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I. Semiclassical Eigenvalues for Potentials Defined on a Finite

Interval.

It has bzen many years since Langerl and others2 noted the
difficulties which occur when one attempts to apply the ordinary WKB
approximaticm3 to problems involving arbitrary potentials. Specifically,

for a general one-dimensional Schrodinger equation

ne g2
32 + V(x) - EYPp(x) = 0 (1.1)

dx

(-

one knows that the usual semiclassical express’ons for the eigenvalues
(if V(x) supports bound states) or for the phase shift (if V(x) is a
scattering potantial) are not in principle valid if x is confined to only
a part of the entire real axis. Such a situation is hardly uncommon,
however; for example, the radial Schrodinger equation which inveolves a
spherically symmetric two-body potential falls into this category, since
in this case the coordinate (which is customarily denoted by r) is
restricted to the semi-infinite domain (0,»). It is for this particular
protilem that Langer derived the cofrection term1 hzz which, when added

8mr
to V(r), yields the correct behavior of the phase shift as r =+ 0.

More recently Froman and Feranz’A have examined in detail not only
the basic problem of the applicability of the conventional WKB formalism
but also the even more zeneral question of the validity of various phase
integral approximations. Their work has produced a convenieut expression
for the potential correction term for which Langer's modification represents
a special case. As shall be discussed more fully in the following

siection, however, this particular approach does not yield a unique



correction term and hence cannot alone be used to construct the proper
modification.

The present work seeks to overcome the uniqueness difficulties by
imposing a criterion which permits identification of the correct modifica-
tion. In order to demonstrate the utillty of the overall method, sample
problems are examined which require that the domain of % be limited to
the finite interval (a,b). Specifically, Seection C treats first the
limiting case in which a particle is confined to a square potential well
and second the somewhat more complex problem in which a simple harmonic
oscillator is placed in such a well. In either case one finds that by
inserting the derived effective potential into the usual Bohr-Sommerfeld
quantum condition it is possible to obtain essentially the exact quantum
mechanical results. (Although at face value the oscillator-in-a-box
problem might seem to be only of pedagogical value, such a model has
been proposed for certain nuclear interactions5 and for frequency-doubling
waveguides.6) Furthermore, the obvious inadequacy of the unmodified WKB
eigenvalues calculated for these systems points te the importance of

using a "corrected" formalism.

A, Mapping Functions

In order to develop a criterion for determining a unique potential
modification, it is necessary to explore the more general problem of
restricting the coordinate domain to only a portion of the entire real
axis. Mathematically this restriction may be handled by mapping the
interval of interest (a,b), over which the WKB approximation is not
rigorously vallid, onto the line (-w,»), This is indeed the method

. - 2
adopted by Langerl and discussed extensively by Froman and Froman.



Formally, one requires a one~to-one mapping function z(x) which satisfies

the following conditions for all x€(a,b):

z(a) = -
z(b) = 4= , and
2'(x) > 0 . (1.2)

Having thus defined the mapping function, the Schrodinger cquation,

Eq. (1.1), may be transformed into an equivalent expression which is a
function of z. Folluwing Reference 2, the eigenvalue condition is then
given by

X

. > v
(n+3) =f dx V2m[E-V(x)-AV(x)1/R° (1:3)

X

where AV(x) is the potential correction term, constructed via the

equation

2 2
AV(x) = - '—2‘; 2" (x) 172 —9—2- N L (1.4)

dx

[0f course, if z(x) = x, i.e., the interval of interest is itself the

whole real axis, AV 2 0 and Eq. (1.3) trivially reduces to the conventional

WKB eigenvalue condition,3 as expected. ]

One should notice, however, that Eq. (1.4) will yield a non-zero
value of AV(x) whenever the quantity z'(x)—'l/2 is twice differentiable.
Certainly there are a great many mapping functions z(x) which can be used

to obtain a corresponding number of possibilities for AV(x). Suppose,

for example, the particular restriction described by Langer is imposed



such that the coordinate x is confined to a semi~infinite interval,
i.e., (a.b) = (0,). A possible choice for the mapping function is

then that one which was employed by Langer,
2(x) = 4n x . (1.5

It is then a simple matter to substitute this function into the general

expression Eq. (1.4) and to find that

AV(x) = —3 R (1.6)
Bmx
which is, of course, the usual Langer correction term.l
As a matter of fact, it is not at ali difficult to guess other formulae

for z(x). For instance, a set of functions of the form

z(x) = x" - x %, (1.7)

(n being some positiv: integer) when introduced into Eq. (1.4) leads one

to a whole family of courrection terms,

2 n-3 -n-3
0T (o-1) (n~2)x + (n+l) (n+2)x
avex) = o o -1, -1

_3 l(n—l)xn—z - (n+l)x-n—2
2

— —— 1
xn 1 + x n-1

2

For each value of n, %€(0,») is mapped onto z€(-»,=) with z'(x) > 0, but
surely not. all of these functional forms yield equally good approximations

to the quantum mechanical solution. This lack of invariance of AV(x) with
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respect to the form taken for the mapping function lends an extremely
unsettling aspect to the use of Eq. (1.4) as the sole criterion for
determining the modified potential.

In passing it should be also ncted that the non-unique character of
the interval transformation method described above is by no means peculiar
to the particular case in which x is defined over the semi-infinite
interval. If x is confined to the finite interval (a,b), a possible choice

for the mapping function is

X-a
z(x) = in (-B':}-{' R (1.7)

a function which is quite reminiscent of Langer's,Eq. (1.5). Using

. (1.7) one finds that

2

2
AV(x) = '{‘5— (b-a)

B — ’ (1.8)
(x-a)z(b-x)2

which is actually very similar to the Langer correction term for values of

X near the endpoints.

2
Lim  AV(x) = %—ﬁ —L
x+a (x~a)
2
fim  AV(x) =%—“—l -1 .
x+b (b-x)

However, as found previously, there are certainly other mapping functions
which may be used to modify the WKB eigenvalue condition. To indicate

just one alternative, the function

z(x) = tan [% (g—x—gj_a-;-ll)]
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certainly satisfies the conditions given by Eqs. (1.2) but unlike Eq. (1.7)
yields the correction term

h2 ]
Av(x) = ™ G—) .

which seems to be a clearly unphysical result, inasmuch as the potential
correction is independent of x for this mapping.

Hence, to determine a mapping function uniquely, the use of Eqs. (1.2)
and (1.4) is, as has been indicated by Froman and Froman, quite insufficient—-
an additional criterion must be found. Fortunately the required criterion
may be deduced from a consideration of why Langer's correction term has met
with such success in describing scattering processes. Consider for a moment
the case V(x) £ 0 on the restricted interval x€(0,»), for which the phase
shift must certainly vanish if the correct physics is to be obeyed.
Substituting Langer's correction, Eq. (1.6), into the modified equation

for the WKB approximation to the phase shift,

X

n-= %+ L£im [-kx + -4‘ dx' ﬁm[E-V(x') - AV(x')]/flf] -
XFo .
. <

.

and setting V(x') to zero, one obtains

S

X 2 . .
+ %im [-kx+£ dx" /2m(E- h 2)/h2] .

Kxro0 8mx'

=
I
&~

-~

The above integral is then easily evaluated, yielding

~=

n:

+ %im [-kx + VK x“© - % - % sec—l 2kx] = 0 .

x—)-m



the expected quantum mechanical result. More importani, only Langer's
correction term can be shown to reproduce this exact result for the case
V(x) = 0. Since a nonvanishing phase shift does not represgﬁt the kuown
physics, the transformations which lead to such an erroneous prediction may
be immediately rejected. Thus, yet arother gemeral condition on the correct
mapping function z(x) may be imposed in addition to the conditioms of

Egqs. (1.2), namely the mapping function must lead to a potential correction
term AV which causes the exact quantum mechanical result to be reproduced

in the limit that the potential V(x) is set to zero. The section which
follows indicates a way to implement this added requirement for a potential

which constrains motion to the finite interval x€(a,b).

B. Correction Function for Finite Intervals

The application of the ideas of Section A to the case of a potential
which is defined over a finite interval requires that the modified Bohr-
Sommerfeld quantum condition, Eq. (1.3), give the exact quantum mechanical

eigenvalues for zero potential V(x), i.e.,

X

(n +%)'rr = f dx JZm[E—AV(x)]/fTZ . (1.9)

Xe

Physically, setting V(x) to zero within the finite interval x€(a,b) and to
infinity outside the interval is equivalent to assuming that the system is
described by a particle-in-a-box model. Hence, the eigenvalues obtained
via Eq. (1.9) must take on thé corresponding well-known values,

(n+l)ﬂ]2

E -h—z-[
" 2m a

. (1.10)
n



where n = 0,1,2, ... . Substitution then results in an equation which
may be inverted so as to give the correction term AV(x).

