretations of the problem, most game 

problems are well defined and thus, can establish a better baseline in measuring results 

than real world problem solutions. In other words, in real world problems, the 

implementation is often highly tied to the planning approach taken [38] [39], and in game 

problems, the rules-of-the-game and problem interpretations are pre-defined. Thus, game 

problems are often independent of the planning solution, and thus, their solutions are 

more easily compared.  

There are many games that can be considered as planning problems. Five game 

problems studied heavily over the past few decades are Chess, Checkers, Backgammon, 

Go, and Poker. These game problems vary in their number of players, state space size, 

action choices, observability, and uncertainty of outcomes. All these factors play a role in 

choosing an appropriate planning strategy to win a game. We will examine these five 

games by describing their characteristics; the hybrid approaches used in attempting to 

solve them, and the limitations of these approaches in solving VLPO&S planning 

problems. 
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Chess is a two-player game where the number of possible states exceeds 1040, 

thus no computer could ever plan all the moves in a game until the endgame is near. The 

action-choices are at most dozens at each instance, each action outcome is deterministic, 

and the game is full-state observable. Chess has been solved to a great extent through 

combining expert-defined value functions with decision-tree minimax search [40], such 

as used in the chess-playing computer, Deep Blue [11], [41]. These techniques can now 

beat Chess Masters, and are getting better as computers increase in processing power 

(i.e., search speed) and memory (i.e., search capacity) [42]. The techniques used in chess, 

however, cannot be directly applied to VLPO&S planning problems, because chess relies 

on a minimax search tailored for two-player games, is full state observable, and has no 

element of chance. Also, we are concerned with planning that improves through play and 

the best chess approaches rely on search using hard and fast rules [42]. 

Checkers is another two-player game with even fewer action choices, 

deterministic outcomes, and is full-state observable. Note that the state-space of checkers 

is much smaller than chess. Checkers has been solved to a certain extent by applying an 

artificial neural network (ANN). With EC, a more effective player evolves over many 

trials of playing the game [43], [44]. Even though evolving an ANN over many trials 

does provide a good exploration of the space, it has not yet been proven effective over 

problems where the input (states) and output (actions) combinations are far greater than 

checkers. Also, the checkers game can now be solved perfectly, given enough computer 

resources [45]. Thus, given its limited size and scope, checkers’ solutions cannot be 

considered for VLPO&S planning problems. 
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Backgammon is a two-player game where the state-space exceeds 1020. As in 

chess and checkers, the game has few action choices, and is full-state observable [46]. 

However, the game is not fully deterministic due to a required two dice roll at each turn. 

Games such as backgammon have been solved to a great extent through a goal-directed 

temporal difference RL approach. Through competing against itself, a BPN can be 

trained over the course of many games [47]. However, backgammon does not have a very 

large set of action choices at every instance, and does not require planning actions 

beyond a single turn as in chess. Thus, this backgammon approach cannot be applied to a 

VLPO&S planning problem in its current form. 

Go is another two-player, full-state observable, and deterministic game. However, 

the number of possible states far exceeds chess [48], and Go has both great breadth and 

depth of action-choices [49]. In addition to posing this difficult search problem, Go has 

been resistant to learning an evaluation function that can map progress of winning a 

game, as in chess [50]. In other words, chess has a well-defined value for each board 

piece, while in Go, the value of one position over another is not as well established as in 

chess. Also, given the number of possible action choices at each turn, one cannot search 

as deep as chess using classical tree search methods. Thus, probabilistic tree-search 

approaches have been used such as MC. MC methods have had some success in playing 

Go [51]. MC’s ability to explore large action sets has been shown to be beneficial and is 

incorporated into our approach as described in Chapters 7 and 8. The hybrid MC methods 

used for Go do consider a very large state-space, but do not address partially observable 

or uncertain outcomes.  
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Poker is a multiplayer game that has both a partially observable state and 

uncertain outcomes. The number of action choices is few at each instance (call, raise, or 

fold), but the total number of possible states is very large [52]. Given the size and scope 

of this problem and the variability in opponent play, learning an opponent can be 

beneficial in game play [53] [54]. For instance, someone playing against a conservative 

poker player tends to fold when the conservative player raises, knowing the player 

probably has a good hand. One approach attempting to solve computer poker uses a 

combination of SVMs with LCS [32]. This approach attempts to optimize each action 

choice, but does not consider an overall planned strategy of winning a tournament. As in 

most computer poker programs [34] [35], optimizing play over a hand limits the search to 

a small subset of play, rather than learning an overall strategy of winning a tournament. 

This approach is a good first step toward achieving a good player, however, it has not yet 

been scaled to planning beyond a single hand. 

There are many other games and other real world problems that could be 

considered. For this dissertation, we consider a game problem, RISK and a real world 

mission problem, urban search and rescue operation (US&RO). RISK is a multiplayer 

game problem that has many actions per turn, and many actions have stochastic outcomes 

[55]. Unlike backgammon, rolling the dice occurs throughout the execution of many 

actions, rather than just at the beginning of a turn. Our US&RO mission problem is a 

single player game with a partially observable state-space. Both RISK and US&RO have 

very large number of action choices and state-spaces. Chapters 7 and 8 will describe them 

in detail, respectively. 
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For VLPO&S planning problems, such as RISK or US&RO, one cannot focus 

solely on any single technique to solve these problems well. For instance, (1) having 

some endgame motivation such as is used in solving chess; (2) an exploration capability 

as used in the checkers’ solution; (3) a reward feedback mechanism such as used in 

backgammon; (4) an action choosing mechanism as used in Go; and (5) an adaptive 

planning ability as shown in Poker provides a better overall approach than applying any 

of these techniques individually. Applying all of these techniques to all planning 

problems is not the answer we seek, but determining when to apply which method based 

on the planning problem characteristics is one of the goals of this dissertation.  
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Chapter 5 

New Challenges 

 
5.0 Abstract 

In an effort to solve VLPO&S planning problems with ADP&E solutions, many 

new challenges arise beyond the methods discussed in Chapter 4: Related Work. 

Research in planning architectures has not addressed extensibility across a broad range of 

VLPO&S planning problems or do not consider an ADP&E solution. Current research 

does not formulate VLPO&S planning problems as an extension to well-defined POMDP 

models. Currently, top-down ADP&E planning approaches use extensive knowledge 

engineering [1] [2] [3], and the inclusion of bottom-up planning approaches does not 

consider the size and scope of automating VLPO&S planning problems [4] [5]. In 

addition, while using machine learning for training ADP&E planners, current approaches 

do not address the size and uncertainties associated with VLPO&S planning problems [6] 

[7] [8].  

The purpose of this chapter is to uncover and define the new challenges imposed 

by investigating VLPO&S planning problems with ADP&E solutions. Each identified 

challenge represents an aspect of planning that previous research has not addressed 

adequately, if at all. The challenges can be divided into four main areas: general 

characterization and extensibility challenges in handling a variety of VLPO&S planning 
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problems with an ADP&E solution framework, specific VLPO&S environmental 

challenges, specific ADP&E planner challenges, and general learning challenges. The 

next four sections describe extensibility, environment, planner, and learning challenges, 

respectively.  

5.1 Characterization and Extensibility 

As described in Chapter 2: Problem Domain, the ADP&E approach employs two 

essential functional objects: an environment and a planner. These two objects have a wide 

variety of attributes, depending on the application at hand. To study the flexibility of a 

proposed approach, both the environment and the planner are divided into different 

aspects to help define the scope of the problem domain. These aspects help define a 

planning problem in terms of its characteristics and extensibility. In this dissertation, two 

applications are studied that span across these aspects to ensure the developed approach 

has a broad applicability to many problems. Next, many characterization terms are 

introduced to establish a more extensible approach for both the environment and the 

planner. Chapters 6 through 9 describe the use of these characteristics to aid in designing 

approaches tailored to specific and new applications. 

For the environment, each application has different: (1) planners required, (2) 

breadth, (3) depth, (4) model observability, (5) action response, and (6) goal evaluation. 

The planners required are the number of competing and/or cooperating planners in an 

application environment. The breadth is the number of considered action choices 

available for a given state, player, and agent. The depth is the length of a plan and refers 

to the number of actions or tasks required within a plan. The model observability refers to 



 69 

whether the real model is partially or full-state observable. The action response refers to 

whether actions have stochastic or deterministic outcomes. The goal evaluation refers to 

whether the application is planned within a cooperative or non-cooperative environment. 

The challenge here is to examine how these various dimensions impact the design of 

planning approaches. 

For the planner, each application has different: (1) planning complexity, (2) 

planning coordination, (3) action processing, (4) required agents, (5) model update 

frequency, (6) outcome selection, and (7) control parameters. Planning complexity refers 

to whether the application has multiple tasks or turns to complete an entire game or real 

world simulation. Single task games, such as solitaire, freecell or sudoku, are considered 

trivial, because the search spaces are small and deterministic, and are not studied here. 

Planning coordination refers to whether the application’s control is centralized by the 

planner, or decentralized, where the agents have their own decision-making abilities and 

often plan their own actions. The approach taken in this dissertation only considers the 

centralized planning problem. Having decentralized or distributed decision-making is an 

interesting addition to the problem domain studied, and is a topic of future work 

described in Chapter 10. Action processing refers to whether the outcomes of actions are 

processed off-line (e.g., stored as a look-up table), or calculated on the fly. This 

dissertation concentrates on plans that have many action sets, so to save processing time, 

all trivial single action choices are preprocessed offline so outcomes can be looked-up 

quickly during simulation. Required agents refer to whether the application has single or 

multiple agents. Model update frequency refers to how often the internal planning model 

is updated with observations from executed actions. The update frequency could be 
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continual (i.e., after each executed action), but considering the cost of planning, a more 

intermittent update frequency often proves more valuable, depending on the application. 

Outcome selection refers to whether an outcome is selected via classical methods, such as 

expected value or maximum likelihood, or through a risk-averse strategy. The risk-averse 

strategy is described in the Chapter 6: Approach, and application of the strategy is 

described in Chapter 7: RISK Game Application. Control parameters for planning 

systems are often static, such as fixed search strategy or value function. This is a trivial 

case. The challenge is to study the situation where the control parameters are dynamic 

and adaptive. 

5.2 VLPO&S Domain Problems 

Planning for large complex problems cannot be handled by POMDPs as currently 

defined [9]. In this dissertation, the focus is on six features currently limiting POMDPs: 

(1) planning strategies, (2) plan lengths, (3) planning costs, (4) outcome selection, (5) 

probability of successful plan completion, and (6) expectations and re-planning. These 

limitations are addressed by describing challenges for each feature. In later chapters, 

these challenges will be further addressed with well-defined terms, algorithms, and 

results. Terms and algorithms are detailed in Chapter 6: Approach. Results are shown for 

two applications in Chapters 7 and 8. In handling large complex problems, challenges are 

surmounted to extend the current POMDP model to include these new features for future 

planning applications. 

Planning strategies refers to choices that allow the planner to vary its ability in 

selecting actions and/or plans dependent on the planning problem. Planning strategies are 
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not currently defined as a variable choice in POMDP models. This new variable choice 

raises many challenges. One challenge is deciding whether to plan ahead single or 

multiple actions. Another challenge is determining how dependent plans are on 

environmental changes. A third challenge is determining the dependency of one agent’s 

plan on another agent’s plan. A fourth challenge is determining how to adapt the planning 

strategy based on environmental observations. 

Plan lengths refers to the number of turns or tasks used. Plan lengths are 

dependent on the type of application, and extend a POMDP model to the planning 

domain by addressing additional challenges. One challenge is determining what 

constitutes a plan’s progress, such as a completed task or turn in a game. Another 

challenge is determining the number of actions required to complete a task or turn. A 

third challenge is determining what is a feasible number of tasks or turns to plan ahead, 

given the cost of planning, and uncertainty of the environment.  

Planning costs are used in plan-generation and plan-execution, and refer to the 

search time required in planning and/or the logistics required to support planning, such as 

communication delays. Planning costs also extend a POMDP model to the planning 

domain by addressing additional challenges. The first challenge is determining whether 

there is a logical place to include planning costs, such as in the generation and/or 

execution of a plan. Another challenge is determining if there are real world logistical 

costs that need to be modeled. A third challenge is determining the amount of cost to 

include in searching for a new plan, or the cost of communicating information among 

agents on new plans or new observations. A fourth challenge is accessing the impact of 
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the costs of planning on choosing other variable choices, such as planning strategy or 

plan lengths. 

Outcome selections refer to the functions used in predicting an outcome when 

there are multiple possibilities. In a POMDP framework, outcome selections are a 

function of the state transition probabilities. However, a POMDP can be extended to 

include a selection criteria based on risk instead of maximum likelihood [10] or expected 

value [11]. If there is more than one possible outcome, then there are several challenges 

to consider when selecting a specific outcome. One challenge is how to rank order the 

outcomes. Another challenge is how to select among the ranked outcomes. A third 

challenge is formulating a way to adapt the selection based on perceived risk or overall 

success of the planner. 

The probability of success is the likelihood that a plan will succeed as 

expectations are defined. The probability of success for plan completion is not currently 

handled in POMDPs. A POMDP can include probability of success by addressing a few 

challenges. One challenge is determining what constitutes a successful action or plan. 

Another challenge is determining how to calculate the probability of successful plan 

completion. A third challenge addresses how to use the probability of success to limit the 

depth of search. A fourth challenge is determining how probability of success weighs in 

plan selection and/or assessment, and how to make this weight adjustable. 

Expectations and re-planning refer to the variable choice of keeping an existing 

plan or re-planning. Expectations and re-planning are not functions in a POMDP 

framework. Several challenges must be addressed to allow for variable choices in using 
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expectations and re-planning. One challenge is determining how to balance the cost of re-

planning with the risk of continuing execution of a preexisting plan. Another challenge is 

determining a good measure of expectations and how it relates to achieving goals. A third 

challenge is determining an expectation acceptance threshold metric for variable 

triggering of re-planning. A fourth challenge is determining a method for adapting this 

acceptance metric. 

5.3 ADP&E Solution Space 

Central to an ADP&E solution is the planner, and all the planner parameters used 

to orchestrate the planning process. A planner might be defined specifically for each 

application, but this would lead to special purpose algorithms, not useful to other 

applications. The challenge is to design an ADP&E approach that can be used for many 

VLPO&S planning problems and can improve its ability to plan. Thus, the planner 

parameters must be identified to vary planner control to provide enough flexibility to 

handle a variety of planning problems. There are modifiable controls in nine major 

categories: (1) choosing individual actions; (2) searching and comparing plans; (3) 

application dependent planning depth; (4) risk aversion; (5) success probability; (6) 

temporal cost of planning; (7) evaluating plans; (8) diversity in plan selection; and (9) 

justifying system behavior.  

First, in choosing individual actions, consider the balance between exploring new 

options versus exploiting proven ones. This has long been a difficult problem in machine 

learning. For planning, this challenge remains, and there are several considerations. They 

include whether the application is stochastic or deterministic, whether the application is 
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partially observable or has full-state feedback, whether there are few or many actions at 

each time step, whether plans are for many agents or a single agent, and whether the state 

space is traversable or too large to consider every state. Planning problems that are small, 

deterministic and have full-state feedback are not considered here, because they have 

trivial solutions. When considering individual action choices, one challenge is to look at a 

variety of different types of planning problems, and to develop a control scheme that is 

useful and adjustable to solve a broad set of problems.  

Second, in searching and comparing plans, consider the cost of search versus the 

risk and benefits of executing the resulting plans. Whether an environment is 

deterministic or not, or has full-state feedback or not, could determine whether search is 

an important part of planning. There may be circumstances where the cost of search is too 

large to be included, or circumstances where search is cost effective and performed not 

only before a plan is executed, but while it is executed. Also, if search is used, there are a 

large variety of search algorithms to choose from, and some may prove more valuable 

than others, depending on the application. When searching and comparing plans, one 

challenge is to examine different search approaches to determine their value in planning, 

based on efficiency (speed of finding a solution) and effectiveness (solution quality). 

Third, in application dependent planning depth, consider whether to approach the 

problem from a resource consumption perspective, or in terms of completing tasks. 

Depending on the application, one approach may be more successful than the other. For 

instance, in competitive games, such as turn games (Chess, Backgammon, Go, Poker, 

RISK, etc.), resource monitoring may be a better measure of planning progress.  In more 
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cooperative planning problems, where a shared responsibility among agents is important, 

a task-oriented scheme may be more feasible, such as real world humanitarian missions 

(China 2008, Haiti 2010, etc.). When considering application dependent planning depth, 

one challenge is to examine planning depth from both perspectives, and determine which 

type of planning depth metric proves more valuable for different application types. 

In considering stochastic problems, success probability plays an important role in 

determining a plan’s value and chance of completion. One challenge is to examine how 

to combine the probability of success for all actions and their impact on the overall value 

of a plan. Also, probability of success may play an important role in reassessing a plan as 

it is executed. A plan’s success is an important component in whether a planner re-plans 

or not. When considering a plan’s success, one challenge is to determine how to calculate 

probability of successful plan completion and how to assess its impact on a plan’s value. 

Risk aversion can play an important role in two areas: outcome selection and 

expectation assessment. When a planning problem is stochastic, selecting outcomes based 

on risk must be considered. Choosing the best value of risk aversion for outcome 

selection may depend on the application, and on the state of the model. In assessing 

expectations, risk (i.e., an acceptability threshold) is important in determining whether to 

keep a plan or re-plan. One challenge is to design and implement mechanisms to monitor 

and adapt risk for both outcome selection and expectation assessment. 

In determining how one plans, when one plans, and how often one plans, a 

planner needs to consider the temporal cost of planning. Temporal costs are considered in 

two ways. There are the computational costs in searching through plans, and there are 
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logistical costs in planning for real world problems. For search, there are computational 

costs that refer to time or resource allocations. For instance, in some board games (e.g., 

Chess, RISK, Go), a planner could have limited time to search for the best plan [12] [13] 

[14]. In addition, time could be split among: initial planning, planning during execution 

(continual planning case), and re-planning (when plans do not proceed as expected). In 

real world applications, a human-in-the-loop is often used, and may take time to commit 

computer generated plans, such as contacting agents in the field as a dispatcher 

coordinates drivers. These communication lags as well as other logistical costs are 

involved in many real-world planning problems. One challenge is to examine temporal 

costs as an integral part of planning, and to learn improved control strategies to counter 

these costs. 

In evaluating plans for selecting the best ones over the course of an entire 

simulation or game, the final goal of the planner (e.g., winning the game) is not always a 

good metric in choosing the best plans. For instance, in nontrivial games, winning a game 

takes many turns, and in some of those games, an endgame may not be reached through 

random actions (e.g., RISK, Axis and Allies, Diplomacy) [13] [15] [16]. In these games, 

as in real world planning applications, it is necessary to guarantee reaching the endgame 

or end-state. Sub-goals or action-choice conditions can be a way of avoiding this “no-

progress” problem. Sub-goals and action-choice conditions, as defined in Chapter 2, refer 

to features of state that measure progress of projected plans of action that lead the planner 

toward the endgame. Initially, sub-goals or action-choice conditions are not necessarily 

good qualifiers for choosing the best actions, but subject matter expertise (SME) can be 

used to choose sub-goals or action-choice conditions that may or may not be important in 
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planning. Also, in choosing the best actions, one should avoid restricting action choices 

purely based on SME. Thus, one of the challenges is choosing and adapting sub-goals or 

action-choice conditions to avoid this “no-progress” problem, and to improve the 

planning strategy through experience, while ensuring that a large portion of planning 

options is explored independent of SME.  

In the case when plan search is deemed important, a planner may consider 

whether only to exploit the best projected plans, or to explore other plans that are more 

diverse than these best plans. For example, when one considers more than one plan, 

exploiting only the best plans could lead to a local minimum based on restricting the 

search area. In allowing for diversity in plan selection, the planner may be more likely to 

pursue other options while retaining the best plans. Another challenge is to include plan 

diversity as a control mechanism in applications that require search, and to allow for 

variability in plan selection based on long-term plan success.  

Finally, justifying systems behavior for an ADP&E system can be determined in 

seven ways as described in Chapter 2: outcome-selection justification, action-selection 

justification, plan-assessment justification, plan-fitness justification, planning-cycle 

justification, planner-utility justification, and mission-value justification. Due to the 

complexity of VLPO&S planning problems, these justifications are interdependent and 

span across many aspects of planning. In justifying system behavior, the challenge is to 

adequately identify, define, and converge the parameters associated with each of these 

seven justifications with regard to the planning problem. In other words, justifying 

system behavior requires traceability of choosing value function metrics for all associated 
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parameters, because ADP&E systems require justification before deployment. The 

parameters associated with the seven justifications are application dependent and are 

described in more thoroughly in Chapters 7 and 8. 

5.4 Learning Challenges 

Planning problems for very large, partially observable, stochastic environments 

are difficult to solve for four main reasons: (1) balancing exploration for new information 

vs. exploitation of pre-existing information; (2) providing a scalable framework, where 

the speed of the simulation is minimally affected by the number of agents or actions 

available; (3) determining where to assign credit in the action-response domain, 

especially for long action sequences; and (4) providing traceable results that justify each 

planned and executed action. 

There are many concerns in balancing exploration versus exploitation. First, 

exploring action options should initially be done in an unbiased manner. Second, 

choosing between searching entire plans versus making decisions for each action should 

be planning problem dependent. If one chooses search, how much is necessary, and how 

often should it be done? Also, how many searched plans are necessary for comparison? 

Next, when considering problem observability, one needs to consider the impact on plan 

length and model update frequency. Finally, when considering strategies for adapting 

planners’ parameters, one needs to balance between exploiting and exploring control 

parameters. For example, how are parameters modified, how often do they change, and 

how many games or simulations is enough to determine adequate planner fitness? 

Challenges concerning exploration versus exploitation will be addressed in the context of 
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one stochastic and another partially observable planning problem described in Chapters 7 

and 8, respectively. 

The curse of dimensionality is an important problem when designing and 

implementing a scalable framework. There are several characteristics to consider when 

designing and implementing a scalable architecture: (1) limiting assumptions by creating 

a simplified architecture with only necessary and sufficient parts increases usefulness 

across multiple applications; (2) limiting fixed parameters to a small, required set allows 

for an adaptable and trainable implementation; (3) limiting required SME minimizes 

humans’ biased constraints; (4) preprocessing of individual action responses speeds up 

the ability to simulate planning; (5) requiring the architecture’s hierarchy to be modular 

and extensible allows one to include or preclude functionality deemed important for each 

particular application; and (6) ensuring the hierarchy has an object-oriented design allows 

for easy modification of dependent planning processes, such as multithreading agents. 

This dissertation describes our efforts to include these six characteristics to meet the 

challenge of having a scalable framework.  

Attempting to solve the credit assignment problem for planning tasks presents 

many difficulties. First, given the variation in planning problems, such as cooperative 

versus non-cooperative environments, deterministic versus stochastic outcomes, full-state 

versus partially observable state feedback, and single agent versus multiple agent tasking, 

one needs a credit assignment strategy that considers all these domains. Second, one 

needs to include the features of the environment deemed as important factors in 

developing a good plan. Third, one needs to investigate where, when, and how often to 
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assign credit to these factors. One must avoid decoupling planners’ parameters, which 

compete and adapt together, at different levels within the hierarchy. For instance, when a 

planner contemplates and executes a plan, there must be feedback from both the 

environment and the game or simulation results, which can propagate to one common 

level in the hierarchy (i.e., planner, described in Chapter 6). Finally, the architecture 

should restrict hierarchical dependency to only one layer above and below to allow 

information to pass easily from one layer to the next. These challenges can be addressed 

in an attempt to assign credit properly and improve on the planner’s ability to plan. 

In developing ADP&E solutions to VLPO&S planning problems, providing 

traceable and justifiable plans is very important in applications that puts peoples’ lives at 

risk, such as an urban search and rescue operation described in Chapter 8. To ensure 

traceability and justifiability in a planning process, an important challenge is 

investigating modularization of the approach to allow tunable parameters for many 

different aspects of the problem: (1) outcome selection, (2) action selection, (3) whether 

to re-plan or not, (4) plan selection, (5) monitoring task completions, (6) comparing 

planners’ usefulness, and (7) comparing missions or games results. All these aspects are 

investigated with their own adaptable parameters. The goal here is to abstract a 

justification for taking a plan of action through examining the adapted parameters 

described in this chapter. 

5.5 Summary 

In summary, applying ADP&E solutions to VLPO&S planning problem provides 

many interesting challenges. In the ADP&E solution space, there are challenges in 
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designing and implementing the essential functional objects, control, general framework 

and process flow. In the VLPO&S planning problem domain, there are challenges in 

meeting the requirements. As mentioned previously, the overall goal is to design and 

implement a planner that can change its ability to plan based on an application’s needs, 

and improves its ability through planning experience.   
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Chapter 6 

Approach 

 
6.0 Abstract 

Solutions for many real-world planning problems require a multi-pronged 

approach. In other words, most VLPO&S planning problems require a mixture of goal-

directed, expert-defined, and data-driven approaches, taking advantage of their strengths, 

minimizing their weaknesses, while bringing together a practicality and realism to the 

modeling and simulation of games or missions. In this dissertation, the adopted approach 

attempts to build planners that can autonomously and dynamically plan and execute 

actions through constructing a model with: (1) simplified and adaptable SME (i.e., 

expert-defined), (2) dynamically tunable environmental data structures (i.e., data-driven), 

and (3) an underlying goal-directed architecture. Both the expertise and data structures 

are modifiable to meet the ultimate goal of learning better strategies for winning a game 

or completing a mission. However, the expertise and data structures are application 

dependent, and described in detail in Chapters 7 and 8. This chapter will describe the 

more general aspects of this ADP&E approach, the goal-directed architecture.  

The goal-directed architecture will be described from various perspectives to 

provide a clear understanding of its functionality and composition. This chapter begins 

with a general description section that presents a conceptual understanding of the planner 
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and the environment. The goal-directed architecture description will include: (1) basic 

building blocks, (2) hierarchical decomposition, (3) functional flow and interactions, and 

(4) three phase core planning cycle. Second, a detailed description section follows with 

more in-depth material, which includes all functions and variables. This section will 

revisit the three phase planning cycle, and includes a general description of an approach 

to learning better planners. The final section describes the incremental order in which to 

design and implement the goal-directed architecture for the core planning cycle. Chapter 

9: Design and Implementation of Future Applications will provide a full hierarchical 

description on how to build future applications, which includes lessons learned from the 

two applications described in Chapters 7 and 8. 

6.1 General Description 

The ultimate goal is to design and develop an ADP&E approach to train planners 

for winning a game or completing a mission. The application representation is restricted 

to the discrete event (in time and space) domain. The environment can be cooperative or 

non-cooperative, and the number of planners (or players) in the environment is only 

restricted to be a finite number, instead of one or two as defined in many applications [1] 

[2] [3] [4] [5]. The descriptions that follow in Sections 6.1 and 6.2 are structural rather 

than functional. That is, the building blocks of the entire planning process are named in 

sequential and nested hierarchical fashion along with the inputs and outputs of these 

blocks, and how they connect. What those blocks do is suggested by their names, but 

their operational details are application dependent. So, this chapter focuses on structure, 

while Chapters 7 and 8 that follow fill the details of operation for their respective 
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applications. In summary, this chapter is an attempt to formalize the planning process, a 

process that has not been formalized to this extent before.  

The environment (Ξ) is defined as having two functional blocks: model (M) and 

state representation (X) (i.e., Ξ = {MΞ, XΞ}). Each planner (Ψ) is defined as having four 

functional blocks: model (MΨ), state (XΨ), action (A) options, and value (V) function 

(i.e., Ψ = {MΨ, XΨ, A, V}). Figure 6.1 shows a diagram of the environment and a single 

planner.  

 

6.1.1 Basic Building Blocks 

Models are used and represented as both objects and functions (i.e., M = {Mobj, 

Mfun}). The model objects include the environment and all planner models (i.e., Mobj = 

{MΞ, MΨ1, MΨ2, … , MΨk}, where k is the number of planners. The environmental model 

Real-World
Model (MΞ)

Planning
Model (MΨ)

Planner
State (XΨ) Actions (A)Value

Function (V)

Planner (Ψ)

Real-World
State (XΞ)

Environment (Ξ)

Figure 6.1. Planner and Environment with Functional Building Blocks



86 
 

is called the execution- or real-world model (MΞ), and each planner’s model is called a 

planning-model (MΨk). The functional portion of the models is the static infrastructure (I) 

and state transition rules (R) (i.e., Mfun = f(I, R)). The static infrastructure includes the 

parts of the model that represent all non-varying features, such as a game board for a 

game, or a modeled terrain for a mission simulation. State transition rules are a functional 

representation of the game or mission rules, and are a function of the state and chosen 

actions (i.e., R = f(X, A)). Static infrastructure and state transition rules are application 

dependent and are described in detail for specific cases in Chapters 7 and 8. 

State is a combination of the model-state and simulation-state (i.e., X = {Xmod, 

Xsim}). There are several model-states, and they include the state of the environment and 

state of each planner (i.e., Xmod = {XΞ, Xψ1, Xψ2, … , Xψn}). Each model-state (XΨ) is the 

planner’s perceived state of the environment, and can also be referred to as a local state. 

The environmental or real-world-model state (XΞ) is defined as ground truth and can only 

be modified through a plan’s execution. There is only one simulation-state and that is the 

current value of all the objects in the goal-directed hierarchy. The environment (XΞ) and 

simulation-state (Xsim) are both considered global state variables. Simulation state will be 

revisited when the hierarchy is described later in this section.  

Generally speaking, action options are a function of the model and the state (i.e., 

A = f(M, X)). The use of the model and state to provide action options for search and 

select in forming plans, is highly dependent on the application under consideration. Also, 

search and select is an iterative process where the model and state are also dependent on 

the chosen actions in each plan. The choices available in searching and selecting actions 
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will be described in more detail in Section 6.2.1 Plan-Generation. Particular 

implementation details in performing search and selection are application specific and 

described in Chapters 7 and 8. 

Value is composed of seven measurement systems: games or missions values, 

planners’ utility, planning cycle assessment, plan fitness, expectation assessment, action 

selection, and outcome selection (i.e., V = {VG, UΨ, CΓ, FP, EQ, ZA, ZY}). Each of the 

seven value components measures different aspects in the goal-directed process. Mission 

value (VG) measures the overall performance of planners across a set of missions or 

games. Performance differences are shown by the direct competition of the planners on 

similar games or missions. Planner utility (UΨ) measures the usefulness of planner 

parameters within a single game or mission. Planner utility is thus a measure of how well 

parameters compare across other planners in their ability in achieving similar goals. 

Planning-cycle assessment (CΓ) measures the ability to adjust to unexpected 

environmental changes. Planning-cycle assessment determines when a plan requires 

changes or is kept in continual execution. Plan-fitness (FP) measures the ability to select a 

more optimal plan given a set of multiple plans acquired via search using computational 

and/or time constraints, probabilities and risks, rewards on reaching desirable states, and 

having diversity in the selection process. Fitness is the competitive function that balances 

the cost, risks, and reward of searching and selecting plans. Fitness is thus a measure of 

how well a plan performs. Expectation assessment (EQ) is a function that determines 

whether a particular plan is accepted for continued execution or will be modified via re-

planning. Once a plan is selected based on fitness, the expectations are compared during 
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plan-assessment to see if these expectations are met. If these expectations are met to 

some quantitative degree of acceptance, the plan can continue to be executed, otherwise 

re-planning occurs. Action selection (ZA) is an important part of plan-generation. 

Specifically, the action selection function determines value for all action choices, and is 

used to make the choice of every action. Outcome selection (ZY) is an important part of 

every action choice, provided the number of possible outcomes exceeds one. If the 

number of outcomes is greater than one, the outcome selection function selects an 

outcome based on the risk the planner is willing to take. Section 6.2 identifies where 

value functions FP, EQ, ZA, and ZY work within the core planning cycle, and all the 

inputs and outputs of these functions are defined. Value functions VG, UΨ, and CΓ

As shown in Table 6.1, mission value is a function of the top four tiers of the 

hierarchy (i.e., V

 are 

used in the analysis and learning portion of the ADP&E architecture. Where these 

functions are used in the ADP&E architecture is described in Section 6.2.4 Design. More 

specifics on these value functions are described in applied form in Chapters 7 and 8. 

G = {Ω, Θ, Μ, Ψ}). Planner utility is a function of four of the top five 

tiers in the hierarchy (i.e., UΨ = {Θ, Μ, Ψ, Γ}). Planning cycle assessment is a function 

of the middle five tiers of the hierarchy (i.e., CΓ = {Ψ, Γ, P, Τ, A}). Plan fitness is a 

function of the bottom five tiers of the hierarchy (i.e., FP = {P, Τ, A, Y, O}). Expectation 

assessment is a function of two of the middle tiers of the hierarchy (i.e., EQ = {P, Τ}). 

Action selection is a function of two of bottom three tiers of the hierarchy (i.e., ZA = {A, 

Y}). Outcome selection is only a function of the possible outcomes (i.e., ZY = {Y}). 
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These hierarchical dependencies are better understood using specific application details, 

thus these dependencies are explained by example in Chapters 7 and 8. 

