Lawrence Berkeley National Laboratory Recent Work

Title
SEARCH FOR FOUR-PION RESONANCE AND SOME DECAY MODES OF THE p AND w MESONS
Permalink
https://escholarship.org/uc/item/94t565vx

Authors

Xuong, Nguyen Huu
Lynch, Gerald R.
Publication Date
1962-02-12

University of California
 Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNLA
 Lawrence Radiatlon Laboratory Berkeley, California

Contrace NO. W-7405-eng-48

SEARCH FOR ROUR-PION RESORANCE AND SOME DECAY

 MODES OF THE A AND ω NESONSNguyen Ruu Xuong and Cerald R. Lynch
Rebruary 12. 1962

SEARCH FOR FOUR-PION RESONANOE AND SOME DECAY
MODES OF THE P AND ω MESONS*
Nguyen Huu Kuong ${ }^{\dagger}$ and Cerald R. Lynch
Lawrence Radiation Laboratory
University of California Berkeley, Califorria

- February 12, 1962

Since the discovery of the two-pion and che chree -pion resonances, $1-3$, the search for four-pion resonance has acquired much interest. The interest is threefold:

1. Chev and Frautschi, 4 using the "Regge poles" theory, predict a possible resonance (or unstable particle) with spin 2 and with the same other quantum numbers as the vacuum ($T=0$, parity even) at the region of \& Bev. This particle could decay into two, four, or six pione. Biththe four-pion decay could be favored because a two-pion decay would require a d wave, vinereas a four-pion decay would need only two pion sets in p wave.

The four-pion resonance could also carne from a decay of X^{0}. the pseudoscalar meson with $T=0$ formulated by many theoreticians. 5
2. The omega meson ($T=0$ three-pion resonance at 780 Mev) has been atributed the spin and parity 1^{-0} (the first experscript refers to the parity and the second to the G parityl, if the decay is through strong interactions. 6 But Duerr and Heiserberg suggeat that 0^{-t} meson of a 1^{++}meson can violate Gparity and decay into three pions. ${ }^{7}$ They even estimate that the three-pion decay could be much stronger than the four-pion decay for the latter mesons. and, since the w meson has a small width ($\Gamma / 212$ Mev and could be 0 Mev), ${ }^{2}$ Si, they predict for this meson a spin and parity 0^{-t} and not $1^{* *}$. However. the decay of the 1^{--}meson into four pions would be completely negligible
compared with the chree-pion decay. So the very existence of a four-pion resonance at 780 Mev would zule out the $1 "$ spin parity ascignment; its nonesistence would rule out the poestibility of the $l^{t t}$ spin parity. but not the possibility of the 0^{-t} spin parity.
3. It would also be interesting to see the decay of a "meson into four pions. This decay is allowed by strong interactions, but is not as favorable as the two pion decay. Of special interest le the decay mode $-\pi^{+\quad \pi_{8}^{8}}$ with $x_{1} \rightarrow \pi^{+}+\pi^{-}+\pi^{0}$ (η being the $T=0 \quad 550=$ Mev three-pion resonance discovered by Pevsnex et al. ${ }^{3}$. Because the G parity of p is +1 and that of Tis -1. this decay is allowed if the G parity of in is - 1 and forbidden if it is +1 .

We have analyzed 595 six-prong events produded by antiprotons of 1.61 Bev/cin the 72 -inch bydrogen bubble chamber. 9 As we have stafed before, these events are a very pure sample of involving annihilation size charged pions. ${ }^{2}$

$$
\bar{p}+p-3 \pi^{t}+3 \pi+\pi \pi^{0}
$$

After fitting these six-prong events by using the kinematic progrom Etcx. we found

153 that fit the hypothesis $\mathrm{p}+\mathrm{p} \rightarrow 3 \pi^{*}+3 \pi^{-}$;
let us call them " 6π " events:
239 that tit the hypothesis $\bar{p}+p-3 \pi++3 \pi^{-}+\pi^{0}$
let ue call them $7 \pi^{\prime \prime}$ events:
139 that do not fit the two preceding hypotheses and have a missing mass
280 Mev (within I standerd deviation) and could have two or more π^{0} missingi let us call them " $8 \pi^{\prime \prime}$ evente.

Most of the remaining 64 have a negative missing energy or imaginery missing mass, and can be attributed to Dalitz pairs associated with sourprong events.

An event is considered fitted to the hypothesis $\bar{p}+p \rightarrow 3 \pi^{+}+3 \pi^{-}$ when it has a $x^{2} \leqslant 30.0$ for this hypothesis. It is considered fitted to the reaction $\bar{p}+p \rightarrow 3 \pi^{+}+3 \pi^{-}+\pi^{0}$ wherithas $a x^{2} \geqslant 30.0$ for the first hypothesis and $a x^{2} \leqslant 5.1$ for the-latter.