Of course, the general prescription for inverting Eq. (1.9) is
already known, namely the RKR inversion method.7 Briefly, the RKR
formalism may be used to construct a potential function which within
the WKE approximation has the given set of bound energy levels. For

the particular case under consideration here, the appropriate RKR

formula is7

1 /n? " -1/2
x - 5 (ath) =V fl dn [AV-E(n)] . (1.11)
-7

where the correction potential AV(x) is assumed to be symmetric about

X = % (a+b), the midpoint of the interval, and where n, is the zero of
the integrand. Inserting the expression for E(n) given by Eq. (1.10)

into the above equations one finds that

7 0 2 2.2
x - 3 (ath) =v/o- 4/1 dn [av -A (otl) =172
< m <m &
-~ E (b-a)

which, when integrated, becomes

-1 .7

1 b-a h
x =5 (ath) = 5= cos -~ 7o Vgl -

It is then a simple matter to invert x = x(AV) algebraically and to obtain

the desired result,

2 )
h b-a .
AvV(x) = . 2[_ﬂ;( ; a+b)] . (1.12)
cos b-a X "'2'



Therefore, for any potential which is defined on the finite interval
(a.b), one may generate the modified WKB eigenvalues by substituting
into Eq. (1.3), with the potential correction term beiﬁg given by Eq.
(1.12). Since the derivation has explicitly incorporated the correct
quantum mechanical behavior in the limit V(x) = 0, the ambiguity present
when one tries to guess the "best" mapping function has been avoided.
Before proceeding to the consideration of some specific examples,
one should note the relationship of the potential modification obtained
herein to that devived by Langer, Eq., (1.6). First consider the general
form of AV(x) in the particular limit that x is near one of the turning

points. If, for exampie, x = a, then Eq. (1.12) may be transformed as

follows:

—-a
AV = =
8m cosz[ i ( _b—a -a)]
b-a ‘> 2
T .2
_n? Gz
" 8m 2.7 T
cos [E:E(x-a) -EJ
T 2
- EE_ (b~a
8m L 2.0
sin [b_a(x—a)]
m o2
h2 (E:Z)
——> —
x~a 8m

LU 2
(3:30 (x-a)

hz

8m(x-—a)2
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which is of the canonical Langer form. If instead x = b, then similar

manipulations yield

hZ

AV ;—B———-——"' .

= 8m(b--x)2

[In passing, it is interesting to observe that these same limits are
obtained from the "guessed" mapping function given in Eq. (1.7); however,
the corresponding potential correction, Eq. (1.8), differs substantially
from the proper result as constructed above.] Then, by considering the
limit (a,b) - (0.»), i.e., the radial Schrodinger equation case, Eq. (1.12)

takes the form

2
h2 @)
AV(x) = Lim E—' 7 b
by O cos [ (x -2) ]
b 2
T2
I G VI
b 8m sinz(g-x)
T, 2
2 &
" 8m w2
(bX)
_
Bmx2

which is, of course, the correect Langer correction term. Thus, the
results of the Langer formalism may be viewed as just a special case

of the more general development propused in this Sectiom.
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C. Specific Examples

1. v(x) =0

In order to get some indication of just how much of a Aifference
exists between the modified and unmodified WKB eigenvalues, first consider
the rrivial example, V(x) = 0, i.e., the case in which the uncorrected
potential is set to zero. With the inclusion of the potential correction
term, the eigenvalues are, by construction, exactly the particle~in-a~box
eigenvalues given by Eq. (1.10). 1If, however, the correction term is
not included, one finds that the energy levels are obtainable via the

following manipulations:

(n +%)n

‘7.dx,/£r2r-l E
a h n

(b-a)V 22 B,
h

and so by inverting,

W2 @
En = m [———b_—a*-—] . (1.13)
A few of the eigenvalues calculated using Eqs. (1.13) and (1.10) are
listed in Table 1 and also plotted im Figure 1 for the case m = 1 and

(a,b) = (- %,g), the units being chosen such that h = 1. For example,

L}

for n 0 (admittedly the worst case) the unmodified value is too low
by a factor of 4; for m = 1, although the agreement is improved, the
uncorrected eigenvalue is still nearly a factor of 2 too small. Even

though the deviation of the results given by the ordinary WKB formulae

from those obtained from the modified formalism will not, in general,




be as large as that which is observed for this extreme case, it is
clear that tha inclusiun ~f the potential correction may in certain
instances substantially shift the calculated energy levels.

2, Harmonic Oscillator in a Box

Since the situation described in Case 1 above may by its very
simplicity not provide a particularly critical test of the validity
of the modified WKB quantum condition, it is useful to examine a
slightly more complex example., that of a harmonic oscillator which
is confined to a box having infinite-potential wails. Specifically,
consider such an oscillator of unit mass which is constrained to the
interval (—-%;%), i.e.,

2.2

V(x) , |x| <

]
Nl

1>

3
N

1l
B

L
s |x|>§

Adopting atomic units (h=1), one then writes the effective svstem

potential as

&2
Vg = VGO + AV() = wix® +-§- L

Nof=

2,1
cos (ix)

12

(1.24)

From this form for veff’ it is easy to recognize two familiar limiting

cases. If the box is very wide, i.e., L+w, then AV(x)+0, and the
effective potential is just the unperturbed harmonic oscillator
potential. Thus the eigenvalues will be given by the well-known

8
formula
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. 1
Ln = (n-+§)m , (1..15)

n=0,1,2, ... . Obviously, this limit corresponds to a consideration
of the infinite interval (-=,»), for which Eq. (1.3) necessarily reduces
to the customary unmodified WKB quantum condition. The other limit is
1+0, an infinitely narrow box, in which case Veff * AV(x) (V(x) being
negligible compared to AV(x)). Now one finds that the situation is for
all practical purposes that which was described by Case 1, the correct
eigenvalues being those predicted by Eq. (1.10),

[(n+l)ﬂ]2

1
B T3 L ,

n

n=20,1,2, ... . As has been previously indicated, in this limit the
inclusion of a potential correction term is absolutely essential if one
is to extract the proper results.

Substitution of Eq. (l.14) into the modified quantum condition,
Eq. (1.3), then yields an equation which may be solved iteratively for

the eigenvalue En’

x ‘
- 7 ;

(n +%)n - f dx \AEn—mzxz - —i‘ln— i (1.16)
X, 4L cos (f")

The actual computation procedure is as follows: for given quantum
number n, box length L, and oscillator frequency w, one may write the

iteration scheme for En as

(m-1)

I (E )
Er(lm) - Er(lm_l) T . (1.17a)
I'(E )
n n
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where

X, P '
1 (E(m)) = f dx \/ZE(m) - w2x? —Lz ""2‘1“1}"‘" (1.17b)
n' n x, n 4L" cos™(y x)
- (n + %")TT [}
1 (m) - a 1(m) :)
RED =y L E&D (1.17¢)
n

and the integer m counts the iterations. (Eqs. (1.17) will be recognized
as being just the well-known Newton root search algorithm.g) The
iteration is begun by making an initial guess for En, conveniently

taken to be the oscillator eigenvalue predicted by Eq. (1.15). Once

the first approximation, Eﬁo), has been obtained, one substitutes this
value into Eq. (1.17b), the integral being computed numerically by

first determining the zeros of the integrand via a straightforward Newton
search and then performing the integration by Gaussian quadrature.
Furthermore, the derivative term, Eq. (1.17¢), is obtained in a directly
analogous manner, with the derivative being approximated by application
of the finite-difference formula,

(m) (m) (m)
1 p(m)y ~ In(En * AEn ) - In(En )
In(En ) =

AE ™
n

(m) _ E(m) _ E(m—l)
n n n

where AE . (Note that the use of the above form for

(-1) 0)__ (-1
n

1' requires that two initial guesses be made, E and En - n is

n
()]

taken to be just En plus some small increment.) Once In and I; are

calculated, an "improved" value for En may be found by using Eq. (l.17a).

(m) _ E(m—].)
n

The iterative procedure is then repeated until E to the

accuracy desired.



The computations described herein, coded in Fortran, required
less than 10 seconds of minicomputer time for each choice of bhox
length. The only point in the calculation at which special care
must be taken is in the determination of the c¢lassical turning points
which appear in Eq. (1.17b). Since in general the integrand may have
more than two real roots, one must be sure that the ronts upon which
the Newton search ultimately converges are the proper ones, i.e.,

L L
73"

those roots which lie within the interval (-

Fortunately, an exact quantum mechanical analysis of the boxed
harmonic oscillator problem has been recently reported.lo Thus it
is a simple matter to compare the results obtained via the modified
WKB formalism with the correct quantum eigenvalues. In order to reveal
the significance of the addition of the potential correction term to
the usual WKB quantum condition, calculations have also been performed
with the unmodified formulae, i.e., AV(x) has been set to zero in
the iteration scheme described above. These three sets of results are
displayeq in Table 2 and pliotted in Figure 2 for an osciliator frequency
w = %. In each case note that the eigenvalues for the ground state (n=0)
and the first excited state {(n=l) are given as a function of the box
length L, since it has previously been indicated that the physical nature
of the system is expected to show a strong L dependence.

Even a cursory examination of Figure 2 reveals that the modified WKB
eigenvalues do reproduce the exact quantum mechanical values quite weil.
In particular note that for small L values (corresponding physically to
the case of a very shallow oscillator potential), the modified eigen-

values represent a very substantial improvement over the conventional WKB

energies. As mentioned earlier, for large L values the contribution from
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the potential correction term becomes negligible, and indeed this
behavior may be confirmed by observing that both the modified and the
unmodifiied WKB results converge to the proper quantum mechanical values

4s Lo, There does. indeed. appear to boe an intermediate region in which
the finite interval modification tends to "over-correct' somewhat to the
point that the ordinary WKB eigenvalues are slightly more accurate than
the modified ones, although the actual deviation involved is fairly small.
The more important observation to be made is that when the ordinary
unmodified formalism does prove to be inadequate, the modifications
indicated herein provide a means for restoring the agrecment with the

quantum mechanical answers.