6.1.2 Hierarchical Decomposition 

The goal-directed hierarchy is composed of ten levels from general to specific: (1) 

tournaments (Ω), (2) rounds or competitions (Θ), (3) games or missions (G), (4) players 

or planners (Ψ), (5) agents (Γ), (6) plans (P), (7) tasks (Τ), (8) actions (A), (9) outcomes 

(Y), and (10) observations (O). A tournament is defined as a process that controls a set of 

rounds or competitions that goal-directs the ADP&E architecture to find more qualified 

planners. A tournament is considered complete when the planner is not improving 

substantially from one tournament round to the next. A round is defined as a function that 

controls sets of similar games or missions that test the performance of different planners 

to determine their utility (described above). The planners with higher utility are admitted 

to the next round, where their modified copies recompete on similar games and missions. 

A game is a function of a single or multiple player(s) or planner(s).  A game or mission is 

a simulation environment with a clear and concise goal, such as winning a game or 

completing a mission scenario. The model environment can be stochastic and/or partially 

observable, but there are well-defined rules for generating action choice possibilities that 

lead to the completion of each game or mission. A planner is a function that controls a 

variety of agents in order to win a game or complete a mission. Each agent is assigned 

one of several possible plans generated by the planner. Each plan can perform a variety of 

tasks. The number of tasks completed or the resources used in a plan determines the 

length of a plan. A completed task is a discrete change in state that contributes to the 
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overall goal of winning a game or completing a mission. The expectation assessment 

function described above measures the completed tasks to determine if a plan should 

proceed or be re-planned. An action is considered as an atomic movement in a game or 

mission. An action can have many resulting outcomes or observations when enacted 

within a model. An outcome is defined as a state change produced when an action is 

performed in a model. Outcomes can be nondeterministic in stochastic models, or 

unobservable before execution in partially observable models. Each outcome can have a 

set of observations of state variables within the model environment. An observation is 

defined as a state value that can be sensed by performing an action in the model. 

 

More formally stated, Ω is a collection of tournaments and ω is a single 

tournament (i.e., Ω = {ω1, ω2, …, ωn}). Θ is a collection of rounds or competitions and θ 

is a single round or competition (i.e., Θ = {θ1, θ2, …, θn}). G is a collection of games or 
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missions and g is a single game or mission (i.e., G = {g1, g2, …, gn}). Ψ is a collection of 

players or planners and ψ is a single player or planner (i.e., Ψ = {ψ1, ψ2, …, ψn}). Γ is a 

collection of agents and γ is a single agent (i.e., Γ = {γ1, γ2, …, γn}). P is a collection of 

plans and p is a single plan (i.e., P = {p1, p2, …, pn}). Τ is a collection of tasks and τ is a 

single task (i.e., Τ = {τ1, τ2, …, τn}). A is a collection of actions and a is a single action 

(i.e., A = {a1, a2, …, an}). Y is a collection of outcomes and y is a single outcome (i.e., Y = 

{y1, y2, …, yn}). O is a collection of observations and o is a single observation (i.e., O = 

{o1, o2, …, on}). As mentioned earlier, a simulation state is the current value of all the 

objects in the goal-directed hierarchy (i.e., Xsim = {Ω, Θ, G, Ψ, Γ, P, Τ, A, Y, O}). 

Each collection or single hierarchical class has an associated object and tuple 

relationship. In terms of objects, observations are elements of an outcome, outcomes are 

elements of an action, actions are elements of a task, tasks are elements of a plan, plans 

are elements of an agent, agents are elements of a game, games are elements of a round, 

and rounds are elements of a tournament (i.e., o ∈ y ∈ a ∈ τ ∈ p ∈ γ ∈ ψ ∈ g ∈ θ ∈ ω). 

In other words, each tournament is a set of rounds (i.e., ω = {Θ}). Each round is a set of 

games (i.e., θ = {G}). Each game is a set of planners (i.e., g = {Ψ}). Each planner is a set 

of agents  (i.e., ψ = {Γ}). Each agent is a set of plans (i.e., γ = {P}). Each plan is a set of 

tasks (i.e., p = {Τ}). Each task is a set of actions (i.e., τ = {A}). Each action is a set of 

outcomes (i.e., a = {Y}). Each outcome is a set of observations (i.e., y = {O}). 

The tuple relationships of each hierarchical class are divided such that the each 

level only refers to the objects one level above and below. More specifically, a 
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tournament tuple is a 2-tuple of a specific tournament and set of rounds (i.e., ω = (ω, 

Θ)). A round tuple is a 3-tuple of a specific tournament, a specific round and set of games 

(i.e., θ = (ω, θ, G)). A game tuple is a 3-tuple of a specific round, a specific game and 

set of planners (i.e., g = (θ, g, Ψ)). A planner tuple is a 3-tuple of a specific game, a 

specific planner and set of agents (i.e., ψ = (g, ψ, Γ)). An agent tuple is a 3-tuple of a 

specific planner, a specific agent and set of plans (i.e., γ = (ψ, γ, P)). A plan tuple is a 

3-tuple of a specific agent, a specific plan and set of tasks (i.e., p = (γ, p, Τ)). A task 

tuple is a 3-tuple of a specific plan, a specific task and set of actions (i.e., τ = (p, τ, A)). 

An actions tuple is a 3-tuple of a specific task, a specific action and set of outcomes (i.e., 

a = (τ, a, Y)). An outcomes tuple is a 3-tuple of a specific action, a specific outcome and 

set of observations (i.e., y = (a, y, O)). An observation tuple is a 2-tuple of a specific 

outcome and a set of observations (i.e., o = (y, O)). Table 6.1 summarizes the general 

relationships within the hierarchy. More detailed relationships will be described later in 

this chapter.  

6.1.3 Functional Flow and Interactions 

Functional flow and controlled interactions happen at two distinct locations in the 

goal-directed architecture. The upper portion of the hierarchy is the training portion and 

includes two major processes: a hierarchical control chain (HCC) that keeps track of 

tournaments, rounds, missions and planners, and learning and analysis (L&A) that 

evaluates the results of the core planning cycle. The lower portion of the hierarchy has 

only one major process and that is the core planning cycle (CPC) that controls all 

interactions from planners to observations. The HCC controls the start and stop of 
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tournaments (Ω), rounds (Θ), missions (G), and planners (Ψ). The number of rounds per 

tournament, the number of missions per round, and the number planners per mission are 

application dependent and described in detail in Chapters 7 and 8. The L&A analyzes the 

results of the CPC to train planners and statistically analyze the progress of planner 

parameters. The training parameters used are determined by an evolutionary learning 

function (Λθ) and the statistical analysis function (Σω) that tracks the means and standard 

deviations of the planner parameters. The type and number of evolutionary learning 

function parameters and CPC planner parameters are application dependent and described 

in detail in Chapters 7 and 8. The CPC is at the heart of the ADP&E architecture and will 

be described in general in subsequent paragraphs. Section 6.2 will provide a more 

detailed look at HCC, L&A and CPC. 

In the core planning cycle, the environment (Ξ) and each planner (Ψ) have six 

basic building blocks as described above (i.e., Ξ = {MΞ, XΞ} and Ψ = {MΨ, XΨ, A, V}) 

and shown in Figure 6.1. These building blocks have interactions that make up the 

complete operational structure of the planning process for each planner. These 

interactions are: (1) planner-state to actions; (2) actions to real-world-model; (3) real-

world-model to real-world-state; (4) real-world-model to planner-state; (5) planner-state 

to planning-model; (6) actions to planning-model; (7) planner-state to value-function; and 

(8) value-function to actions. These relationships are shown in Figure 6.2. 

The core planning cycle controls the use of the lower portion of the simulation 

state (i.e., Xsim = {Γ, P, Τ, A, Y, O}) to produce these eight interactions. The CTC 

operates in three iterative phases (Φ): plan-generation (Φ1), plan-execution (Φ2) and plan-
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assessment (Φ3). Each agent (γ) of a planner can be in only one phase at a time. Each 

phase controls which of the eight interactions are used and how they perform. 

Interactions (1), (5), (6), (7), and (8) are used in the plan-generation phase, interactions 

(1), (2), (3), (4) and (5) are used in the plan-execution phase, and interactions (1), (5), (6) 

and (7) are used in the assessment phase. A more detailed description of all the 

interactions is provided in the planning cycle subsection 6.1.4.  

 

As shown in Figure 6.3, there are five functional interactions in the plan-

generation phase: (1) search for and select plans; (2) determine action choices; (3) select 

actions; (4) model/state interactions; and (5) evaluate fitness. Search for and select plans 

comprise the process of comparing plans to choose the most desirable for execution. This 

process controls all four subsequent processes in this phase and iterates them until a plan 

for each agent is considered complete. When an agent receives a selected plan, it can go 
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to plan-execution phase. First, determine action choices process provides action options 

given the current state. As actions are attempted in planning-model and planner-states 

change, new actions become available. Next, select actions process is a bidirectional 

interaction of selecting actions using the planning-model and state response. Selecting 

actions could be done randomly or could take into account planning costs, resources 

available, and SME selected state conditions that are considered important in choosing 

actions. Next, model/state interactions process is the bidirectional interactions that handle 

outcomes and observations based on a chosen action. Outcomes and observations are 

represented as state-transitions using the current plan and planning-model. Finally, 

evaluate fitness process combines measures of the performance of a plan, such as the 

reward value placed on state changes, the probability of successful completion of a plan, 

and the diversity in plan selection.  
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As shown in Figure 6.4, there are five functional interactions in the plan-

execution phase: (1) check that plans are executable; (2) execute actions; (3) realize 

outcomes; (4) sense response; and (5) feedback state. First, check that plans are 

executable is the process of making sure the next actions in the plan are still viable given 

the perceived state of the environment (i.e., planning-model).  If still viable, the next 

action can be executed, otherwise the plan is cancelled and the agent awaits a new plan. 

Second, execute actions is the process of executing each action in time order concurrently 

for all agents. Next, realize outcomes is the process of determining outcomes represented 

as state-transitions using the current plan and real-world model. Fourth, sense response is 

the process of monitoring observable outcomes passed on from the real-world model. 

Finally, state feedback is the process of updating the planning-model with the updated 

state using new observations from the environment (i.e., real-world-model). The plan-
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remainder shown as output from the actions block represents the remaining portion of the 

plan not yet executed. 

 

As shown in Figure 6.5, there are five functional interactions in the plan-

assessment phase: (1) check that plans can be assessed; (2) reenact planned actions; (3) 

model/state interactions; and (4) assessment. First, check that plans can be assessed, is 

similar to the process used in plan-execution phase, and determines if a plan is viable for 

assessment. If still viable, the next action can be assessed, otherwise the plan is truncated 

and the agent awaits a new plan in the next planning phase, plan-generation. Next, enact 

planned actions is the process of reenacting the plan-remainder (identified above) in the 

planning-model with the new updated state of the planning-model based on recent 

observations. Next, model/state interactions are the process of generating the new 

perceived outcomes and observations using the updated planning-model.  Finally, the 

assessment process generates new expectations and compares these newly perceived 
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expectations with the original planned expectations produced in the previous plan-

generation phase. 

6.1.4 Three Phase Planning Cycle 

As mentioned above, the planner operates in three iterative phases (Φ): plan-

generation (Φ1), plan-execution (Φ2) and plan-assessment (Φ3). In this three phase cycle, 

there are three objects exchanged and/or updated: (1) plans; (2) model updates; and (3) 

expectations.  First, plan-generation creates plans with corresponding expectations for 

each agent by sequencing actions in a planning-model via search.  The resulting plans are 

sent to plan-execution and the corresponding expectations are sent to plan-assessment. 

Next, plan-execution begins to execute the scheduled order of actions using the real-

world model.  After a predefined number of actions are executed or a number of tasks are 

complete, the planning-model is updated with any new observations acquired since the 

last model update. The planning-model is updated in both plan-generation and plan-

assessment simultaneously. Note plan-execution uses the real-world model, while plan-

generation and -assessment use a planning-model. Also, the remainder of the plan not 

executed is passed forward to plan-assessment to reassess this plan-remainder by 

enacting it using the updated planning-model to forecast new expectations.  New and old 

expectations are compared for each agent to determine whether re-planning is necessary.  

If expectations are within desired constraints, no re-planning is necessary and the plans 

and expectations are passed through plan-generation directly to plan-execution again.  If 

re-planning is necessary, plan-assessment passes empty plans and expectations to plan-

generation for re-planning and the cycle continues. Note that the changes in the planning-



99 
 

model are revertible.  However, changes in the real-world model cannot be reverted due 

to the nature of action execution. Thus, careful planning in the plan-generation phase can 

minimize any unforeseeable problems in the real-world model. This description is 

summarized in Figure 6.6. 

 

The three phase planning cycle is described more formally here. Each of the three 

phases (i.e., plan-generation (Φ1), plan-execution (Φ2), plan-assessment (Φ3)) contains a 

model (M), plan(s) (P), and expectation(s) (Q) (i.e., Φ = {M, P, Q}). All three phases 

operate independently for each planner. In other words, each planner is independent in 

where they are in the three-phase process from other planners. However, each planner’s 

phase is dependent on the model(s) (M) they use, which is changeable when agents 

generate or execute plans. A plan-generation phase for a particular planner (φ1ψ) is a 

function of: a planning-model of a particular planner (Mψ), a set of plans for all agents of 

Figure 6.6. Planner’s Full Planning Cycle 
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the planner (PΓ), and expectations for each plan of all agents (QP) (i.e., φ1γ = f(Mψ, PΓ, 

QP)). Each agent has a selected-plan (i.e., PΓ = {pγ1, pγ2, …, pγm}), and each agent’s plan 

has corresponding expectations (i.e., QP = {qp1, qp2, …, qpm}), where m is the number of 

agents or selected-plans. A plan’s expectations are directly related to the set of completed 

tasks for that plan (i.e., qp = {τ1, τ2, ...,τn}), where n is the number of completed tasks in 

that plan. The plan-execution phase is a function of the execution-model (MΞ), selected 

plans for all corresponding agents (PΓ), and expectations for all corresponding plans (QP) 

(i.e., φ2ψ = f(MΞ, PΓ, QP)). The plan-assessment phase uses the planning model of a 

particular planner (Mψ), the remainder of the selected-plans after execution for all 

corresponding agents (PΓ), and expectations of all corresponding selected-plans (QP) (i.e., 

φ3ψ = f(Mψ, PΓ, QP)).  

Each phase modifies portions of model(s), plan(s), and expectation(s) for all 

agents of each particular planner. The plan-generation function modifies: (1) a planning-

model for a particular planner (Mψ) and passes it to the plan-assessment phase for that 

planner (φ3ψ), (2) a plan for each agent and passes a selected-plan (pγ) to the plan-

execution phase for that planner (φ2ψ), and (3) expectations for each selected plan (qp) 

and passes it to the plan-assessment phase (φ3ψ) for later comparison. The plan-execution 

function modifies: (1) the execution-model (MΞ) and passes portions of the model based 

on each planner’s observations to both the plan-generation (φ1ψ) and plan-assessment 

(φ3ψ) phases for that planner, and (2) a plan for each agent is truncated to reflect the 

actions not yet executed (pγ) and passes corresponding plan-remainders to the plan-
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assessment phase for that same planner (φ3ψ). If an action cannot be executed for an agent 

due to unforeseen environmental (i.e., real-world-model) changes, that plan is set to null 

and passed to plan-assessment (i.e., pγ = null). The plan-assessment function modifies: (1) 

a planning-model for a particular planner (Mψ) based on execution-model observations 

received from the plan-execution phase, and (2) the plan-remainders depending on 

whether the plans still meet expectations (QP) and passes them to the next plan-generation 

phase (φ1ψ). Plan-assessment compares expectations received from the previous plan-

generation phase with the new forecasted expectations taking into account the outcomes 

realized from partial plan-execution.  

6.2 Detailed Description 

The detailed description of the goal-directed architecture for ADP&E will be 

presented in four subsections. The first three subsections provide an in-depth description 

of the three phases of the planning process: plan-generation, plan-execution and plan-

assessment. These subsections include all corresponding sub-processes, their associated 

terminology, and a functional description. Implementation details and specific differences 

related to application domain are described in Chapters 7 and 8. These first three 

subsections describe the middle and lower level functionality of the architecture. The 

fourth and final subsection describes top levels of the architecture, which measure utility 

and define the approach to learning better planners.  

6.2.1 Plan-Generation 

As described above, the plan-generation phase has five interactive processes: (1.1) 

search for and select plans, (1.2) determine action choices, (1.3) select actions, (1.4) 



102 
 

interactions of model and state, and (1.5) evaluate plan fitness. Two of these general 

processes can be broken-down into several sub-processes, while the other three processes 

consist of only a single process. Search for and select plans can be broken into three sub-

processes: (1.1.1) search for plans, (1.1.2) select plans, and (1.1.3) forecast expectations. 

Interactions of model and state can be broken into four sub-processes: (1.4.1) predict 

outcomes, (1.4.2) select outcomes, (1.4.3) observe state changes, and (1.4.4) update 

plan’s model state. All of these ten sub-processes are summarized in Table 6.2. 

Throughout these next three subsections, sub-processes will be defined as functions with 

a set of variables. The nomenclature used is such that functions are non-italicized and 

capitalized, and variables are italicized and capitalized, except for the variable time (t). 

Coefficients are italicized and lowercase, and subscripts are used to help qualify a 

function, variable or coefficient.  

For plan-generation, the first sub-process is the search for plans function (1.1.1: 

SP), and this function orchestrates the generation of multiple plans for each agent. SP is a 

search algorithm for exploring the planning-model to develop action sequences that are 

planned before real-world interaction. The role of the search algorithm within a game or 

mission simulation is to search an internal model (planning-model) to achieve some goals 

or tasks and to receive rewards that measure this progress. The search for plans function 

uses five input variables: (1) the planner’s search parameters (Sψ); (2) completed tasks 

per plans (TP); (3) proportion of completed tasks constraint coefficient (τP); (4) resources 

available (R); and (5) portion of used resources constraint coefficient (uR). The function 

outputs a set of possible plans (P) (i.e., P = SP(Sψ, TP, τP, R, uR)). The planner’s search 
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parameters determine when to search and how much to search. Tasks completed per plans 

and/or resources available are used with their corresponding coefficients to determine 

how deeply a plan should be searched. The proportion of completed tasks constraint 

coefficient, and the portion of resources used coefficient are both fractions between zero 

and one. What constitutes a completed task or usable resource is application dependent 

and will be described in detail in Chapters 7 and 8.  

 

The planner’s search parameters make the search for plans function different 

from all other functions introduced here, because search requires all other sub-processes 

used in plan-generation. Search requires a set of actions (1.2: determine action choices), 

an action selection function (1.3: select actions), outcomes and observations (1.4: 

interactions of state and model), and a reward system to aid in choosing the best plans 

(1.5: evaluate plan fitness). In other words, given a set of possible actions, a search 

algorithm strings these actions together to form plans that explore paths through the 

internal (i.e., planning) model. The plans are graded based on a reward system that 

measures the effectiveness of the plans by their predicted outcomes and observations. 
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Plans are generated to complete tasks and use resources. If a plan is restricted by task 

completions, then the completed tasks-per-plan variable (TP) determines when a plan is 

complete. If a plan is resource constrained, then that plan ends when the resources (R) 

used reaches the resources constraint fraction (uR). Resource constraints are application 

dependent, thus a detailed example is shown in Chapter 7. 

The other following four processes (1.2-1.5) are performed in each iterative 

search cycle of plan-generation until the final plans are selected. The iterations are closed 

out using the sub-processes select plans function (ZP) and forecast expectations function 

(KQ). The select plans function uses the fitness (F) and corresponding searched plans (P) 

to determine which plans to select (PZ) for the next iteration of search (i.e., PZ = ZP(F, 

P)). The next sub-process is the forecast expectations function (KQ). This function takes 

the selected plans (PZ) and their associated tasks-per-plan (ΤP) to determine the planned 

expectations (Q) of the selected plans (i.e., Q = KQ(PZ, ΤP)). Each plan’s expectations are 

a quantitative measure of all completed tasks for each plan. Specific expectations metrics 

are application based and described in Chapters 7 and 8. 

Within a search for plans function, the search parameters drive the other four 

processes (1.2-1.5). Before any plan can be searched, action choices must be made 

available using the determine action choices function (IA). This function is dependent on: 

(1) the agent under consideration (γ described above), (2) the planner’s planning-model 

(MΨ described above) and (3) the current state of the plans (XP) (i.e., A = IA(γ, MΨ, XP)). 

Note that determine action choices function is used once after each action in a plan. Thus, 
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there is a separate state representation for every action within a plan, and the next action 

choices depend on the most recent state values, identified as XP.  

The third process of plan-generation is the select actions function (1.3: ZA). This 

function uses six variable inputs: (1) set of agents under consideration for planning (Γ 

described above);  (2) action options (A described above);  (3) selected features (H); (4) 

available resources (R described above); (5) action costs (CA); and (6) time (t) (i.e., AZ = 

ZA(Γ, A, H, R, CA, t)). The selected features are a subset of the overall plans’ state (XP) 

determined by SME. The action costs are associated with selecting an action, such as fuel 

expended or time to complete an action. The time variable identifies which agent to 

consider when selecting an action based on time-ordering the action choices. For 

instance, the next agent to plan is the one with the shortest plan in terms of time length. If 

time is not a factor, then choosing an agent to take an action is an arbitrary choice. The 

selected features and action costs will be described more fully in the application chapters, 

7 and 8.  

The fourth process of plan-generation is the interaction of model and state 

function (1.4). This process has four sub-processes identified in Table 6.2 (1.4.1-1.4.4). 

The first of these four processes is the predict outcomes function (1.4.1: KY). This 

function uses four variable inputs: (1) the selected actions (AZ described above); (2) the 

corresponding agent under consideration (γ described above); (3) the planning-model of 

current planner (MΨ described above); and (4) the current state of the corresponding plan 

(XP described above) (i.e., Y = KY(AZ, γ, MΨ, XP)). This function outputs a set of 

outcomes (Y) that represent a set of probable state transitions.  
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The second of the four sub-processes is select outcomes function (1.4.2: ZY). This 

function uses two inputs: (1) the set of outcomes output by the previous process (Y 

described above); and (2) outcome risk aversion coefficient (rY). This coefficient is a real 

number between zero and one and determines the amount of acceptable risk to take when 

selecting an action. This parameter is best described with an example, and will be 

described fully in Chapter 7. The output of the select outcomes function is a selected 

outcome for each action chosen (YZ) (i.e., YZ = ZY(Y, rY)). 

The third of the four sub-processes is observe state changes function (1.4.3: OX). 

This function uses four inputs: (1) selected outcomes (YZ described above); (2) agent 

under consideration (γ described above); (3) the planning-model of current planner (MΨ 

described above); and (4) the current state of the corresponding plan (XP described above) 

(i.e., O = OX(YZ, γ, MΨ, XP)). This function outputs a set of observations (O), which 

represent a set of observable state variables.  

The fourth of the four sub-processes is update plan’s model state function (1.4.4: 

XU). This function uses two variable inputs: (1) the set of agents under consideration for 

planning (Γ described above); (2) the observations (O described above); and (3) the task 

update coefficient (τU). This coefficient is an integer number of tasks that need to be 

completed by any agent before the planner updates its’ internal planning-model. The 

output of this function is a new state representation for the internal planning-model for 

each plan and at every action step (i.e., XP = XU(Γ, O, τU)). 

The fifth and final process of plan-generation is the evaluate plan fitness function 

(1.5: FP). This function uses four variable inputs: (1) the current state of the 
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corresponding plan (XP described above); (2) the planner’s sub-goals (JΨ); (3) the 

probability of successful completion of planned tasks (Pr(ΤP)); and (4) diversity (D). The 

planner’s sub-goals are functions that measure the current state. These functions are 

defined by SME and dependent on the application. The probability of successful 

completion of planned tasks is the total probability of completing all tasks in a plan. This 

is best explained with an example, which will be shown in Chapter 7. Diversity is a 

metric that provides reward for choosing plans different from those already selected, and 

based on having different outcomes. The fitness function outputs all fitness for each plan, 

including fitness at each action step in a plan, which may determine a possible point to 

prune a plan (i.e., F = FP(XP, JΨ, Pr(ΤP), D)). 

6.2.2 Plan-Execution 

As described above, the plan-execution phase has five interactive processes: (2.1) 

check actions are executable, (2.2) execute actions, (2.3) realize outcomes, (2.4) sense 

response and (2.5) feedback state. Unlike plan-generation, plan-execution only has a 

single sub-process per general process. All of these five processes are summarized in 

Table 6.3.  
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The first process of plan-execution is the check actions are executable function 

(2.1: PΞ). This function uses four variable inputs: (1) the selected plans (PZ described 

above); (2) the corresponding agent under consideration (γ described above); (3) the 

planning-model of current planner (MΨ described above); and (4) the current state of the 

corresponding plan (XP described above). The output of this function is the plan-

remainder (P') (i.e., P' = PΞ(PZ, γ, Mψ, XP)). The plan-remainder is the portion of the plan 

that is still considered executable.  

The second process of plan-execution is the execute actions function (2.2: AΞ). 

This function uses two variables: (1) plan-remainder (P' described above); and (2) time (t 

described above). The execute actions function outputs two variables: (1) the first time-

ordered actions that can be executed; and (2) a new plan-remainder that eliminates the 

first time-ordered action from it’s list (i.e., {A1, P'} = AΞ(P', t)). As actions are executed, 

eliminating the executed action from the plan-remainder shortens it and prepares the 

plan-remainder either for further execution or for the plan-assessment phase. 

The third process of plan-execution is the realize outcomes function (2.3: YR). 

This function uses four variables: (1) first time-ordered actions (A1 described above); (2) 

corresponding agent under consideration (γ described above); (3) the real-world or 

environmental model (MΞ described above); and (4) the current state of the environment 

(XΞ described above). This function outputs realized outcomes (Y') (i.e., Y' = YR(A1, γ, 

MΞ, XΞ)), which are considered as permanent changes in the environmental model.  
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The fourth process of plan-execution is the sense response function (2.4: OΞ). 

This function uses four input variables: (1) realized outcomes (Y' described above); (2) 

the corresponding agent under consideration (γ described above); (3) the real-world or 

environmental model (MΞ described above); and (4) the current state of the environment 

(XΞ described above). This function outputs realized observations (O') (i.e., O' = OΞ(Y', γ, 

MΞ, XΞ)), which are considered local observations of each agent. These observations are 

not shared with other agents of a particular planner until the planning-model is updated 

with feedback. 

The fifth and final process of plan-execution is the feedback state function (2.5: 

XU). This function uses three input variables: (1) a set of agents under consideration for 

planning (Γ described above); (2) the observations (O described above); and (3) the task 

update coefficient (τU described above). The output of this function is a new state 

representation for the internal planning model (i.e., Xψ = XU(Γ, O', tU)). Unlike update 

plan’s model state function (1.4.4: XU), the feedback state function makes permanent 

changes in the planning-model for all agents controlled by a particular planner.  

6.2.3 Plan-Assessment 

As described above, the plan-assessment phase has four interactive processes: 

(3.1) check plans can be assessed, (3.2) reenact planned actions, (3.3) interactions of 

model and state, and (3.4) assess expectations. The last two of these general processes 

can be broken-down into several sub-processes, while the first two processes have only a 

single process. Interact model and state process can be broken into four sub-processes: 

(3.3.1) predict outcomes, (3.3.2) select outcomes, (3.3.3) observe state changes, and 
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(3.3.4) update plan’s model state. Second, assess expectations process can be broken into 

three sub-processes: (3.4.1) forecast new expectations, (3.4.2) compare expectations, and 

(3.4.3) initiate re-planning. All of these nine sub-processes are summarized in Table 6.4. 

The first process of plan-assessment is the check plans can be assessed function 

(3.1: Pψ). This function uses four input variables: (1) plan-remainder (P' described 

above); (2) the corresponding agent under consideration (γ described above); (3) the 

planning-model of current planner (MΨ described above); and (4) the current state of the 

corresponding plan (XP described above). The output of this function is a new plan-

remainder (P") (i.e., P" = Pψ (P', γ, Mψ, XP)). The plan-remainder is the portion of the 

plan that is still considered as a plausible plan and is executable. This function operates 

similarly to check plans for execution (2.1: PΞ).  

 

The second process of plan-assessment is the reenact planned actions function 

(3.2: Aψ). This function uses two input variables: (1) the new plan-remainder (P" 

described above); and (2) time (t described above). The reenact planned actions function 

outputs two variables: (1) the first time-ordered actions that can be assessed; and (2) a 
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new plan-remainder that eliminates the first time-ordered action from it’s list (i.e., {A1, 

P"} = Aψ(P", t)). As actions are assessed, eliminating the assessed action from the plan-

remainder shortens it and prepares the plan-remainder either for further assessment or for 

the plan-generation phase for possible re-planning. This function operates exactly as 

execute actions (2.2: AΞ) except the model used is different.  

The third process of plan-assessment is the interacting model and state function 

(3.3). This process has four sub-processes identified above: (3.3.1) forecast outcomes 

function (KY); (3.3.2) select outcomes function (ZY); (3.3.3) observe state changes 

function (OX); and (3.3.4) update plan’s model state function (XU). These four sub-

processes behave exactly the same as the interaction of model and state function (1.4.1-

1.4.4) described in plan-generation. The equations vary slightly because the outcomes, 

observations, and plans’ model state have different values than those used in plan-

generation: Y", O", and XP", respectively. The four functional processes are (3.3.1) Y" = 

KY(A1, γ, MΨ, XP); (3.3.2) YZ" = ZY(Y", rY); (3.3.3) O" = OX(YZ", γ, MΨ, XP); and (3.3.4) 

XP" = XU(Γ, O", tU). 

The fourth and final process of plan-assessment is the assess expectation function 

(3.4). This process has three sub-processes identified in Table 6.4 (3.4.1-3.4.3). The first 

of these three processes is forecast new expectations function (3.4.1: KQ). This function 

uses two input variables: (1) the new plan-remainders (P" described above); and (2) 

completed tasks-per-plans (TP described above). The output of the assess expectations 

function is a new set of expectations (Q"), one for each plan-remainder (Q" = KQ(P", 
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TP)). This function operates the same as the forecast expectations function of plan-

generation (1.3: KQ).  

The second of the three sub-processes is the compare expectations function 

(3.4.2: EQ). This function uses three input variables: (1) the original expectations 

computed in plan-generation (Q described above); (2) the new expectations computed in 

the previous process (Q" described above); and (3) the expectation acceptance threshold 

coefficient (rQ). The expectation acceptance threshold coefficient is a real number 

between zero and one and determines the portion of acceptable task completions 

necessary to keep existing plans; otherwise re-planning modifies the plans in the next 

plan-generation phase. Expectations are either a positive integer of tasks completed (e.g., 

in Chapter 7) or a scoring system that measures the degree of tasks completed (e.g., in 

Chapter 8). If original expectations multiplied by expectation acceptance threshold 

coefficient is greater than or equal to the new expectations (i.e., Q • rQ ≥ Q",), then the 

compare expectations function outputs the new expectations; otherwise the output 

expectations are reset to zero (i.e., Q = EQ(Q, Q", rQ)), and re-planning is triggered.  

The third and final sub-process of assess expectations (3.4) is the initiate re-

planning function (3.4.3: IR). This function uses two input variables: (1) the new plan-

remainder (P" described above); and (2) the reset expectations output from the previous 

process (Q described above). The outputs of the initiate re-planning function are new 

plans, which are passed to the next plan-generation phase (i.e., P = IR(P", Q)). The new 

plans are equal to the plan-remainder if the expectations are greater than zero (Q > 0); 
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otherwise, the plans are reset to null and re-planned in the following plan-generation 

phase. 

 

As a summary of Tables 6.2 to 6.4, the 14 general processes are shown in Figure 

6.7 in a functional representation. Each general process is labeled on an arrow connecting 

two functional blocks. This figure is a composite of Figures 6.3 - 6.5, and combines all 

three phases of the planning process. 

A summary of all 24 processes for all three phases of planning and their related 

functions and variables is shown in Table 6.5. This table includes all the sub-processes 

and corresponding functions and variables. Note that since the search parameters of 

process 1.1.1 controls 1.2-1.5, these processes occur before 1.1.2 and 1.1.3. However, all 

of these processes for each phase are iterated until complete, because they reoccur for 

each action of every agent considered. Phase 1 (1.1-1.5) iterates until all considered 
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agents have a plan, phase 2 (2.1-2.5) iterates until feedback state function initiates a 

model update, and phase 3 (3.1-3.4) iterates until all plans are assessed. More detailed 

description of these functions and variables is provided in Chapters 7 and 8. Section 6.3 

provides an ordered development schematic for designing, building and testing these 

processes for a future application domain. 