We believe that about 85% of the 139 " 3π " events actually do kave two missing pions, because the missing mass distirubtion of the events follows. within statistics, the effective mass diatribution of two charged pions coming from the same events. .

For all categories of evente we have evaluated the four-body effective mass:

$$
\left.\mathbb{W}_{4}=\left(\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}+\mathrm{E}_{4}\right)^{2}-\left(\vec{p}_{1}+\overrightarrow{\mathrm{p}}_{2}+\overrightarrow{\mathrm{p}}_{3}+\vec{p}_{4}\right)^{2}\right)^{1 / 2}
$$

Sor each pion quadruplet.
For the " 6π " and "8f" events we can get ony the combinations $Q=0$ and $|Q|=2$. For the ${ }^{7} \pi^{\prime \prime}$ events we can also get the $|Q|=1$ combination.

For the " $3 \pi^{\prime \prime}$ eventz we can also calculate the effective maer of two charged pions and two neutral pions by calchating the nussing mass of the system consisting of the incoming aniproton, the proton target, and the four remaining visible charged pions:

$$
M_{4}=\left(\left(E_{D}+M_{p}-E_{1}-E_{2}-E_{3}-E_{D_{1}}\right)^{2}-\left(\vec{p}_{p}-\vec{p}_{1}-\vec{p}_{2}-\vec{p}_{3}-\vec{p}_{4}\right)^{2}\right)^{2 / 2}
$$

For $M_{4}{ }_{4}$ we can form only the $Q=0$ and $|\boldsymbol{Q}|=2$ combinacions. We caiculated for each value of M_{4} or M_{4} an uncertainty $\delta \mathrm{M}_{4}$ or $6 \mathrm{M}_{4}$ by ustag the error matrix propagated by KiCz, for the " $3 \pi^{\circ}$ "events the half-width $\mathrm{F} / 2$ of the resolution function of M_{4} is 14.5 Mev, and that of $M_{4}{ }_{4}$ is 15 Mev fat the region of 1000 Mev . However, because of systematic errors known to exist in oux track reconstruction, our estimate of $r / 2$ probably ahould be multiplied by $\sqrt{2}$ to give $\Gamma / 2=20.5$ Nev Sor M_{4} and $\Gamma / 2=21$ Nev for $M_{4}{ }^{\circ}$ For the " $6 \pi \pi^{3}$ and the " 7π " events $\Gamma / 2$ is a little mallex:

1. Figure la is the histogram of the M_{4} distribution of the $Q=0$ combination of the " $6 \pi^{10}$ events. The solid curve represents the background aistribution estimated fiom the $|C|=2$ distribution of the same events. (Smooth curve drawn Enrough $|\mathrm{Q}|=2$ distribution).

Figures ib and lc are the histograms of the M_{4} distribution of the ${ }_{7}^{14} 7 \pi^{\circ}$ events, respectively, with $Q=0$ and $|Q|=1$. We use the $|Q|=1$ and $|Q|=2$ distributions to estimate the phase-space distribution (solid curves). In Figure Id we renormalize the $|0|=1$ distribution of the "77" ovents and plot it against the neutral distribution of the amme events.

None of these higtograms shows any strong disaccord with the background distribution.

In Fig. 2 we plot separately the histogram of the neutral distribution or $M_{4}\left(\pi^{+} \pi \pi^{-}{ }^{+} \pi\right)(F i g .2 a)$ and the histogram of the neutral distribution of $M_{4}{ }_{4}\left(\pi^{+} \pi^{\circ} \pi^{0} \pi^{0}\right)($ Fig. $2 b)$. The colic curves represent the background distribution estimated from a mmooth curve drawn through the sum of the distributions of $M_{A}\left(\pi^{ \pm} \pi^{ \pm} \pi^{*} \pi^{F}\right)$ and of $M_{A^{3}}\left(\pi^{m} \pi^{2} \pi^{0} \pi^{0}\right)$ with $|\Omega|=2$ of the earne events (Eig. 3a). Figure 36 is the hatogrem of the sum of the newtal distributions of M_{4} and M_{4}.