D. Observations

The present work has shown that for potential functions which are
defined over the finite interval (a,b) the ordinary WKB quantum ceondition
does not in general yield an adequate description of the true energy
levels. However, by adding a correction term to the actual system
potential, one may modify the usual semiclassical formulae and as a result
may obtain quite accurate results. A particularly attractive feature ot
the modification derived in the present work is that the correction term
reduces to the well-known Langer form in the limit (a,b) = (0,»). The
two specific examples treated in Section C then give a demonstration ot
the significant extent to which these modified formulae improve the
agreement with the fully quantum mechanical formalism.

Perhaps the most important lesson to be derived from this study is
that the ordinary WKB quantum condition cannot be applied blindly to

a system involving an arbitrary potential function. The particular case
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considered here points to one of the pitfalls, namely that the WKB wave-
function vanishes only at * »= (disregarding, of course, any isolated
nodes). 1I[, therefore, the potential requires that the wavefunction
vanish at finite boundaries, the semiclassical method shculd not be
expected to describe adequately the physics. For such a potential one
must then introduce an extra potential contribution in order that the
correct boundary conditions be satisfied, that extra potential being the

correction term which has been derived here.
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II. Reactive Scattering Exchange Kernels.

Although in pfinciple a reactive atom-diatom collision is no more
difficult to handle than the corresponding nonreactive process, one
knows that in practice it is necessary to overcome the additional problem
which arises due to the fact that the coordinates appropriate for describ-
ing the reactants are quite irappropriate for describing the asymptotic
product arrangement. Historically, there have been two methods which
have gained popularity as means for surmounting this added difficulty.
The first of these methods, one which was suggested by Marcus.ll involves
the construction of special coordinates (the so-called "natural collision
coordinates") which smoothly follow the progress of the reaction from
reactants to products. The second approach12 to the problem permits one
to carry out the integration of the individual channel differential
equations in the coordinates appropriate to their respective asymptotic
arrangements, however subsequently one must perform a coordinate matching
on some hypersurface within the interaction region of the potential
surface. Clearly though, regardless of which of these two procedures is
adopted for use, one is forced to adapt the formalism explicitly to
the particular collision partners being investigated.

Thus, in order to obtain a more general description which avoids
the coordinate difficulties altogether, Miller13 has chosen to reformulate
the reactive scattering problem within a framework which is directly
analogous to the conventional Hartree-Fock equations appearing in
electronic structure theory. Inherent in this alternate formulation
is the appearance of a nonlocal, non-separable exchange kernel, the

treatment of which presents the only real obstacle to the application of
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the method to a general reactrive collision system. The recent

application of Miller's work to the H + H, collinear reaction by

2
Garrett and Miller14 has shown that while the exchange interaction
may be adequately described by an expansion in a suitable basis set,
the rather large number of basis functions needed for such an expansion
appears to make the extension of the methodology to any larger systems
quite cumbersome. If, however, it should prove possible to obtain an
improved characterization of the non-separable interaction such that
calculations performed on more complex bimolecular collisions become
tractable, this particular method is likely to provide an attractive
means for studying processes of real chemical interest.

In the present work two differeiit approaches to the improvement
of the exchange kernel treatment are examined. The first concerns what
might be considered the most straightforward way to construct solutions
to the coupled integro-differential equations which arise from the
theory, namely an iterative procedure ("a la SCF"). As shall be shown,
howuver , such an iterative scheme does not appear to be convergent in
its present form due to the large magnitude of the kernel for those
situationsbwhich lead to appreciable reaction probabilities. A second
approach investigated herein is in the same spirit as that taken by
Garrett and Miller,14 i.e,, a separable expansion of the exchange kernel
is constructed. The particular expansion chosen here differs Erom the
previous one in that it allows more knowledge of the interaction to
be built directly into the description. Calculations using this improved
kernel characterization do indeed indicate that the number of expansion

functions required can be significantly reduced, thereby enhancing
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prospects that Miller's formalism will find general applicability in

the study of chemical reaction dynamics.

A. Review of the Theory
Inasmuch as the details of Miller's formulation of the reactive

+ attering problem are reported elsewhere.ls'lb

only the important
features of the formalism will be reproduced here. For a collinear atom-
diatom reaction of the general form A + BC -+ AB + C for which the collision
energy is such that only the ground vibrational states of reactants and

products are opeh, one writes the wavefunction describing scattering

from the initial channel uo(ao = a or c) as

\Pao(r‘R) - ¢a(ra) fa“ao(Ra) + (bC(rC)fC*'a(;)(RC) + gcnx'ﬂ(r‘R)

where a(A+BC) and c(AB+C) label the two possible asymptotic arrangements
for which (ra.Ra) and (rc’Rc) respectively are the appropriate Jacobi
coordinates, only two of the four coordinates being independent. Initially
one presumes knowledgé both of the wavefunctions which characterize the
asymptotic diatomic vibrational states, ¢a(ra) and ¢c(rc), and also of
a finite set of square-integrable functions {xn} which describe the
effect of the energetically closed channels. One needs only, therefore,
to determine the expansion coefficients {Cn} and the unknown radial
funetions, fa+u0(Ra) and fc*uo(Rc)' This determination may be made through
the use o% a variational principle, specifically by extremizing the
functional

TG W E o+ ) = <Y, lu-ely >

%y % 0 0
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(i being the total Hamiltonian) via a variation of first the constants
and then the radial functions. As a result of this procedure, a set of
coupled equations is obtained which may be solved for the f-functions.
If, however. the discussion is specialized to the H + HZ exchange
reaction, one may take advantage of the symmetry of the resulting
equations and construct a set of decoupled equations for the functions

f+(R) and f_(R) defined by

£, (R) = fa+ao(R) x fc+a0(R)

Thus, by addition and subtraction of the coupled equations, the following

independent integro-differential equations are obtained:

2 2
h d = . + [ (] (]
[~ Eﬁ';;f + VD(R)-EO] £,(R) * -/ER Vi (RsR ) £, R")

.

x 1 ) ]

+ 2 é[% AR <A |£,> =0 (2.1)
?

where

Tp(® = fdr (0 1¥=v(r) 10g(x)

2 2
vy - Or(®R,R") . hT 4" "y
Vex(R.R ) = R [ G dR'z + V vo(r ) EO]
. ¢0[r(R,R')] dolr' (R,RY)] (2.2)

Mom = X BRI

A, (0 = far 0@ *-B)X, (2.0
B(R) = §_(R) = o_(R)

E - ¢

i

%o

]
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In the above equations H is the total Hamiltonian, V is the total potential
energy, VO(r) is the asymptotic ground vibrational potuntia% function for
H2, and EO is the vibrational eigenvalue corresponding to ¢U(r). Since
the correlation functions {Xn} are chosen to have a definite parity upon
the exchange (r;,Ra) —* (rC,Rc) and furthermore since the matrix M does
not contain matrix clements which connect states of differing parity, the
summation in Eq. (2.1) retains only the correlation terms of + or - parity.
An examination of Eq. (2.1) reveals that the term which describes the
interaction between the open and closed channels is manifestly separable
and is therefore inherently easy to handle via a basis set expansion.
Calculations performed by Garrett and Miller14 have indeed verified that
sucli an expansion can provide a quite adequate description of the closed-
channel term even when only a few basis functions are employed. Hence
in the present wourk interest will be confined to the nature of the open-
channel exchange affect. In order to isolate that effect, the treatment

which follows takes as the equation of interest

2 2
LN ; =t fax Yo o(Rt
[- 57 3+ VyR-Eg) £ (R) = +]:1R v (R.R') E(RD) (2.3)
dR
which includes only the energetically open channels, rather than the

complete expression given by Eq. (2.1).

B. Characterization of the Exchange Kernel

Before proceeding to a discussicn of the methods which may be used
to sulve Ey. (2.3), one should obtain some idea of the actual structure
of the exchange kernel. It is not difficult to generate numerical values

for the kernel via Eq. (2.2) once a choice is made for the H3 potential.
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Throughout this work the popular Porter—Kder.usLJ potential surface has
been adopted (ié its collinear form), making the evaluation of Vex(R’R')
particularly convenient in that the asymptotic reactant and product
diatomics are described as simple Morse oscillators.

A calculation of the exchange kernel for an (R,R') coordinate grid
was pertformed at a total energy of 0.4898 eV. The results of this calcula-
tion were then plotted as a three-dimensional surface using a Cal-Comp
plotter, this surface being shown in Figure 3. One should note first of
all thar the kernel is quite strongly peaked along the diagonal. Second,
it is clear that the effect of the exchange interaction will be limited to
a fairly small vegion of configuration space, the maximum effect occurring
at R = R' = 2 bohr radii (one should recall that for the Porter-Karplus
surface, the saddle point is located at R = R' = 2.55 bohr radii). The
reported neced for the inclusion of many bhasis functions in the separable
cxpansion of this kerne].14 certainly seems, therefore, to be understandable.
Hence in the discussion which follows, an investigation is made to determine
whether or not the exchange is amenable to the application of a more
efficient solution scheme.