 

An alternative description of Figure 6.7 is shown in Figure 6.8, where functional 

processes are drawn as boxes rather than arrows. Figure 6.8 also includes all 24 sub-

processes of the core planning cycle (instead of only the 14 main processes), and the 

hierarchy is referenced as well. Each row of functional boxes corresponds to a 

hierarchical level from agents to observations (levels 5 to 10). Note that for the core 
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planning cycle tournaments to planners (levels 1 to 4) is not included. Also note that the 

24 functions in Figure 6.8 map directly to the functions shown in Table 6.5. However, the 

functions are labeled from 5 to 28 instead of 1.1.1 to 3.4.3. The names of the functional 

processes are labeled in a more simplified form than in Table 6.5. In Figure 6.8, planning 

model, and real world model are shown with the functions that use them. The value 

functions are separated from these planning functions, and action functions are now 

represented as a level in the hierarchy. This alternative representation of the core 

planning cycle is used here to help introduce the next subsection, Training, which 

describes the higher-level portions of the ADP&E architecture. Chapter 9 will use this 

representation exclusively to map functional requirements directly to future planning 

applications. 
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6.2.4 Training 

The full architecture is shown in Figure 6.9. The three main areas of the 

architecture are the planner, the environment, and training. The planner and the 

environment compose the core planning cycle described in the previous sections. As 

introduced in Section 6.1, training is composed of a goal-directed HCC that coordinates 

multiple rounds, missions, and planners, and a data-driven L&A that aggregate results 

and improve planners’ capabilities. The global state, which overlaps training and the 

planner, keeps track of the HCC variables, such as the particular tournament, round, 

mission or planner under consideration. Also, one portion of the value function in 
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training is the mission value function that computes the value of each planner in every 

corresponding mission or game. The planner is composed of the value function, planning 

model, and planner state. The environment includes the real world model and real world 

state. 

There are 24 functions in the CPC (described in previous subsection), 4 functions 

in the HCC, and 5 functions in the L&A totaling 33 functions for the ADP&E system. 

These functions are labeled in order of flow in both Figures 6.9 and 6.10. In Figure 6.9, 

the function symbols are labeled in the bullets and connected to boxes giving the 

functional names. In Figure 6.10, functions are labeled along the left side of the page with 

their corresponding symbols.  

First, Figure 6.9 will be examined more closely. The first four functions begin 

with the HCC: tournaments (Ω), rounds (Θ), missions (G), and planners (Ψ). The last 

five functions end with L&A: planning cycle assessment (CΓ
29), planner utility (Uψ

30), 

planner value (Vg
31), evolutionary learning (Λθ

32), and statistical analysis (Σω
33). The 

makeup of the planner is defined by the planner parameters, which control all aspects of 

the CPC: plan-generation, plan-execution, and plan-assessment. Plan-generation has 

seven different functions (blue background) in six different levels of the hierarchy (SP
5, 

IA
6, KY

8, OX
10, XU

11, ZP
13, KQ

14). Plan-execution has five different functions in five 

different levels of the hierarchy (PΞ
15, AΞ

16, YR
17, OX

18, XU
19).  Plan-assessment has 

seven different functions used in five different levels of the hierarchy (PΨ
20, AΨ

21, KY
22, 

OX
24, XU

25, KQ
26, IR

28).  The value function has seven different value functions used in 

seven different levels of the hierarchy. As described earlier, the value function and plan-
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generation and -assessment share functionality. More specifically, outcome selection 

(ZY
9), action selection (ZA

7), and plan fitness (FP
12) functions are used in plan-generation, 

and outcome selection (ZY
23), and assess expectations (EQ

27) functions are used in plan-

assessment. The functional details of all CPC components, and the order of these 

operations have already been described in Section 6.2. 

 

Figure 6.10 shows the flow of information throughout the system as it relates to 

the five phases of the system (hierarchical control chain, plan-generation, plan-execution, 

plan-assessment, and learning and analysis) and 33 functions. Note that the HCC expands 

from a single tournament to multiple rounds, to a greater number of missions, etc. This 
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expansion leads to generation of multiple plans for multiple agents, where some plans are 

considered and selected while others are pruned or thrown away. Once plans are selected, 

they are iteratively executed and assessed in the plan-execution and plan-assessment 

phases. Once plans are complete or re-planning is triggered, plan-generation begins 

again. The CPC process then iterates until a mission is complete or a game produces a 

winner. Note that multiple planners can be operated at once or on a turn-basis, based on 

rules and constraints of the mission or game.  

6.3 Design, Build and Test 

The detailed description above of the CPC (i.e., plan-generation, -execution, and -

assessment) can be daunting when building this goal-directed hierarchy for a new 

application. However, an incremental design, build and test (DB&T) approach can be 

used to reduce this challenge into manageable parts. The DB&T approach can be divided 

into nine incremental steps: (1) execute arbitrary actions; (2) update planning-model; 

(3) choose and execute single actions; (4) generate arbitrary multi-action plans; (5) 

generate and choose plans; (6) assess plans; (7) coordinate using the full core planning 

cycle (i.e., CTC: generate, execute, and assess) for a single planner; (8) coordinate a 

multiple planner ADP&E system for a single game or mission; and (9) implement a 

complete tournament meta-learning strategy for training planners to autonomously 

improve performance. 

The first DB&T procedure is to construct an execute arbitrary actions cycle. 

This requires the development of the first four processes of the plan-execution phase (2.1-

2.4) as shown in Figure 6.11. The first step is to implement the real-world model for the 
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application (MΞ) as a finite state machine. All variables in the finite state model are 

defined as state variables and define the real-world state. For this step, it is assumed that 

the real-world model is fully observable, so that the planning-state is an exact copy of the 

real-world state. All variable choice blocks in the finite state machine are defined as 

action choices in the model. For simplicity, processes 2.1-2.4 only consider single action 

plans, where the actions are chosen randomly from the set of all possible actions. This 

cyclical execute arbitrary actions procedure tests two important features of the overall 

architecture: (1) does the game or real-world simulation play out according to the rules of 

the finite state machine; and (2) does the game or simulation run autonomously and 

indefinitely. 

 

The second procedure is to finish the entire plan-execution cycle, which includes 

update planning-model. This requires inclusion of the final process of the plan-
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execution phase (2.5) as shown in Figure 6.12. In this build, the environment or real-

world model is not considered observable. Thus, a planning-model is constructed with the 

same finite state machine structure as the real-world model, but some of the planning-

model states are chosen randomly within the limits imposed by the application. Thus, the 

planning-state is not an exact copy of the real-world state. Running this build and execute 

arbitrary actions tests whether observations can be updated to the planning-model.  

 

The third procedure is to construct a choose and execute single actions cycle. 

This cycle still only considers plans as single actions. The procedure requires part of the 

existing plan-execution phase with the addition of part of the plan-generation phase as 

shown in Figure 6.13. A select actions function (1.3) portion of the value function block 

is created for choosing single action plans, and the second two parts of select plans 

(1.1.2) and forecast expectations (1.1.3) are created for the search for and select plans 
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function (1.1). The determine action choices function (1.2) is created by modifying the 

existing check plans are executable function (2.1). This procedure tests the coordination 

of using plan-generation with plan-execution. 

 

The fourth procedure is to construct the ability to generate arbitrary multi-

action plans cycle for plan-generation. This cycle now considers plans of variable length 

and includes the heart of the plan-generation process: (1) determine action choices (1.2), 

(2) select actions (1.3), and (3) interactions of model and state (1.4) as shown in Figure 

6.14. When built, the select actions function tests use of resources, choosing SME feature 

conditions, action costs, and choosing actions in a time sequential order. The interaction 

of model and state function tests selecting single outcomes when there are multiple 

outcomes per action. Also, the overall generate arbitrary multi-action plans cycle tests 

handling of multiple observation states for each action in a plan. 
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The fifth procedure is to construct the entire plan-generation planning cycle, 

generate and choose plans. This cycle now considers all parts of plan-generation, 
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including search for and select plans function (1.1) as shown in Figure 6.15. The search 

for plans function (1.1.1), a sub-process of search for and select plans function, tests the 

use of tasks and resources to decide the lengths of plans, and the use of the search 

parameters to control processes 1.2 through 1.5. The select plans function (1.1.2) is tested 

to ensure it handles multiple plans per agent, compares the plans, and select them based 

on fitness. The forecast expectations function (1.1.3) is tested to see if expectations can 

be calculated for selected plans. 

 

The sixth procedure is to construct the entire plan-assessment planning cycle, 

assess plans, and is shown in Figure 6.16. This cycle has duplicate parts of already built 

designs on three of the four processes (3.1-3.3). Processes 3.1, 3.2, and 3.3 are duplicates 

of processes 2.1, 2.2, and 1.4 with minor modifications, respectively. The only new part 
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in this cycle is the assess expectations function (3.4). This function is tested to see if 

plans’ expectations can be compared to determine if re-planning is necessary.  

The seventh procedure is to combine the previous six builds into one to 

coordinate all three phases of the planning process, the core planning cycle (CPC), as 

shown previously in Figure 6.7. This system requires having all three planning phase 

cycles working in a coordinated way. This build tests whether there is a correct exchange 

of data and smooth transition among the three phases: (1) plan-generation to plan-

execution; (2) plan-execution to plan-assessment; and (3) plan-assessment to plan-

generation.  

The eighth procedure would coordinate the complete operation of a single game 

or mission. This procedure is to include multiple planners if the application requires 

them. Another planner would operate the same as any other, except that a planner may 

have different agents at its disposal, a different value function for choosing actions and/or 

plans, and a different assessment function to assess progress. Figure 6.17 shows an 

illustration of a two planner functional representation. The application RISK in Chapter 7 

will discuss a problem that uses eight players or planners.  

The ninth procedure is to implement a complete tournament using a meta-

learning strategy for training planners to autonomously improve performance. The 

strategy used in this dissertation is an evolutionary computation approach. Details of the 

procedures used are application dependent and described in Chapters 7 and 8. Note that 

using evolutionary computation methods is not a necessary technique to improve 

planners’ behavior, but is shown to be sufficient to improve planners’ abilities through 
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autonomous interaction. Our approach is not restricted to using only this technique. In 

other words, other techniques such as multi-objective optimization [6] [7] [8] can be 

applied. 

 

This DB&T will be reiterated in Chapters 7, 8, and 9. Chapters 7 and 8 will 

provide a detailed description of two specific applications. Chapter 9 will provide more 

insight into DB&T for future applications based on the greater understanding achieved in 

Chapters 7 and 8. Chapter 9 will describe the DB&T from a broader perspective as shown 
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in Figure 6.9. All the detailed CPC processes described in this chapter provide all the 

necessary and sufficient terms and definitions to understand the implementations in 

Chapters 7 and 8, and provide the underpinnings to build upon in Chapter 9.  
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Chapter 7 

RISK Game Application 

 
7.0 Abstract 

The problem domain chosen here is the game RISK [1]. This chapter will describe 

the game, provide implementation details of an automated planning player, and present 

results. The game will be presented in terms of the ADP&E goal-directed hierarchy. 

Implementation details are described in the nine-step design, build and test (DB&T) 

strategy. The results are evaluated using three key areas of value: plan fitness, planning 

cycle assessment, and planner utility. The hierarchy, DB&T, and value function 

definitions and details are described in Chapter 6. 

7.1 General Hierarchical Description 

As described in Chapter 6, the goal-directed hierarchy is composed of ten levels 

(see Table 6.1). The order of the RISK description is levels 3 through 10 first, followed 

by level 2 (rounds), and finally level 1 (tournaments).  

7.1.1 Games or Missions (G) 

RISK is a non-cooperative stochastic game. Unlike chess, checkers, 

backgammon, or GO, RISK can have more than two players. Each player makes multiple 

moves per turn and many of the moves have stochastic outcomes based on multiple dice 

rolls [2]. The objective of a RISK game is to conquer the world [1] [2] [3] [4]. There are 
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forty-two territories on the board, a set of five dice for battling forces, and a deck of cards 

(44: one for each territory and two wildcards) for accumulating bonus forces when a 

three-card match is reached. Figure 7.1 provides a sample view of a game board with 

eight players after initial territories are picked and each player’s remaining forces are 

placed on the board. The implemented game is the classic RISK game [1], including 

Hasbro II rules which handles up to eight players [1], In this game, each turn in of cards 

yields greater number of force allocations (i.e., 4, 6, 8, 10, 12, 15, 20, 25, etc.). Also, 

when cards are turned in, two forces are placed on each territory for the current player 

that matches the territory on a card. 

At the start of the game, each player is allocated a number of forces depending on 

the number of players: for two players, 40 forces each; for three players, 35 forces each; 

for four players, 30 forces each; for five players, 25 forces each; and for six, seven, or 

eight players, 20 forces each. Next, each player picks one of forty-two territories in turn 

until all forty-two territories have a single force on it from a player. Depending on the 

number of players and the order of selection, each player will have a different number of 

territories. Specific territory selection is as follows for ‘2’ to ‘8’ players, respectively: for 

‘2’ players, every player has twenty-one territories; for ‘3’, every player has fourteen 

territories; for ‘4’, two players have eleven territories and two players have ten territories; 

for ‘5’, two players have nine territories and three players have eight territories; for ‘6’, 

every player has seven territories; for ‘7’, every player has six territories; and for ‘8’, two 

players have six territories, and six players have five territories. For implementation 

simplicity, territory selection here is done randomly for all players. Table 7.1 shows the 



130 
 

number of combinations considering the number of players and selection among forty-

two territories. 

 

Each player allocates their remaining forces on any territory they occupy, such as 

placing all remaining forces on one territory or placing nearly equal forces on every 

occupied territory. The total combinations of force allocations depend on the number of 

forces left after territory selection. Specific force allocations are as follows for (2) to (8) 

players, respectively: (2) each player allocates nineteen remaining forces; (3) every 

player allocates twenty-one remaining forces; (4) two players allocate nineteen remaining 

forces and two players allocate twenty remaining forces; (5) two players allocate sixteen 

remaining forces and three players allocate seventeen remaining forces; (6) every player 
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allocates thirteen remaining forces; (7) every player allocates fourteen remaining forces; 

and (8) two players allocate fourteen remaining forces, and six players allocate fifteen 

remaining forces. In the implemented version, allocations are selected based on a fitness 

function described later in this chapter. Table 7.2 shows the number of combinations, 

considering the number of players and remaining forces not yet allocated. 

 

 

Territory selections and force allocations comprise the beginning setup of a game. 

The total combinations of opening game states are shown in Table 7.3. This dissertation 

concentrates on the eight-player game, where there are 4.16 x 1062 possible starting 

states.  
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7.1.2 Players or Planners (Ψ) 

RISK is a multi-player game that can have eight players (i.e., Ψ = {ψ1, ψ2, ψ3, ψ4, 

ψ5, ψ6, ψ7, ψ8}). As in many games, the RISK game has turns, and each player takes their 

turn in a constant cyclic order until the game is complete. Each turn is composed of four 

phases: (I) turning in cards, (II) reinforcing troops, (III) battling opponents, and (IV) 

moving forces. The rules and procedures for all four phases of a turn are shown in Figure 

7.2. Shaded shapes represent decisions imposed by the rules of the game, while white 

shapes represent decisions made by a player. The diamond-shaped boxes represent 

yes/no, or binary, decisions while the rectangular boxes represent decisions that have 

multiple choices.   

7.1.3 Agents (Γ) 

There are only two agent types in the game RISK. One agent type (Γ1) is each 

card a player holds in their hand, and the other agent type (Γ2) is each force located on 

the game board (Figure 7.1). The number of cards held can vary from zero to six to begin 

or end a turn and from zero to eleven during a turn (i.e., Γ1 = {γ1.1, γ1.2, ..., γ1.11}). The 
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number of forces a player has can vary from zero to many, typically between twenty and 

a hundred (e.g., Γ2 = {γ2.1, γ2.2, ..., γ2.100}). A player with zero forces surrenders their cards 

to the player that attacked them, and is eliminated from the game. 

 

Agents are controlled as shown in Figure 7.2. For instance, the turn-in-cards 

phase has some options for when a player can turn in cards. Turning in cards is required 

at the beginning of a turn when a player has five or more cards, but a player with three or 

four cards can choose not to turn in cards even if they have a match. Postponing a turn-in 

of cards can lead to more forces being available for the next turn, but also makes a player 

more vulnerable to elimination. For instance, if the player is weak and has limited forces, 

they can be eliminated before their next turn. A player who takes out an opponent 
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receives all the cards of the eliminated player (phase III), thus a player with cards is more 

likely to be attacked. Note that, as opponents are eliminated, turning in cards can be done 

multiple times in a turn. If the number of cards received from another player combined 

with the current player’s cards, exceeds five, all matches must be turned in until that 

player has four or fewer cards. 

Forces can be controlled in many ways as shown in Figure 7.2. Forces are 

controlled by choosing: (1) where to place forces at the beginning of a turn or when cards 

are turned in (phase II); (2) which territories to attack and from where (i.e., phase III); (3) 

when to retreat a single attack (phase III); (4) when to stop attacking new territories 

(phase III) and pass to phase IV, and (5) how many forces to move after a victorious 

attack and at the end-of-turn final move (phase IV). Controlling forces represents the 

brunt of complexity for the game RISK. Thus, controlling forces represents a majority of 

the plans discussed next. 

7.1.4 Plans (P) 

For the game RISK, a plan (p) might be considered as anything from a single 

action to the complete orchestration of multiple turns of all players. Given the complexity 

and variability of a single turn, and a player’s inability to control an opponent’s turn, a 

plan is considered here as a set of ordered actions chosen to complete the current player’s 

turn in a game. In other words, the depth of planning multiple players or turns ahead 

restricts the ability to explore the breadth of possible actions a player can contemplate in 

a single turn. Thus, a single player’s turn is used as the extent of a plan, so that during 
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plan generation a player can concentrate on establishing a good situation before passing 

control to other players.  

As shown in Figure 7.2, plan length can be considered in terms of individual 

actions (each choice taken in a multiple choice box) or in terms of the number of phases 

(each transfer across phases). This dissertation considers both, and does not restrict plan 

length based on the number of actions or phases. In terms of phases, the minimum length 

of a plan is one, because if a player is holding less than five cards, this player could pass 

on Phase I, place his forces in Phase II, and pass on Phases III, and IV.  The maximum 

length of a plan in terms of phases is fifteen. More specifically, if eight players are 

currently in a game, and one player eliminates all seven other players in one turn it might 

take fifteen phases to complete the planned turn if each player has enough cards to trigger 

a new turn in of cards with every elimination (i.e., turn = {I, II, III, II, III, II, III, II, III, II, 

III, II, III, II, III}). In other words, after eliminating each opponent, a player could 

conceivably turn in cards. This complex endgame problem will be discussed further in 

the Section 7.3: Results.  

7.1.5 Tasks (Τ) 

The game RISK is a battle for territory and cards. A player must eliminate another 

player’s territories to get their cards, and is also given a card at the end of their turn if 

they defeat at least one territory. Also, as will be detailed later in Subsection 7.1.7, taking 

territory entails an element of risk because there are dice rolls associated with battling for 

territories. However, taking cards is a discrete event, and does not require dice rolls. In 

other words, taking a territory is not guaranteed, while taking out an opponent guarantees 
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the attacker gets their cards. Thus, a common element of a task (τ) considered here is a 

territory takeover. If a plan projects n territory takeovers, then the projected tasks are Τ = 

{τ1, τ2, …, τn}. The probability of successful plan completion is defined as the probability 

of completing all projected tasks (i.e., Pr(Τ)).  

In the process of taking over territories, each territory takeover can be (1) 

dependent, (2) intra-dependent, (3) independent, or (4) interdependent of other territory 

takeovers. This depends on where the attacks originate and where they end up. First, if 

battles in a sequence of attacks all originate from the same territory and only follow a 

single path to a single end point, then this is considered a dependent battle sequence. 

Second, if battles in a sequence of attacks all originate from the same territory, but follow 

multiple paths and do not re-attack a territory from more than a single territory, then these 

battles are considered as intra-dependent battle sequences. Third, if battles in a sequence 

of attacks originate from different territories and do not attack the same territories, then 

these battles are considered as independent battle sequences. Finally, if battles in a 

sequence of attacks cross over other battle sequences by attacking any territory from 

more than one territory, then these battle sequences are considered interdependent battle 

sequences. All independent battle sequences are defined as battle campaigns. 

The probability of task completions is subject to combining battle success 

probabilities among dependent, intra-dependent, independent, and interdependent battle 

sequences. Figure 7.3 shows a variety of battle sequences. In the figure, there are eight 

players with one player planning fourteen battles against seven opponents. For battling 

territories, there is a connecting band between the territories. The wide end of the band is 
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where the attack is originating. The numbers in the band refer to a projected transfer of 

forces from the originating territory to the attacked territory. The number closer to the 

originating territory is the number of projected forces left behind, and the number nearer 

to the attacked territory is the number of projected forces moved forward. If the projected 

forward force is greater than zero, then a victory is predicted. Note that there are three 

numbers in the attacked territory. The top number indicates the original number of 

opponent forces on that territory before executing the plan, the bottom number indicates 

the projected opponent forces left after executing the plan, and the number to the right 

indicates the battle number or order of battle (e.g., battle 4 is Greenland attacking 

Northwest Territories). In the originating or attacking territory, there are one or two 

numbers. If there are two numbers, the top number indicates the number of allocated 

forces, and the bottom number indicates the total forces on that territory after the 

allocations (e.g., Greenland, Ontario, and Argentina each received one force). If there is 

only one number, no additional allocations were placed, and that number indicates the 

number of forces on that territory. Note there are fourteen battles shown here. 

There are five independent battle campaigns shown in Figure 7.3 and fourteen 

individual battles, which refer to tasks {τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9, τ10, τ11, τ12, τ13, τ14}. 

Note that the battle number and task number are equivalent here (i.e., the number to right 

in attacked territories). Two of these are dependent battle sequences: (1) a two-battle 

sequence {τ1, τ10}; and (2) a single-battle sequence {τ4}. The other three are 

intradependent battle sequences: (1) a four-battle sequence {τ2, τ8, τ12, τ14}; (2) a five-

battle sequence {τ3, τ5, τ7, τ9, τ11}; and (3) another two-battle sequence {τ6, τ13}. Note 
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that battle number ‘7’ is projected to be a failure. Thus, it is considered as an incomplete 

task. The projected completed tasks are the set of all other territory takeovers (i.e., Τ = 

{τ1, τ2, τ3, τ4, τ5, τ6, τ8, τ9, τ10, τ11, τ12, τ13, τ14}). Calculation of the probability of 

successful completion of tasks will be discussed in detail in the Section 7.3: RISK Game 

Results. 

 

7.1.6 Actions (A) 

In order to complete tasks, actions must be sequenced together to form plans. 

Available actions are defined in the functional diagram shown in Figure 7.2. The first 

action chosen for a plan is whether the player can or cannot turn in cards (Phase I). If a 
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player can turn in their cards, they may do so and allocate more forces. Once this decision 

is made, force allocations are the next chosen actions (Phase II). In this action, a player 

can place their new forces on any territory they occupy. The number of combinations is: 

 (m+n–1)!/((m-1)!•n!),  (eq. 7.1) 

where m is the number of occupied territories (typically 5 for an eight player game, but 

can range from 1 to 41) and n is the number of force allocations (typically 3 to 7, but can 

range from 3 to 100+). Note that if m = 0, then the player is out of the game and the 

combinations are zero. 

To simplify the allocation process, a Monte Carlo method is used to select the 

force allocations based on random chance, but using some subject matter expertise 

(SME). Note that a player cannot attack another unless the attacking player has a territory 

with at least two forces on it, and that territory borders an opponent’s territory. Thus, to 

simplify the allocation process, allocations are only given to territories that border 

opponent territories. This significantly reduces the search space for allocation in many 

cases, especially in mid-game and endgame situations. Note that if each force were 

applied randomly with equal probability to each territory, many situations would be 

unlikely to occur, such as allocating all forces on a single territory. For instance, if there 

were n forces to be placed on m border territories, the probability of allocating all on one 

territory with an even probability distribution function is m divided by the number of 

total combinations (shown above) or probability equal to: 

 (m!•n!)/(m + n – 1)!.  (eq. 7.2) 
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To achieve a broader Monte Carlo search, a beta distribution [5] [6] is used 

instead of uniform selection, where v and w are equal to 0.3 and 0.5, respectively. The 

graph of the probability density function is shown in Figure 7.4. For each territory, a 

number from zero to one is chosen using this density function and afterward, all numbers 

are normalized to sum to one. These real numbers indicate the percentage of forces 

allocated to each territory. More specifically, the real numbers are multiplied by the 

number of total allocated forces. This product is rounded to the nearest whole number, 

and represents the number of forces allocated to each corresponding territory. Since many 

of these numbers will be zero, a greater number of combinations can be reached using 

this method than using an equally likely random selection.  

 

The next set of actions is determining: (1) where to attack, (2) how long to attack, 

and (3) how many territories to attack (Phase III). In RISK, an attack action is chosen 

from among all bordering territories (up to 166 possibilities), where the current player has 

at least two forces on their territory and it borders an opponent. Here, choosing where to 

attack is done by randomly choosing among the possible territories available. The length 

of an attack is dependent on the number of forces on both sides of the attack, and the dice 
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rolls by both attacker and defender. Finally, the number of territories a player can attack 

depends on a player’s resources (number of forces) verses their opponents’ resources. 

More detailed analysis of attacks is provided in the next subsection. 

7.1.7 Outcomes (Y) 

For the game RISK, turning in of cards, allocating forces, and moving forces have 

outcomes that are a one to one mapping to actions, while attacking territories have 

outcomes that are a many to one mapping to actions. In the first case, each action 

produces a single outcome, while in the second case, each action can produce one of 

many possible outcomes. The first case is trivial and not discussed here. The second case, 

attacking territories, is a stochastic element of the game RISK. First, the rules pertaining 

to attacking territories will be discussed in detail, followed by a specific example to 

clarify how outcomes are determined in multiple successive attacks. 

 

An attack as defined in RISK is a two-player battle, where an attacker and a 

defender roll dice to determine losses on both sides. The number of dice that can be 

rolled depends on the number of forces on the two battling territories, and the forces each 

player is willing to risk in each dice roll. If the attacking player has m forces on its 
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attacking territory, then the attacker can roll up to the minimum of three and m-1 dice 

(i.e., min(3, m-1)). If a defender has n forces on its defending territory, the defender can 

roll up to the minimum between two and n dice (i.e., min(2, n)). An attacking player has 

the option to roll one or two dice instead of three, but the probability of being successful 

is less in this case. A defender also can roll one dice instead of two, but his odds of 

winning the roll are also less. There are very few circumstances where one rolls fewer 

dice than given, so this RISK game implementation assumes each player rolls the 

maximum number of dice. During a single attack, both players roll six-sided dice, and the 

dice  are sorted from highest to lowest and matched up to determine who wins the attack. 

The attacker wins for each die greater than a defender’s die, and a defender wins for each 

die greater than or equal to an attacker’s die. The lowest die or dice are not used when the 

attacker and defender use a different number of dice. For each attack, zero, one or two 

forces are lost on either side. The probabilities for each dice roll and corresponding losses 

are shown in Table 7.4. As shown in the table, the probabilities favor an attacker if the 

player has more dice than the defender; otherwise the defender has favorable 

probabilities.  

A single attack does not often take a territory, and an attacker can wage a battle 

until there is a winner (complete forces lost on one side or the other). Using the table 

above, the full battle probabilities for successive attack/defend rolls can be calculated 

using a Bayesian network. However, calculating every possible outcome with its 

probability for each battle would take valuable computational time. Thus, this calculation 

was done offline to speed the performance of calculating multiple battle outcomes. A 

state transition probability mass function (pmf) was calculated a priori for all likely single 
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battles.  More specifically, all pmfs for battles from 2 to 300 offensive forces vs. 1 to 200 

defensive forces were calculated a priori and stored for quick retrieval. This database 

forms the initial battle pmfs for all single battle sequences (see Figure 7.5 upper-right 

graph for example pmf of 9 vs. 2 forces). In Figure 7.5, we use number pairs to represent 

possible battle outcomes. These number pairs are under each bar on the three graphs 

shown to the right. The first number indicates the maximum number of offensive troops 

left to move onto a defeated territory and the second number indicates the number of 

defending troops left after a battle is completed.   

 

When planning, all possibilities should be considered, but often the number of 

possibilities grows exponentially as a function of plan length.  To counter this, a dynamic 

Bayesian network (DBN) [7] [8] is used to chain individual state transition probabilities 

(see Figure 7.5, battle 2 and 3). This is done by multiplying the probability of all previous 

outcomes (A) by the conditional probability that an event occurs (i.e., Pr(A,B) = 

Pr(A)Pr(B|A)) [9]. Battle 1 is looked up in the probability table calculated offline, while 
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Battles 2 and 3 are calculated on the fly. For example, consider Battle 2. The Pr(A) is 

each of the ten possible pmf bars (i.e., Pr(A) = Pr({a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}) in 

the Battle 1 graph. Now, each Battle 2 possibility is calculated with these ten conditional 

cases, and with the reuse of the lookup table. For a1, the battle lookup is 8 versus 2; for 

a2, the battle lookup is 7 versus 2 and so on. These resulting conditional probabilities are 

multiplied by Pr(A) to get the pmf shown in Battle 2. The same is done again to calculate 

Battle 3. Note that the same outcomes are summed together to avoid exponential 

expansion of the tree of probable outcomes. Further actions from this state can take into 

account this new pmf, thus reducing the computation required for multiple chained 

dependent actions. Through the use of this DBN, a network is generated on the fly that 

represents a set of outcomes based on a generated plan.  

7.1.8 Observations (O) 

The game RISK is almost completely observable. All players can observe: all 

force actions, the number of cards a player holds, and each set of cards turned in. The 

only element of the game not observable is what cards a player holds in their hands. This 

has little impact on the game, and thus is not modeled extensively. However, the 

probability of having a match with three and four cards is modeled, and is taken into 

consideration when planning.  

7.1.9 Rounds or Competitions (Θ) 

A round is a set of games used to compare players for the RISK game. The round 

algorithm used here was for an eight-player game where each round acts as a generation 

in an overall tournament or evolutionary strategy.  The population of players was kept at 
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a constant level for each generation and all players play each other at least once. The 

reward is winner-take-all, where the top performers are measured by the percentage of 

games won. More details will be provided in the Subsection 7.3.3 in this chapter.  

7.1.10 Tournaments (Ω) 

A tournament for the game RISK is considered as a set of rounds or evolutionary 

generations. The constants in a tournament are the rules of the game and number of 

players starting the game. Most tournament experiments use eight players, and all use the 

classic RISK rules described earlier. A tournament is considered complete when the 

parameters have converged on stable values, and can also outperform previous 

generational players. More details will be provided in the Subsection 7.3.3 in this chapter. 

7.2 Implementation Strategy 

The implementation strategy follows the nine-step DBT approach described in 

Chapter 6. The approach for the game RISK is divided into these nine incremental steps: 

(1) execute arbitrary (random) actions; (2) update planning-model; (3) choose and 

execute single actions; (4) generate arbitrary (random) multi-action plans; (5) 

generate and choose (the fittest) plans; (6) assess plans; (7) coordinate the core 

planning cycle for a single player’s turn; (8) coordinate multiple players to complete a 

single game or mission; and (9) orchestrate a complete tournament as a meta-learning 

strategy for training players to autonomously improve performance. 

7.2.1 Execute Arbitrary Actions 

Execute arbitrary actions implementation requires four building blocks: game 

model, game state, planning state, and action choices, as shown in Figure 6.7 in Chapter 
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6. For the RISK game, the game board, cards, players’ forces, and the rules determine the 

game model. The game state is determined by the placement of forces on the board, the 

cards dealt to players, the number of card matches turned in, which player is up, and the 

current phase of the turn as shown in Figure 7.2. The planning state is equivalent to the 

game state at the beginning of a player’s turn. In this implementation step, the planning 

state will be equal to the game state. For the player up, action choices are a function of 

the player’s current state: cards in hand, placement of forces on the board, and phase of a 

turn.  

As shown in Figure 6.7, the building blocks require four functional interactions 

for execute arbitrary actions: (2.1) check that actions are executable (i.e., P' = PΞ(PZ, γ, 

Mψ, XP)); (2.2) execute actions (i.e., {A1, P'} = AΞ(P', t)); (2.3) realize outcomes (i.e., Y' 

= YR(A1, γ, MΞ, XΞ)); and (2.4) observe response (i.e., O' = OΞ(Y', γ, MΞ, XΞ)). The four 

functions here were tailored for the game RISK and are described in detail below.  

The check that actions are executable function requires four inputs: (1) the 

selected plans (PZ); (2) the corresponding agent under consideration (γ); (3) the planning-

model of current planner (MΨ); and (4) the current state of the corresponding plan (XP). In 

execute arbitrary actions, the selected plan is a single action generated from the 

functional block diagram shown in Figure 7.2. The agents under consideration depend on 

the phase of the turn. For Phase I, the agents are the held cards, for Phases II, III, and IV, 

the agents are the randomly selected forces used to attack, and/or move. Here, the 

planning model is made equal to the execution model. The current state is the player up, 

the board layout, the held cards, number of matches turned in, and the phase of the turn. 
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This function outputs a one-action plan (P'), which demonstrates and tests that the rules 

of the game are properly implemented.  

The execute actions function requires two inputs: (1) plan-remainder (P' described 

above); and (2) time (t). Since only one player plays at each instant, time stamping each 

action is not required in the RISK application. The actions are already placed in the order 

of execution, and only one player plays at a time. For execute arbitrary actions, the 

plan-remainder is null. This function outputs two separate variables, the first action (A1) 

and the new plan-remainder (P'). The execute actions function is the same as the process 

3.1 shown in Table 6.5. After plans are sequenced together, the plan-remainder will be 

adapted as described for process 3.1 described later. 