We dont find any statistically gignincant peak, but che neutral distribution chows a suggestive deviation from the belgground at the region of 1040 Nev. If ehig pealk really exists, it may be a resonance with $T=0$ or $T=1$. It could come from a possible decay of the x^{0} meson $(\operatorname{spin}=0, T=0$, parity odd or the particle predicted by Chew and Frautschi (spin $=2, T=0$, parity even). In the latter case, it could also decay into two pions or two kaons.
2. To estimate the ratio $R\left(\omega \rightarrow 4 \pi / \omega \rightarrow \pi^{t} \pi H^{0}\right)$ wo note that we have seen in the same sample of ppinteractions 79*18 interactions of the form $\bar{p}+p \rightarrow 2 \pi^{+}+2 \pi+\omega$ wich $\omega \rightarrow \pi^{4}+\pi^{-}+\pi^{\circ}$. 2 If the w produced by the preceding
reaction were to decay by $\omega \rightarrow \pi^{4}+\pi^{*}+\pi^{0}+\pi^{0}$ we would see them in our " $9 \pi^{\prime \prime}$ avents. Buthue distribution of $M_{4}^{0}\left(\pi^{t} \pi^{-m} \pi^{0} \pi^{0}\right.$ Kig. 2b) does not show anything over the phase space at the region $780=20$ Mev. At this energy the background is about 26 pion quadruplets; so we can estimate a manimum of 10 pions quadruplets that could come from the decay of the ω_{0} and the upper limit of the ratio of $R\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0} 0 / \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$ is about 12%.

If the ω rinesons produced by the reaction $\bar{p}+p \rightarrow 2 \pi^{+}+2 \pi^{-}+\omega$ were to decay $2 n t o ~ 2 \pi^{+}+2 \pi^{*}$. we would see them in che reaction $\bar{p}+p \rightarrow 4 \pi^{+}+4 \pi^{-}$. We have only 4 ± 2 of the latter reactions. 10 This gives a maximum of 5%. for $R\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi / \omega \rightarrow \pi^{+} \pi \pi^{-}\right)$. We can then conclude shat the watio $R\left(\omega \rightarrow \Lambda \pi / \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$ is Less than 17%, and can very poisubly be zero.

If the ω produced by $\bar{p}+p \rightarrow 2{ }^{+}+2 \pi+\omega$ were to decay in the neucral mode, it would show in the distribution of the misaing mass of the reaction $\bar{p}+p \rightarrow 2 \pi^{+}+2 \pi^{*}+13 \pi^{0} . \quad$ By $\omega \rightarrow$ neutral: we mean the decays $\omega \rightarrow 3 \pi^{0}, \omega \rightarrow 2 y ;$ and $\omega \rightarrow \pi^{0}+y_{4}$ Looking at the later dittribution, J. Buton et al. reported seeing no "peak" at the region of 780 Mev and, using our value of 0.6 t. 15 mb for the cross section of the reaction $\bar{p}+p \rightarrow 2 \pi^{+}+2 \pi^{-}+\omega$ with $\omega \rightarrow \pi^{+}+\pi^{-}+\pi^{0} 0^{2}$ they estimate $R\left(\omega \rightarrow\right.$ neutral $\left./ \omega \rightarrow \pi^{+}+\pi^{0}\right) \leqslant 0.5 .^{1}$

The small value of $\mathrm{X}\left(\omega \rightarrow 4 \pi / \omega \rightarrow \pi^{*} \pi \pi^{-}\right)$agrees with a spin and parity assignment of $1^{-\infty}$ and rules cut the 1^{++}assignment, but does not ruie oup the possibility of 0 for the spin and parity of the omega meson. ${ }^{7}$