L. Iterative Solution

As has been previously indicate.d,14 there is an obvious analogy
between these scattering equations and the conventional Hartree-TFock
expansions of electronic structure theory. One is tempted, therefore,
to try to solve the equations via an iteration scheme analogous to an
SCF calculation:

2 2
h” d L e (M) (n-1)
ap g T ] L ® =~de' v (RRDESTTURY (2.0)
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where n counts the iterations.
If E”(R) is the regular solution of the homogeneous diflerential

equation, i.e.,

- + vO(R)—Eolfo(R) =0 . (2.5)

then the iterative process is begun by taking f+(0)

i

(R) EO(R), substituting
the zeroth vrder solution into the right hand side of Eq. (3.1), integrating
1

this inhomogeneous equation to determine fk(*)(R), then repeating the cycle

s (n) - ¢ (n-1)
uncil £ (R) = £, (R) to the accuracy desired. Note also that such

: . . . . 16 .
an operation is equivalent to summing a Born series; for example, a single
iteration yields the solution obtained via the usual distorted-wave Born
approximation.
The difficulty with such an approach lies, of course, in the

convergence properties of -Eq. (2.4). To get an idea of the conditions

under which a solution mav be obtained by iteration, consider a simple

separable approximation to the exchange kernel,
Vo (RoR') = A g(R) g(R") R (2.6)

where g(R) might, for example, be a gaussian centered about the maximum

of Vex' For this case, Eq. (2.3) then reduces to

2 2

which is known to be solvable in a closed form,

- -1
£,(R) = £,(R) iGOg'A<g|f0>(1 A <g|G0|g>) .
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where G is the Green's function corresponding to Eq. (2.5). Once the
solution is in this form, one can identify the convergence criterion by
noting that the second term on the right has the form of the sum of a

. . ) ! 17
geometric series, for which the convergence properties are well known.

Thus one sees that an iterative solution will be obtainable if and only

Lf
la<glegle>|<r . (2.8)

Model calculations were therefore performed for the H + H2 collinear
system using a simplified form for the exchange kernel, namely a
separable product of gaussians (as was suggested above), the parameters
for which were determined by roughly fitting the actual calculated values
for Vex(R.R') to the assumed functional form. Although admittedly the
parameter fit is rather crude due to the fact that Eq. (2.6) yields a
poor approximation to the true kernel, it appears that in general Eq.
(2.8) will not be satisfied for such a model potential at those collision
energies for which the reaction probabilities are non-negligible. [By no
means does this particular model calculation indicate that there is no
function g(R) such that Eq. (2.8) will be satisfied for a particular
choice of potential parameters, but rather it does suggest that poor
convergence can make the iterative solution method unreliable for a
general collision process.] Physically the lack of convergence merely
points to the fact that the inclusion of the rearrangement effects produces
a significant additional phase shift, making EO(R) a poor approximation
to fi(R)' Consequently, the higher terms in the Born series will make a
non-negligible contribution to the scattering, and hence the distorted-wave

Born approximation may be expected to be inadequate.




One also notices that the analogy between this development and
Hartree-Fock theory is not as close as might be hoped. In practice
the exchange kernel, although manifestly nonlocal, is confined to a
relatively small region of space (R,R' = [1.,5.] bohr) and as such does
not produce the average potential field which is characteristic of
electron exchange. Theretore one should not be too surprised that an
SCF-like approach to equations describing molecular rearrangement is
not particularly successful.

2. Separable Expansion of Vex

14
Garrett and Miller, in the initial complete application of the

13

exchange kernel formalism, make a separable approximation to Vex

namely

V  (RR') = ):, u, (R) <uiiVexluj> uj (RY) , (2.9)
1,]

where {ui} is a convenient basis set. Since their calculations were
converged with respect to an increase in the number of basis functions,
Eq. (2.9) represents an essentially exact treatment of the direct exchange
contribution. In addition, the use of a separable expansion.greatly
facilitates computation in that all of the inhomogeneous terms in [q.
(2.1) are then separable. Consequently one can obtain a solution for
ft(R) in a closed form. However, as mentioned previously, this "outer"
expansion of the kernel requires that a large number of functions be
included if convergence is to be achieved, and hence this particular
approach would likely prove to be unwieldly for systems larger than H + HZ'
One is lead, therefore, to explore the possibility that some other

separable expansion might provide a superior description of the exchange
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kernel. Specifically, the present work examines an "inner" expansion
defined by
-1

' = < '
vV, (R.R ) Rlvex Vo, Vex|R >

-1 ,
T v oy o I o™ v 210

N

-1 .. . .
where (<ui|V lujz) denotes the (i,j) matrix element of the matrix

ex
inverse of the matrix <uilvex|uj>° Note that now the expansion vectors
are {Vexui} rather than {ui}, and accordingly more knowledge of the exchange

is built directly into the development.

To see the consequences of improving the approximation for Ve ’

X

consider another very simple model for the exchange,
' = - '—
Vex(R,R ) = AS(R Ry) S(R RO) s

a model which is localized (in the extreme) at R = R' = RO; note that the
actual kernel for H + H2 in reference 14 is qualitatively of this form.

Applying Eq. (2.9) one obtains the outer expansion,

v_ (R,R') = A 5[% u, (R) u, (Rp) uj(R') uj(RO) .

On the other hand, using the inner expansion, Eq. (2.10),

2 )
A G(R—RO) S(R —RO) ui(RO) uj(RO)

Vex(R,R')
i, A ul(RO) uj(RO)

AG(R-RO) G(R'-RO)
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identically, regardless of the form taken for {ui} or of the number of
functions used. Clearly, unless a rather large number of expansion
functions are retained, these two expressions will differ significantly.
One is therefore encouraged that this inner expansion may substantially
improve the characterization of the kernel and in doing so decrease the

size of the basis set required for an accurate solution.

C. Results and Observations

Utilizing the improved separable expansion of the exchange kernel
described in Section B(2), calculations were performed in order to
determine the H + H2 collinear reaction probability at a collision

. R , 15

energy of 0.4898 eV. (As was previously indicated, the Porter—Karplus
H3 potential surface has been used in all calculations appearing herein.)
There was, in fact, little difference between these computations and

. 14 . .-
those which have been heretofore reported” except for the wzy in which
Vex has been treated, although in the present work the emphasis has
been placed on a characterization of the direct exchange contribution
since the effects arising from the indirect exchange via the closed channels
already seem to be adequately incorporated. [Details of the calculation are
presented in the Appendix to this chapter.]

In order to generate a '"best' separable expansion of Vex (i.e., one
which yields the most accurate description for a minimal number of basis
functions), a search was made for the optimal choice of parameters for the
{ui} appearing in Eq. (2.10). Thase functions, conveniently taken to be

R . - , 18 .
harmonic oscillator wavefunctions, contain two free parameters--the
point about which the functions are centered, RO’ and a quantity related

inversely to the "width" of tie functions, B. The results of this search
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are disnlayed in Table 3, where the open-channel reaction probability is
given for various values of 82 (RO being chosen in all cases as the point
at which the exchange kernel is a maximum). It is quite evident that tne
number of functions required in order that a converged expansion may be
obtained is strongly dependent upon the choice for f. In contrast,
calculations summarized in Table 4 which were performed using the outer
expansion (Eq. (2.9)) show convergence which is virtually independent of
the function width., [Of course, one should also observe from a comparison
of the two sets of results that the inner expansion yields converged
results with a substantially smaller basis set.] This difference in the
behavior of the two descriptions suggests that whereas the outer expansion
is sufficiently poor that many basis functions must be included regardless
of the details of the functional forms, the inner expansion, by providing
more flexibility in fitting a specific form of the exchange kernel, requires
that the basis functions be 'tuned" in order that the fit be optimized.
Thus. for large values of (3, one Is obliged to use many functions just
to span the coordinate space over which the rearrangement is most likely
to occur simply because the spanning functions are themselves too localized.
On the other hand, for very small B, the functions become so spread out
that they have a substantial amplitude in the region of the repulsive wall
of the potential, a region which is poorly described in general. There-
fore one expects the optimum choice For B to appear in an intermediate
region, this expectation being borne out by the tabulated results.

The principal concluéion to be drawn from Tables 3 and 4 1is then
that there exists a much more efficient representation of the exchange
kernel than that which was previously reported. For the optimum choice

of B, for example, a reaction probability converged to three significant
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figures may be obtained by including only 8 basis functions in an inner
expansion of the kernel, while on the other hand roughly 25 functions
must be retained in order to generate results of comparable accuracy via
an outer expansion. Of course if one desires to characterize ;ore
complex reactive processes, in particular those reactions which involve
reactants and products that are not the same chemical species and thus
which lead to unsymmetrical exchange kernels, then one should expect that
a somewhat larger set of expansion functions might be required. However,
inasmuch as the inner expansion automatically incorporates more knowledge
of Vex than does the outer expansion, it is not unreasonable to anticipate
that for such cases the computational advantages of adopting the
description proposed here will actually be enhanced.