The realize outcomes function plays out a single action in the real-world 

simulation of the game board. This function uses four already described variables: (1) 

time-ordered actions (A1); (2) corresponding agent under consideration (γ); (3) the real-

world model (MΞ); and (4) the current state of the environment (XΞ). This function 

outputs realized outcomes (Y'), which can be a turn in of cards, the results of an attack 

(dice roll), or a force movement. 

The observe response function observes each action’s outcome and modifies the 

current state to match this observation. This function uses four already described 

variables: (1) realized outcomes (Y'); (2) the corresponding agent under consideration (γ); 

(3) the real-world or environmental model (MΞ described above); and (4) the current state 

of the environment (XΞ described above). This function outputs realized observations 
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(O'), which are a one to one mapping with all realized outcomes (Y'), except for attack 

outcomes described earlier (Section 7.1.7). 

7.2.2 Update Planning-Model 

In implementing the update planning-model, the difficult task is coordinating 

between the planning-model changes and real-world model changes. The real-world 

model changes are permanent, while the planning-model changes are temporary. In 

updating the planning-model from the new real-world model after some action execution, 

these new planning-model changes are permanent and irreversible (see Figure 6.9). For 

the game RISK, the environment is almost fully observable and known (except for cards 

in other players’ hands). Thus, these planning-model changes are considered only as a 

change in the current state, such as a player: turning in cards, placing forces on the game 

board, rolling dice in an attack, or moving forces.  

Update planning-model uses the feedback state function (2.5: XU). This function 

uses three input variables: (1) a set of agents under consideration for planning (Γ); (2) the 

observations (O described above); and (3) the task update coefficient (τU). The set of 

agents are the cards in each player’s hands and forces on the board. These are modified 

permanently, based on observations. For the game RISK, the task update coefficient is set 

to a single action such as the completion of a single battle. A battle is considered as a 

single action for the game RISK, which may require many dice rolls. This gives the 

current player the opportunity to change their plan after every territory battle, because 

dice rolls might make the difference in the projected success or failure of subsequent 

battles in a plan. The output of this function is a new state representation for the internal 
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planning-model (i.e., Xψ = XU(Γ, O', tU)). All new plans will use this state as a starting 

point. 

7.2.3 Choose and Execute Single Actions 

The choose and execute single actions implementation of the RISK game 

requires the final building block, the value function (V), shown in Figure 6.10. The value 

function includes all control parameters of a player. In choosing and executing actions, 

only a small portion of these parameters are used, and are those parameters used in 

selecting individual actions. Choosing of actions for the game RISK is done randomly in 

selecting among all the possible choices available based on the finite state machine 

representation of a player’s turn (Figure 7.2). This finite state machine is used as the 

determine action choices function based on the current state (i.e., 1.2: A = IA(γ, MΨ, XP)). 

Select actions function is done using a Monte Carlo method (i.e., 1.3: AZ = ZA(Γ, A, H, R, 

CA, t)). For the game RISK, the method does not use any selected features (H) or time (t), 

because actions are randomly selected and time-stamping actions is not necessary in 

RISK. Only the agents (Γ), their available resources (R), action costs (CA), and action 

choices (A) are considered when choosing individual actions. More specifically, choosing 

whether to turn in cards or not is decided randomly with equal probability. Choosing 

where to place allocations is described in Section 7.1.6. Choosing where to battle next is 

chosen randomly with equal probability among all available choices. This procedure tests 

the coordination of using plan-generation with plan-execution. 
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7.2.4 Generate Arbitrary Multi-Action Plans 

The Generate arbitrary multi-action plans implementation for the game RISK 

is equivalent to generating multiple action sequences. Each action is chosen as described 

in Section 7.2.3. However, plans are not executed until a plan considers all resources. 

This requires interactions of the model and state process for each action considered in a 

plan. The interaction of model and state process has four sub-processes: (1.4.1) predict 

outcomes, (1.4.2) select outcomes, (1.4.3) observe state changes, and (1.4.4) update 

plan’s model state, as shown in Table 6.5.  

For the game RISK, the predict outcomes function (i.e., Y = KY(AZ, γ, MΨ, XP)) 

uses the selected action (AZ) described above and calculates the outcomes (Y) based on 

using the previously described DBN (Section 7.1.7). The select outcomes function (i.e., 

YZ = ZY(Y, rY)) uses the set of outcomes (Y) with its associated pmf, and outcome risk 

aversion coefficient (rY) to select an individual outcome (YZ). The outcome risk aversion 

coefficient for the game RISK will be described in subsequent paragraphs. The observe 

state changes function (i.e., O = OX(YZ, γ, MΨ, XP)) uses the selected outcome (YZ) as one 

element of the observable state transitions for each selected action. Finally, the update 

plan’s model state (i.e., XP = XU(Γ, O, τU)) uses the observations (O) to update the 

planning-model state (XP) for each action chosen within a plan. The task update 

coefficient (τU) is not needed for RISK, because the game is nearly full state observable. 

Note that each step or selected action in a plan has a stored planning-model state for later 

evaluation. 
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When predicting outcomes of actions for a stochastic game, there are a variety of 

approximations one can choose that can have a substantial influence in determining 

future rewards. For instance, one can take the maximum likelihood [10], or the expected 

value [11] of projected outcomes to determine the predicted outcome. Instead, the 

outcome risk aversion coefficient is used to make these approximations. If one knows the 

underlying pmf based on each action-state pair, then one can calculate the pmfs forward 

as one projects actions (see Figure 7.6).  These predicted outcomes are essential in 

prescribing the follow-on move sets.  

More specifically, in examining Figure 7.6, the maximum likelihood prediction is 

‘9:0’, ‘6:0’ and ‘4:0’, because maximum likelihood predicts the outcome that is the most 

likely within a set of possible outcomes, or the tallest bar in this case.  Another predictor 

is the expected value, which is the average outcome given all possible outcomes.  This 

value is shown as the bar with the dot in it as ‘8:0’, ‘5:0’ and ‘3:0’.  One can incorporate 

an outcome risk aversion parameter (rY), where ‘rY = 0’ represents no risk aversion and 

thus expects the best outcome and ‘rY = 1’ represents full risk aversion and thus expects 

the worst outcome. Thus, for rY = 0, we would predict ‘9:0’, ‘8:0’ and ‘7:0’ and for rY = 1 

we would predict ‘1:2’, ‘0:2’ and ‘0:2’ for the plan shown in Figure 7.6.  The far left and 

far right arrows over the figure illustrate rY = 0 and rY = 1, respectively, while the middle 

arrow represents expected value (i.e, rY = 0.5).  

Specifically for the case in Figure 7.6, Battle 2 is a battle of eight vs. two, seven 

vs. two, six vs. two and so on down to zero vs. two.  The probability for all of these 

outcomes from Battle 1 is propagated forward giving a pmf reflected in Battle 2 and 
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Battle 3.  However, given that we propagate this expected value as our projected state; 

the reward metric of that state is biased based on that assumption.  Therefore, we have 

modified the projected state algorithm here to include an outcome risk aversion parameter 

(rY) that ranges from zero to one.  As described above, if rY is set to ‘0’, the parameter 

projects completely optimistic outcomes, where the DBN projects winning every battle in 

the plan.  As applied to RISK, if rY is set to ‘1’, the DBN assumes the plan will lose every 

battle and thus will have a negative impact on reward when projecting battle plans.  If rY 

is set ‘0.5’, the system projects the expected value outcome after each action. Thus, as the 

parameter ranges from ‘0’ to ‘1’ the outcomes become more conservative or risk averse 

in their estimates. Thus, the projected state (Xp') is not only dependent on the actions 

taken and the current state, but also on the selected outcome risk aversion parameter (rY).  
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7.2.5 Generate and Choose Plans 

Generate and choose plan implementation uses the full capacity of the plan-

generation phase of the planning cycle for an individual player in a single turn. More 

specifically, generate and choose plan requires the rest of the plan generation processes: 

(1.1) a search and select plans function, and (1.5) an evaluate plan fitness function. The 

search and select plans function includes the use of fitness to choose plans, search 

parameters to search through many possible action choices to form plans, and a forecast 

expectations function to measure the completed tasks for each plan. The evaluate plan 

fitness function includes SME in choosing the sub-goals, probability of successful 

completion of plans, and a diversity metric to aid in selecting variable plans. 

7.2.5.1 Search and Select Plans 

The first part of the search and select plans function (1.1.1) is the search for 

plans function (i.e., P = SP(Sψ, TP, τP, Rγ, uR)). This function includes: (1) the planner’s 

search parameters (Sψ); (2) completed tasks per plan (TP); (3) number of tasks constraint 

coefficient (τP); (4) resources available (R); and (5) portion of used resources constraint 

coefficient (uR). For the game RISK, an evolutionary or genetic algorithm search 

approach is used. Other approaches have been used and compared (described in Chapter 

3: Background), but the evolutionary approach proves to be the most effective here. A 

comparison is shown in Subsection 7.3.1. 

The search parameters used (i.e., Sψ = {ses, srs, scs, sse, sof, sre}) will be described in 

detail next. For the game RISK, the number of tasks constraint is set to infinity, because a 

player is not restricted by tasks, but by the resources available (agents: cards and forces). 
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The length of a plan is agent resource (Rγ) constrained due to the number of forces on the 

board. Resources are considered as the forces on the game board, including the forces 

acquired via projected card turn-ins. Each held card is considered equivalent to one-third 

the value of the next turn-in, since a turn-in requires three cards. The resource constraint 

coefficient (uR) is used to limit the proportional use of resources from none (uR = 0) to 

full (uR = 1). For some experiments this coefficient is set to one to indicate full use of all 

agent resources, otherwise it is learned via tournament play. 

The planner’s parameters for evolutionary search include: (1) how much to search 

at the beginning of a turn ({ses}), (2) how much to search after every task within a turn 

given a plan is “predicted to succeed” ({scs}), (3) how much to search when a plan is 

“predicted to fail” in completing projected future tasks ({srs}), and (4) what constitutes a 

single generation of search ({sse, sof, sre}). At the beginning of a turn, the evolutionary 

search parameter ({ses}) indicates the number of generations to search (1 to i). The 

number of generations to search after each task (i.e., a territory takeover) is completed is 

given by the continuous search parameter (scs = 0 to j). The number of generations to 

search after a plan is predicted to fail is given by the revolutionary search parameter (srs = 

0 to k). The other parameters determine the amount of search in each individual 

generation: (1) the selections parameter (sse = 1 to l) indicates the number of selections 

per generation; (2) the offspring parameter (sof  = 0 to m) indicates the number of 

offspring per generation, and (3) the recombinations parameter (sre = 0 to n) indicates the 

number of recombinations per generation. These parameters are either preset or learned, 

depending on the experiment.  
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More specifically, for each generation, the selections (sse) are the number of plans 

selected before and after performing mutations and recombinations.  The offspring (sof) is 

the number of duplicate selections that are pruned randomly based on fitness (fitness is 

described further in Section 7.2.5.2). The recombinations (sre) is the number of times 

each phase of a plan can be scrambled, while the remaining plan stays the same. For all 

these experiments, sse, sof, and sre were chosen by experimentation to yield a competent 

player. Table 7.5 below provides a more concrete description of the evolutionary search 

method used for plan-generation. 

 

Many EC algorithms have some form of mutation, recombination, reproduction, 

and selection. In the algorithm above, the mutation portion of the algorithm is step 1.  

The mutation method used is synonymous to a random walk, where each action is chosen 

randomly at each step of a plan.  The recombination portion of the algorithm is step 3. 
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The recombining method is unique and a more detailed description of recombination is 

described in the next paragraph. Reproduction occurs when the number of plans grows in 

number or length. The reproduction portion of the algorithm is seen in steps 1 through 3, 

and 6. Generating plans, adding parents to the selection pool, and copying plan portions 

all constitute additional flexibility in plan choices. Selection occurs when a large number 

of possible plans are drawn down to a chosen few. Selection is used in step 5 where the 

algorithm prunes back plans to their fittest point and selects from among the new plans. 

The recombination method selects a single portion of a plan (i.e., a phase). All 

prior portions of a plan are left unchanged. The targeted portion is recombined, 

constraining actions of that portion to actions that complete similar tasks (step 3). For 

example, the selected recombining phase is the takeover of a particular player. For 

recombination, the only actions allowed in this phase are the ones that takeover the same 

territories (i.e., same tasks) as before. Thus, a shorter more probable takeover path may 

be found. The probability of selecting a particular portion of a plan for recombination is 

proportional to the allocations used in that phase multiplied by the change in probability 

of successful plan completion (as described in Section 7.1.5) for that phase. It can be 

argued that phases that expend a high number of allocations and have reduced success 

probabilities have the greatest potential of improving the overall plan. Once a phase is 

chosen, the actions in that phase are chosen randomly with the possibility of yielding 

similar outcomes having higher success probabilities and thus a higher fitness (step 4). 

Due to the stochastic nature (dice rolls) and length of a player’s turn (possibly 

tens of actions) in the game RISK, evolutionary search can be done at different strategic 
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points within a turn. At the beginning of a turn ({ses}), after every task in a turn ({scs}), 

and when a plan is failing to complete projected tasks ({srs}) are these strategic points. 

These parameters control the number of generations of search used at these strategic 

points. These parameters are learned based on competing planners in tournaments, where 

there are a limited number of actions generated over the course of a game. 

7.2.5.2 Evaluate Plan Fitness 

Evaluate plan fitness for the game RISK is a function of state (XP described 

above), reward (JΨ), probability of success (Pr(ΤP) described above), and diversity (D) 

(i.e., F = FP(XP, JΨ, Pr(ΤP), D)). The reward is measured by a set of ten sub-goals (JΨ) 

derived by SME and shown in Table 7.6. Diversity is a measure of similarity in plans 

based on accomplished tasks. Diversity is described in detail later in this section. 
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Evaluate plan fitness for the game RISK will be described as a function of goals, 

risk aversion, probability of success, and diversity. The state representation (XP) is 

measured via a set of reward functions (JΨ), which measures progress of a plan (i.e., set 

of actions a) based on the following change in reward (∆R) where the X0 is the initial 

state and XP is the projected state: 

∆R = JY(XP) – JY(X0)  where the initial reward R0 = JY(X0) (eq. 7.3) 

The sub-goals (JY(XP)) are used to measure the progress of a player in a game. 

Each sub-goal objective is measured for all players and normalized to sum to one. Each 

of these sub-goals is not considered as equal value, so weights are assigned to each sub-

goal. For each player, W is a vector of ten real numbers ranging from zero to one where 

their sum is one. These weight values can be pre-assigned or learned via tournament play 

described in detail later. In essence ∆R is an eight by ten matrix representing the reward 

change separately for each player and each sub-goal objective. A dot product of ∆R and 

W, plus the addition of the current reward, can represent fitness as shown here: 

Fp
(1) = (∆R • W) + R0 (eq. 7.4) 

If we also consider the overall probability of success of a plan by multiplying all 

the independent battle campaigns together, we can have an additional term added to the 

fitness to reflect this: 

Fp
(2) = (∆R • W) 

 

i=1

N

∏ Pr(ΤP) + R0 (eq. 7.5) 

Here, Pr(ΤP) is a set of scalar numbers ranging from zero to one that represent 

each independent battle success probability at each successful leaf node. There are N 
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successful leaf nodes for a given plan. Specifically, Pr(ΤP) equals the sum of all 

successful outcomes, as illustrated in the example in Figure 7.6 Battle 3. 

If one does not assume that the overall probability of success (i.e., ΠPr(ΤP)) 

plays a substantial role in determining the best fitness function, one can include a 

probability of success factor π (ranging from zero to one) that favors having probability 

of success included, and 1 – π for attenuating the probability of success feature. This 

results in a new fitness function, which now includes risk, reward and probability of 

success: 

Fp
(3) = (∆R • W) π 

 

i=1

N

∏ Pr(ΤP)  + (∆R • W) (1-π) + R0 (eq. 7.6) 

Since we are using an evolutionary approach that considers more than one plan at 

a time in search of the best plan, one additional factor is considered.  Specifically, 

evolution implies a population of possible plans and thus one can consider modifying the 

selection process based on the diversity of the population in contrast to selecting based 

solely on fitness score. The selection of the best plans can be diversified using a diversity 

factor (d) that increases the likelihood of selecting diverse plans over plans with higher 

rewards.  Incorporating diversity into the fitness function changes it as such: 

Fp
(4) = Fp

(3)(1-d) + D*d (eq. 7.7) 

The measure of diversity of one plan compared to others is D, and d is the 

proportion of importance placed on using diversity. To formulate D one considers two 

vectors, such as y and z (y•z)/(||y|| ||z||) = Cos(φ) where φ represents the angle between 

these vectors, (y•z) represents the inner product of the two vectors and Cos(φ) represents 
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the similarity between these two vectors [12].  If we consider the value of a state as a 

vector then diversity can be evaluated as D = 1 – Cos(φ).  In this case Cos(φ) = Xp* Xp
T 

divided by the magnitude of all states considered where Xp
' represents the projected state 

of a plan for the game RISK.   

The plan state used is a vector with 540 values ranging from 0 to 1.  There are 42 

territories of ownership, 166 possible battles, 166 possible victories and 166 possible 

portions of force movements that make up the state Xp
'.  D is a function of the inner 

product of these 540 plan projected state values.  Factor d can be learned from 

experience.  Diversity is only applied to the difference between selected plans and plans 

left in the remaining pool.  Thus, an iterative process is used to implement diversity.  The 

first selection in this process is the fittest plan, which provides a basis for comparison that 

every successive selection uses.  If d is set to one, each subsequent selection is the most 

diverse member of the pool of selected plans, and if d is set to a number less than one, the 

fittest plan and most diverse plan share in the selection process based on the value of d.  

7.2.5.3 Forecast Expectations 

Forecast expectations function for the game RISK requires the selected plans (PZ) 

described above with their corresponding completed tasks (ΤP) (i.e., Q = KQ(PZ, ΤP)). 

The accomplished tasks are considered territory takeovers with a probability of success 

that exceeds the perceived risk (i.e., outcome risk aversion coefficient rY). The projected 

expectations (Q) is the sum total of the successful territory takeovers. 
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7.2.6 Assess Plans 

Assess plans implementation is the DB&T of the plan-assessment phase. Three of 

the four processes in this phase are already complete as described in Section 6.2.3. 

Processes 3.1, 3.2, and 3.3 are duplicates of processes 2.1, 2.2, and 1.4 respectively with 

minor modifications. The only new algorithm to be implemented is process 3.4, the 

assess expectations function. This function has three sub-processes identified in Table 6.4 

(3.4.1-3.4.3). The first of these three processes is forecast new expectations function 

(3.4.1: KQ). This function operates exactly the same as the forecast expectations function 

of plan-generation (1.3: KQ). 

The second of the three sub-processes is the compare expectations function 

(3.4.2: EQ). As described above, expectations are the number of tasks completed. If 

original expectations multiplied by the expectation acceptance threshold coefficient (rQ) 

is greater than or equal to the new expectations (i.e., Q • rQ ≥ Q"), then the compare 

expectations function outputs the new expectations, otherwise the output expectations are 

set to zero (i.e., Q = EQ(Q, Q", rQ)). The third and final sub-process of assess 

expectations (3.4) is the initiate re-planning function (3.4.3: P = IR(P", Q)). The new 

plans are equal to the plan-remainder if the expectations are greater than zero (Q > 0); 

otherwise, the plans are reset to null. For simplicity in all experiments, the outcome and 

expectations acceptance threshold coefficients are considered equal (rY = rQ).  

7.2.7 Core Planning Cycle 

The implementation of a single player’s turn orchestrates the integration of all 

three phases of the core planning cycle: plan-generation, plan-execution and plan-



162 
 

assessment. This includes the initial generation of a plan done via search parameters ses, 

sse, sof, and sre. After this initial planning is complete, each action is executed to the 

fidelity of an individual attack or battle completion, and plan and state changes are passed 

to plan-assessment. If a plan’s success falls below the expectation acceptance threshold 

coefficient (rQ), then plan-generation generates a new plan via these “predicted to fail” 

search parameters srs, sse, sof, and sre (described in Subsection 7.2.5.1). On subsequent 

planning cycles, after every completion of a task (territory takeover) in the plan-

execution phase, the next plan-generation phase uses the “predicted to succeed” search 

parameters scs, sse, sof, and sre (described in Subsection 7.2.5.1). to generate the next plan. 

7.2.8 A Single Game or Mission 

The implementation of a single game or mission coordinates the global state 

parameters: whose turn it is, number of card turn-ins, which players are still alive, and 

reshuffling of the card deck if necessary. The initial player who starts the game is chosen 

randomly. For all experiments, no more than seventy turns are allowed in a single game 

and games are played with eight players. Note that more than seventy turns is considered 

extremely unlikely in human play. Also, using eight players is considered the most 

interesting example of planning because it imposes the greatest computational 

complexity. 

7.2.9 A Complete Tournament 

A complete tournament requires many games and rounds of games. The 

particular parameters for each player or planner in the RISK game used to complete a 

tournament must consider all aspects of plan-generation, planning cycle, and planner 
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capabilities. Section 7.3.3 will describe all the parameters used in a complete tournament 

and how these parameters are trained with corresponding results.  

7.3 RISK Game Results 

Results are presented in three areas: (1) plan-generation, (2) the integration of 

plan-execution and plan-assessment into a planning cycle, and (3) the complete 

orchestration of tournament play for the training of RISK players. The results are in 

chronological order of development, and built from simple action selections to 

orchestrating a large number of games. Plan-generation results concentrate on the 

searching of plans. Integration of the planning cycle will demonstrate the usefulness of 

execution and continual reassessment. Training of RISK players will demonstrate an 

approach for improving players through an autonomous offline tournament competition. 

Sections 7.3.1, 7.3.2 and 7.3.3 will describe the results for plan-generation, planning-

cycle, and tournament play, respectively. 

7.3.1 Plan-Generation 

In plan-generation, there are three main results. The first result demonstrates the 

use of evolutionary search in planning moves ahead to play the game RISK against other 

computer players. The second result demonstrates the benefit of including the probability 

of success in the fitness function. The third result shows that evolutionary search is more 

valuable for the game RISK than other established search methods. 

7.3.1.1 Planning Using Evolutionary Search 

The first attempts to use planning with evolutionary search are simplified versions 

of the current methods described in Section 7.2, Table 7.5. The first evolutionary search 
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used is described in Table 7.7. The main difference is that recombinations for allocations 

and battles are done separately in this case. Also, the search parameters are not variable 

and the generations, selections, offspring, allocation recombinations, and battle 

recombinations are set to 10, 8, 8, 1, and 2, respectively. The sub-goals used are also 

different from the current methods described in Table 7.6. The sub-goals used (shown in 

Table 7.8) are only five, and their weights are fixed, set to 0.4, 0.3, 0.1, 0.1, and 0.1 as 

shown in Table 7.8. 
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Figure 7.7a through i shows an example game to illustrate the use of the first 

dynamic planner for plan-generation. The game is played against two other players (three 

player game). The competing players are automated computer players from the RISK II 

game built by Hasbro. To play against these players, the developed dynamic planning 

player had to be run offline and then executed manually, because the algorithms used by 

Hasbro are proprietary and inaccessible.  

The situational information is fed into the Matlab program, and then a human 

applies the results generated by the dynamic planner to play the turn. The convergence 

criteria that ends the evolutionary process is a simple run of 10 generations, and it is at 

this point where the best evolutionary strategy is selected and applied.  

 

During this RISK game, the dynamic planning (plan-generation) player was 

player 2, thus the starting position of the game shown in Figure 7.7a illustrates the player 

2 plan after player 1’s turn where player 1 took over Asia.  The player 2’s plan generated 
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in the first turn (Figure 7.7a) can be summarized as follows: take over the Americas, and 

Australia and deny Asia to player one. The dice rolls were average and the plan proved 

successful for player 2.  
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Prior to player 2’s second turn, as shown in Figure 7.7b, the other opponents 

denied Australia and South America to player 2 and player 1 recaptured Asia. For turn 

two, the automated player 2 decided to retake South America and deny Asia again. The 

turn is successful and player 2 is able to hang onto South America and deny Asia until 

turn three.  

 

In turn three, player 2 becomes more aggressive and tries to take over part of 

Africa and Asia. Player 2 ends up completing his mission but incurs heavy force 

casualties due to poor dice rolls (Figure 7.7c). This opens the door for player 1 to 

recapture Asia. In turn four, player 2 attempts to re-deny Asia to player 1 and retake 

Australia and reinvade Africa.  Due to very poor dice rolls, again only the invasion of 

Africa succeeds (Figure 7.7d). This provided an opportunity for player 1 to take Australia 

and fortify his Asian position. However, player 3 is left helpless and the reinforcements 
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are enough for player 2 to eliminate player 3 and deny the Asian continent to player 1 in 

turn five (Figure 7.7e).   
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During turn six, player 1 recaptures Asia and player 2 attempts to take over 

Europe, Africa and deny Asia again. The mission is successful but poor dice rolls again 

leave the dynamic planner vulnerable to invasion (Figure 7.7f). During turn seven a 

similar strategy is generated that tries to do much the same as the previous turn, again 

poor dice rolling provides too much resistance and only partial success in Asia is 

achieved (Figure 7.7g).  

 

For turn eight a new strategy is generated that does not want to retake Europe and 

Africa, but rather invade through south Asia and deny Australia (Figure 7.7h). This 

proves to be an excellent move and a fatal blow to player 1, because player 1 has only 

enough reinforcements to retake Australia. As a result, player 1 leaves the majority of his 

forces there where they are behind the lines and cannot be used effectively. Thus for turn 

nine, player 2 takes over Africa and Europe and part of Asia with little resistance (Figure 
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7.7i). Turn ten, not shown here, was the final invasion of player 2 over player 1, which 

was met with little resistance. 
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In summary, player 2, the developed dynamic planner generated moves that were 

intelligent and generalized well to various situations. In addition, the automated strategies 

were able to overcome poor dice rolls and still win the game. Similar games were played 

with similar results for three and more players. However, many more games need to be 

played in a more automated fashion so that statistical results can prove significant. The 

game was played 20 times and the dynamic player won 16 of those games or 80% of the 

time. 

7.3.1.2 Probability of Successful Plan Completion 

As described in Section 7.1.5, completed tasks for the game RISK are territory 

takeovers, and the probability of successful completion of all projected tasks is the 

combination of all dependent, intradependent, independent and interdependent battle 

sequences. A simplified and accurate probability of success can be calculated using all 

projected leaf nodes of a battle plan. Due to the use of the DBN described in Section 

7.1.7, probabilities are propagated forward to the leaf nodes. Thus, for every leaf node 

that projects a successful task completion, its probability is considered in the overall 

success of the plan.  

For example, given the RISK plan described in Section 7.1.5 and shown in Figure 

7.3, this fourteen-step battle plan has probabilities as shown in Table 7.9. Each individual 

battle probability is given as Pr(τ#), and each probability of successful plan completion is 

given as Pr(Τ). Note that the set of successful leaf nodes (i.e., Pr(τ#) > 0.5) used to 

calculate the Pr(Τ) changes over the course of planning. This is calculated at each step in 

a plan by backtracking to determine which nodes are successful leaf nodes (SLN) at each 
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time increment that an action is selected. For instance, in battle fourteen, SLN = {4, 6, 10, 

11, 12, 13, 14}, because battle seven is considered unsuccessful and battles 1, 2, 3, 5, 8, 

and 9 are no longer leaf nodes at the fourteenth step of the plan (see Figure 7.3). More 

specifically, the probability of successful plan completion is the product of the SLN (e.g., 

Pr(Τ) = Pr(τ4)•Pr(τ6)• Pr(τ10)•Pr(τ11)•Pr(τ12)•Pr(τ13)•Pr(τ14)). 

 

The probability of successful plan completion can be used in the fitness function 

as described using Equation 7.6 in Section 7.2.5.2. The results of using this concept are 

best shown using an example problem. Consider an endgame problem where one player 

can finish the game by taking over four remaining players in a single turn. In this 

example, we consider only the eastern hemisphere of the game board and assume the 

current player already has control of North and South America. The current player has 

most of their forces on the four corners of the eastern hemisphere: Iceland, North Africa, 

Southeast Asia (Siam), and Northeast Russia (Kamchatka). The current player must 

construct a battle plan that completes the game using these four force areas, including 

initial turn reinforcements, and additional player takeover reinforcements.  
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The search algorithm used to solve this problem is the same as described in Table 

7.7 and the sub-goal objectives are the same as shown in Table 7.8. The choice of 

parameter values for both tables are however different: (1) the number of generations is 

not 10, but goes on until an endgame completion is reached successfully; (2) selections, 
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offspring, allocation recombinations, and battle recombinations are set to 8, 8, 1, and 1, 

respectively; and (3) the sub-goal weights are set at 0.45, 0.33, 0.02, 0.05, and 0.15 as in 

the order presented in Table 7.8. 
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The example problem is executed in two ways using Equation 7.6: (a) one with π 

= 0 (without probability of success) and (b) the other with π = 1 (with probability of 

success). Two example plans are shown in Figure 7.8a-d and Figure 7.9a-d, respectively. 

The four takeovers are shown in the order a, b, c and d for both figures. Note that in both 

Figures 7.8 and 7.9, the takeovers are in the same order (i.e., cyan, green, blue, then 

gray). However, most battles in Figure 7.8 have projected smaller forces attacking 

opponent territories, thus resulting in lower success probabilities (shown in Figure 7.10). 

However, when the success probabilities are taken into account in the fitness function as 

shown in Figure 7.9, the attacking forces are much larger in most cases. 

 

The results are summarized in Figure 7.10. Figure 7.10a and 7.10b illustrate four 

underlying components that track the difference in success of the two plans.  Figure 7.10a 

represents the plan without the probability of success included, while 7.10b represents the 

plan with the probability of success. The x-axis represents each action, while the y-axis 

a b c da b c d

Figure 7.10a.  Fitness Function
without Success Probability

Figure 7.10b. Fitness Function 
with Success Probability

fitness function value without probability of success
individual action success probabilities
overall probability of success
overall fitness function value with probability of success

Key:
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either represents probability or fitness.  The solid line in both figures represent the value 

of the fitness function without probability of success, the dot-dashed line represents 

individual action success probabilities, The dashed lines represent the overall probability 

of success based on multiplying leaf node probability, while the dotted line represents the 

overall fitness function value based on including the probability of success.   

The most notable features from Figure 7.10a and b are the overall probability of 

success (dashed lines).  For the simple fitness function case, the overall success 

probability is 14%; while for the case where the probability of success was included, 

competition drove the probability of success up to 66%.  Thus, including the probability 

of success gives a far better chance of taking over all four opponents in this turn and will 

probably not require re-planning over the course of the turn. 

7.3.1.3 Search Comparison 

As shown in Section 7.3.1.2 above, the RISK endgame problem is an interesting 

and difficult problem with an enormous search space. The next logical step is to find an 

approach that best fits this sort of problem. Thus, this subsection looks at seven 

algorithms used to search for solutions for the endgame moves of the board game RISK. 

Comparison of these search methods for the best plan constrained by: (1) using a fixed 

evaluation function (shown in Table 7.10), (2) fixed time to plan (five minutes), and (3) 

randomly generated situations that correspond to endgames in RISK with eight remaining 

players (described in next subsection 7.3.1.3.1: Example Problem).  

The search strategies compared are depth-first, breadth-first, best-first, random 

walk, gradient ascent, simulated annealing, and evolutionary computation. The first three 
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strategies are deterministic tree search methods described in detail in Chapter 3: 

Background. The random walk, gradient ascent, and simulated annealing approaches are 

Monte Carlo search methods defined in general terms in Chapter 3. Their implementation 

is application dependent, thus these three approaches are described more fully in 

Subsection 7.3.1.3.2: Monte Carlo Search Methods. The evolutionary computation 

approach is described in Subsection 7.3.1.3.3: Evolutionary Search. The approaches are 

compared for each example based on the number of opponents eliminated, plan 

completion probability, and value of ending position (if the moves do not complete the 

game).  Results are shown in Subsection 7.3.1.3.4: Search Results. 

Automated planning for endgame scenarios is presented where the temporal cost 

of planning is weighed against measured progress toward the goal and the probability of 

successful completion of the plan. The focus is on problems with no certain path to the 

endgame, and thus no supervisor is available to train a system to generate the best move. 

Known or calculable state-transition probabilities are used to prune the enormous 

planning search-space and provide an expected value to the end-state to aid in a more 

efficient search and greater plan completion probability. Planning problems that involve 

opponents require objectives that not only direct the automated player to the endgame, 

but also to interim positions where it is less vulnerable to opponents. A dynamic plan 

based on an effective search algorithm appears to be an important step toward solving 

these types of problems. An efficient search algorithm is required for such problems 

because the search process is usually the most resource-consuming (time and memory) 

aspect of the planning process (plan-generation).  
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7.3.1.3.1 Example Problem 

RISK endgame scenarios have been chosen for analysis because these situations 

are the turns with the highest complexity and variability. Solving them provides valuable 

insight into solving the overall game. Depending on the number of players (i.e., two to 

eight) and the maturity (i.e., turn) of the game, strategies within the RISK game change. 