The ratio of $R\left(\omega \rightarrow\right.$ neutral/o $-\infty \pi^{+} \pi^{-1} 7^{0}$ is estimated by Duerr and. Heisenberg to be largex then $3 / 2$ for the 0^{-t} assignment and very arnall $\left(10^{-4}\right)$ for the $1^{-\infty}$ assignment. ${ }^{7}$ Our value of the two ratios $R\left(\omega \rightarrow 4 \pi / \omega-\infty \pi^{+} \pi \pi^{-0}\right)$ and $R\left(\omega \rightarrow\right.$ neutral $\left./ \omega \rightarrow \pi^{+} \pi \pi^{0}\right)$, which can be very small, agrees with the 1^{--}assignment and disagrees with the 0^{-t} assignment for the apin and parity of the w meson. Since all other interpretationo of epin and parity (with opin
equal to or less than 1) can be ruled out by the present data, ${ }^{6}$ we conclude that the spin and parity of the ω meson is most probably 1^{-n}. This agrees with the conclusion reached by steveason et al. ${ }^{6}$
3. To estimate the ratio of $R(p \rightarrow 4 \pi / p \rightarrow 2 \pi)$ we use some results from J. Button et al. ${ }^{1}$ They find about $386 p^{0}$ with $p^{0} \rightarrow \pi^{+} \pi^{-}$and about $278 p^{\text {s }}$ with $\rho^{*} \rightarrow \pi \pi^{0}$ by analyzing the reaction $\bar{p}+p \rightarrow 2 \pi^{\dagger}+2 \pi^{+}+\pi^{0}$, from a smaller sample of the same ppicture of our experiment. In our larger sample this would correspond to $482 p^{0} \rightarrow \pi^{+1}$ and $323 p^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$. Whe the mesons produced by the same mechanism decay into $p^{0}-2 \pi \pi^{+}+2 \pi^{-}$and $p^{+1}-\pi^{+} \pi^{-} \pi^{*} \pi^{0}$ we would see them in the M_{4} distributions of the " $7 \pi^{\prime \prime}$ events (Fig. Ib and Ic). In the region around 750 Mev in these distributions we see nothing exceeding phase space, and we estimate a maximum of 2% for $R\left(\rho^{0} \rightarrow \pi^{+} \pi^{+} \pi^{+} / \rho^{0} \rightarrow \pi^{+} \pi^{n}\right.$) and a maximum of 5% for $R p^{2} \rightarrow \pi^{2} \pi^{0} \pi^{+} / \rho^{2} \rightarrow \pi^{*} \pi^{0}$). To estimate the ratio $R P_{\rho}{ }^{ \pm} \rightarrow \pi^{ \pm}+\pi_{i} \eta_{\eta} \rightarrow \pi^{+} \pi^{-} \pi^{0} / \rho^{ \pm} \rightarrow \pi^{*} \pi^{0}$ we analyze carefully all the $|Q|=1$ quadruplets wich effective nass M_{4} in the region $750 \pm 50 \mathrm{Mev}$ (41 quadruplets). In particular we compare the distribution of the effective mass of three pions coming from the se quadruplet with $Q=0\left(\pi^{+} \pi^{-} \pi^{0}\right)$ to that with $|\Omega| \geqslant 11 \pi^{*} \pi^{*} \pi^{7}$ and $\pi^{ \pm} \pi^{\prime} 0$) (the latter is used here as an eatimated background). In the region of 548 Mev ($\pm 10 \mathrm{Mev}$) we have 19 neutral triplets and 15 charged triplets. This enables us to estimate the number of $p+\pi \pi^{4}+\eta$ virh $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ to be
 result agrees very well with the estimate by Rosenfeld et al. who find $R\left(\rho^{+} \rightarrow \pi^{+}+\pi, \eta \rightarrow\right.$ neutral $\left./ \rho \rightarrow \pi^{+}+\pi\right) \leqslant 0.6 \%$ il The actual data on the 7 meson seem to mule out all spin parity assignments except 1^{--}and 0^{-+}. 3 The theo-
 ratio is not yet well determined 25% for a simple phase-space calculation 11 1% after Ciashow and Sakurai: ${ }^{11}$). We conclude that the small
value of the ratio $R(p \rightarrow \pi+\eta / p \rightarrow T+\pi)$ favors che 0^{-+}assignment for the spin, parity, and Carity of the n meson; whether this can rule out the 1^{-0} assignment depends on a more precise calculation.

We want to thank Professor Luis W. Alvarez for his constant encouragement during the experiment and for his foresight and effort that made this experiment possible. We want to also thank Professor Ceoffrey Chew, Professor Murxay Gell-Mann, Dr. Bogdan Maglić, Professor Arthur H. Rosenfeld, Professor M. Lynn Stevenson, Eor many helpful discussioms and advice. We wish to acknowledge the active paxticipation of Dr. Cecil Tate and Mr. Joseph Requa in the anelysis of the data. The film used in this measurement was obtained in collaboration with Dr. Janice Eutton, Dr. Philippe Eberhard, Dr. George R. Kalbaleisch, Dr. Joseph Lannutci, Dr, Bogdan C. Naghc, Dr. Morris Pripstein, and Professor M. L. Stevenson; this esperiment would not have been possible without their help. One of us (N. K. X.) is grateful for the scholarship provided by the Agency for International Development.