Overall this improved expansion of the exchange kernel provides a
significant reduction in the magnitude of the computational problem which
is associated with Miller's reactive scattering formalism. Such a
reduction, hopefully, has made the extension of this method to higher
dimensions or to more chemically interesting collision partners much more

feasible.
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Appendix: Collinear H + H2 Open-Channel Reaction Probability Calculation

In this section the details of the method used to calculate the
reactive scattering phase shifts (and hence the reaction probability)
are presented for the particular case in which the exchauge kernel Iis
handled via an inner expansion (Eq. (2.10)). Since for this case both
the open-channel and closed-channel oxchange terms are manifestly separable,
it is a fairly simple matter to incorporate both of these contributions
into the calculation; however, for the sake ¢f illustration, the
solution described herein will be only that for the situation of specific
interest in the present study, namely the open-channel exchange.
Substituting Eq. (2.10) into (2.3), one obtains the equation to
be solved:

N . -1 .
(Hy-Eq) £,(R) = +§§ <R[Vex!uii(<uilvex]uj>) <uleexlfi» , (A1)

where Ho is the Hamiltonian for the nonreactive single-channel
scattering. Then, by defining a new sel of expansion vectors by

the expression

and furthermore by defining a matrix Yex' the elements of which are given

by
(gex)ij B <ui'vexluj> ’
one may rewrite Eq. (A.l) as
(Hy-E) £, (R) = 7 2 vi(R)(g;i)ij<left> . (A.2)

ij
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Notice that this equation .s then of the same form as Eq. (2.7), the
solution of which has been previously given. Similarly, one may easily
construct the solution to the scattering problem described by Eq. (A.2)
in a closed form, the result being that the phase shifts may be obtained
via the expression

2u

= — — - —l- —1- —l-
tan n, = tan n, § h2, EO (i Zex g ) Zex 20 (A.3)

where

(£g); = <v;ly>

and
= « = ' * ' 1
(go)ij fviICO‘vj> ‘/aR‘/;R vi (R) Cy(R,R")v, (R")

(GO is just the Green's operator described in Section 2a, the coordinate
. . . 19
matrix elements of which are products of the homogeneous solutions,

namely
2
Gy(R,R') = - ;l—zi £g(R) £(R,)
k

where fO(R) and fl(R) are re¢spectively the regular and irregular
solutions,)

The actual computation proceeds as follows: first, the linearly
independent solutions to the homogenous equation are onbtained via direct
numerical integration of Eq. (2.5) using the well-known Numerov met:hod.20

Having thus found the radial functions at an evenly spaced coordinate grid,

the matrix elements may be calculated by a straightforward application of
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Simpson's rule2 once one has constructed the set of expansion vectors
[vi} (since the vectors {ui} are chosen to be just harmonic oscillator
wavefunctions, it is a simple matter to compute these new vectors using
the form for Vex(R,R') given by Eq. (2.2)). Only standard matrix
manipulations are then required in order to determine the phase shifts

from Eq. (A.3).
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I1II. A Unified Model for Elastic and Inelastic Scattering from a Solid

Surface.

Ever since the early days of quantum mechanics., there has been an
abiding interest in trying to understand and describe the microscopic
nature of the scattering of gaseous atoms and molecules from various
types of‘solid surfaces. The first real progress followed the discovery
of discrete diffraction peaks in the observed intensity of a helium beam
scattered from a lithium fluoride crystal plane, a revelation which
prompted theorists to propose the first crude models for the gas-surface
interaction giving rise to such diffractive phenomena.22 Not until more
recently, hdwever. have there been many real advances which significantly
relate to the development of a truly global theory, i.e., a theory which
would allow one actually to identify essentially all of the structure
yielded by experiments. Notably, Goodman23 and subsequently Goodman and
Tan,za using a continuum model of the solid and obtaining Eransition
probabilities via the method of Cabrera, Celli, Goodman, and Manson25
(CCGM), were able to calculaﬁe a scattering distribution for the He-LiF(001)
system which ag least qualitatively reproduces the experimental inelastic
results. Other work by Lin and Wolken26 (who perfermed a close-coupiidg
calculation) and by Metiu27 has alsc helped to clarify the physics of the
gas-surface collision, although both of the approaches taken by these
inﬁestigators require extensive numerical computation before the scattering
structure can be revealed. On the other hand, the state of the thecory
has also bencfited substantially from the consideration of simplified
scattering models which permit one to identify unambiguously the

particular constituent effects that generate the composite intensity
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pattern. A good example of just such an approach is to be found in the
work of Weare,28 who has examined the specific case in which the surface
and gas temperatures are sufficiently low that a first-order perturbative
treatment of the inelasticity adequately describes the scattering from a
smooth potential contour.

It should not be inferred from the above comments that the sole
contributions to the understanding of the surface scattering processes
have been made within a quantum mechanical framework. In particular, a
paper by Garrison and Adelman29 has considered the collisional energy
transfer from a classical many-body standpoint by taking advantage of the
computational tractability afforded by the generalized Langevin equation
formalism.30 In addition, these workers have investigated the conditions
under which various simplified solid models migr* b= expected to mimic
accurately the actual surface behavior,

The present work provides a simple, alternative one-dimensional
surface model which manifestly displays the principal features of both
the elastic and the inelastic processes. Although the basic formalism
employed has been previously described elsewhere,31 the model adopted
herein does in fact permit an analytic determination of the scattering
intensities, thereby making immediately evident the consequences of such
a formulation.

There appear to be two major stumbling blocks in evidence in the
bulk of the previous inelastic studies. The first is the assumption
that in the absence of phonon excitations the crystal surface is perfectly
flat.23’28’32 Such an assumption is clearly inadequate if a unified

model is to be constructed due to the fact that for a flat surface
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specular scattering is the only elastic process allowed. Consequently,
one should select a form for the gas-surface interaction potential (the
surface contour being classically just the turning-point surface for

this potential at the specified collision energy) which yields a version
of the corrugated hardwall potential in the limit of zero phonon displace-
ment inasmuch as such a corrugated contour is known to produce the

desired gross diffraction peak structure.

Secondly, there is always a problem involved in treating the phonon
mode enumeration and averaging. Elaborate treatments, such as that by
Beeby.32 have all of the proper phonon dynamics incorporated in them;
however, the difficulty of that inclusion makes such formalisms somewhat
cumbersome to use while apparently adding little to the construction of
a straightforward physical picture of the scattering. Furthermore it is
desirable to avoid ad hoc averaging procedures34 whose accuracy is hard to
evaluate. 1In the model described below, these modes have been handled
in a very intuitive way which does indeed seem to generate the aggregate
phonon structure but at the same time does not obscure the fundamental
physics.

This work takes advantage of the widely used assumption that the
fundamental scattering pattern arises as a result of a more or less
purely repulsive two-body short-range component of the gas-surface
interaction. Such an assumption logically prompts the use of an impulsive
collision model, which itself has a firm basis in experimental findings,35
so that the motion of the surface may be effectively decoupled from the
actual collision dynamics within the interaction time interval.

. 28
Equivalently, this particular model has been obtained by Weare in the
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limit that for a given initial energy state of the solid the translational
energy of the incident gas atom is allowed to become large. By making
this sudden approximation, one does, however, necessarily restrict the
application of the formalism to the collision of light atoms such as
helium with the surface, although in practice these are the very systems
which are amenable to experimental study and which might be expected to
exhibit the most detailed scattering intensity patterns. A more thorough

discussion of the impulsive collision assumption is given in Section A.

A. Impulsive Collision Approximation

The fundamental problem of interest is the calculaticn of a transition
probability (i.e., a scattering intensity) from some initial wavevector Ki’
which describes the unperturbed motion of the incident gas atom, to a final
wavevector for the scattered atom EE with a concurrent translational cnergy
gain (or loss) due to inelasticity, AE. Practically, since at present one
cannot experimentally characterize precisely the quantum states of the solid
before or after the collision, it is necessary to average appropriately
over the phonon modes if one is to obtain a quantity which can actually be

observed. Thus, the scattering intensity may be written in terms of an

S—-matrix element as

"BE
n
T =c 7 ste 4 ¢ )1ls 1> G
I, » = = LR E+ (e -& > > .
S 2 ST Q Ny O RemyRemy

where n, and hz label respectively the initial and final phonon states

having energies ey and € - [In addition, Q is the phonon partition
~1 2

function, and B = (kBTS)-l (with kB being Boltzmann's constant and TS

the characteristic surface temperature).]
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As indlcaﬁed in the introductory discussion, one then commonly
proceeds by taking the short-range gas-surface interaction to be
repulsive, the limit of which being a simple hard wall. Certainly
if diffractive elastic scattering dominates the intensity pattern, then
it is reasonable to assume that the collision may be modeled in zeroth
order by a hard sphere rebounding elastically from an infiniteiy hard
surface. More realistically, the surface is described as being a
corrugated wall which undergoes distortions due to the excitation of
phonon modes in the solid, these distortions presumed to be a small
percentage of a lattice dimension, and that this motion is slow compared
to the collision time (which, of course, in the case of interaction with
a perfectly hard wall is infinitesimal).