At some point in the game, players will be eliminated, many times in bunches, because 

elimination of one player often provides resources that can lead to elimination of another, 

and so on. When this point in the game is reached, it is advisable to eliminate all other 

players. This situation is the common RISK endgame situation referred to here. 
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For benchmarking purposes, situations were created that represent possible 

endgame-scenarios. Sixty endgame situations were generated where one player can win 

the game in one final well-played turn. More specifically, one player is given 

approximately 60% of the forces to allocate to their occupied countries (97 forces), while 

the other seven players split the remaining forces evenly (nine per player). An example is 

shown in Figure 7.11. The territories with circular symbols are the advantaged player 

territories, while all other territories represent other players. The different shapes 

represent different players as shown in the key to the left. For these scenarios, territories 

on the board are given out randomly in turn, thus each player is given approximately the 

same number: six players get five territories while the other two get six, equaling the total 

42 territories on the board. After the territories are selected, players place units on their 

territories in turn until all (7 x 9 + 97 = 160) initial allocations are exhausted.  

Placing the forces is not random, but based on a tuned fitness function shown in 

Table 7.10.  This leaves the advantaged player with approximately sixteen forces per 

territory while the others average around two forces.  Each player is also given a random 

number of cards from zero to six, where six is the maximum number any player can hold 

after their turn is complete.  Lastly, the value of turned-in card sets number is initialized 

to five and subsequent turn-ins will provide resources of 12, 15, 20, 25, etc., as cards are 

turned in. The objective of the algorithm is to develop a solid plan with which the 

advantaged player can eliminate the other players from the game, and thus win the game. 

However, as will be shown, finding a solid plan is not easy given the complex variety of 

possible moves. 
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In the fitness function shown in Table 7.10, not all of these objectives are of equal 

importance, and weighting them is situation dependent.  For instance, if only objective 1 

is used, no battles would be fought because one would not risk losing any troops on a 

turn.  Conversely if one only used the reinforcement objective 2 then the player would 

fight to the end, becoming so weakened, that they might not last to their next turn.  

Balancing these objectives is an issue, and these weightings were tuned by hand based on 

game simulations played among opponents with different weightings. These objective 

weightings can be learned from autonomous playing of the game against itself as shown 

in Section 7.3.3. 
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7.3.1.3.2 Monte Carlo Search Methods 

Random Search Method: 

A good baseline for comparison is random search method, where each action is 

chosen randomly at every step of the plan until the plan reaches an end.  In this case, the 

end is where no more battles can be fought because resources are misallocated or 

exhausted, or the plan reaches the end goal of winning the game.  Random search is a 

form of depth first search that does not expand the nodes at each step in the plan.  The 

random search used here is: 

1. Generate one plan from beginning to end, choosing random actions 

2. Prune plan back to fittest point 

3. If generation > 1 compare with stored plan, store fittest 

4. If plan meets goal or time expires terminate, otherwise go to 1 

Note that this random search method generates each new plan from scratch. 

Gradient Ascent Search Method: 

Gradient search is concerned with ascending up the fitness slope over multiple 

dimensions to reach the goal.  The dimension of the planning space can be seen as each 

step in the plan.  Since the fitness landscape is not a smooth surface in the planning 

space, gradient search will seldom reach the goal by ascending the fitness at each step in 

the plan.  Thus, a heuristic form of gradient must be used to get more competitive results.  

Described below is one such method that uses gradient ascent search to find the goal, 

where each dimension is a plan step: 

1. Generate new plans to the end (one in 1st generation), choosing random 
actions 

2. If generation > 1 compare with stored plan  
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3. Select and store fittest plan 

4. Prune back stored plan to each step from beginning to fittest point 

5. Use each pruned plan for regeneration 

6. If plan meets goal or time expires terminate, otherwise go to 1 

Simulated Annealing Search Method: 

Simulated annealing uses a declining temperature factor to initially allow wide 

variation in choices then over time the declining temperature restricts the search to only a 

few choices.  This approach overcomes the rough fitness surfaces of many planning 

spaces, such as observed in RISK. Unlike evolution, simulated annealing is only 

concerned with modifying one selection, in this case, one plan. After some 

experimentation, the most competitive simulated annealing approach found uses 

temperature to determine how far back the plan is pruned.  With high temperature, the 

plan is likely to be pruned back near the beginning.  As temperature falls, pruning is more 

likely to occur near the end of the plan.  More specifically, the fitness at time zero is 

weighted by a ramp function that runs from one to zero over the length of a plan.  This 

ramp function is multiplied by the fitness to determine the new skewed fitness used in 

this technique.  As time goes from zero to 300 seconds, the ramp function slowly 

transitions to a flat function, thus allowing the true fitness measure to have a greater 

chance for selection.  This ramp method was found to be successful and a ramp that goes 

beyond a flat slope was found to be less successful.  The simulated annealing search 

method used is: 

1. Generate one plan to the end, choosing random actions 

2. If generation > 1 compare with stored plan 

3. Select and store fittest plan 
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4. Prune back plan based on fitness and weighting (described above), selected 
randomly 

5. Pruned plan is the beginning plan for next generation 

6. If plan meets goal or time expires terminate, otherwise go to 1 

7.3.1.3.3 Evolutionary Search Method 

All search strategies used are in the family of heuristic search algorithms. Seven 

search strategies are used to compare and contrast approaches. These approaches include 

classical methods (heuristic depth-first, breadth-first and best-first search), random 

search, a form of gradient search, simulated annealing, and our evolutionary search. To 

provide consistency across comparisons the same DBNs and fitness function are used. To 

be fair, all search algorithms use a form of alpha-cutoff to avoid dead-end paths when 

searching. Alpha-cutoff prevents unnecessary search in any direction that cannot exceed 

its currently found best plan. Normally alpha-cutoff is used in tree search to avoid dead-

end branches. For stochastic search, we use alpha-cutoff when the best possible reward 

given the current probability cannot exceed the best currently realized reward. Alpha-beta 

cutoff is used in minimax games when considering two players’ moves, but since we are 

only planning a single player’s move at this time, alpha-cutoff is a more appropriate 

method to use. 

The classical search methods, random search, gradient search and simulated 

annealing are described fully in the Chapter 3: Background. The developed evolutionary 

search method used is very similar to the one defined in Table 7.5, with the inclusion of 

adding parent selections to the algorithm at two places: after step 1 and after step 3 in 

Table 7.5. The number of selections, offspring, and recombinations can be chosen at the 
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discretion of the user, thus, experiments were run to determine the best evolutionary 

parameters for the RISK endgame problem. Experimental results are shown in Table 

7.11. 

 

Table 7.11 illustrates the results of testing 24 different parameter combinations.  

The sample size was 60 for each case, so the results are only approximate.  Parameters 

3,2,1 for sse, sof, sre had the greatest fitness and goal percentage. It can also be shown from 

the table that when recombination equals zero, the plans perform quite poorly.  Also, for 

multiple recombinations, the results are not as good as using one recombination, probably 

because there are far more plans per generation than the number of generations.  It is 
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likely that better choices for these values can be found, or even that they should vary 

subject to the conditions of the game.  

Note that the number of phases is dependent on how deep the plan goes.  A phase 

is defined as shown in Figure 7.2, where Phase I is the beginning turn phase, Phase II is 

the allocation phase, Phase III is the battle phase, and Phase IV is the final move phase.  

A plan for the game RISK resides in either Phase I, II, III, or IV, with the possibility of 

repeating Phases II and III multiple times when opponents are taken over and cards are 

turned in.  Thus, for a 7 takeover endgame situation, the number of phases can be as 

many as 15: one phase I and seven each of phases II and III.  Phase IV is not important 

because a final move is not necessary in the RISK endgame.  Therefore, based on the 

algorithm shown above, the number of recombinations per plan is directly proportional to 

the number of phases in a particular plan.  As shown in Table 7.11, when recombination 

is employed, the population size varies greatly with the number of phases.  

7.3.1.3.4 Search Results 

All search strategies used here are from the family of heuristic search algorithms.  

Variations on classical search (e.g., depth, breadth and best), random, gradient ascent, 

simulated annealing, and evolutionary computation are compared to see how they 

perform in the endgame RISK problem.  To put all search algorithms on a level playing 

field, a common environment and framework are used: (1) a dynamic Bayesian network 

(DBN) is calculated on the fly for contemplating attack scenarios, (2) the same evaluation 

function to measure progress toward the goal, (3) a fixed five-minute time constraint for 
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processing, (4) and run in Matlab Release 14 on a Pentium IV 3.2 GHz processor with 

one gigabyte of RAM.  

Experiments were performed for the seven cases illustrated in Table 7.12. The 

time limit set for all experiments was 300 seconds (five minutes) as shown in the right-

most column of Table 7.12.  The darker shaded boxes in Table 7.12 indicate parameters 

not applicable (N/A) or fixed in value.  Some values are adapted based on either time 

limit for generations or plan length for selections.   

 

The selection of five minutes of playing time is obviously arbitrary, and depends 

heavily on the programming language used and the speed of the machine. For these 

experiments, five minutes was chosen because it was at a cusp where effective search 

algorithms could frequently find solutions and ineffective ones could not. It also gave a 

total execution time for the planned simulations that was tractable. If the algorithms were 

rewritten in a compiled language and optimized for speed, it is not unreasonable to expect 

the required time to decrease by as much as a factor of ten. The resulting time of 300 



187 
 

seconds for the automated player to complete its turn should be acceptable to human 

opponents.  

 

Figure 7.12 illustrates the success rate of the five best approaches.  Breadth-first 

and best-first searches are not illustrated here, because their success rate was zero for all 

the example cases.  Since all the examples were randomly generated, some of them were 

simpler than others.  Thus, for illustrative purposes, the examples are ordered based on 

evolutionary success rate for an easier comparison.  Each example was run 20 times and 

the average success rate is plotted in Figure 7.12 from the easiest examples to the most 

difficult.  Note that for the twelve easiest examples the evolutionary approach was able to 

solve all of them 100% of the time, while simulated annealing and other approaches 

Figure 7.12.  Average Success Rate Comparison for All 60 Examples
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could only solve at most two of them consistently.  From Figure 7.12, one can see that 

simulated annealing is better than the evolutionary approach in only six cases, while in all 

other cases evolutionary computation is better or the same as the simulated annealing 

method.  Gradient ascent was the best in only three cases and random search and depth-

first search were never better than the evolutionary approach. 

 

Another important result is the average time taken for each example.  The top five 

approaches are illustrated in Figure 7.13 where the examples are ordered by average 

evolutionary time.  Again, breadth- and best-first searches are not plotted because they 

never reached success and therefore always terminated at the time limit of 300 seconds.  

The evolutionary approach is predominantly better than the others, however the simulated 

Figure 7.13.  Average Search Completion Time Comparison for All 60 Examples
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annealing approach was faster in ten cases and the other approaches were better in only 

four cases.  Note that depth-first search either did very poorly or very well depending on 

the example and was overall the poorest approach.  

 

The average performance of all seven approaches is summarized in Table 7.13.  

The approaches are listed from worst to best with the best performance for each category 

in bold for each column.  Breadth and best-first search, which had very limited success, 

were only performed over five trials.  All other searches were performed 20 times.  The 

goal for each search was to find a plan that wins the game with a greater then 50% 

probability within the 300-second time limit.  The average reward and fitness for all 

initial random situations was 0.378.  Since fitness is a measure of change in reward 

multiplied by the completion probability as described in Section 5.4, one can see that the 

classical searches had higher completion probability but very little improvement in 

reward and consequently, fitness.  In other words, the classical approaches found short 

low risk plans that made little consideration for ending the game.  This is also seen in the 

takeover column, where the three classical search methods achieved between zero and 

three takeovers on average.  In contrast, all the other approaches achieved excellent 
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takeover rates, averaging between six and the goal number, seven.  The large difference 

among these top-four approaches is found in the two far right columns.  These two 

columns measure performance and speed, respectively.  The evolutionary approach had a 

31.8% increase in performance and a 14.2% increase in speed over its best competitor, 

simulated annealing. 

7.3.2 Planning Cycle 

The planning cycle not only includes plan-generation as described in Section 

7.3.1, but also includes plan-execution and plan-assessment. This iterative planning cycle 

is summarized in Table 7.14. The algorithm for steps 1.1, 1.2, and 1.3 are identical except 

for the number of generations (i.e., ses, srs, and scs) and are described in Table 7.5. As 

shown in Table 7.14, the inclusion of plan-execution and -assessment provides an 

opportunity for the planner to change plans after each task. 

Results in this section will demonstrate the need for task feedback within the 

planning-cycle, and the impact of this feedback on planning parameters. Experimental 

results are examined in two areas: planning cycle search strategies and risk-aversion. 

Plan-generation creates a plan for execution, but based on early execution results, a plan 

may need further search. Planning cycle search strategies are the inclusion of these three 

search parameters {ses, srs, scs} described in Section 7.2.5.1 Search and Select Plans. 

Results here demonstrate the need for using all three parameters versus using only one or 

two of them. In the RISK game application, the risk aversion coefficients described in 

Section 7.2.4 Generate Random Plans (rY) and Section 7.2.6 Assess Plans (rQ) are 

assumed equivalent for simplicity. As shown in Table 7.14, the expectations acceptance 
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threshold coefficient (rQ) is used to determine whether to replan scs generations if all 

remaining tasks are projected to be successful, or to replan srs generations if any 

remaining task is projected to fail. The results here will show that the strength of a player 

varies with different risk aversion coefficient values. 

 

7.3.2.1 Search Strategies 

To demonstrate the usefulness of including all three search parameters in plan-

generation (i.e., ses, srs, and scs) as described in Table 7.14, a simulation was performed to 

compare these parameters. Four players were used: one player used only one necessary 

parameter {ses}, the second player used two parameters {ses, scs}, the third player used 

two different parameters {ses, srs}, and the fourth player used all three parameters {ses, srs, 
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scs}.  The parameters not used were set to zero, and the parameters used were set to equal 

values, provided the time per turn was approximately the same.  

 

Figure 7.14 provides a distribution of the time costs per turn when using each of 

the three search parameters {ses, srs, scs}, with all other remaining parameters set as 

described in Section 7.3.1.3.1. Note that time to search at the beginning of a turn (top 

graph) has the smallest standard deviation, because this type of search is always used 

only once per turn. Note that when tasks are projected to fail (middle graph) it has the 

smallest time average, because this case requires a plan failure and is thus not used in 

every turn. Also, note that continuous-evolution occurs after every successful task 
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completion, so the time impact is the greatest (bottom graph). In addition, since turns can 

vary largely in task length, the standard deviation is also the largest.  
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To compare the value of these three parameters, each of the four players described 

above was used twice in each of 128 eight-player games, and each of the parameters was 

set to give a similar average search time per turn. Player one strategy was set to: ses = 16, 

srs = 0, and scs = 0; player two strategy was set to: ses = 4, srs = 0, and scs = 4; player three 

strategy was set to: ses = 9, srs = 9, and scs = 0; and player four strategy was set to: ses = 5, 

srs = 5, and scs = 3. The time-per-turn for these four player strategies is shown in Figure 

7.15. Note that the time per turn is approximately the same for all parameter settings.  

 

Over the course of 128 games, the winning performance was not equivalent and is 

shown in Figure 7.16, respectively.  The figure shows that searching only at the 

beginning of a turn (strategy one) is an important factor for winning, but having all three 

parameters greater than zero performed the best (strategy four). Note that including re-
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planning after a projected task failure increased the winning performance by more than a 

factor of two (i.e., comparing strategy two with four).  

 

7.3.2.2 Risk Aversion 

For the game RISK, the risk aversion coefficients can vary from zero to one and 

determine each action’s outcome (rY) and re-planning threshold (rQ). As mentioned 

above, for simplicity it is assumed that rY = rQ. As described in Section 7.2.4, if risk 

aversion equals zero then the player will always fight, because the player assumes that 

every battle will be won. If risk aversion equals one then the player will never fight, 

because the player assumes that every battle will be lost. Thus, the best value(s) of risk 

aversion are probably somewhere between zero and one.  To determine good values, 
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eight values between zero and one were compared. These chosen values were equally 

spaced from 0.01 to 0.99 and are: {0.01, 0.15, 0.29, 0.43, 0.57, 0.71, 0.85, 0.99}. Using 

an eight-player game, 256 games were simulated where each player uses one of these 

eight risk aversion values. The player order and the player to start are scrambled to avoid 

redundant games. Figure 7.17 shows the sample probability mass function of winning the 

game. Note that having a value greater than expected value (rY, rQ = 0.5) performed 

better, and rY, rQ = 0.85 performed the best overall.  

 

Another interesting result from the simulation is shown in Figure 7.18. Here, the 

winning rank of each player is shown (1 is the winner, 8 is the first eliminated). Notice 

that the highest risk player rY, rQ = 0.01, usually comes in last place, because the player 

depletes his forces most quickly and is thus most likely to be eliminated first. Conversely, 
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the lowest risk player rY, rQ = 0.99, never comes in last place, because this player stacks 

his forces and is seldom attacked early in a game. If a winner-take-all strategy were not 

used as shown in Figure 7.17, and placement did matter in each game, then the winning 

points for players might be as shown in Figure 7.19. This reward strategy is similar to a 

PGA golf tournament payouts, where the first player receives twice as many points 

(dollars in golf) as the second player; the second player receives twice as many as the 

third player; and so on. In comparison to Figure 7.17, being highly risk averse (rY, rQ = 

0.99) pays more dividends under this point system strategy. 

7.3.3 Training RISK Players 

The approach taken here trains RISK players using a tournament strategy, where 

iterative loops of rounds, games, player’s turns, and planning cycles are used to choose 

the best players and further improve their abilities through modifying their parameters. 

There are four iterative loops within a tournament that lead to training players: 

Tournament (described in Section 7.3.3) 
 Loop Rounds (described in Section 7.3.3) 
  Loop Games (described in Section 7.3.3) 
   Loop Players’ Turns (i.e., game rules: described in Section 7.1.3) 
    Loop Planning Cycle (described in Section 7.3.2) 
     Plan-Generation (described in Section 7.3.1) 
     Plan-Execution (described in Section 7.3.2) 
     Plan-Assessment (described in Section 7.3.2) 

The RISK experiment here considers a single tournament. In the future, many 

tournaments should be considered to validate results: this is addressed in Chapter 10: 

Discussions and Future Work. This tournament is composed of 100 rounds or tournament 

generations. Each round is defined to have 32 unique players, and except for the first 
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round, each player is derived from results of the previous round. The first round players 

are described in Section 7.3.3.1: Player Parameters and Game Phases. The details of 

choosing and modifying players are described in Section 7.3.3.2: Evolutionary 

Algorithm. Here is how a tournament rounds work. Each player randomly draws a game 

with other players, such that each player plays all other players at least once in an eight-

player game. This draw gives a range in the number of games played in each round. The 

number of games played ranged from 36 to 47 games with an average number around 43 

games per round. All players play at least 7 games, at most 18 games, and on average 11 

games per round. Also due to random draw, each player plays each other player between 

one and eleven times with an average of 2.4 times. 

In the following subsections, the problem and results will be described in five 

areas. First, the problem is described further by choosing the parameter sets to be trained 

and game phases (i.e., beginning, middle and end game) with associated linear transition 

weights. Secondly, the evolutionary algorithm used at the end of each tournament round 

is described with associated results. Thirdly, each player in every game is constrained in 

planning time and turns allowed, and the constraints and associated results are shown and 

described. Then, the learning progression results are shown, analyzed and described. 

Finally, game-phase dependent strategies are compared to fixed strategies and results are 

shown. 

7.3.3.1 Parameters and Game Phase 

To train RISK players, there are many choices that can be considered within an 

ADP&E framework. These variable choices fall in one of three categories: search, 
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selection, and goals. Search parameters include numbers of search: generations to start 

turn (ses), generations after task failure (srs), generations after task success (scs), selections 

per generation (sse), offspring per generation (sof) and recombinations per generation (sre). 

Also, the portion of used resources (uR) restricts search. The selection parameters 

considered here are the importance of diversity in plan selection (d), importance of 

probability of successful plan’s completion (π), and risk aversion (rY, rQ = r) in choosing 

outcomes (rY) and achieving expectations (rQ). Goal parameters include ten weights, one 

for each of the ten selected sub-goals shown in Table 7.6. All these parameters combine 

to make twenty (ses, srs, scs, sse, sof, sre, uR, d, π, r, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10). 

In addition, a beginning game, a middle game, and an endgame strategy are considered 

and each of these game phases requires a separate set of parameters. Thus, sixty 

parameters were used for each player in this experiment with twenty parameters for each 

game phase. See Table 7.15 below for a brief summary of all sixty parameters.  
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The first players for round one were chosen to be the simplest possible. Table 

7.16 shows the beginning game phase search and selection parameters for the first 10 

players in round one (θ1). The search parameters for the numbers of search: generations 

after task failure (srs), generations after task success (scs), and recombinations per 

generation (sre) were set to zero, because they are useful but not necessary. The search 

parameters for the numbers of search: generations to start turn (ses), selections per 

generation (sse), and offspring per generation (sof) were each set to one, because this is the 

minimum number allowed. This configuration gives a random walk result in plan-

generation, where only one plan is generated and the length of the plan is dependent on 

the portion of used resources (uR). The final search parameter, portion of used resources 

(uR), as well as all three selection parameters: importance of diversity in plan selection 

(d), importance of probability of successful plan completion (π), and risk aversion (rY, rQ 

= r) are set as random numbers in the range zero to one. Note that these search and 

selection parameters for all 32 round one players, as well as for both middle and endgame 

parameters, are chosen in the same way. 
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The goal parameters for the first players for round one were chosen to be at the 

extreme corners of the space and orthogonal to each other. Table 7.16 shows the 

beginning game phase goal parameters for first 10 players in round one. The goal 

parameters are ten weights that match the ten selected sub-goals shown in Table 7.17, 

respectively. One of the ten weights is selected to be one, while all other weights are set 

to zero for each player. Note that these goal parameters for all 32 round one players as 

well as for both middle and endgame parameters are chosen in the same way. 

A natural measure of game phase is the number of players left in the game during 

plan-generation. Thus, when all eight players are in a game, this is considered the 

beginning game phase; when five players are remaining, this is considered the middle 

game phase; and when two players are remaining, this is considered the endgame phase. 

Also, transitions between these phases are modeled as a linear change in strategy between 

the two closest phases. Figure 7.20 illustrates the transition through the three phases of a 

game, where a weight is multiplied by each of the twenty parameters to produce the 

strategy for the current number of remaining players. Therefore, when six or seven 
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players are remaining, the strategy combines beginning and middle game strategies, and 

when three or four players are remaining, the current strategy combines values of middle 

and endgame. Note that in this process six of the seven search parameters (ses, srs, scs, sse, 

sof, sre) are rounded to the nearest integer to make them valid.  

 

7.3.3.2 Evolutionary Algorithm 

As mentioned above, the evolutionary algorithm used considers 32 players per 

generational round. The reward for each player is scored based on a winner-take-all 

approach. Only the winner of each game receives a reward, while all other players in 

each game receive a punishment. An average player in an eight player game should win 

one-eighth of their games, thus a point system was used that gives seven points for the 

winner and minus one point for each loser, totaling zero points for each completed game. 

For games that cannot complete within the 70-turn limit, all players receive minus one 
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point. This point system was used to provide near equal opportunity for players who 

played fewer games and have the same chance for points as other players. 

At the end of each tournament round, the next generation of 32 players is 

composed of five groups. The first group is the top eight players of the previous 

tournament round based on the highest score. The second group is the top six players 

with mutated search parameters. These six players have modified search parameters by -

1, 0, or +1 with a one-third probability of choosing any of these modifications for each of 

the 18 parameters. Also, all three projected resource constraint coefficients are changed 

for each of these six players via a normal distribution with zero mean and standard 

deviation equal to 0.1. The third group is the top six players with mutated selection 

parameters. These six players have modified selection parameters for all nine parameters 

for each of these six players via a normal distribution with zero mean and standard 

deviation equal to 0.1. The fourth group is the top six players with mutated goal 

parameters. These six players have modified goal parameters (sub-goal weights) for all 

30 parameters for each of these six players via a normal distribution with zero mean and 

standard deviation equal to 0.1. The final group is the top six players recombined with 

another randomly selected player. The randomly selected player is chosen from a pool of 

players with a chance of selection proportional to the score of the player. Recombination 

takes the average of each parameter pair of both players, and the result is the new 

parameter value. Thus, eight (group one) plus four times six (groups two to five) gives 32 

unique players for the next round. 
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The portion of the five groups being selected as a top eight player for the next 

round is shown in Figure 7.21. This figure shows the average performance of each group 

over five round increments, and the overall average of each parameter set is labeled in the 

center of each graph. As expected, the parents tend to have a greater survival rate than the 

mutated and recombined players (i.e., offspring). However, on average, 72% of the new 

players are different from the previous round. Note that mutation of selection parameters 

shows the next greatest utility overall and recombination shows the worst performance. 

As expected, the first five rounds show the greatest variation in search parameters, as 

players are learning to take more game time in planning their turns. 
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7.3.3.3 Player Constraints 

Due to the nature of the RISK game, two constraints were enforced on each 

player. First, since a RISK game can conceivably go on indefinitely if all eight players 

are poor quality, the number of turns was restricted to 70. This first constraint of 70 turns 

was chosen, because it is far beyond the number of turns necessary to win the game RISK 

with competent players. Experiments have shown that very competent players usually 

complete a game within 25 to 30 turns, given the enormous number of forces 

accumulated at that point in the game [13] [14]. For games that exceed 70 turns, the game 

is stopped with no winner, and all players receive minus one point for participating. 

Secondly, a turn in RISK takes search as in a chess game, thus as in chess, a player is 

restricted to the extent of search allowable [15]. To avoid computational restrictions 

based on processor speed, the number of contemplated actions over the course of a game 
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was restricted to 50,000. This second constraint of 50,000 was chosen arbitrarily to 

restrict the entire length of a game to be less than 10 minutes computer time on a 2.4 GHz 

Intel Core 2 Duo Apple computer with 4 GB 667 MHz DDR2 SDRAM. This time limit 

only provides a few seconds for a player to generate a plan per turn and is far too little 

time for a quality player to evolve, but sufficient to get interesting experimental results. 

Once a player exceeds 50,000 contemplated actions in a game, parameters are set to a 

random walk mode (i.e., ses = 1, srs = 0, scs = 0, sse = 1, sof = 1, and sre = 0), where a player 

has minimal search capability as used in the first round. 

In limiting the number of turns per game and contemplated actions per player, the 

search parameters are forced to compensate for these restrictions. Figure 7.22 illustrates 

three important consequences of restricting both turns in a game and contemplated 

actions per player. The first graph in Figure 7.22 shows the proportion of games per 

generation that failed to complete within 70 turns. In the first few rounds (one to five), 

the main reason the games did not complete is due to the players’ incompetence. For all 

remaining rounds, the intermittent game completion failures are due to players exceeding 

the 50,000 contemplated actions. The average contemplated actions for the game winners 

are shown in the second graph in Figure 7.22. This ceiling, shown as the red line in the 

second graph, changes competent players into incompetent ones due to instantiating the 

random walk search. Note that more games exceed 70 turns (graph one) when game 

winners exceed 50,000 contemplated actions (graph two). Graph three shows a different 

trend. Graph three shows that the average number of plans does not have to be directly 

related the average number of generated actions. In the first forty generations, the trends 

look similar, but after generation forty, the approach adjusts the parameters such that 
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fewer actions can give shorter plans. Thus, parameters are changed to give fewer actions 

per plan. The results in the next subsection give a reason for this trend. 

7.3.3.4 Learning Progression 

Learning progression can be measured in several ways. Here, we examine 

learning progression in three major areas compared across all rounds: (1) the average 

parameter sets; (2) the differences in parameter sets; and (3) player performance.  

 Figure 7.23. Progression of Search and Selection Parameters
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The average parameter sets for each round are shown in Figures 7.23 and 7.24. 

The blue dashed-lines indicate the beginning-game parameters, the black dot-dashed lines 

indicate middle-game parameters, and the red solid-lines indicate endgame parameters. 

Over the hundred generations, it is clear to see that the search and selection parameters 

shown in Figure 7.23 have not converged at all. This is a strong indication that the 50,000 

contemplated actions limitation is too small and that a hard change in search parameters 

to random walk make convergence of search and selection parameters difficult.  

 Figure 7.24. Progression of Reward Parameters
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On the other hand, the goal parameters shown in Figure 7.24 are still moving from 

round to round, but their changes are fewer, and many parameters show some 

consistency, such as overall strength, number of protected vs. protector territories, and 

forces on protector territories. Protected territories are territories that do not border any 

other player’s territories, and protector territories border another player’s territory. As 

shown in the difference in red, black and green lines, overall strength matters less and 

less as games progress. Contrarily, the number of protected per protector territories, and 

forces on protector territories are only important near the endgame and not important 

otherwise. 

 

The differences in parameters sets measured in normalized Euclidean distance are 

shown in Figure 7.25. A normalized Euclidean distance was calculated based on the 

Figure 7.25. Change in Parameters Based on Euclidean Distance
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range of parameters. Most parameters ranged from zero to one and did not require 

normalizing. However, six of the seven search parameters (ses, srs, scs, sse, sof, sre) were 

normalized by subtracting their corresponding allowed minimal value (1, 0, 0, 1, 1, 0) 

and dividing by their corresponding range (based on 50,000 action gaming constraint). 

For instance, the selections per generation parameter (sse) ranges from 1 to 7, thus the 

values are reduced by one, then divided by six. After normalization, the Euclidean 

distance for each parameter was determined in the following way. First, add the squared 

distance of every pair of parameters within the group of the top eight selected players. 

Then, take the square root of this sum and divide by the number of pairs (8 x 7 = 56).  

The four graphs shown in Figure 7.25 divide the distances into three groups: 

search, selection, and goal parameters, and the fourth graph shows the composite result. 

The blue dot-dashed lines in Figure 7.25 shows the distance among players within the 

same round, and the red solid-lines in Figure 7.25 shows the distance between that round 

and the last round (note that at generation 100, both red and blue lines meet). Thus, the 

blue dot-dashed line shows how different the players are in each game round, and the red 

solid-line indicates how much drift the parameters are undergoing across rounds.  

All four graphs in Figure 7.25 indicate that the blue dot-dashed lines are 

sufficiently noisy to show differences in players in a single round, indicating that the 

players are not converging to a single point. Also, the red solid-lines in all four graphs 

indicate that the player parameters are still moving from the original location, and thus 

not oscillating in the space. Also, the top-left graph in Figure 7.25 shows that the search 

parameters are not converging at all, and is a strong indication that the limiting of 50,000 
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contemplated actions is not working well. The top-right graph in Figure 7.25 shows that 

the selection parameters are also not converging well, and is probably influenced greatly 

by the same constraints. The red line in the lower-left graph in Figure 7.25 indicates that 

the goal parameters are converging reasonably well due to the decreased slope of the red 

line. In the lower-right graph in Figure 7.25, the overall convergence of the parameters is 

shown to be far from complete, thus another approach that avoids hard constraints needs 

to be studied further. Future considerations are described in Chapter 10: Discussions and 

Future Work. 

 

Player performance across all the rounds is shown in Figure 7.26. Since there can 

only be eight players in a game and there were 100 rounds of training, the eight players 

were selected from the best performers across sets of rounds. The first four rounds were 

not used, but all subsequent rounds were used in the following way. The best players for 
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each round in the bands 5 to 16, 17 to 28, 29 to 40, 41 to 52, 53 to 64, 65 to 76, 77 to 88, 

and 89 to 100 were used. Player one used the average parameter values for the first band 

(5 to 16), the second player used the average parameter values for the second band (17 to 

28), and so on for all eight players. These players played each other 256 times in random 

order and with a random player selected to start each game. The general trend shows an 

increase in performance, where the seventh player performed best overall. Note the 

decrease in performance in player four compared to player three due to the decrease in 

action selections allowed as shown in Figure 7.22 in generations 41 to 52.  
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7.3.3.5 Comparing Game-Phase Dependent Verses Fixed Strategies 

Mixed strategies are often used for variability in choosing actions over the course 

of a game [16] [17]. In the case of RISK, a game-phase dependent strategy is used, and 

refers to having different parameter values over the course of a game. Given that the 

players on average performed best in generations 77 to 88, as defined by player seven 

above, we have illustrated what the parameters of this player are over the course of a 

game. Figures 7.27 and 7.28 show all player parameters and how they change in 
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accordance with game phase (defined as players left in game). As shown in the figures, 

only a few parameters remain constant over the course of a game. 

 

To compare the benefit of having a beginning, middle and endgame strategy in 

comparison to having a single strategy throughout the game, a tournament of 128 games 

was run. Players 3, 5, 6, and 7 were used from the previous experiment and assigned as 

players 1, 3, 5, and 7, respectively. In addition, four other players were added, having a 

single strategy throughout the game. These players used average parameters of the 

players 3, 5, 6, and 7 described above. Thus, parameters for the beginning, middle and 

endgame were averaged and assigned to all those parameters. These additional four 

players were assigned as players 2, 4, 6, and 8, respectively. Figure 7.29 shows the results 

of the 128 game simulations. The blue bars indicate the players with game-phase 

dependent strategies and the cyan bars indicate the players with fixed strategies. As 
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expected, player seven did the best, but player one did surprisingly well. In all cases, the 

game-phase dependent strategies did far better than the fixed strategies, and overall the 

game-phase dependent strategies won two-thirds of all games. 