Work done under the auspices of the U.S. Atomic Energy Commiasion. † On leave from the Atomic Energy Office, Saigon, South Viet-Nam. i. A. Ro' Erwin, R. March, W.D. Walker, and E. West Fhys. Rev. Lettera 6; 623 (1961); E. Pickup, D. K. Robinson. and E. W. Salant. Phys. Rev, Letters 7. 192 (1961); D. Carmony and R. Van de Walle, Phys. Rev. Letters 8, 73 (1962); J. Button, G. R. Ealbleisch, G. R. Lynch. B. C. Maglić, A. H. Rosemfeld, and M. Lo Stevensom, Pion-Pion Interaction in the Reaction $p+p \rightarrow 2 \pi^{+}+2 \pi^{+}+2 \pi^{0}$. Phys. Rev. (to be pubFhlished).
2. B. C. Maglić, L. W. Alvarez. A. H. Rosenfeld, and M. L. Steveason, Phys. Rev. Letters 7. 173 (1961): N. K. Xuong and G. R. Lynch, Phys. Rev. Letterg 7. 327 (1961).
3. A. Pevsner, R Kraemex, M. Nusabeum, C. Richardson P. Scheino R. Strand, T. Toohig, B. Block, A. Engier, R. Cessaroli, and C. Meltser, Phys. Rev. Letters 2. 421 (1961); P. Bastien, J. P. Berge, O. I. Dahl, M. Eerro-Luzzi. D. F. Miller, J. J. Murray, A. Th. Roserield, and M. B. Watson, Phys. Rev. Letters 8.114(1962); D. C. Carmony. A. F. Rosenfeld, R. Van de Walle, Phys. Rev. Letters 8, 117 (1962).
4. G. F. Chew and S. C. Frautschi, Phys. Rev. Letters g. 41 (1962): G. F. Chew and S. C. Erautschi Fhys. Rev. Letters 7. 395 (1961).
5. M. Ikeda, S. Ogawa, and X. Ohnvki, Progr. Theoret. Phys. (Kyoto) 22. 715 (1959): Y. Ohnuki, in Proceedings of the 1960 Ammal International Conference on figh-Energy Physicis et Rochester (Interscience Publiohers. Inc. New York, 1960); Z. Yamagucht, Progr. Theoret. Pays. (Kyoto) Suppl. No. 11 (1959): J. Wesa. Nuovo cimento 10. 15 (1960); Shigeo Minami, Heavy Mesons and Hand Core in Nuclear Force. Preprint,

Deparment of Physice, Osaka City Jniversity, Osaka; Murray GellMann, Symmetries of Baryons and Mesons. Fhys. Rev. (to be published). 6. M. L. Steveneon, L. W. Alvarez. B. C. Maglic, and A. H. Rosenfeld, Phys. Rev. 125, 687 (1962); N. H. Kuong and G. Ro Lynch, Phys. Rev. Letters 7. 327 (1961).
7. H. P. Duerr and W. Heisenberg, The Quantum Numbere of the w Meson (preprint).
8. C. Feinberg is the finst one to mention the $\rightarrow+w+d$ decay: Phys. Rev. Letcers 8. 151 (1962).
9. J. Button P. Eberhard, G. R. Kelbfleisch, I. E. Lannutci, G. R. Lynch. B. C. Maglic, M. L. Stevenson, and M. K. Xuong, Phys. Rev. 121, 1788 (1961).
10. Bob Foulks, (Lawrence Radiation Laboratory) private communicationg
11. A. E. Rosenfeld, D. Carmony, R. Van de Walle, Is the Theson the 0^{-t} Meson (UCRL-10055, Feb. 1952), to be nubminted to Phys. Rev. Lettess.

TIGURELEGENDS

Fig. 1. Hestograms of the distribution of the effective masses $\left(\mathrm{M}_{\mathrm{A}}\right)$ of pion quadruplets; (a) is for quadruplets of $\left(\bar{p}+p-3 \pi^{+}+3 \pi^{-}\right)$events with $Q=0 .(b)$ and (c) are for quadruplets of $(p+p-\infty \pi+3 \pi+\pi)$ events with $Q=0$ and $|Q|=1$. respectively. In (d) and (c) distribution (ahaded area) is compared with the (b) distribution.

Fig. 2. Elistograms of the distribution of effective masses of neutral pion quadruplets of $\left(p+p-3 \pi^{+}+3 \pi^{-}+2 \pi^{0}\right.$) events; (a) is for distribution of $\mathrm{M}_{4}\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$, (b) ia cor distribution of $\mathrm{M}_{4}^{1}\left(\pi^{+} \pi^{-} \pi^{0}\right)^{0}$. The same smooth curve has been drawn on (a) and (b).

Fig. 3. Eistograms of the distribution of effective masses of pion quadruplets of $\left(\bar{p}+p \rightarrow 3 \pi^{+}+3 \pi^{-}+2 \pi^{0}\right)$ evenis; (a) is for quadruplets with $|Q|=2$. (b) is for quadruplets with $\Omega=0$. The same smooth curve has been drawn on (a) and (b).

Fig. 1

Effective mass, M_{4} (Bev)

D

Fig. 3

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of he Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