The above impulsive collision assumption may be introduced into
Eq. (3.1) by writing the S-matrix element in the sudden approximation

form,36

S = <K n Ie i ~ |E n, > R (3.2)

“k i
2 igl f~2 i~

Kfi‘
where in this particular case the phare shift n depends not only upon

the coordinate parallel to the surface plane, x, but also parametrically
upon the vector of phonon normal mode displaéement coordinates, q = {qj}.
Since the repulsive gas-surface interaction is assumed to be well modeled

by a hardwall potential, it then follows that the phase shift is given by

the hard sphere scattering result,37 i.e.,

n(xiq) = ~kZ(x:q) s



where Z(x;ﬂ) is the equation of the surface contour.

But now how does one actually determine a form for this surface
contour? Presumably, if the distortions which arise as a result of
the excitation of the phoron modes are, as was previously suggested,
sufficiently small in amplitude, then the contour should be adequately
described by a truncated Taylor series, the expansion being made abour
the equilibrium surface position,

9Z(x;q)

2(x;q) = 2{x;0) + 2% |q=0'ﬂ (3.3)

(q = 0 corresponding to the undistorted surface). In order that the

notation might be simplified somewhat, Eq. (3.3) is at this point

rewritten in the following form:
Z(x3q) = Z2(x) + (x)*q , (3.4)

with the vector C(x) having components given by

9Z(x;q) |

%5 (x) = aqj g=0 .

Within this expansion the product Cj(x)qj may be interpreted then as
being the displacement of the surface contour at some position x as a
result of the excitation of the jth normal mode, the total displacement
at x being obtained by summing over all of the N modes of thce surface
atoms. It should be clear, though, that in general one will not be able
to determine E(x) analytically; however, for the particular case examined
in Section C, these vectors may indeed be constructed, and hence the

phase shift (and thus the S-matrix elements) may be obtained.
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B. Formal Theory
Using the results of the previous section (Eqs. {3.1), (3.2), and

(3.4)), the scattering intensity is given In the impulsive approximation

by
-BE
e g3 -iAkxx
ek =2 X Q S[AE + (e -e_ )]Iﬁxﬁq e
TR o ~2 2l -
~-idk Z(x) -ilAk_z{x)*q
Th@Te @e e TP )
~2 7 -1 "

where ¢n1 and ¢n, are, respectively, the initial and final quantum states
of the ;olid, a;5 AkK and Ak are the projections of Ak = IKf—EiI parallel
and perpendicular to the plame of the surface. One then notes that since
the coordinate representation of the transition operator is given here by

—iAkxx —iAkzZ(x) —iAkzc(x)-q
T(q) = fdx e e e - v . (3.6)

Eq. (3.5) may be rewritten as

...BE
= e - R +
IAE,kE«fE =L X - S[AE + (e, =€ )] <n [T |n,>
1 n n ~2 o |
~2 1
: <22lTIE > .

Furthermore, by employing the Fourier transform identify for the delta
function, this last equation may be cast into a particularly convenient

. 31 .
form, namely the well-known correlation function expression, via the
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following transformations:

=¥

1 -
AE,RE*

_Ben

, -1
-1 -iAEt/h e ) t
(2m) j:it e Z 3. 5 "‘lllT (0)[22)
|

-<92lT(t)lgl>

_ —1AEt/h -3H
(2wh) 1 ./‘dt -'-—-—6—— Trle 0 T+(0) T(t)]

3

(2mh) "L H/Qt e~ 1AEL/h 1ty T(r)>

where T(t) is the time-evolved transition operator T in the Heisenberg

representation,

-iH,t/h iH t/h
T(t) = e 0 Te 0

and HrJ is the phonon Hamiltonian.

The time correlation function thus defined may be evaluated by

re-expanding in terms of the T-matrix elements,

_Ben

ny i, =g, e/h

<T+(O) T(t);».__.z Z e_(_z_... e ~2 -1 <BllT+|22>

o I |
"<n,|Tln;>

—iAkx(x-x') —iAkz(Z(x)—Z(x'))

= Q—l./Gx./;x'-lsi-/;S' e e

-1 t
-iAk z(x)-q iAk_Z(x')+q' *n e/h
¢ e Z~ -‘e 2~ ¥ [Z( '|n>e ~2 <n|>]
910 0219
o)
~-Be ie t/h N
by R |
c[Z<glnpre e ale>y . @D

n
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Assuming that the phonon modes are harmonic, the terms in square brackets
in Eq. (3.7) are just harmonic oscillator propagators in the coordinate

. 8 -
repreﬂentatmn.3 Thus the above equation may be written

" . -iAk (x-x') —iAky(Z(x)—Z(x'))
<T (0) T(L)> =jdxﬁx' e X e ) Cix,x";t) ,

(3.8)

the new instantaneous position correlation function C(x,x';t) being given

by

-iAk_(r.(x)q.~-c,.{(x")q))
C(x.x'3t) = QL TTj:iqudq'j e 21 3] .
N

4ﬂ2h2 -1/2 mw, 2 2
—— 5] i ihB) ' -
[ 5 51nwjt 51nwj(t+1|B)] exp{Eﬁgzgigf [(qj +qj )coswjt

mw,
]

s 2, ,2
-2 . 2 ] . ,
ﬁqjqj] Zﬁsinwj(t+ih3) [(qj +qj )coswj(t+1h6) 2 qjqj]} ,

(here m and mj are the mass and frequency of the jth mode). The integrals
over phonon mode displacement coordinates are of the general gaussian form
and therefore may be done analytically, the details of that evaluation not
being given here. Suffice to say, after a substantial amount of algebra

one obtains

hAk 2 hw B

9
C(x,x";t) = exp{- 2; 4mm: [(Cj(x)2 + ;j(x')“ - ch(x)cj(x')cnsmjt)coth-—iL—

+ 242, (0, (x')éin_wjtj} .
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Then, by recognizing that the mean square displacement of a harmonic
39
oscillatorj is just

2nw hw,B

2 1
-:qj > = (——‘—]l tanh —-,2]--)

the correlation function may be rewritten as

x)% + cjcx')zn

C(x,x";t) = exp{-%— zAk 2 <q._2> (¢
] 2 ] J

2 2 ' w, 8
. ~, - < ~ 1 - s .
exp{ Z Akz qj (’j (x)Cj (x'") [co::uuj t - i 51nmjt tanh

2
]

(3.9)

At this point one may identify the Debye-Waller factor, defined by

W(x) = —;— Akzz Z<qj2>§j (x)2
]

hw,B hw,B
Furthermore, in passing to the classical limit tanh —'2]— - ) ., with

the result being that Lq. (3.9) takes on the form

B - o ' . 2
C(’L(x,x';t) = e W(x) e W(x ){exp Z/&kzZ <qj > Cj(x) t;j(x')

]
hw B
* [cosw,t - i — sinw.t]}
] 2 j
- _ ' i 2 2
= e W(x) e W(X ) EXP{(]- + i .}5‘3. a%)zAkz -(qj >
b

e . (x) ¢, (x") cosw,t}
j i h|

expl(1l + i hg d AW(x.x';e)} . (3.10)

_ o -W(x)  -W(x")
- e 2 dc

—l-1} .



(Note that the completcly classical result (h = 0) is obtained by totally
neglecting the imaginary part of AW.)

While Eq. (3.10) is the exact result for the correlation function within
the impulsive collislon assumption, in its prescent form one is not able to
identify eanily the elementary physical processes which give rise to the
observed effect. 1In order to reveal these processes, the last exponential
is expanded In a power series, which when substituted with Eq. (3.8) into

(3.5) leads to the following equation for the scattered intensity:

_ . -iAk (x-x') -iAk_(Z(x)-Z(x'"))
L > = (2mh) bofac o~ tAEE/h j:lxj:ix' e x e z

>
AE.k *k,
£ L

s e M) WG L h—ze agt—)aw

hg

1 . d 2
+5 [+ 1= D8u” + ...} .

Since the time enters into AW through a cosine term only, the time integral

simply yields energy delta functions,

~-idk x —iAkzZ(x)
SQE)| fdxe ¥ e

e—W(X) I 2

™

hw
1 P . i
+ 5 2_]: 1_[6(AE—h(uj) + 6(AE+ﬁmj)] - _..2..1_ {5(AL—ﬁwj)

o, ~ibk x -1k 7(x)
5(AE+th.)]} Akz‘ <qj >|j:1x e e

e W0 l:j(x)l2 + ...

]

+ ...
IO+Il
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(terms through first order in AW being shown explicitly). 1In this form
the component elementary scattering process may be easily recognized:
the first term produces just the purely elastic spectrum with pealk
intensities attenuated by Debye-Waller factors, the sccond term reprusonts
the onc-phonon inelastic event, and the remaining terms account for higher
order phonon processes. Note that in the one~phonon term the phonon
annihilation (AE = +hmj) and creation (AE = - hwj) contributions are
symmetric in the completely classical result, and that even when quantum
effects begin to become significant and the intensity symmetry is broken,
the positions of the inelastic peaks are unaltered.