The text in Chapter 7 contains material previously presented in three publications: 

Lecture Notes in Computer Science: Applications of Evolutionary Computation, IEEE 

Transactions on Evolutionary Computation, and IEEE Congress on Evolutionary 

Computation. I was the primary researcher and author, and the coauthor directed, and/or 

supervised in the research, which forms the basis of the chapter. 
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Chapter 8 

Urban Search and Rescue Operation Application 

 
8.0 Abstract 

The problem of interest here is simulation of an urban search and rescue operation 

(US&RO). This chapter will describe the mission simulation, provide implementation 

details, and demonstrate results. The simulation’s architecture, constraints, variables, and 

parameters will be described in terms of the ADP&E goal-directed hierarchy introduced 

in Chapter 6. The implementation details are described in the nine-step design, build, and 

test (DB&T) strategy. Results are presented in three areas of value: plan fitness, planning 

cycle assessment, and planner utility. The hierarchy, DB&T, and value function 

definitions and details are described in Chapter 6. 

8.1 General Hierarchical Description 

As described in Chapter 6, the goal-directed hierarchy is composed of ten levels: 

(1) tournaments (Ω), (2) rounds or competitions (Θ), (3) games or missions (G), (4) 

players or planners (Ψ), (5) agents (Γ), (6) plans (P), (7) tasks (Τ), (8) actions (A), (9) 

outcomes (Y), and (10) observations (O). Just as the case of the RISK application 

described in Chapter 7, tournaments and rounds are only implemented after the US&RO 

application was fully built and tested for a single simulation. Thus, the order of the 

US&RO description is levels 3 through 10 first, followed by level 2, and finally level 1.  
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8.1.1 Missions or Games (G) 

Planning, executing and assessing an US&RO is best understood by describing 

the implemented example. The extent of the planning space is illustrated in Figure 8.1. 

The problem is the evacuation of a small city, approximately 4 km x 5 km. Within these 

20 square km, there are 20,000 stranded people, twenty agents of various types (boats, 

busses and helicopters) available, an unknown water level, randomly placed roadblocks, 

bases to drop off people, and building locations where people require rescue. More 

specifically, there are 3649 buildings having over 12,000 floor locations, 2135 bus stops, 

over 900 boat stops, survey and rescue helicopters that can stop at any building, four 

upstream boat bases, and a bus and helicopter base.  

Note that unlike RISK, the US&RO mission simulation is set up as cooperative 

with only one planner and no disruptive agents, such as looters or scavengers. Thus, there 

is only one player of this game (i.e., mission), and it is the planner, executor, and assessor 

all in one. Note also that the player directs many agents that have some degree of 

autonomy. The objective is simple and measurable: to get as many people as possible out 

alive. The model environment is partially observable. Many elements are unknown a 

priori, such as the water level, where people are, where injured are, where unsupplied 

people are, where roads are blocked, and what locations are traversable by water, road or 

only by air.  

The mission is made up of two major component models: (1) terrain 

interconnections, and (2) stranded people. The terrain is of an urban city model supplied 

by information within a Compact Terrain Data Base (CTDB). An approach was designed 
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and implemented that automatically generates a terrain interconnection model from a 

CTDB, described in Section 8.1.1.1. The stranded people are placed as described in 

Subsection 8.1.1.2. 

 

8.1.1.1 Terrain Model 

CTDB represents three area types in urban terrain: natural terrain, developed 

terrain and Multi-Elevation Structures (MES) [1]. Natural terrain can be soil (3D 

triangles), water (2D polygons), trees (2D points), and canopies (2D polygons). 

Developed terrain includes roads, railroads, and canals, which are all defined as 2D linear 

Figure 8.1. City Under Normal (No Flood) Conditions
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shapes. MES data includes buildings, monuments, and walls, which are typically defined 

as 2D polygons with height. More specific descriptions related to this US&RO 

application are given later in this section. 

For all CTDB data, urban terrain is gridded into square blocks (e.g., 256x256 

meter squares), which divides many two-dimensional, and three-dimensional shapes into 

separate parts. This presents a problem for reconstructing the data into gaming objects, 

such as keeping buildings together, and roads, rivers and lakes properly connected. Since 

our goal is not for human use, but for computer simulations and gaming, the visual 

aspects are less important than the object information. Because of these grid blocks, 

creating objects requires fusing fragmented shapes. Drawing and filling these shapes 

fuses them to create objects. After objects are created, they form a basis for determining 

waypoints and connectivity. 

The problem domain of interest here is parsing the CTDB into a discrete and 

compact format for gaming individual actions, while retaining the variability and 

continuity aspects of the terrain data. The variability is retained through creating 

waypoints at strategic locations, and continuity is retained through connecting the 

waypoints in a manner that reflects their relationship. Having only waypoints and 

connectivity does not restrict choices for the planning options of computer algorithms. 

A compact and computable representation is formulated through recomposing the 

CTDB into a network form, using waypoints and connections. The current CTDB form is 

represented as a virtual 3D world, which human players can navigate through with high 

visual acuity. For computer simulation purposes, there is no need to have a full 
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continuous and uniform representation; a tractable abstract representation is sufficient. 

Waypoints and connections provide a sufficient representation. Though the concept is 

simple, the real challenge is developing a useful model that takes into account many 

different possible features. For the example US&RO application, we are only concerned 

with these features: roads, rivers, buildings, open water and land areas, and terrain 

elevation. 

Roads and rivers are relatively simple to recompose, because they are given in 

CTDB as 2D linear segments with a corresponding width. Given the linear 

representation, every curve requires many segments, while straight runs may contain only 

one segment. Having both ends of every segment become waypoints shared with all 

connecting segments creates waypoints and connections. Connections are simply the 

segments, waypoints are points where the direction deviates or an intersection exists. This 

approach works in most cases, but it is important to make sure that all segment 

intersections are included, because many times they are not represented explicitly. In 

such cases an additional waypoint is inserted at each intersection automatically based on 

proximity of crossing paths.  

Rivers are a special case because they can be traveled by boat, but their banks can 

also be traveled by boat when they are flooded. Riverbank waypoints are generated in 

most cases by simply creating waypoints paralleling the river at a distance of half its 

width on both sides of the river. However, this does not work in the case of river 

intersections. These intersections are completed through adding the closest point between 

intersecting river segment that is beyond both rivers’ widths.  
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Waypoints and connections for buildings are implemented in three areas: interior, 

nearby exterior, and exiting the building. Given that many buildings are not single CTDB 

objects, but a combination of 3D volumes, merging is required. This is done using a 

technique of projecting all overlapping or connected volumes to the x-y plane (the 

ground) and then filling all internal pixels to determine the total footprint of the building 

object. Figure 8.2 illustrates this process.  

To start, a building 3D volume is chosen from a building volumes list (all 

building volumes), and all buildings sharing vertices with the chosen building volume are 

selected. All those selected are eliminated from the list of unprocessed building volumes. 

Choosing building volumes is iterated until there are no more shared vertices. After all 

volumes are selected, the largest distance among all pairs of vertices of the selected 

building volumes is computed, and a square image canvas with edge length twice that 

distance is generated. The edge-length is twice to avoid filling the image on the exterior 

side, which would invert the building image. The canvas grid is initially filled with all 

zeros and the building coordinates are normalized to ensure the building points can be 

placed in the middle of the canvas. In other words, the mass center of the volume is 

normalized to the middle of the canvas. The offsets are stored for recomputing the 

building edges once the building volumes are merged into a single building. Next, each 

building volume is drawn and filled on the canvas with value one. Next, all interior 

building vertices are filtered out through keeping only those volume vertices that intersect 

an outer pixel of value zero. Figure 8.2 shows the image of building volumes, where the 

single interior vertex is labeled as a ‘triangle’ and the exterior vertices are labeled as 

‘stars’ and ‘squares’. All ‘triangle’ coordinates are assumed as interior points and 
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removed. In Figure 8.2, the gray vertical and horizontal lines are gridlines passing 

through the building, giving four separate building volumes that must be merged to form 

a single building. 

Remaining vertices are now reconnected such that they follow the outer wall. This 

is accomplished through cycling all connecting vertex pairs from all volumes, and 

keeping those pairs that have both exterior vertices. For illustrative purposes, Figure 8.2 

shows all the vertex pairs by placing a ‘diamond’ on either side of the center connections. 

Those walls with a diamond outside of the wall are kept. The heavier shaded walls in 

Figure 8.2 represent the kept walls. 
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There are still some vertices that are in the middle of walls that can be eliminated 

without changing the outline of the building. Now that we have a complete perimeter of 

the building, the ‘middle of wall’ vertices can be eliminated through taking out all 

vertices that have the same projected angle from both sides. ‘Middle of wall’ vertices are 

represented as ‘stars’ in Figure 8.2 and are eliminated. 

We now have a building object with at least three connecting vertices, but often 

times more (i.e., Figure 8.2 ‘square’ symbol represents a sufficient set of perimeter 

vertices). This process is repeated from the first step until all building volumes within the 

CTDB are processed.  

For simplicity, there are only four exterior waypoints near each building, unless 

only three vertices define the entire building object. These near waypoints are chosen 

starting from the most outer vertices of the building by projecting them an additional two 

meters away from the building center. The perimeter vertices described above are used to 

determine these waypoints.  

First, the most outer vertices (corners) are chosen as follows: the first corner is the 

farthest (i.e., distance) from the center, the second corner is farthest from the first corner 

selected, the third corner is farthest from the first and second corners combined distance 

and the fourth corner is farthest from the combined first, second and third corners. In 

Figure 8.2, the chosen corners are those with an ‘x’ in the ‘square’. The nearby exterior 

building waypoints generated from these for extreme corners are shown as ‘circles’ in 

Figure 8.2. These waypoints are connected in such a way that they span the minimal 

distance, and thus, do not cross paths and form a close approximation to a path that 
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follows the circumference of the building. Some buildings are very near one another, thus 

near building waypoints from multiple buildings are clustered if they are less than three 

meters apart. In other words, these nearby waypoints from multiple buildings are 

combined as one, while retaining their previous connectivity. 

In a CTDB, buildings often come with floor plans, but for this US&RO 

application, we assume only two interior waypoints per floor, and two on the rooftop. 

One point represents an observable location, while the other represents a hidden location. 

All pairs of waypoints on each floor are connected. Connection between floors, exiting 

the building, and going to the roof are only accessed through the hidden waypoints. Both 

hidden and observable waypoints are placed near the center of each floor. 

Building exit connections provide access to the nearest road (or equivalent water 

waypoint) for US&RO evacuation purposes. These connections are found through taking 

each building corner waypoint and determining the road nearest to each, then selecting 

the shortest of these lengths to be the building sidewalk access. Buildings that share the 

same road waypoint are clustered together and considered as a single bus or boat stop. 

The stops are used in planning evacuations for each clustered set of buildings. 

 Open land and water area waypoints are necessary for regions where there are no 

roads or buildings. For simplicity, a hexagonal grid (75 meters edge length) of waypoints 

is projected on the 2D image of roads, water bodies, and buildings to provide a 

complimentary set of waypoints. All waypoints projected to be within fifteen meters of 

another existing waypoint, on a road, in a water body, or within a building are rejected. 

All other projected waypoints are kept as open area waypoints.  
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Connections to complete the model are implemented as follows. All waypoints, 

excluding interior building waypoints are connected using Delaunay triangles [2]. Next, 

all Delaunay connections are projected onto the same 2D image used above. All 

connections that cross over roads, rivers or buildings are rejected and the remaining 

connections are kept. All connections discussed earlier (roads, rivers, buildings, etc.) are 

added to this connection model, and redundant connections are removed. This completes 

the surface model connectivity.  

 Figure 8.3. City Map After a Hurricane or Tsunami Disaster
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Terrain elevation is also supplied within the CTDB and required in the model, 

because water level determines which surface waypoints can be traveled by land or by 

water. Figure 8.3 illustrates the city map with the highest flood level, and the one 

examined in Section 8.3: US&RO Results. In the example model, boats, busses and 

helicopters are used. Boats can traverse all waypoints below the waterline and busses can 

travel only road connections above the waterline. Connections to and from buildings 

adapt to the nearest floor not underwater. 

 

Helicopter paths require an air movement model. For simplicity, a sky waypoint is 

placed above each building at a constant elevation slightly above the tallest building 

height. Connections are made between each sky waypoint and to the building rooftop 

observable waypoint below. In addition, a hexagonal grid (100 meters edge length) of sky 

waypoints is added if the waypoint is not within fifteen meters of an existing sky 
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waypoint. All sky waypoints are connected with one another via Delaunay triangles, but 

this time all connections are kept. A helicopter base is added at the most strategic (i.e., as 

deemed by an expert) open area waypoint and connected to the nearest sky waypoint. 

Figure 8.4 illustrates the sky waypoint connections overlaid on the city map. The 

helicopter base is in the upper-left corner as shown in Figure 8.3. 

 

 

Figure 8.5a. City Water Routes 
Under Normal Conditions

Figure 8.5b. City Water Routes 
Under Maximum Flood Conditions

Figure 8.6a. City Road Routes 
Under Normal Conditions

Figure 8.6b. City Road Routes 
Under Maximum Flood Conditions
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Waypoint type is used to segment the simulation into a discrete choice model for 

multiple agents. Thus, agents of specific types are restricted to a particular set of 

waypoints, and paths. Further, agent choices are economized by clustering waypoints 

before preprocessing shortest paths. Experiments have shown that minimizing choices is 

important for efficiently computing the shortest paths for each waypoint type [2]. Figure 

8.5a and b illustrate two maps, the first showing the water connectivity under normal 

conditions and the second showing the water connectivity under maximum flooded 

conditions. Figure 8.6a and b illustrate two maps, the first showing the road connectivity 

under normal conditions and the second showing the road connectivity under maximum 

flooded conditions. To ensure that maximum connectivity is used for busses and boats 

cases, the shortest path algorithm assumes that roads are under normal conditions (Figure 

8.6a) and that waterways are under maximum flooded condition (Figure 8.5b).  

8.1.1.2 Stranded People 

The 20,000 stranded people are inside buildings, and do not move unless rescued. 

All people are randomly placed as follows: first, a random floor location is picked and 

one to ten individuals are placed in that location (average 5.5). Both selection processes 

are random using a uniform distribution [3]. This two-step process continues until all 

20,000 people are allocated. All floors have a visible and hidden location from outside 

view; thus some people can be seen from helicopters while some cannot. The current 

setting is that 25% of locations have people at observable waypoints within buildings. 

Note that stranded people are not placed on flooded floors of any building. 



230 
 

In addition, people are divided into three categories: supplied, unsupplied, and 

injured. The current settings are that half of the locations are supplied and half are not. 

Also, currently 5% of the locations have an injured individual. Thus, there are about 

10,000 supplied and 10,000 unsupplied individuals on average and about 180 injured 

individuals (20000/5.5 x 0.05). The times for survival of unsupplied and injured 

individuals are selected from the following density functions. For unsupplied, a natural 

lognormal distribution is used [3], with the mean (m) = 3.9 (exp(3.9) = 50 hours) and the 

standard deviation (sd) = 0.11 (providing a range of approximately 33 to 72 hours). For 

injured, a normal distribution is used [3], with the m = 16 (hours) and sd = 7 (providing a 

range of approximately 1 to 40 hours). Values calculated under zero hours for injured 

individuals are reset to one hour, thus giving the injured at least some minimal lifespan. 

Unsupplied and injured distributions are shown in Figure 8.7a and 8.7b, respectively. 
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8.1.2 Planners or Players (Ψ) 
The player is the centerpiece of the approach. The player has a set of control 

parameters that determine its nature for generating, executing, and assessing plans. For a 

single player cooperative game, as is the case here, the player is the planner and 

determines many aspects of the core planning cycle. Each action within a plan is chosen 

according to the player’s characteristics. For the problem here, the player’s characteristics 

are defined by parameters in four areas: (1) model update time, (2) expectation 

acceptance threshold for re-planning tradeoff, (3) number of each agent type, and (4) nine 

decision features described in Table 8.1. 

 

First, for partially observable environments, the model update is paramount, 

because it refreshes the virtual-state model to more closely resemble the true real-state 

model of the environment. This refresh comes from information collected by the sensor 

input of the agents. This refresh gives the planner the opportunity to better predict 
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outcomes of future actions. For the current application, this model update parameter was 

not adapted but set to a reasonable value. Specifically, every time a vehicle returned to 

base (about 20 minutes in real-world-model time), all agents were required to report all of 

their newly acquired sensor data. This assumption was necessary, because our 

experiments showed that not updating the virtual model frequently enough caused worse 

results than randomly searching with continual updates. This result is described in 

Section 8.3.2. 

Another important parameter for the player is the expectation acceptance 

threshold (rQ) (0 <= rQ <= 1) for meeting expectations. This expectation acceptance 

threshold trades time to plan against the desire to re-plan. This competition is based on 

whether a plan is meeting expectations as assessed in plan-assessment. When the 

expectation acceptance threshold is high, the tendency is to re-plan often; when 

expectation acceptance threshold is low, the tendency is to stick to the current plan and 

thus avoid the time for re-planning. More specifically, if the expectation acceptance 

threshold is set to one, then expectations must be met completely or the player will re-

plan. If the expectation acceptance threshold is set to zero, then the player will only re-

plan when absolutely necessary. Results from this tradeoff are described in Section 8.3.3. 

Third, the relative quantity of each agent type used to best solve a partially 

observable problem is unknown and therefore made adaptable. For the problem at hand, 

experiments have shown that providing an unrestricted number of agents will lead to 

minimal loss of life and therefore trivializes the problem. Therefore, as in the real-world, 

resources are limited, and in this particular case, only twenty agents are allowed. For the 
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US&RO problem, there are four vehicle types used: boats, busses, survey, and rescue 

helicopters. Thus, four parameters are used to indicate number of each vehicle type. 

Results from this tradeoff are also described in Section 8.3.3. 

Fourth, the nine decision features shown in Table 8.1 were used because these 

features are quickly calculable for each possible action, and appear relevant to choosing 

actions. Given that at each time step an agent has one of thousands of destinations (3649 

buildings) to choose from and plans may have lengths in the dozens of actions, a tree 

search method is impractical. Also, one does not want to restrict an agent to follow a 

deterministic rule set based on any specific feature or combination of features, because 

this severely limits the search space of possible choices. Thus, a new method was 

developed which does not restrict the search space. It combines a Monte Carlo (MC) 

method [4] for choosing actions and weighted Beta distributions (weighted BDs or 

WBDs) method [5] for representing decision features.  

For our purposes, MC represents taking a random choice from many possibilities, 

and the WBDs represent the density functions of actions from which to make those 

choices. A WBD required for each feature and agent type has three parameters: w, α, and 

β. The probability mass function of the WBD is as follows: 
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where α is the alpha parameter, β is the beta parameter, w is the weight parameter, 

x is a vector of feature values corresponding to all possible actions, and Γ is the Gamma 

function [5]. 
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From Table 8.1, there are 34 WBDs required (two vehicle types times eight 

features plus two vehicle types times one feature), and thus, 102 WBD parameters (three 

parameters for each WBD times 34 WBDs) for this US&RO problem. The three WBD 

parameters are weight, alpha and beta; all initial values are randomly chosen. For each 

agent, the weights are greater than or equal to zero and sum to one. The alpha and beta 

parameters are restricted to be greater than zero and provide a variety of possible 

distributions as shown in the results Section 8.3.3. Another reason WBDs are used is that 

they do not restrict the search space if the initial parameters are particularly set. For 

instance, if all WBDs have alpha and beta parameters set to {1, 1}, then the probability of 

selecting any action is equally likely at every time step, independent of the weightings. 

The process of using MC and WBD together is as follows. First, for each agent 

under consideration, a mass function is calculated for each feature type for all possible 

actions (Equation 8.1 without weight w). The mass function is a vector of length equal to 

the number of possible actions and each mass represents its particular influence in action 

selection. Before w can be applied, each mass function is normalized to sum to one to 

represent a probability mass function. Next, each mass function is multiplied by the 

corresponding weight (w) assigned to that agent and feature. Finally, all resulting mass 

functions corresponding to each agent are summed. This new mass function, which holds 

the accumulated influence of all features for each agent, is normalized and expressed as a 

distributed mass function (0, 1) to form a reference lookup table for each action. At this 

point the selection process begins. First, a random number is chosen from a uniform 

density (0, 1), and this random value chooses the action by looking up the corresponding 

action linked to that number in the distributed mass function table. Note that, the greater a 
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feature’s weight, the greater its influence, and the BD settings focus on influential feature 

values. 

In summary, the planner controls the planning with 107 parameters. There is an 

expectation acceptance threshold, four vehicle type parameters, and 102 WBD 

parameters. More specifically, since the boat and bus agents use eight of the nine 

features, there are 24 WBD parameters (8 weights, and 16 alphas and betas) for both boat 

and bus type vehicles. Since helicopters use all nine features, there are 27 WBD 

parameters (9 weights, 9 alpha, and 9 beta) for both survey and rescue helicopter type 

vehicles. Thus, the total number of parameters is 107 (1 + 4 + 24 + 24 + 27 + 27). 

8.1.3 Agents (Γ) 

Agents are the instruments of the plans. Agents contain various actuators and 

sensors. For the US&RO problem, the agents are vehicles used in the model 

environments. There are four types of vehicles used: boats, busses, and survey and rescue 

helicopters. The agents’ actuators and sensors are shown in Tables 8.2 and 8.3, 

respectively. These tables illustrate all the agent categories and their associated 

characteristics. Table 8.4 shows the agents’ temporal costs associated with each planned 

action. Each agent has a separate plan and each plan is defined to include for each chosen 

action: a time estimate, location, fuel level, passenger list, and speed. Agents are specific 

to the problem domain, so a more detailed description is in Section 8.2: Implementation 

Strategy. 

Planning has four types of agents at its disposal: boats, busses, rescue helicopters, 

and survey helicopters. All possible movement paths for vehicles, building access and 
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movement within buildings are pre-calculated. There are 31,115 movement locations 

called waypoints, and there are five types of waypoints used for movement: roads for 

busses, water for boats, sky for helicopters, building accesses for all vehicles, and floors 

within buildings. 

 

 

The connectivity of the model is assumed different for each vehicle type. Busses 

can travel on any road, but many roads are flooded and some are blocked (ten randomly 

placed roadblocks per simulation). Boat planning assumes the city is flooded at the 

highest stage (see Figure 8.3 or 8.5b), where all low-lying areas can be traversed. In the 

case used, boats can traverse to all low-lying areas. Helicopters paths are unaffected by 
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water level. Helicopters are required because some places cannot be reached by bus or 

boat. Each vehicle also has many other particular attributes. Tables 8.1 to 8.4 define all 

the relevant attributes of the vehicles (agents). 

 

All agents require time to execute tasks, and Table 8.4 shows all timed tasks 

except for movement times, which are dependent on speed and distance traveled (see 

Table 8.2). Note that in Table 8.4 helicopters hovering over buildings require more time 

to search buildings than busses or boats, and busses are by far the quickest. Note also that 

busses evacuate the buildings the fastest per person, because they do not have to deal 

with water or hovering in midair. Busses are the only vehicle type that experience 
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problems with roadblocks and dead-ends due to water level. Busses thus have additional 

time penalties associated with making plans to retrace paths back to previously 

traversable areas. Only helicopters drop off supplies.  

 

Tables 8.2 and 8.3 describe the agents’ actuators and sensors, respectively. Note 

the difference in purpose between the two helicopter types and the speed differences 

among all types of vehicles. Busses have the highest capacity and range, while survey 

helicopters have visual capabilities to spot people and check land or water movement 

access. Rescue helicopters have limited visual abilities because the increased speed 

reduces the probability of seeing something. Survey and rescue helicopters have different 

probability in seeing people or passageways, and it is based on speed as shown in Figure 

8.8. Based on the helicopters speeds 45 km/hr and 100 km/hr, the survey and rescue 

helicopters can see waypoints below with the probability of 0.66 and 0.25, respectively. 
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Survey helicopters primarily survey for open movement paths and drop off supplies; they 

do not search or evacuate buildings, because this is considered too time consuming for 

this type of helicopter. 

8.1.4 Plans (P) 

Unlike in RISK, plan search for the US&RO problem is limited in depth, because 

from experience, long-term plans are often discarded due to new observations in the 

environment. Long plans cannot keep up with these observations, so applying a cost to 

the planning activity limits re-planning to a single vehicle roundtrip (as shown in Section 

8.3.2). Also, unlike the RISK application, US&RO has many simultaneous and time-

dependent actions, which need to be managed to ensure that many planning and re-

planning strategies for many agents can be contemplated without scheduling conflicts. 

For instance, the planner does not plan to send multiple vehicles to the same location at 

the same time. Thus, planning, execution, and assessment occur over multiple agents 

simultaneously. More specifically, throughout the planning cycle, the next action to be 

chosen is for the vehicle that the nearest in time completed action.  

For US&RO, plans are considered as interdependent sequences of actions with 

one sequence per agent. Due to computational constraints and given only partial state 

information, searching multiple plans as in RISK is infeasible. Thus, plans are generated 

as described in Section 8.1.2, where actions are chosen based on the WBD parameter 

sets. These parameters are learned as described in Sections 8.1.9 and 8.1.10 and results 

are shown in Section 8.3.3. 
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8.1.5 Tasks (Τ) 

The US&RO goal is to evacuate as many people as possible while minimizing 

casualties. Thus, a completed task occurs every time people are rescued from a building. 

The degree of completing a task is graded on how well the projected or anticipated rescue 

matches the real rescue operation. Points are assigned to each person rescued, and 

observing if the point total is met to some degree of acceptance is considered as meeting 

expectations. 

Since there are injured, unsupplied, and supplied individuals, where the injured or 

unsupplied could die at anytime (Figure 8.7a and b), it is more important to evacuate 

injured and unsupplied first. Also, injured people tend to need more immediate attention 

(compare Figures 8.7a to 8.7b), so it is even more important to get injured people out of 

the buildings sooner. Therefore, a point system was created that gives three points per 

injured person, two points per unsupplied person, one point per supplied person and zero 

points per dead person (casualty) retrieved. A threshold (an acceptable prediction error in 

meeting expectations) of what percentage of points is acceptable before re-planning is 

shown in Section 8.3.3. 

8.1.6 Actions (A) 

For US&RO application, multiple agents can travel by roads, waterways, and sky 

to survey surface routes, spot or supply people within buildings, and search and rescue 

people from buildings. Each agent has: a purpose, a travel speed, a set of movement 

waypoints, a range, a passenger capacity, and can possibly drop supplies. Nominal 

parameter values are shown in Table 8.2, but travel speed, range, capacity, and number of 
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supplies are modifiable. Each vehicle is an agent, and each agent type: boats, busses, and 

survey and rescue helicopters have different options. The options select a set of actions, 

which formulate a plan, and each vehicle is given its own plan. The number of vehicles 

chosen is arbitrary, but for our simulation, twenty total vehicles of various types were 

chosen. 

 

Actions for planning are based on the functional diagram shown in Figure 8.9. 

Available actions depend on the vehicle type and state of the vehicle. Boats and busses 

can choose any boat or bus stop as a destination, respectively. The three yellow blocks in 

the diagram indicate where the variable choices are decided for all vehicle types. Boat 

and bus stops may serve multiple buildings, thus plans for agents need to also select 

which buildings at each stop to visit. It is assumed that a boat or bus does not leave a stop 
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until they are either full of passengers, or all buildings at that stop have been searched. 

Rescue helicopters can choose any specific building for search and rescue, and they drop 

a single supply package when they search the first building that has people. Survey 

helicopters survey roads, and spot or supply people within buildings. All vehicles return 

to base when their fuel time is spent, or the vehicle is full of passengers (see Table 8.2).  

As actions are taken, the environment responds with time penalties, which are 

determined by travel speed shown in Table 8.2, or other time delays as shown in Table 

8.4. Plans are made based on real known observation models combined with 

approximated (unobserved) models of the environment. This was described more 

thoroughly in Section 8.1.8: Observations. Each vehicle’s plan is considered complete 

when a return to base is included in the plan. Planning beyond this point has proven 

fruitless, because the real models differed greatly from observed models for long-term 

plans. Results on model update are shown in Sections 8.3.2. 

8.1.7 Outcomes (Y) 

There are five types of outcomes in the ADP&E application of US&RO: (1) 

people rescued including type (i.e., injured, etc.); (2) buildings searched; (3) buildings 

evacuated; (4) the time a vehicle reaches a planned destination; and (5) the time a vehicle 

is predicted to reach base for a new assignment. For buildings that have been reached via 

any vehicle except supply helicopters, the building is searched and the vehicle is loaded 

with as many passengers as possible. The non-evacuated people are now known for the 

next visit. The number of people rescued and type is only known after a building is 

searched, thus an approximated number of people are the expected outcome (based on 
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those missing from the 20,000) so that a building would be visited in the first place with 

some positive expectation. A time a vehicle is predicted to reach a destination depends on 

two major factors: route blockage in the bus case (via water or downed tree), and how 

much time did the previous action take differ from what was expected. For instance, if 

more or less passengers were acquired then more or less time was taken, respectively. 

Thus, outcomes for US&RO are considered straightforward for areas where the 

environment has been observed, but for unobserved portions of the environment, the 

outcomes can vary a great deal and propagate their error to future actions. 

8.1.8 Observations (O) 

Model observations include roads, waterways, building content (i.e., people), and 

total people rescued including casualties. Road models determine which roads are open to 

bus travel. Water models determine which waterways are open for boat travel. Buildings 

include models that contain people of four types: injured, unsupplied, supplied, and dead. 

There are two models for each observation type. One is the real or physical state, 

and the other is the assumed or known state. The known state models are initialized to the 

assumed values. The road model assumes all roads are open, and the water model 

assumes all low-lying areas are flooded and traversable by boat. The building observed 

model assumes the person quantities are unknown for every floor of every building until 

observed. As they are found, injured and unsupplied people are on a time clock and are 

considered casualties if not reached in time.  

The known model learns real model information by tactile and visual sensing. 

Tactile sensing of travel routes is accomplished with boats and busses simply by 
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traversing each connection and visiting each waypoint. As boats and busses follow paths, 

they discover whether they are open. Helicopters also can view surface travel routes. 

Helicopters flying over surface waypoints can see if they are water or land, and slower 

helicopters see more as shown in Figure 8.8. For our application, survey helicopters 

travel much slower and have a better chance (i.e., probability) of seeing waypoint 

conditions below than higher speed rescue helicopters. 

Tactile and visual sensing is also implemented for observing people. People are 

assumed to not travel without being rescued. The only visual sensing from afar is by 

helicopters. People can be spotted, but their type cannot be identified, such as injured, 

unsupplied, etc. All tactile observations of people are done through searching buildings. 

Boats, busses, and rescue helicopters visiting a building will search it on the first visit. 

This will identify each building floor contents, and as many people as possible will be 

evacuated in the process. Travel times within buildings, and other time costs are shown in 

Table 8.4. Rescue capacities and other possible actions for each vehicle type are 

identified in Table 8.2. In summary, models have incomplete information a priori, which 

includes blocks in roads and water, and building content. Each model has either a real or 

an observed copy of this information. Depending on the planning phase, the observed or 

real copy is used. Plan-generation and -assessment use the observed copy stored within 

the planning-model, and plan-execution uses the real copy stored within the real-world 

model. 
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8.1.9 Rounds or Competitions (Θ) 

The rounds tier level is used to compare the accumulated results from all planners 

for each generation of tournament play. For the US&RO application, each generation or 

round is a sixty game competition with twenty players. Each game played uses a different 

randomly generated environment. Thus, each player plays out multiple games to 

determine its general effectiveness for different partially observable environments. Each 

player plays the game three times. The score for each player is the worst case, which is 

the maximum number of casualties of the three games. The players’ planning capabilities 

are adapted using the following handcrafted GA: 

• Top 4 performers return for next generation 

• Next 4, mutate decision feature weights, vehicle number, and expectation 
acceptance threshold of top 4 

• Next 4, mutate the BD parameters of top 4 

• Next 4, crossover decision feature weights, vehicle number, and 
expectation acceptance threshold 

• Next 4, crossover the BD parameters 

For each top player selected, the weights, expectation acceptance threshold, and 

vehicle number are mutated independently. Each weight is adjusted by adding a random 

variable selected from a normal distribution with zero mean and standard deviation 0.2. 

The weight is adjusted not to be negative (shifted up to zero) or exceed one (shifted down 

to one). The weights are then renormalized to sum to one.  

The expectation acceptance threshold for each top player selected has a 50% 

probability of being changed. If selected to change, it is adjusted by adding a value 

selected from a normal distribution with mean zero and standard deviation 0.05 and the 

result is readjusted not to be negative or exceed one. Each number-of-vehicle parameter 
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is also adjusted with a 50% probability. Each vehicle type has the probability of 

increasing or decreasing provided the number is greater than zero for busses, boats, and 

survey helicopters, and one for rescue helicopters. There needs to be at least one rescue 

helicopter to ensure that the simulation finishes, because rescue helicopters are the only 

vehicle that can reach every building and pick up all stranded people. The sum of all 

vehicle types is equal to twenty, so the change in vehicle number is normalized to match 

twenty total vehicles. 

The mutation of the BD parameters is a special case, because the values must only 

be greater than zero. Therefore, a lognormal density function is used to pick the 

adjustment in the alpha and beta parameters. The mean of the density function chosen is 

two divided by the generation number and the standard deviation is the square root of this 

calculated mean. This lognormal density produces an adjustment in the BD parameters to 

be very large at first and decrease with each subsequent generation. Results showed this 

to be effective in providing enough variability in the BD densities. 

For all crossovers, a player is picked based on how well it did with respect to 

other players. Players with better than average performance are put into a pool with 

probability of selection proportional to its value above the average. Each of the top 4 

performers (top players) is combined with a randomly selected player from the pool. The 

new players are initially a copy of the top four players. Crossover is performed through 

choosing each parameter of these players and giving a 50% chance of acquiring a new 

parameter value from the other randomly selected player.  
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8.1.10 Tournaments (Ω) 

A tournament runs many rounds until the parameters show a satisfactory level of 

convergence, or the capability of the planner seems to show little progress in 

improvement. Section 8.3.3 Tournament Planner Training shows measures of efficacy of 

a planner, and the measures of convergence of all planner parameters. 

8.1.11 Summary 

In summary, the ADP&E framework was built to scale efficiently. The core 

planning cycle is not concerned with the agent or any other factors above it in the 

hierarchy. This allows a separation among the tiers, so that plans can be generated in the 

same way for all agents. In other words, the core cycle is only concerned with processing 

actions and is not concerned with the tiers above. Agents in the same way are not 

concerned with the player giving the orders, only that the orders were given and need to 

be carried out. Players have control parameters that make them versatile and adaptive. 

Games are the completion of a large complex task, and it is imperative that the game is 

set up to always finish (having at least one rescue helicopter). Rounds are a strategy level 

above the game that compares game outcomes of multiple planners to improve the utility 

of planner parameters in generating plans, executing actions, updating models, and 

reassessing outcomes. A tournament captures the set of rounds and measures the 

effectiveness of converging on planners that reach an acceptable level of performance. 

8.2 Implementation Strategy 

The implementation strategy follows the nine-step DBT approach described in 

Chapter 6. The approach for the simulation of an US&RO is divided into these nine 
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incremental steps: (1) execute arbitrary actions; (2) update planning-model; (3) 

choose and execute single actions; (4) generate arbitrary multi-action plans; (5) 

generate and choose plans; (6) assess plans; (7) coordinate core planning cycle for a 

single agent’s operation; (8) coordinate multiple agents to complete a single game or 

mission evacuation; and (9) implement a complete tournament as a meta-learning 

strategy for training planners to autonomously improve performance. 

8.2.1 Execute Arbitrary Actions 

Execute arbitrary actions implementation requires four building blocks: 

simulation or game model, simulation state, planning state, and action choices as shown 

in Figure 6.7 in Chapter 6. For the simulation of an US&RO, the simulation model is a 

function of the terrain model, waypoint connectivity, agents or vehicles available, and 

simulation constraints shown in Tables 8.1 to 8.4. The simulation state is a function of the 

agents and the environment. State variables include: (1) agents’ location, passengers, 

food supplies, fuel available, and acquired observations of the environment, (2) which 

buildings have been searched and/or evacuated, which roads and waterways are available, 

and where have people been found that are injured, unsupplied, and supplied. Every agent 

is somewhere in the functional diagram shown in Figure 8.9. As shown in Figure 8.9, 

each agent is a function of their current state.  

Before discussing how random actions are chosen, very fast planning simulation 

is enabled by pre-computing all shortest paths for every pair of destination waypoints for 

boats, busses, and helicopters. This enables a quick lookup for each action chosen so that 

the simulation can run much faster than real time. Boat and bus paths can also be 
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computed for different water levels as well, but for the example experiment only one 

water level was used. For simplicity, the positions of boat and bus stops are the same, 

whether they are above or below the waterline. Each vehicle requires a base to drop off 

rescued people, so boat bases are put at the highest point of each river, a bus base is 

placed at a high elevation road waypoint, and a helicopter base is placed as described 

earlier (Figure 8.3). 

Preprocessing for shortest paths is done for all road waypoints for busses, all 

water waypoints for boats, and all sky waypoints for helicopters [6]. This produces two 

matrices for each domain: a path matrix which indicates the link one must take to go from 

any waypoint to another; and a distance matrix which indicates the distance between 

every pair of waypoints. The number of matrix lookups for a trip is the number of 

waypoints traversed on a path between the starting and ending waypoints. 

In addition to preprocessing shortest path, line-of-sight for helicopters is also 

preprocessed. Line-of-sight for boats and busses are not used here, because they are 

designed to rely heavily on tactile (i.e., information at current waypoint) sensors. 

Helicopters, on the other hand are not in direct contact with roads, water, or buildings, 

thus, they require a line-of-sight mapping to each. For simplicity, line-of-sight can only 

observe nearby waypoints, and is further restricted based on speed of the helicopter as 

described in Section 8.1.3. Flying over roads and water, a helicopter can verify if the 

surface is available for boats or busses. Flying over buildings, a helicopter passing slowly 

enough, can verify if individuals are in the buildings. The probability of spotting people 

is inversely proportional to the helicopter speed as shown in Figure 8.8. 
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As shown in Figure 6.7, the building blocks require four functional interactions 

for executing random actions: (2.1) check actions are executable (i.e., P' = PΞ(PZ, γ, Mψ, 

XP)); (2.2) execute actions (i.e., {A1, P'} = AΞ(P', t)); (2.3) realize outcomes (i.e., Y' = 

YR(A1, γ, MΞ, XΞ)); and (2.4) sense response (i.e., O' = OΞ(Y', γ, MΞ, XΞ)). The four 

functions here are tailored for the simulation of an US&RO and described in detail 

below.  

The check actions are executable function requires four inputs: (1) the selected 

plans (PZ); (2) the corresponding agent under consideration (γ); (3) the planning-model of 

the current planner (MΨ); and (4) the current state of the corresponding plan (XP). In the 

execute arbitrary actions implementation, the selected plan is a single action for each 

agent as generated from the functional block diagram shown in Figure 8.9. As a plan is 

executed, each next agent under consideration depends on the time criteria described in 

Section 8.1.6: Actions. In the execute arbitrary actions implementation, the planning 

model is considered equivalent to the real-world model, thus the entire model is assumed 

fully observable for this exercise. This check actions are executable function outputs a 

single-action plan (P') for each agent, which demonstrates and tests that the rules of the 

game are properly implemented.  

The execute actions function requires two inputs: (1) plan-remainder (P' described 

above), and (2) time (t). Each action for all agents is executed in time order depending on 

the calculated time delays using Tables 8.2 and 8.4. For execute actions function, the 

plan-remainder is null. This function outputs two separate variables, the first action (A1) 

and the new plan-remainder (P'). The execute actions function is the same as the process 
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3.1 shown in Table 6.5, check plans can be assessed function. After plans are sequenced 

together, the plan-remainder will be adapted as described for process 3.1 described later. 

The realize outcomes function plays out a single action per time step in the real-

world simulation of an US&RO. This function uses four already described variables: (1) 

first time-ordered actions (A1); (2) corresponding agent under consideration (γ); (3) the 

real-world or environmental model (MΞ); and (4) the current state of the environment 

(XΞ). This function outputs realized outcomes (Y'), which are the traveling of agents, 

searching and rescuing of people out of buildings, and acquisition of knowledge of 

pathways and people locations. 

The sense response function observes each action’s outcome and modifies the 

current state to match this observation. This function uses four already described 

variables: (1) realized outcomes (Y'); (2) the corresponding agent under consideration (γ); 

(3) the real-world or environmental model (MΞ described above); and (4) the current state 

of the environment (XΞ described above). This function outputs realized observations 

(O'), which are a one to one mapping with all realized outcomes (Y'). 

8.2.2 Update Planning-Model 

In the update-planning model implementation, the automated planner becomes 

more aware of its surroundings, and thus can better plan agent activity to take into 

account this new acquired knowledge. For the US&RO application, the real-world model 

is only partially observable, thus updating the planning-model is an important part of 

implementing an ADP&E framework. The model changes occur in both the pathways to 
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the buildings (water or road) and the building content (how many people are there and of 

what type).   

Updating the planning-model uses the feedback state function (2.5: XU). This 

function uses three input variables: (1) a set of agents under consideration for planning 

(Γ); (2) the observations (O described above); and (3) the task update coefficient (τU). 

The set of agents are the vehicles available to the planner. The agents’ locations, 

passengers, fuel capacity, and acquired knowledge are modified based on realized 

observations. The task update coefficient is a single completion of a roundtrip from base 

to base for each vehicle. This gives the planner the opportunity to change their plan for 

any of the agents based on all the newly acquired knowledge from all agents. In other 

words, all agents are required to report their findings each time any agent reaches base. 

The output of this function is a new state representation for the internal planning-model 

(i.e., Xψ = XU(Γ, O', tU)). All new plans will use this state as a starting point for 

generating new plans. 

8.2.3 Choose and Execute Single Actions 

Choose and execute single actions implementation of the simulation of an 

US&RO requires the final building block, the value function (V), as shown in Figure 

6.10. The value function includes all control parameters of a planner. In choosing and 

executing actions, only a small portion of these parameters is introduced. These 

parameters are those used in selecting individual actions. The choosing of actions for the 

simulation of an US&RO is done as described in Section 8.1.6: Actions. Selecting 

amongst all the possible choices available is based on the functional diagram (Figure 8.9) 
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and current state of each agent. This functional diagram is used as the determine action 

choices function based on the current state (i.e., 1.2: A = IA(γ, MΨ, XP)). Select actions 

function is done using a Monte Carlo method (i.e., 1.3: AZ = ZA(Γ, A, H, R, CA, t)). For 

the simulation of an US&RO, action selection requires information on all of the 

variables: agents (Γ), action choices (A), selected features (H), each agent’s available 

resources (R), each action’s temporal costs (CA), and time (t). More specifically, choosing 

which agent to choose an action for requires previous action temporal costs, time delays, 

and resources available. Choosing a particular destination for the selected agent requires 

the selected features (as described in Section 8.1.2 using WBDs) and action choices 

available. This implementation tests the coordination of using plan-generation with plan-

execution. 

8.2.4 Generate Arbitrary Multi-Action Plans 

Generate arbitrary multi-action plans implementation for the simulation of an 

US&RO is equivalent to generating multiple actions for each agent until a plan for each 

is complete. A completed plan is one which has an agent return to base based on either 

dropping off all supplies, being filled with passengers, or running low on fuel. Each 

action is chosen as described in section 8.1.6. However, the plans are generated using the 

planning-model instead of the real-world model. Many model features in the planning-

model are unknown, but their state values are predicted based on the process described in 

Section 8.1.8: Observations. These model features are required for processing the 

interactions of model and state for each action. The interaction of model and state process 



254 
 

has four sub-process functions: (1.4.1) predict outcomes, (1.4.2) select outcomes, (1.4.3) 

observe state changes, and (1.4.4) update plan’s model state as shown in Table 6.5.  

For the simulation of an US&RO, the predict outcomes function (i.e., Y = KY(AZ, 

γ, MΨ, XP)) uses the selected action (AZ) described above and calculates the outcomes (Y) 

based on using the planning-model state and information shown in Tables 8.1 to 8.4. The 

select outcomes function (i.e., YZ = ZY(Y, rY)) is not required for the US&RO application, 

because there is a one-to-one mapping of outcomes to actions. The observe state changes 

function (i.e., O = OX(YZ, γ, MΨ, XP)) uses the selected outcome (YZ) as the observable 

state transition (O) for each action. Finally, the update plan’s model state (i.e., XP = 

XU(Γ, O, τU)) uses the observations (O) to update the planning-model state (XP) for each 

action chosen within a plan. The task update coefficient (τU) is the completion of a 

roundtrip for each vehicle agent. The task update coefficient is not the actual number of 

completed building visits, because that number for each vehicle is dependent on 

passengers found, traversable pathways, and fuel capacity. The tradeoffs in task update 

coefficient are discussed further in Subsection 8.3.2: Planning Cycle. 

8.2.5 Generate and Choose Plans 

Generate and choose plans implementation uses the full capacity of plan-

generation (processes 1.1 – 1.5 described in Sections 8.2.3 and 8.2.4) for a single planner 

choosing plans for multiple agents simultaneously. More specifically, generate and 

choose plans requires the entire plan-generation processes: (1.1) a search and select 

plans function, (1.2), (1.3), (1.4), and (1.5) an evaluate plan fitness function. The search 

and select plans function includes the use of fitness to choose plans, and a forecast 
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expectations function to measure the completed tasks for each plan. The evaluate plan 

fitness function includes SME in choosing the features considered important to planning. 

Forecasted expectations are already described in Section 8.1.5: Tasks. 

Unlike RISK, plans are not searched but each action is chosen based on current 

perceived environmental features as shown in Table 8.1. Table 8.1 shows the list of 

features pertinent to planning (one to nine) and their applicability in making each 

planning decision. Note that all decisions involve going to a particular stop or building. 

To simplify the experiment, all decisions to go back to base are automated: if a vehicle is 

full of passengers or low on fuel, the vehicle returns to base, irrespective of planned 

activity. Boats and busses have features that determine which stop or building to go to, 

because each boat or bus stop may have multiple buildings at that location (i.e., 1 to 5). 

Thus, the planner must first decide which stop the bus or boat should go to, and then 

decide in which order to visit each building at that stop, using the same decision features. 

Depending on their nature, the planner’s decision features shown in Table 8.1 are in four 

different formats discussed below.  

First, decision features one, two and three are measurements of distance. Thus 

these decision features have a range of values (i.e., zero to 6500 meters). “Action 

Distance” is for a particular leg of the trip, and “Nearest Vehicle Distance” pertains only 

to same type vehicles.  

Second, since many stops and buildings are unsearched and have varying numbers 

of people left behind within a building once searched, decision features four, five, and six 

are multi-valued. Specifically, for unsearched buildings, the smallest value is used and 
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for searched buildings the range of values used is distributed as log10(PLB+1), where 

PLB is the number of people left behind. Feature seven is also multi-valued. For feature 

seven, all stops and building locations are assigned zero unless people are spotted. For 

instance, if a helicopter spots a person at a building, then the value assigned to that 

building is one. However, for bus and boat stops a one is not necessarily assigned. For a 

stop, a fraction is assigned which represents the number of buildings spotted with people 

at that stop over total buildings at that stop.  

For feature eight, survival time is the projected amount of time available for 

unsupplied or injured people before they become casualties. Thus, an estimated time is 

given for all stops and buildings, and then, as people are discovered, their true lifespan 

time is used to update the feature. It is presumed that all unsupplied and injured people 

will become casualties within 75 hours (described above), thus 75 hours is assumed for 

all unsearched locations. This feature value changes with time. People not retrieved in 

time will have a negative lifespan. Thus, they will be dead if their building was 

previously searched (thus their survival time is known), and presumed dead for an 

unsearched building. Buildings where supplies are dropped add 48 hours to the lifespan 

for unsupplied people in those buildings. Injured people must be rescued to survive, 

because supplies do not extend their lifetime. 

 Fourth, feature nine is a simple binary value. This feature is initially valued zero 

for all buildings. If a boat or bus has searched a building, then the value for that building 

is set to one, otherwise the value remains zero. 
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All features are normalized to be between zero and one for later use. For decision 

features one, two and three, the largest diagonal distance across the city is used to 

normalize the decision features (6500 meters). Subtracting their minimum value and 

dividing by their range normalizes all feature values. For example, for feature eight, all 

values are kept between -100 and 100, thus, 100 is added and the result is divided by 200. 

The number of vehicles used is fixed per game at twenty. The number of vehicles 

of each type is left to the planner with the restriction that a minimum of one rescue 

helicopter is in the environment at all times to ensure that the game will run to 

completion. One complete game run is the evacuation of all buildings and a return of all 

vehicles to their bases. 

8.2.6 Assess Plans 

Assess plans implementation is the DB&T of the plan-assessment phase. 

Planning without assessment provides no feedback on the value of a planner. In other 

words, a planner’s decisions are only as good as real results indicate, which the assessor 

takes into account. Three of the four processes are already complete as described in 

Subsection 6.2.3, indicating that processes 3.1, 3.2, and 3.3 are duplicates of processes 

2.1, 2.2, and 4.1, with minor modifications, respectively. At this point, the fourth and 

only process not to be implemented is process 3.4, the assess expectations function. This 

function has three sub-processes identified in Table 6.4 (3.4.1-3.4.3). The first of these 

three processes is predict new expectations function (3.4.1: KQ). This function operates 

the same as the forecast expectations function of plan-generation (1.3: KQ) described 

earlier.  
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The second of the three sub-processes is the compare expectations function 

(3.4.2: EQ). As described above, expectations are a positive points value based on 

completed building visits (people rescued). If original expectations multiplied by 

expectation acceptance threshold (rQ) is greater than or equal to the new expectations 

(i.e., Q • rQ ≥ Q"), then the compare expectations function outputs the new expectations, 

otherwise the output is set to zero (i.e., Q = EQ(Q, Q", rQ)). As in RISK, the third and 

final sub-process of assess expectations (3.4) is the initiate re-planning function (3.4.3: P 

= IR(P", Q)). The new plans are equal to the plan-remainder if the expectations are greater 

than zero (Q > 0); otherwise, the plans are reset to null. This operates the same as in 

RISK, except that expectations here are a point system and for RISK, it is the predicted 

number of conquered territories. 

8.2.7 Core Planning Cycle 

Planning without execution and assessment provides no feedback on the value of 

a planner. In other words, a planner’s decisions are only as good as the real results 

indicate. To incorporate execution and assessment in the planning process, the model was 

expanded into three modular processes that handle planning differently. Figure 6.6 

illustrates these cyclical processes. The core planning cycle implementation is the 

coordination of three modular processes plan-generation, plan-execution, and plan-

assessment. Plans, models and expectations are objects shared within the planning cycle. 

Plan-generation contains the interface to the planner, where the user can choose amongst 

the available parameters to generate plans. Plan-execution and plan-assessment are 

implemented explicitly and interdependent of the planner. Each module contains its own 
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plans, models and/or expectations, and each module shares two of the three objects with 

one another as described in Figure 6.6. All of three pieces have been implemented at this 

point. The build and test challenge here is to share and pass the plans, model updates and 

expectations within the cycle.  

8.2.8 A Single Game or Mission 

A single game or mission simulation is not considered complete until all 

buildings are cleared in the real ‘building content’ models and all 20,000 stranded people 

are delivered to bases (Figure 8.3). To ensure all buildings can be searched and cleared, at 

least one rescue helicopter is used to rescue people from land islands created by the 

flooding, where boats and busses cannot reach. Also, the observation models are updated 

frequently (here about every 20 minutes real-world time), so that resources are not sent to 

same buildings again and again. Lastly, busses can be trapped in the environment, 

because shortest path return routes are flooded in the real model. In this case, busses are 

automatically planned to retrace steps back to base when full of passengers or low on 

fuel. When properly implemented, the build and test of these additional features make 

sure that each simulation runs to completion autonomously.  

8.2.9 A Complete Tournament 

Implementing a complete tournament requires first implementing tournament 

rounds, such as described in Section 8.1.9. This methodology was handcrafted to fit the 

problem. Many other approaches could be considered, however Section 8.3.3 shows that 

this approach can learn a good ADP&E strategy for an US&RO mission application. 
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Chapter 10: Discussion and Future Work will discuss other possible methods for solving 

similar problems. 

8.3 US&RO Results 

Results are shown in three areas: (1) plan-generation, (2) the integration of plan-

execution and plan-evaluation into a planning cycle, and (3) the complete orchestration of 

tournament play for the training of US&RO planners. The results are in chronological 

order of development, and built hierarchically from the bottom up. First, plan-generation 

results will concentrate on the modeling and simulation tradeoffs in choosing actions for 

plans. Second, the integration of the planning cycle will demonstrate the tradeoff of the 

cost of planning with the need to update the planning model with new observations and 

possibly re-plan. Finally, training of US&RO planners will demonstrate an approach for 

improving planners through an autonomous offline tournament competition. Sections 

8.3.1, 8.3.2 and 8.3.3 will describe the results for plan-generation, planning-cycle, and 

tournament play, respectively. 

8.3.1 Plan-Generation 

There are four main features described below that went into implementing the 

US&RO model. The best way to show the impact of considering these features is through 

example results. For simplicity, this example assumes there are no unsupplied or injured 

present in the city model and all people are supplied. Each feature is exemplified below 

by showing results that pertain to that feature. Results are based on playing out sixty 

games using a planner that picks random actions for each plan. If an agent plan 
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encounters conditions that prevent its completion, a random, feasible, extension to the 

plan is provided.  

 

8.3.1.1 Feature One: Compact and Computable  

To better understand the order of magnitude of this US&RO problem, Figure 8.3 

shows a top-down picture of the terrain model used. The city is approximately 4 km x 5 

km. Normally, processing and computation is done over the terrain mapped in Figure 8.3, 

instead of the waypoints and connections derived from the CTDB data and illustrated in 

Figures 8.4, 8.5 and 8.6. Using waypoints and connections reduces the complexity of the 

space substantially by eliminating the waste of computing over every cubic meter of 

ground, water, and airspace, and instead, computing action paths based on connected 

waypoint types. Within these 20 square km, there are 20,000 stranded people, twenty 

agents of various types, an initially unknown water level, roadblocks, building locations 

where people require rescue, and bases to drop off people.  Specifically, there are 3649 

buildings with over 12,758 floor locations, 2135 bus stops, 902 boat stops, four upstream 

meters meters
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boat bases, and a bus and helicopter base. There are 31,115 total waypoints for this 

application, instead of millions of cubic meters to compute on. 

A cross-sectional view of a portion of the city is shown in Figure 8.10b.  This 

view shows all waypoints and connections for a small grid section of the city as shown by 

the small square section outlined in Figure 8.10a. Sky waypoints are shown on top and 

building connections, roads and waterways are shown below. 

8.3.1.2 Feature Two: Very Fast Simulation 

Due to the shortest path lookup tables described in Section 8.1.1.1, single actions 

for a plan are not waypoint to waypoint, but from origin to destination. This feature 

allows for very fast simulation speeds. The computation times are results from software 

developed in Matlab® particularly for this simulation, and are performed on a MacBook 

Pro running Matlab in a Microsoft Windows XP BootCamp environment. Complete 

US&RO simulations were run in an average of 7.66 minutes computer time, 

corresponding to 5525 minutes on average of real-world simulation time. That is a speed 

up of over 700 times.  

8.3.1.3 Feature Three: Environment Observation Models 

Over the course of one example game, Figure 8.11 shows the changes in the 

observation models. The figure shows the accumulation of route information via both 

land and water, and the proportion of buildings searched and cleared, and people rescued 

over time.  
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8.3.1.4 Feature Four: Multi-Agent Planning 

Over the course of sixty example games, there were twenty agents used in each 

game of various types. Over the course of an entire game, agents had plans of average 

length equal to about sixteen thousand visited waypoints. That is over nineteen million 

traversed waypoints for each of the twenty vehicles in sixty games. 

8.3.2 Planning Cycle 

The planning cycle includes all three phases of planning: plan-generation, plan-

execution, and plan-assessment. The inclusion of plan-execution and plan-assessment 

provides the opportunity to include tradeoffs among the cost of planning, length of plans, 

frequency of model updates, and when to re-plan. Re-planning is based on how well a 
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plan is executing and how the model updates are affecting predicted expectations. These 

four areas were tested to determine a tradeoff region that “makes sense” prior to the 

training of planners as shown in Section 8.3.3. These areas could have been learned as 

well, and Chapter 10: Discussions and Future Work will address this issue.  

 

The cost of planning is defined here as how much time a planner needs to make a 

new plan for a vehicle or agent. The length of a plan is measured as roundtrips per each 

vehicle. To keep a standard measure for these four areas of tradeoff, the frequency of 

model updates is also measured on a roundtrip basis. When to re-plan is based on how 

well the expectations (described in Section 8.1.2) are predicted for each plan of each 

vehicle. Re-planning of each vehicle is considered independent of other vehicles, and 

Figure 8.12. Model Update Frequency Variability Test Results
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thus is assumed to be multi-threaded.  In other words, vehicles can be tasked 

simultaneously, and thus not delay or interfere with the tasking of other vehicles.   

 

The first measure tested was the frequency of model updates. As described in 

Section 8.3.1, the same random tasking was done for twenty vehicles with differing 

model update frequencies. In this case, update frequencies were tested for ten cases for 1, 

3, 6, 9, 12, 15, 18, 24, and 48 hours. Figure 8.12 shows the plots of all nine update 

frequencies for all ten cases of each. The graph at the top indicates the number of people 

saved as a function of time, the second graph shows the buildings cleared as a function of 

time, and the third graph shows the buildings searched as a function of time. Note that all 

plots look very similar with the longer model updates leading to longer times to evacuate. 

Figure 8.13 provides a summary graph that shows the extremes of each model update 

Figure 8.13. Summary of Model Update Frequency Variability Test Results
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frequency. As expected, the more often the model is updated the more efficient the 

evacuation. The savings in evacuation time was 66% between 1 and 48 hour reporting 

delays. Therefore, a very fast model update was chosen. To be consistent with using 

vehicle roundtrips as a time marker, the update frequency was assigned to be when every 

vehicle reached base, which turns out to be around every 20 minutes. 

The cost of planning was tested in two cases: 20 minutes and 10 minutes per 

vehicle. Both costs were tested by training planners as described in Section 8.1.9 and 

8.1.10. The 20 minute case is shown in Figure 8.14, and the 10 minute case is used in the 

training example shown in Section 8.3.3 and discussed there. In the 20 minute case at the 

14th round and beyond the expectation acceptance threshold drops to zero indicating that 

the time to plan is too costly for any re-planning of any vehicle. Therefore, 20 minutes 

was considered too high a cost to re-planning a new vehicle, since it is better to keep a 

vehicle active in a bad plan than to have it wait 20 minutes before returning to action. As 

will be shown in Section 8.3.3, having only a 10-minute delay in re-planning is far more 

effective, because a non-zero value is converged upon when considering re-planning. 

The length of a plan is measured in round trips by each vehicle or agent. As 

shown in Figure 8.14 above, if the cost of planning is estimated at twenty minutes (or ten 

minutes), scheduling only one or two actions (stop or building visits) ahead at that cost is 

meaningless. Also, as shown in Table 8.4, the communication delay for updating the 

planning model for each vehicle is five minutes. If each vehicle calls in after every few 

actions the delays become too accumulative for the vehicle to be efficient. Therefore, a 

roundtrip seemed the most logical choice in choosing plan length as a minimum length. 
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To see what constraint should be placed on a maximum plan length, two experiments 

were conducted using a plan length of one roundtrip and another using a plan length of 

two roundtrips. The re-planning of the plans with two roundtrips was far more likely to 

re-plan given the new observations in the environment over that length of time. Thus, 

using two roundtrips was considered too costly given the re-planning costs were more 

than twice those of having a single roundtrip plan. 

 

8.3.3 Training US&RO Planners 

Rounds and tournaments for training US&RO planners are described in Sections 

8.1.9 and 8.1.10, respectively. Results are illustrated in five areas: (1) expectation 

acceptance threshold, (2) number of vehicle types, (3) decision feature weights, (4) 

decision feature beta density functions, and (5) evacuation progress in saving lives. All 

results are for 100 generations of tournament play. 

Expectation acceptance threshold is used to trade off time to plan against expected 

outcomes. Time to plan was fixed at ten (predicted) minutes per plan per agent. 
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Expectations were based on a point system where an agent was given three points per 

injured person rescued, two points per unsupplied person, one point per supplied person 

and zero points per dead person rescued. The expectation acceptance threshold is shown 

in Figure 8.15 in the top graph. The final converged value is around 0.2, thus, if a plan 

achieved 20% or more of its expected points, re-planning was not initiated. In another 

experiment described in Section 8.3.2, a 20-minute penalty was given for generating each 

plan. This resulted in a zero expectation acceptance threshold, meaning the time to plan 

was too costly to ever re-plan unless necessary. 

 

expectation acceptance threshold (EAC) 

Figure 8.15. Expectation Acceptance Threshold and Number of Vehicle Types
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The number of vehicle types is shown in Figure 8.15 located in the four lower 

graphs. In later generations, boats number around eight, busses number around ten, 

rescue helicopters number around one, and survey helicopters number around one. 

 

Decision feature weights are shown in Figures 8.16 and 8.17. Figure 8.16 presents 

the change in weights over tournament generations. In all image figures (8.16, 8.18, 8.19, 

8.20, and 8.21), the lighter shade indicates a higher value. Figure 8.17 illustrates the final 

weights observed in generation one hundred. The three black bars indicate the three 

largest weights. The feature numbers on the left of Figure 8.16 and on the bottom of 

Figure 8.17 match those displayed in Table 8.1. 
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The decision feature beta density functions shown in Figures 8.18, 8.19, 8.20, 

8.21 and 8.22 are weighted proportional to the black bars in Figure 8.17. Figures 8.18 

through 8.21 shows the top weighted feature density functions across all forty rounds, 

while Figure 8.22 shows the final round’s top feature weighted density functions. Note 

that sometimes the shading goes dark in Figures 8.18 through 8.21. This indicates that the 

weight was low for that round (Figure 8.16) and had little influence. Figure 8.22 provides 

a good summary of influential features. Each graph directly corresponds to a black bar in 

Figure 8.17.  

The feature densities for boats are in the top row of graphs in Figure 8.22. All 

three graphs indicate that boats are faster at searching buildings than helicopters, so they 
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are sent to buildings that have unknown number of people, unknown number of 

unsupplied people, and where few people have been spotted, respectively.  

 

The feature densities for busses are in the second row of graphs in Figure 8.22. 

The first graph indicates that busses prefer to travel short distances between stops and the 

second graph strongly indicates a need to choose actions near other busses. Since busses 

encounter many roadblocks due to trees and water, staying near other busses increases the 

chances of finding an open path. The third graph in row two slightly indicate an 

additional preference to go where few people have been spotted. 

The feature densities for rescue helicopters are in the third row of graphs in Figure 

8.22. The three graphs indicate a preference to go to buildings where people are injured, 

where no one has been spotted, and where people still have supply time remaining. 
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Figure 8.22. Largest Feature Weighted Beta Densities
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 The feature densities for survey helicopters are in the final row of graphs in 

Figure 8.22. The three graphs indicate a preference to go far from the base, to go where 

people require supplies, and to go where people have little survival time left. Since the 

busses are fast and cannot go far from the base due to water levels it makes a lot of sense 

to first supply people far from the base. Also, getting people supplies in time is critical to 

their survival. 

 

The evacuation progress of the top performers is shown in Figure 8.23. 

Evacuation effectiveness improves drastically over the first few generations and then 

slowly after that.  

The text in Chapter 8 contains material previously presented in three publications: 

Lecture Notes in Computer Science: IEEE World Congress on Computational 

Figure 8.23. Evacuation Progress of Top Four Performers
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Intelligence, IASTED Applied Modeling and Simulation Conference, and Modelling, 

Simulation and Optimization (In Tech Publishing, Chapter 25). I was the primary 

researcher and author, and the coauthor directed, supervised and/or participated in the 

research, which forms the basis of the chapter. 
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Chapter 9 

Design and Implementation of Future Applications 

 
9.0 Abstract 

Combining the general approach described in Chapter 6 with specific application 

details described in Chapters 8 and 9 provides an opportunity to examine what it takes to 

build future planning applications. Chapter 6 provides a detailed description of the 

general goal-directed architecture, while Chapters 7 and 8 help define all component 

variables, functions, and parameters for specific ADP&E applications. This chapter is 

intended to join the lessons learned from Chapters 6 through 8 into a concise and more 

abstract view of the ADP&E system. This chapter will provide more engineering than 

science, because building future systems depends more on standardizing the approach 

than pursuing future modifications. Future extensions will be discussed in Chapter 10: 

Discussion and Future Work. 

The complexity of the problem domain and solution space warrants a detailed 

description for designing and implementing future applications. This process is described 

in three incremental steps: (1) define and design classes, and build and instantiate all 

interacting objects for each hierarchical level from missions to observations (i.e., levels 3 

to 10), (2) describe the nine step design, build and test (DB&T) strategy, which includes 

the step-by-step implementation of the ADP&E architecture with corresponding 
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functional components, and (3) summarize the inclusion of all functional components 

with corresponding attributes.   

9.1 Classes and Objects 

All hierarchical levels, except tournaments (Ω) and rounds (Θ), require in-depth 

knowledge of the application domain to properly define and design classes, and build and 

instantiate objects [1]. This section describes the classes and objects required at levels 

three through ten in the hierarchy. The following description includes the definitions of 

each hierarchical level in terms of classes and objects. Also included are class and object 

examples for each level, and from each of the two previously implemented applications 

described in Chapters 7 and 8. Finally, for each level including classes and objects, there 

is a short description of the choices available for future applications.  