Due to the periodicity of the surface, it is advantageous to transform
the x-integrals into sums of integrals over a unit cell. Since the details
of this transformation are set down in Appendix A, only the final results

will be indicated here. For the component intensities one finds that

Akxa 1 —1Akxx —1AkzZ(x) “W(x) 2
)| = dx e e e I
2m a

I, = Na’ S(AE) 2, 3(% -
2

2 Ak a 0,2
= Na“S(AE) 2, 5 (R - > 18y , (3.11a)
1 m
and
hw,R
1 e i
I, =5 2 {8(AF-hw,) + §(AB+w.)] - —1= [8(AE-hw,)
3 j J i
2 % -iAk x —iAkzZ(x)
- §(AB+hw, ) ok _“ <q, ">} JZ.dx e ¥ e
i z j
-iAk na
—W(x) 1 (3.11h)
‘e P * cj(x+na)|2 .
n
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where N is th: number of unit cells within the experimental interaction
zone,

Eqs. (3.11) represent the general result for the scattering intensity
due to elastic and one-phonon inelastic processes. (For the time being
any higher~order processes which give rise to effective elastic or single-
phonon transitions, e.g., a two-phonon event in which the same phonon is
first annihilated and then created or vice versa, shall he ignored.)
Although the multiphonon terms may be similarly constructed, it shall
be convenient to restrict the present development to the consideration of
only these two contributions; however, one should recognize that there
seems to be no general consensus as to the appropriateness of this one-

phonon approximation to the total inelastic scattering.28’32

C. Interaction Potential

The formal solution given in the previous section, while perhaps
somewhat illustrative, does not Yeally provide a physical picture of
the collision due to the presence of the as yet unknown (-vectors. In
order to obtain analytical formulae which clearly reveal the scattering
structure, it is necessary to adopt a model potential which at least
qualitatively represents the true gas-surface interaction while at the
same time permits a tractable solution to the problem. Inasmuch as the
impulse approximation suppuses that the interatomic forces are fundamentally

repulsive, the present study shall adopt as a model potential the simple

two-body form

2
- (x-x,) -y(z-z,)
V=V, z:n J e J . (3.12)
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where V) is some scaling parameter which also sets the units properly,

the adjustable parameters o and Yy are measures of the range of the porential,

. . . . th .
and (x],zj) is the instantaneous position of the j surface atom.

A further simplification is introduced by assuming that the solid atous

have only two unique vibrational frequencies, mx and w, s respectively

corresponding to oscillation paraliel or perpendicular to the surface plane.

Such an assumption implies the consideration of some sort of modified

Einstein solid [an evaluation of the consequences of using this particular

model for the distribution of phonon modes shall be deferred to Section

D]. The phonon mode displacement

just the displacements of the jth

if the coordinate system is fixed

of one of the surface atoms,

=
]

. X 2
coordinates, qj and qj , are therefore
atom from its equilibrium position. Thus,

with the origin at the equilibrium position

X
ja + q,
J qJ

™

G . (3.13)

Substituting Eq. (3.13) into (3.12) and defining the surface contour to

be the classical turning-point surface for the interatomic potential,

i.e., V(Z(x;q)) = E, one may solve for the equation of the contour

analytically,

\Y
Z(x;g) = y~1 n ~% + y_l &n

A x.2
~o(x-ja~-q.") Yq,
e J e .

As mentioned in the introductory comments, in the static surface limit

(q = 0) this contour should resemble a corrugated hard wall. Thus,
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0 -1 --Ot(x—ja)2
Z(x30) S Z(x) =y - +Y n X e . (3.14)

Using the Poisson sum rule,40 the summation may be written

i . .\ 2 2,2
Zﬁj e21r12.3 e—a(x—Ja) - \/_ﬂ; Ze—n 2% /oa e 2
[3 L

ayQ

2 2
>y -n"Joa 2mx
-%(1+2e cos a) .

(Since the sum is presumed to be rapidlyv convergent, only the £ = 0, *1

terms are retained.) Consequently, Eq. (3.14) becomes

v : 2, 2 )
Z(x) = vy 1 n (-% gE%') + L tn (1 + 2e - /oa cos Egg )
2 2 2 2
= Zy + %-e—“ foa™ g 2%3_ (assuming e " foa® o %-)
~ 2Tx
= ZO + ha cos e , (3.15)

where Z0 is just a constant (and which therefore only scales Z(x)) and ha
is the surface amplitude. One may easily see now that Z{(x) does indead
have the canonical form of a corrugated surface and is, as required,

periodic in x.
Having made the assumption that the surface atoms oscillate with the

normal mode frequencies, one may easily generate the required I-vectors:

-Ot(x-—'a)2

z (x) = BZ(x;g)l = 9____LL_.___.

zj 3q z 3=0 _a(x_.,a)z
3 pI ]

jl
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and

.y 2
20 (x-ja) e (x-3a)

| aq1 =0 Y > JallCoy ‘a)2

J

(3.16)

Before proceeding further, notice that.the vector involving displacement
of the surface atoms parallel to the surface, cx (x), is inversely
proportional to the potential parameter Y., Just by looking at the form
of Eq. (3.12), it is clear that if the potential function is to mimic a
strongly repulsive interaction, then Yy must be large, otherwise the
impulsive collision approximation is invalid. But for large v, Ex_(#) <<

]
C? (x), and thus the x-motion of the surface atoms may essentially be

neélected with respect to motion perpendicular to the surface. This
neglect of in-plane motion is used almost universally in the work of
others, ad therefore it is particularly encouraging that the model
proposed herein exhibits this feature explicitly.

The same methods which lead to the simplification of the summation

in Eq. (3.14), namely the use of the Poisson sum rule and retention of

only the first harmonic terms, when-applied to Eq. (3.16) yield

o o] ,
Cz.(x) B Vﬁr 2

2
J 1 + Ze.‘1T Joa cos 2mx

Introduction of this form into the expression for W(x) followed by
application of the above summation convention then permits one to write,

after some algebra,
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2 2 .
av 9 1+ 2e_TT /20a cos %Ly
W(x) = Tm Akz <qz > _’nz/a‘? e (3.17)
(1 + 2e  cos :':-)"

Once these last two equations have been obtained, one may construct the
one-phonon scattering intensity, Il, within the context of the preceding

approximations, remembering that for this model the sums over phonon modes
have been reduced to sums over individual surface atoms. Inasmuch as that

calculation is not particularly instructive, the details are omitted here

and only the result is indicated:

hw R

1, = 5 a’mk,? <q B (18BN ) + SABHw )] -~ — [8(AE-hw )
Z'IT2 0! Akxa)'l
-7 T 2 2 2
- §(AE+hw )]} e *° (IKQ(l)[ + |k (Z)I + |K (3)[ )
z 7 2 £
d,
Kg(l) = i {dx F(x)
2 2
K 2 =2 ].dx F(x) e " /20 cos Lk
2 a a
0
2 2
KQ’(3) -2 7dx F(x) e " /20a sin X
L a a
0
2mil
- = x =-ibk Z(x) .. 2, 2 9 _
F(x) = e e z e W(x) [1 + 2e m/aa ccos-"‘TDE 1 ! . (3.18)

a

The integrals appearing above as well as the one which appears in the
expression for IO may all be evaluated as indicated in Appendix B after
inserting the forms for Z(x) and W{x) given by Eqs. (3.15) and (3.17).

Doing so, the final result for the elastic and one-phonon intensity
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. 2 .
contributions through order Y~ is

= Ak a
2 =2W X 2
Ly b, = M(Da’e 28 - =, 0
f i L
1 hsz
+ N {T[S(AE—hwz) + (S(AE-l-hwz)] -3 [8 (AE—hwz)
2172 Akxa 2
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2 2 2. -2W oa
- S(AEthw )]} aAk_© <q “>e”Y Y e .
z z z 7
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2 2
where U = e " /20a (assumed to be small),
A = Ak ha ,
z
S_al g2 2
W=7 M <q >, (3.20)
J!LO‘) = Bessel function of order % s
oy =35
2 dx "% !
and the integrals 32 and CZ are given by the following series:
] L-n+2m
. in" -1 1 1
S= = (111) P (:)["()2 ! Tt 1]
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(;) being the conventional binomial coefficient.

D. Discussion

The final equations of Section C provide an analytic form for the
scattering intensity pattern which is produced by the assumed pairwise
repulsive potential, Eq. (3.12), through first order in the inelastic
phonon effects. Clearly, the basic structure is dominated by the elastic
diffraction term, producing delta-function peaks whenever Akx is equal to
a reciprocal lattice vector, although the intensities of these peaks are
attenuated by a Debye-Waller factor. This primary structure is then augmented
by the presence of inelastic lobes on either side of each diffraction peak.
(Of course, the actual peak profile may be greatly complicated by the over-~
lap of inelastic lobes with nearby elastic structure.) Any direct broadening
of the elastic peaks may only occur within the present model as a result
of the influence of "experimental effects such as a finite distribution of
incident particle velocities; broadened inelastic peaks, on the other hand,
must always be anticipated due to the fact that for a one-phonon energy
transfer process the allowed values of Akx are determined via a gaussian
distribution centered about the diffraction condition rather than by a delta
function criterion. One should recognize, however, that if the phonon
frequencies are sufficiently low, the predicted peak shape would more
closely resemble a sharp spike with broad inelastic "wings" near the base.
But even in this limiting case the observed width of any diffraction peak
should be expected to correspond roughly to the width of the incident beam
velocity distribution.