Hierarchical level three is missions or games (G). A mission or game requires an 

environment, which includes the rules of the game, a feature space with all physical and 

temporal constraints, and the required number of planners (or players) and their types 

(e.g., cooperative or non-cooperative). The mission also requires completion goals or 

termination criteria to know when to stop a mission or game. For the RISK game, the 

goal is to conquer the world by occupying all 42 territories. In addition to 42 territories, 

the world environment also includes 166 battle possibilities, 44 cards, and an unlimited 

number of possible battling forces [2]. For the US&RO mission, the goal is to evacuate a 

severely flooded city with 20,000 stranded people. The environment includes bases, 

waterways, roadways, skyways, buildings, people, and vehicles. There are over 31,000 

waypoints, over 4,000 buildings, 20,000 people, and 20 vehicles [3]. Therefore, future 
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applications can support a complex mission or game in very large, uncertain 

environments and can handle multiple planners of various types. 

Hierarchical level four is the planners (Ψ) or players. The planners are the 

organizers or orchestrators of the plans. The planners control and coordinate all the 

agents from a centralized planning perspective. The planner can choose the number of 

agents, agent types and agent grouping in planning tasks. For the RISK game, there are 2 

to 8 players (planners) that are non-cooperative, and the game is turn-based. Each turn is 

rich with many possible moves, such as allocating forces, battling forces, moving forces 

and turning in cards. For the US&RO mission, there is only a single cooperative planner 

in a partially observable environment. The planner controls and coordinates vehicle 

resources simultaneously to evacuate all 20,000 stranded persons. Future applications can 

be built to support multiple planners in cooperative and non-cooperative environments, 

and support many parameters in many areas (e.g., search, selection, reward, risk) for 

versatility in planning. 

Hierarchical level five is the agents (Γ) or resources. The agents are the actors 

used to implement plans of actions. Agents can be of different types, of different number, 

have a variety of actuators and sensors, be resource constrained, can have multiple 

contingency plans or a single plan, and can have a varied plan length depending on 

resources or task completions. For the RISK game, there are two types of resources: cards 

ranging from zero to eleven in number, and forces ranging from zero to hundreds in 

number. Card agents are considered trivial due to their strict rules of the game, but force 

agents are extremely important given they can be allocated, battled and moved. For the 
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US&RO mission, twenty vehicle agents are used of four different types: (1) busses, (2) 

boats, (3) rescue helicopters, and (4) survey helicopters. All busses, boats and helicopters 

have an appropriate set of actuators and sensors (as shown in the tables in Chapter 8). 

Future applications can support variable numbers of agent classes and agent type classes, 

and instantiated agents can vary greatly in role (actuators and sensors) and number.  

Hierarchical level six is the plans (P) or courses of actions. The plans are the 

recipes used to control and coordinate agent resources. Plans are generated using search 

and plan selection, and encapsulate who, what, where, when, why and how at each action 

step in a plan. The who represents the agents under consideration, the what represents the 

action, where represents the action locations, when represents the timestamp or action 

order, why represents the reward change (can be a reward range for multiple outcomes) 

based on taking that action, and how represents the actuators and sensors involved and 

the resources expended. Plans take computational resources to generate, so the number 

and length of plans generated vary with application. For the RISK game, plan lengths are 

constrained to a single player’s turn, and are resource constrained based on expending 

only a portion of force agents in each plan. In searching for plans, a RISK player 

generates multiple plans to compare and a variable number of completed tasks per plan. 

For the US&RO mission, plan length is restricted to a single roundtrip of all vehicles 

(agents). Within each plan, rescuing people is considered as a variable degree of task 

completions. Future applications can support variable length plans, and include who, 

what, when, where, why and how for each contemplated action. Plans can support a 

variable number of agents, number of tasks, plan length, and amount of resources 

consumed. 
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Hierarchical level seven is the tasks (Τ) or expected plan results. Tasks are 

measured as expectations with associated success probabilities. For the RISK game, a 

task is considered as the successful conquering of a territory. These tasks carry a 

probability of success value, and an acceptance threshold to trigger re-planning if 

probability falls below this trigger value. For the US&RO mission, a task is considered in 

terms of the number of surviving people rescued in a vehicle roundtrip. Tasks are 

measured based on this number of people rescued and their type: injured, unsupplied and 

supplied. Future applications will use task classes as a measure for progress when 

measuring plan success probabilities. Measures of progress can include completed 

objectives (e.g., conquering territory), a probability of success, risk, and reward (e.g., 

point system for rescuing people).  

Hierarchical level eight is the actions (A) or available options. Actions are 

considered as all options available for all agents including their actuators and sensors. 

Note that this list of options can change depending on the projected state of the 

environment or planner under consideration. For the RISK game, actions are turning-in 

cards, reinforcing territories, and battling and moving forces. During plan generation, 

each action is chosen randomly to avoid a biased plan search. However, action choice can 

also be learned in future versions. For large combinatorial problems addressed here, 

contemplating actions carries a temporal cost and is restricted in number, so that search 

does not run on indefinitely. For the US&RO mission, actions are travel to/from 

buildings, search buildings, rescue people, drop supplies, and communicate observations 

to the planner. Actions are chosen by feature conditions that are adjustably weighted, and 

each action has a delayed cost based on vehicle type, people involved, and distance 
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traveled. In future applications, actions can include temporal costs of contemplation and 

execution. Actions are options that can be searched individually or as sets within multiple 

plans.  
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Hierarchical level nine is the outcomes (Y) or predicted effects. Outcomes are 

considered as all possible effects for each particular action, under the current or projected 

circumstances (state), and each particular set of agents under consideration. For the RISK 

game, every battle action can have a set of possible outcomes, including a probability for 

each outcome. Outcomes are predicted based on the forces in conflict and by using a risk 

aversion coefficient, which accounts for the risk the player is willing to take (described 

more fully in Chapter 7). For the US&RO mission, there are many possible outcomes due 

to the partially observable environment. Unknown outcomes are predicted based on the 

number of unsearched floors in all buildings and based on the people still missing 

(unaccounted for). Future applications can handle multiple outcomes per action as 

reflected in a stochastic environment, and unknown outcomes can be predicted in 

accordance to risk (e.g., risk aversion) or due to known information (e.g., missing 

persons).  

Hierarchical level ten is the observations (O) or newly discovered environmental 

state information. Some real world state information may be unknown due to partial 

observability, and observations are used to discover this unknown information and update 

the planner’s state to reflect this newly acquired knowledge. For the RISK game, 

everything can be observed except the cards held in each opponent’s hand and future dice 

rolls. Observations on dice rolls are updated after each territory battle is complete and at 

no temporal cost to the planner. For the US&RO mission, agents must sense roadways, 

waterways, and building contents for missing people. Vehicles gather building content 

and route information through their sensors, such as waterways for boats and roadways 

for busses, and all routes can be partially viewed by helicopters. Information is passed on 
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to the planner with a temporal communication cost. Future applications can use 

observations to drive sensor activity to keep plans on track. Observations can be done in 

many ways, and model updates can incur temporal costs.  

Table 9.1 summarizes all define and design classes, and build and instantiate 

objects for each hierarchical level. Note that the last column in Table 9.1 gives a brief 

summary description for all objects and classes in hierarchical levels 3 through 10 for 

both applications described in Chapters 7 and 8, and in a general form for future 

applications. 

9.2 Design, Build and Test Implementation Procedure 

As introduced in Chapter 6, the design, build and test (DB&T) implementation 

procedure is a nine-step process: (1) execute arbitrary actions; (2) update planning-

model; (3) choose and execute single actions; (4) generate arbitrary multi-action 

plans; (5) generate and choose plans; (6) assess plans; (7) coordinating the full core 

planning cycle; (8) coordinating multiple planners for a single mission or game; and (9) 

orchestrating a complete tournament as a meta-learning strategy for training planners. 

In Chapter 6, the nine-step DB&T process was only described from the planning cycle 

perspective, and did not include the goal-directed training functions of ‘hierarchical 

control chain’ (HCC), nor the goal-directed training functions ‘learning and analysis’ 

(L&A). These training functions were introduced in Chapter 6. Here we describe the 

whole system with all 33 functional components. The functional components not fully 

described in Chapter 6 will be described fully here; otherwise refer to Chapter 6 for more 

details. 
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Step one of DB&T, execute arbitrary actions, is shown in Figure 9.1. As a first 

step, the global state is implemented to initiate the monitoring of the HCC structure. The 

only function in this structure is the fourth function, the planner function (Ψ4). Only a 

single planner needs to be implemented at this time, unless the planners have completely 

different roles and thus different parameter sets. If the planners have completely different 

roles, then each planner can be designed separately. Thus, complete DB&T steps one 

through seven separately for each planner, and then combine these planners in step eight. 

In this first step, only a small part of the planner is implemented, the search for plans 

function (SP
5). Only random or arbitrary actions need to be searched at this time, so this 

function is not implemented fully until step four. After implementing this simplified 
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search for plans function, four out of five of the plan-execution functions can be 

implemented. The check plans are executable (PΞ
15), execute actions (AΞ

16), realize 

outcomes (YR
17), and observe states (OX

18

 

) functions are implemented here. These five 

functions are described in detail in Chapter 6. When implemented, all five of these 

functions should be able to operate iteratively and indefinitely and in the order shown by 

the arrows in Figure 9.1.  

Step two of the DB&T, update planning-model, is shown in Figure 9.2. In this 

step, the planning state is implemented to receive new state values from observations of 

the real world state. These observations are channeled to the planning state through the 

state update function (XU
19), the last required plan-execution function. Functions 5, and 
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15-18 are identical to those used in DB&T step one. State updates are normally 

completed at the beginning of the plan-assessment phase, so this implementation is used 

to only check that the planning state can be updated after each plan-execution cycle.  

 

Step three of the DB&T, choose and execute single actions, is shown in Figure 

9.3. This step adds onto the step one implementation by including two additional 

functions of plan generation: determine action choices (IA
6), and action selection (ZA

7). 

This is the first step that requires use of the planning model, which is a near duplicate of 

the real world model, and includes all rules of the mission or game (see Chapter 6 for 

more detail). The action choices are determined based on the agents under consideration 

and the rules of the game. The action selection function can select among these available 
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choices as the designer wishes (e.g., random in RISK game, weighted feature conditions 

in US&RO mission, etc.). The choices made are now driving the plan-execution and this 

process should be able to operate iteratively and indefinitely.  

 

Step four of the DB&T, generate arbitrary multi-action plans, is shown in 

Figure 9.4. This step concentrates on implementing a major portion of plan-generation 

(functions 5-11) or seven of the first ten plan-generation functions: search for plans 

(introduced above), determine action choices (described above), action selection 

(described above), project outcomes (KY
8), outcome selections (ZY

9), observe states 

(OX
10), and state update (XU

11) functions. The search for plans functional 

implementation is upgraded to handling multiple plans for multiple agent groups. The 
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determine action choices and action selection can be the same as previously 

implemented, or upgraded as the application demands. Function 8, project outcomes, can 

be implemented as done in RISK game, where dynamic Bayesian networks project 

multiple action outcomes, or in a simpler manner, such as projecting a single outcome. 

Function 9, outcome selection, can be implemented with risk aversion as used in RISK, 

or in a simpler manner. Functions 10 and 11, observe states and state update, should 

perform similarly to those same functions used in plan-execution, shown in DB&T steps 

one and two, respectively. Note that this state update does not perform a permanent 

change in the planning state, and multiple planning states are stored for each 

contemplated action in all generated plans.  
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Step five of the DB&T, generate and choose plans, is shown in Figure 9.5. This 

step completes the plan-generation implementation by adding the final three functions: 

plan fitness (FP
12), plan selection (ZP

13), and project expectations (KQ
14

Step six of the DB&T procedure, assess plans, is shown in Figure 9.6. This step 

is the entirety of the plan-assessment process (nine functions) and also includes the first 

L&A function. More specifically, this step includes the implementation of ten new 

). The previous 

seven functions should be the same as those implemented in DB&T step five. Plan fitness 

is a function that measures the value of a plan by observing the plan end state, the 

probability to get to that state, and the diversity in plan selection. This plan fitness 

function can be implemented in a similar fashion to the one used in RISK, which uses all 

three aspects identified here, or a simpler method could be formulated just based on state. 

Plan selection is a function that determines which plans are selected, and at what point 

the plan should be terminated or pruned based on optimizing plan fitness. An 

evolutionary selection approach was used in RISK and can be applied here or a new 

method can be designed to more specifically meet application needs. The project 

expectations function is a task driven function. The designer must identify what 

constitutes a task, such as a conquered territory for RISK game or rescued individuals in 

US&RO mission. Once a task is identified, a project expectations function can be 

implemented that monitors plans to determine what tasks are projected to be completed 

and with what probability of success. This DB&T step of fully implementing plan-

generation is at the heart of the ADP&E system, and plan-generation costs could be 

applied to expended agent resources, time expended to plan based on computations, and 

probability of successful plan completion based on projected expectations. 
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functions: check plans can be assessed (PΨ
20), enact planned actions (AΨ

21), project 

outcomes (KY
22), outcome selection (ZY

23), observe states (OX
24), state update (XU

25), 

project expectations (KQ
26), assess expectations (EQ

27), initiate re-planning (IR
28), and 

planner cycle assessment (CΓ
29). Functions 20 and 21, check plans can be assessed and 

enact planned actions are almost identical to the check plans can be executed and execute 

actions (functions 20 and 21 match15 and 16, respectively), except that the input is from 

the planning model and state, instead of the real world model and state. Functions 22 to 

26 (KY
22, ZY

23, OX
24, XU

25, KQ
26) are identical to functions 8 to 11, and 14 (KY

8, ZY
9, 

OX
10, XU

11, KQ
14

 

), respectively. However, plan-assessment is simpler than in plan-

generation, since plan-assessment does not assess multiple generated plans at once. 
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The assess expectations function is unique, because this function compares the 

expectations projected in plan-generation with those projected in plan-assessment. A 

substantial difference in expectations can trigger (acceptance threshold described in 

Chapter 6) the initiate re-planning function, which reverts back to the search for plans 

function (5), and generates new plans for the current agents under consideration. In any 

case, the assess expectations function activates the planning cycle assessment function 

(CΓ
29), which outputs the number of tasks executed per time (TP/t = CΓ(ψ, Γ, TP, CA, t)). 

This function has as inputs the current planner (ψ), the current agents (Γ), the completed 

tasks (TP), the action costs (CA

 

), and time (t) to determine the efficiency and 

effectiveness of the planning cycle.  
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 Step seven of the DB&T, core planning cycle, is shown in Figure 9.7. This step 

includes all three planning phases: plan-generation, plan-execution, and plan-assessment. 

New features include the coordination of information among the phases, such as the 

transition functions: 14 to 15, 19 to 20, and 28 to 5. In addition, one new L&A function is 

developed (planner utility (Uψ
30)) as well as the inclusion of all parameters linked to the 

planner. The planner utility function (U = Uψ(ψ, XΞ)) outputs utility (U) from the inputs 

of a particular planner (ψ) based on the fully realized state (XΞ

 

).  

Step eight of the DB&T, a single mission or game, is shown in Figure 9.8. This 

step combines the coordination of multiple planners by adding one HCC function 
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(mission) and one L&A function (mission value). The mission function (G3) coordinates 

planners either as turn-based or as simultaneous entities, and outputs the next game (g) 

and planners (ψ) to use, given the current round (θ), games (G), and planners (Ψ) states 

(i.e., {g, ψ} = G(θ, G, Ψ)). The mission value function (Vg
31) compares the performance 

of all planners in a game or mission, and outputs the values for all planners (VΨ) given 

the current game (g), set of planners (Ψ) in the game, and the fully realized state (XΞ) 

after a mission or game is completed (i.e., VΨ = Vg(g, Ψ, XΞ

 

)). 

The final step, nine, of the DB&T, a complete tournament, is shown in Figure 

9.9. This step focuses on the coordination of future missions or games using the HCC, 
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and on the L&A of completed missions or games to train planners. The first two overall 

functions are the HCC functions tournaments (Ω1) and rounds (Θ2

 

). The tournaments 

function outputs the next round (ω) given the current rounds (Θ) and tournament (ω) 

under consideration (i.e., θ = Ω(ω, Θ)). The rounds function outputs the next round (θ) 

and game (g) given the current tournament (ω), rounds (Θ), and games (G) under 

consideration (i.e., {θ, g} = Θ(ω, Θ, G)).  

The last two overall functions are the L&A functions evolutionary learning (Λθ
32) 

and statistical analysis (Σω
33). The evolutionary learning function outputs a new set of 

parameters (Π) for a future planner given the current round (θ), the games or mission (G) 
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completed, the planners (Ψ) for all missions, current planners’ parameters (Π), the fully 

realized state (XΞ), and the evolutionary parameters (eθ) used to train in the current round 

(Π = Λθ(θ, G, Ψ, Π, XΞ, eθ)). The statistical analysis function outputs the means and 

standard deviations of parameters values (Σω) across multiple generational rounds given 

the current tournament (ω), rounds (Θ), and parameter values (ΠΘ) for a set of rounds 

(i.e., ΣΠ = Σω(ω, Θ, ΠΘ

A final step is to test the operation of the entire ADP&E system as illustrated in 

Figure 9.10. This pictorial view of the architecture and process flow is complex, but if a 

designer follows the previously described nine-step process, this can be completed in a 

manageable way. Note that the lower levels of the architecture operate faster and more 

often than the upper level structures due to the hierarchical decomposition of the problem 

space. 

)). 

9.3 Implementation Summary 

In previous sections, the ADP&E system has been described with an architectural 

diagram, and a step-by-step implementation strategy that combines the general 

architecture description in Chapter 6 with the lessons learned in Chapters 7 and 8. Table 

9.2 above summarizes the description of the architecture by examining all 33 functions 

from several aspects. The first, second, and third columns show the functional name, 

symbol, and order of the 33 functions, respectively. The order is not always sequential, 

because many aspects of planning require an iterative process until a phase is complete. 

The fourth column shows the next step, or where the function can transition given the 

circumstances. Column five shows where the function is first implemented in the nine 
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step DB&T procedure described in Section 9.2. Column six shows the phase associated 

with each function (Note that the HCC and L&A phases are functions of the overall 

training phase), column seven shows the corresponding hierarchical level, and column 

seven shows the function with its inputs and outputs.  
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Chapter 10 

Discussion and Future Work 

 
10.0 Abstract 

Discussion and future work is focused in four sections: (1) a technical summary 

of what has been accomplished, (2) conclusions drawn, (3) design improvements, and (4) 

new applications. The technical summary provides a brief overview of the dissertation. 

This overview includes: a summary of the chapters, the accomplishments, challenges 

uncovered, and challenges met. The conclusions include a new formulation of the 

planning problem, its extensibility to more domains, and a review of new directions of 

future research. Design improvements include five areas: hierarchy, modularity, 

extensibility, learning, and human/computer interface. New applications include 

extensions of current results as well new application domains that expand on the ADP&E 

framework and capabilities. 

10.1 Technical Summary 

This dissertation is subdivided into four main areas: introduction and problem 

definitions, background and related work, challenges and generalization insights, and a 

defined approach with specific applications. Chapter 1 introduces the overall challenges, 

Chapter 2 describes twelve specific challenges related to generating plans (Section 2.4.1), 

and Chapter 5 further describes challenges from three perspectives. These three challenge 
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areas are environmental, planner-based, and continual improvement through learning. 

The generalization insights to these challenges are described in Chapter 9. The defined 

approach and two specific applications are described in Chapter 6, 7, and 8, respectively. 

There are eight accomplishments listed in Chapter 1 Section 1.3. First, POMDP 

extensions are described in Chapter 6 as fundamental building blocks (Section 6.1.1) in 

terms of a three phase planning cycle (Section 6.2). Second, a scalable planning 

framework is also described in Chapter 6 in terms of a ten-tier hierarchy (Section 6.1.2). 

Third, risk aversion and probability of plan success control is described in Chapter 7 in 

terms of risk-averse outcome selection (Section 7.1.7), and probability of completing 

interdependent battle campaigns (Section 7.1.4). Fourth, a search comparison across 

several techniques with results is described in Chapter 7 for the stochastic RISK game 

(Section 7.3.1.3). Fifth, the integration of the temporal cost of planning into the general 

approach is described in Chapter 6, Section 6.2.1. The temporal cost of planning 

implementation for the two applications is described in Section 7.3.3.3 for RISK game 

(50,000 action limit), and in Section 8.1.3 for US&RO mission. Sixth, the strategies and 

results for improving the effectiveness of the planners for both applications are shown in 

Sections 7.3.3 and 8.3.3. The versatility of the approach is described in Chapter 9 in 

terms of the two applications described in Chapters 7 and 8. Finally, a general 

implementation strategy for future applications is described in Chapter 6, Section 6.3 

Design, Build and Test. Specific implementation details for the two specific applications 

are described in Section 7.2 and 8.2, and a design criteria is discussed in Chapter 9, 

Section 9.2, which describes the lessons learned in completing the two applications. 
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The challenges investigated in this dissertation are in three chapters. Chapter 1 

describes the challenges involved with building an effective planning framework, and 

concentrates on the architecture, process flow, and continual improvement aspects of the 

system. Chapters 2 and 5 describe the learning, traceability and justification challenges. 

Chapter 2 describes a set of proposed metrics: (1) risk sensitive prediction, (2) action 

selection conditions, (3) expectation acceptance threshold, (4) plan selection fitness, (5) 

planning cycle assessment, (6) planner utility, and (7) mission value (Section 2.5). 

Chapter 5 describes basic machine learning challenges: exploitation vs. exploration, 

scalability, and credit assignment. The challenges associated with characterizing the 

problem, its extensibility and design criteria are described in Chapter 5 in terms of the 

main two essential objects: an environment, and planners.  

Challenges were met in all three areas described above. For the planning 

framework challenge there were three major accomplishments: (1) a ten-tier hierarchy 

was constructed for modularity and scalability (described in Section 6.1.2), (2) a process 

flow was developed that directed plans through goals and available actions, and trained 

planners based on observations and responses (described in Section 6.1.3), and (3) a three 

phase planning-cycle was developed, which trades off plan-generation, -execution and -

assessment in terms of planning costs, risks, and successful expectations (described in 

Section 6.1.4). For learning challenges, three levels of trained improvement were 

implemented in both applications: plan-generation search and selection (Sections 7.3.1 

and 8.3.1), planning cycle assessment (Sections 7.3.2 and 8.3.2), and training planners 

(Sections 7.3.3 and 8.3.3). For traceability and justification challenges, all seven metrics 

are defined (Sections 2.5, 6.1.1, and 9.2) and learned (Sections 7.3 and 8.3). For 
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characterization and extensibility, classes and objects are examined and defined for two 

specific applications and future general applications (Section 9.1). For future design, 

build and test (DB&T) challenges, Section 6.3 introduces a general nine-step process for 

implementing an ADP&E system. Sections 7.2 and 8.2 describe this implementation 

process for two specific applications, RISK game and US&RO mission, respectively. 

Section 9.2 describes this nine-step process with all 33 functions in general terms to 

DB&T future applications. 

10.2 Conclusions 

This dissertation attempted solution of planning problems that are very large, 

partially observable, and stochastic (VLPO&S). In so doing, various aspects of planning 

have been uncovered and further defined to fit these problem domains. There are many 

planning algorithms in existence for solving all sorts of problems. These algorithms are 

for specific types of planning, such as discrete problems, motion planning, decision 

theoretic planning, etc. [1]. These algorithms form a solid foundation, but further work 

was needed to enable use in VLPO&S environments. This dissertation reformulates the 

planning problem in a broader sense as defined in Chapter 2. Three major developments 

under this broader planning definition have been completed. First, a hierarchical 

framework provides the flexibility to add or change features at any of the ten levels of 

planning through either human interaction or simulated training. Search is an important 

component in planning, and new search algorithms have been developed for large 

stochastic problems (Section 7.3.1) that outperform well-established methods (Section 

3.2.2) [2]. Finally, the bidirectional process flow in the hierarchy allows simple 

observations to flow up the tiers to feed back on planners’ ability, while tournaments 
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compare and contrast results of multiple games or missions to train planners to become 

more effective and efficient. Over the span of the hierarchy, there are three major 

learning areas: plan-generation search and selection, planning cycle assessment, and 

planner(s)’ utility. The associated parameters in each of these three areas have been 

shown that they can be trained simultaneously in an autonomous process. This approach 

can be used to help minimize assumptions and biases made from SME by separating the 

effective SME from the not-so-effective SME through online training. 

As documented in Chapter 9, the characterization and extensibility of our 

approach is still in its infancy. First, there is a need for a greater exploration of the two 

applications. More detailed statistics can be collected to establish greater significance in 

the results, and establish more general conclusions. For instance, agents in the US&RO 

application can be multi-threaded so a single tournament takes around twelve hours of 

computer time instead of a month. Thus, many more tournaments could be run in a 

reasonable amount of time. Second, an application should be studied that has both the 

stochastic elements of the RISK game and the partial observability of the US&RO (see 

Table 9.1 and 9.2). For instance, one could consider poker as a possible candidate, 

because the cards are often hidden, there are multiple players, and getting a particular 

card is based on chance.  

There are currently several major directions planned for future research. First, 

many issues are still not explored. This includes pursuing an application that has both 

partial observability and stochastic elements, and has both cooperative and non-

cooperative planners competing for dissimilar but overlapping goals. Also, giving more 
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distributed control to agents for local decision-making vs. the current complete 

centralized control given to the planners needs to be considered in future applications. A 

degree of authority can be given from each agent to a variety of planners, and a degree of 

independent authority is given to itself [3]. This is far more realistic as to how humans 

multi-task, when balancing work, family, friends, school, etc. This type of environment 

raises interesting questions about trust among planners and agents. Also, the balance of 

attention and focus in planning is also in question. Do the agents view attention 

differently than the planners? Do the agents’ desires for low-hanging fruit sacrifice the 

planner’s long-term goals? How does deception play a role in distorting other planners’ 

plans or goals? These are just a few of the questions that can be asked if the system is 

expanded to these new difficult problem domains. 

10.3 Design Improvements 

Design improvements in the planning hierarchy can take several forms. First, 

having all ten layers of hierarchy is not necessary for all planning problems, and can be 

condensed for smaller problem domains to make the planner more efficient. However, 

ever increasing computing power and cloud computing capabilities [4] will make multi-

planner applications much faster in the near future. Second, populating the hierarchy with 

SME should be downplayed in future versions. Providing more automation and less 

human interaction in the ADP&E system will eliminate bias and save on man-power in 

future developments. This automation can include having more seamless process flow up 

and down the hierarchy, where a location and mission requirements are only available, 

and the number of planners, agents, their types, etc. will be optimized based on the 

situation at hand.  Finally, the environment itself can benefit from a hierarchical 
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representation that best maps to the ten-tier ADP&E approach. This representation can 

then be used to display the workings of the ADP&E system on the environment in 

question. Currently, the simulations are implemented without visualization in mind, and 

built for performance. 

Design modularity can be improved several ways. First, in the implementation of 

the RISK game and US&RO mission simulation, there were dependencies that crossed 

more than two tiers in the hierarchy to save on computation time. For instance, actions, 

outcomes, and observations were computed together to simplify the process. This 

however, made it more difficult to modify features such as flood water level changes that 

a future developer might want to make variable. By restricting the overlap in the 

hierarchy as described in Chapter 6, features can be changed more easily at all levels of 

the hierarchy. Note that the six highest tiers were always kept separate in the two 

developed applications, and thus features were easily manipulated. Second, with the 

modularity of the system, modules can be competed separately or interdependently to 

compare different techniques or algorithms, as this dissertation illustrated with competing 

search techniques. Third, the modularity provides independence of agents, and thus they 

should be multi-threaded in the future to speed the simulation n-fold, where n is the 

number of agents. 

Extensibility design improvements are briefly mentioned in the previous 

subsection, and are an important part of improving the ADP&E concept. Three 

extensibility improvements are summarized as follows. First, we can combine capabilities 

used in RISK game and US&RO mission application into one system. Second, we can 
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design distributed control agents to provide more local capabilities. Finally, we can study 

the effects of trust, deception, attention, and focus, and how they pertain to the type and 

number of planners involved, and their authority over the number and type of agents at 

their disposal. These problems are very difficult in their own right, but much can be 

learned about the interaction of multiple players in complex game environments. 

Learning design can be improved in several ways. First, we can include more 

cycle assessment parameters in the learning process, such as communication, model 

update, and assessment variability with the cost to do these tasks. For example, the length 

of the plans in US&RO was determined to be best for one round trip by using a separate 

simulation to compare results. It would have been more interesting to have plan length be 

variable as in RISK game and learned as one of the many parameters trained during the 

tournament rounds. Second, we can compare a variety of machine learning algorithms in 

training plan-generation search and selection, planning cycle assessment, and planner(s)’ 

utility to compare the value of using the current evolutionary approach with other 

approaches, such as reinforcement or Hebbian learning. Third, we can adaptively learn 

the rules of the game and characteristics of the environment, thereby increasing the 

automation of the ADP&E system by minimizing the need for SME input. We can also 

include more game-phase discrimination in planning, similar to what was done in the 

RISK game, but in more general terms, such as early plans for learning, and later plans 

for achieving. Finally, we can provide for a more general adaptation of both condition 

features and goal weights as the game progresses to include pressures from choosing both 

good short-term actions and long-term plans.  
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There are several possible human/computer interface improvements, since the 

currently built system can only be modified through the Matlab codebase. The RISK 

game does allow for human players, but the US&RO mission tool does not allow for a 

human player. One of the main considerations for improvement is in visualization of the 

planners in action at all three phases of operation: plan-generation, -execution, and -

assessment. For example, in plan-generation, the number of ill-conceived plans examined 

before choosing a quality plan is not given, nor are dead-end areas of search, which are 

currently discarded. These can provide negative reinforcement in future searches. In plan-

execution, plans that are in trouble can be illustrated to the human user on the fly, and 

resulting outcomes can provide automatic justification in verbal or graphical form. In 

plan-assessment, a traceable probability of plan success can be given to the human-

operator on the fly, and troubled agents can be identified as alerts. Also, the ten tiers in 

the hierarchy can be shown in a graphical form to the user, to show what parts of the 

hierarchy are currently activated, such as which phase the planner is in, what agents are 

currently being considered for planning, etc. Given the diversity of the hierarchical tiers, 

these are just a few of many possible interface improvements to this system. 

10.4 New Applications 

Before any new applications are attempted, there are several ways to expand on 

current results. For the RISK game, one can increase the number of contemplated actions 

beyond the current 50,000 actions per player per game. This number is far too small a 

sample size based on the current results shown in Section 7.3.3. For the US&RO, water 

can recede from the peak flood stage, healthy individuals can wander to seek better 

refuge, more planners can be used to compete for use of resources, and communication 
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access among planners, agents, and people can be further optimized to meet these new 

demands. There is certainly a need for more simulations in both applications to increase 

the statistical significance of current and future results, and many more aspects of the 

ADP&E system, as described in Tables 9.1 and 9.2, can be evaluated and improved. 

An important step in the near future is implementing a test application that 

includes both stochastic and partial observability elements. One case already mentioned 

is the game Poker. Many poker games, such as Texas Hold’m or Omaha, have elements 

of chance in receiving cards and partial observability in that each player can only see 

their own held cards and the shared table cards. Also, the players can learn a variety of 

strategies based on whether the game is limit or no-limit, and according to the number of 

players in a hand. Another real-world mission problem that has both uncertainty and 

partial observability is the control of traffic signals based on observations from road 

sensors. Currently, many traffic light locations are either optimized for a particular type 

of traffic pattern, or have a simple time limit switch that changes them deterministically. 

Having a shared understanding among traffic sensors and signals could save in time and 

fuel efficiency, and help avoid unnecessary traffic jams.  

There are several ways to extend the complexity of the application domain. First, 

problems can be attempted that include more distributed control for agents to a variable 

degree (only use delegated plans from planner(s) as guidance and not used verbatim). 

This inclusion may require leveraging other technologies, such as swarm intelligence [5], 

belief-desire-intent models [6], etc., or the current planner functional framework could be 

applied directly to the agents, making them planners on a smaller scale. Having 
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individual agents with a degree of autonomy could increase the overall efficiency of a 

planned operation, especially when communication costs are at a premium, an agent can 

learn to do a localized task more optimally than directed, or the operation may be covert 

and communication is ill-advised. Second, future applications can require multiple 

planners (often many) that need to share resources, while each planner is contemplating 

the use of resources for different objectives. An extension to the US&RO problem is 

mentioned above, but there are many other problems that fit this situation. Another 

interesting application is use in a cyber domain, especially given the global reach of the 

Internet. Power grids, banking services, email services, data repositories, etc. are 

available through the Internet, if the correct access can be achieved. Thus, sharing the 

Internet with the many hundred millions of people, some who want to use the Internet as 

a resource, while others want to degrade this resource, or use it as a means to degrade 

another resource (e.g., take down a power grid). In conclusion, there are many future 

challenges in automated planning, and this dissertation sheds some light on these 

challenges. Given the complexity of VLPO&S planning problems, automated planning 

will have a bright future.  
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