An additional feature of the inelastic peak structure indicated by

Egs. (3.18) is that there exists in general an intensity asymmetry between
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the phonon annihilation lobe, i.e., the peak shifted toward the surface
normal, and the corresponding phonon creation lobe. The asymmetry of

course vanishes if B =+ 0, namely for the completely classical case, but
should be observable if quantum effects are important. Note that for large
f it is the phonon creation peak (AE = -hwz) which becomes the dominant
contribution. Such a result is to be expected on physical grounds; if the
surface is very cold then energy transfer from the gas to the surface should
logically be more likely than the reverse process in which the surface gives
up energy to the .impinging atom simply because there are relatively few
excited phonon modes available from which energy can be released. At

higher surface temperatﬁres, however, one would expect that phonon
annihilation and creation will contribute more or less equally. Thus, the
results obtained herein do conform with intuition about the relative importance
of the two inelastic components.

A comparison with experimental results by Williams41 reveals tﬁat the
present model does indeed qualitatively describe the observed intensity
pattern. As previously suggested it would be necessary to "correct'" the
theoretical model by the introduction of an initial beam velocity distribu-
tion and by the appropriate averaging consistent with a finite detector
width in order to be able to make a quantitative compariéon. (However,
since these averaging techniques will reveal no new structure but rather
will tend to wash out existing effects, such procedures shall not be applied
in this investigation.) But just on the basis of an overall evaluation,
it seems likely that the agreement with experiment is sufficiently good
50 as to lead one to conclude that the proposed formalism is successful
in incorporating the fundamental phenomenology into the analysis of the

problem.
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Inasmuch as there does seem to be fairly good genecral agreement
between the model and experiment, one is obliged to ask why the modified
Einstein description of rhe solid, a description which is usually viewed as
being only a crude apprnxtmation.42 appears to be quite adequate. An
obvious conclusion to be drawn is that actually only a narrow range of
phonon mode frequencies contributes significantly to the scattering, and
thus the Einstein model would be expected to yield essentially the same
Tesult as could be obtained with the inclusion of a more accurate phonon
distribution. More important, however, is the observation that the present
two-frequency phonon model of a solid having a periodic surface structure
appears to compare very favorably with the more customarily postulated
solid picture, i.e., a Debye solid, the surface of which is taken to be
flat. Certainly in the limit in which both of these models do vield
cffectively identical phonon structures, the ability to describe both
diffraction and inelastic transitions within a single unified formalism
is indeed a definite advantage.

Perhaps, however, there may be a more fundamental reason that the
Einstein model seems to be adequate here. A recent paper hy Garrison and
Adelman29 describes a classical treatment of inelastic energy transfer during
a gas-surface collision via the generalized Langevin thecn:y.30 In connection
with that study, a comparison was made of the results obtained by using
the full Langevin dynamics with those derived from certain simple solid
models, one of which being an Einstein model. Consideration of that model
has lead Garrison and Adelman to conclude that the nature of the solid is
such that if the gas collision time is less than some characteristic response

time, then the simplified picture of the phonon mode distribution can mimic



the actual physical situation. Of course, for the impulsive collision
model hypothesized in this work, the collision time is assumed to be
infinitesimal. Hence one is prompted to believe that an Einstein
description may constitute a much more reasonable depiction of the surface
dynamics than might be initially supposed.

Aside from the consideration of any experimental averaging as
mentioned above, there is one more general feature of the gas-surface
Scattering problem which has been ignored. That feature involves the
presence of a long-range attractive part in the actuwal two-body potential.
As suggested by others, since the detailed structure of an appropriate
attractive potential apparently has little or no bearing on the scatterlng
pattern in the absence of surface trapping, a simple square-well form for
the attraction seems adequate. It is reasonable, however, to ignore
the well altogether within the present model by making the assumption that
the only consequence of considering such a well is the additionm of a
momentum increment perpendicular to the surface to an approacihing gas atom
and the subraction of the corresponding increment from the scattered atom.
Naturally, this quasiclassical assumption leads to a change in the actual
incident and scattered angles, but these modified angles may, of course,
be simply related to the experimentally observed angles by a geometrical
argument.43 Still, inasmuch as the scattering pattern has the same quali-~
tative fe;tures with or without a well, the presence of any attractive
interaction has been neglected completely.

It is important that a final point concerning the results obtained
herein be stressed, namely that the width of the inelastic scattering lobes

is, as expected, related to the degree of inelasticity present. This




width, arising as a result of the gaussian distribution of Akx values in
the Il term, may be correlated with the effective Debye-Waller factor,
Eq. (3.20), which to order uz is just a mulriplicative constant.
Specifically, for this particular gaussian distribution the standard
deviation may be written as

-

27 *

Notice then that with this definition one may write the effective Debye-

Waller exponent as
2 2

[¢]
l-—'i-Akz <qz> .

Hence for smaller 0, i.e., for a narrower distribution in Akx’ W is
also smaller, which implies that e-zw is closer to unity--this is indeed
the expected concerted behavior for a system which is becoming less
inelastic. Furthermore, since 0 depends on the potential parameter o,
one may conclude that a decrease in 0, corresponding to a "loosening" of
the potential in the x~directicn, would simultaneously cause a reduction
in the observed inelastic intensity.

Finally, in conclusion, the qualitative features of the results
obtained from the scattering m.del proposed here are briefly summarized:

(1) the elastic scattering pecks are infinitely sharp if the incident
atomic beam is monoenergetic;

(2) the inelastic scattering peaks are broadened even for a mono-
energetic beam, with the peak widths being dependent upon the interaction
potential parameters and not upon either the surface temperature or the

collision energy;
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(3) the effective Debye-Waller factor, Eq. (3.20), shows the expected
temperature debendence (inasmuch as it is a function of <q22>), and appears
to first order as just a multiplicative term;

(4) the surface amplitude, ha, is Independent of the collision energy
in the static surface limit, although the actual position of the potential
turning-point contour is a function ol E:

(5) the effect of the in-plane motion of the surface atom is
negligible as compared with the effect due to motion perpendicular to
the su ' .1ce plane;

(6) the symmetry of the one-phonon annihilation and creation lobes
does exhibit a temperature dependence, with the two being totally symmetric
only in the high temperature limit (the positioms of thellobes do not,
however, show any such dependence).

Overall, the present work provides a very convenient and instructive
model for the gas-surface collision problem. Although in principle the
formalism allows one to treat all possible n-phonon inelastic scattering
processes, it has been shown that it 1is possible to obtainm a good qualitative
agrecment with experiment even if one chooses to examine only the one-
phonon effect. 1t is furthermore encouraging that such results are
obtainable from a simple one-dimensiomal surface model, even though it
seems reasonable to expect that an extension of the method to the treat-
ment of a two-dimensional lattice could be made with little difficulty.

One should also feel that the absence of the commonly used flat-surface
assumption provides a definite advantage in that the treatment of a wider

range of structured surfaces hecome feasible.




Appendix A: Summation Over Unit Cells

The coordinate integrals over the interval [~®,»] may be transformed to

integrals over the interval [0,a]l, where a Is the unit cell length, via

the identity

fdx £(x) =27dx £ (%+na)
=@ n 70

where the integer n numbers the unit cells. For example, by using this

formula the elastic contribution to the intensity may be written

F -iAk_(x+na) -iAk_Z(x+na) _ . 2
I, = G(AE)[z]dx e * e 2 e W(x+na)| . (A1)
n Y0

But since Z(x) = Z(x+na) by assumption and since presumably W(x) = W(x+na)

inasmuch as functions of x only must exhibit the periodicity of the lattice

(obviously any model for these functions must bear out this assumption),

Eq. (A.1l) becomes

~-iAk_x -iAk _Z(x) -iAk_na
IO = §(AE) | de e ¥ e z e_w(X) ge * lz
a ~iAk_x -iAk_Z(x) _ -iAk_a(n-n')
= §(AE) | fdxe ¥ e z eW(x)‘Zz e x .
0 n n'

v
n;n- and An = n-n' apd then resumming (noting that the sum

Defining n =

over n just gives N, the total number of unit cells within the physical

limits of the experiment),

4 -ifk x —iAk _Z(x) 2 -iAk aAn
-W
I, = N6 (AR) | fdx e e ° STHET .
(4] An




Then, by using the Poisson sum rule one finally obtains

Ak a F ~idk x =-iAk Z2(x)
X )I ]dx o LI z e—W(x)IZ
0

I, = NS(AE) 2,3(H - =
¢

0
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Appendix B: Debye-Waller Integrals

From Eq. (3.1la) we need to calculate

2n il .
1912 = 1% Faxe 2@ Tifk, () - (x) 2
‘Q, 'a h X e e e

Linearizing the Debye-Valler exponential,

_ 2mif

. 2mid .
0.2 - 1 = —1AkZZ(x) 17 - v—1AkzZ(x) 2
]SEl =17 dx e e Y dx e e W) |
‘ Q 0
2 isg(s) - Asgl2
0

As
~ 0 2 2
=|Sz(s) 1 - )l .

S2.(s)

Then by resumming, with the hope of recovering some of the higher order

. : : . . : 0,2 . .
contributions lost in the linearization, |Sl| may be written in terms

2
of |Sg($)| » the result for the static surface limit, as

Asg
- 2 Re ——
0

2.,.0
o=l

0
|s l(s)lz e Sl(s) . (B.1)

Substituting Eqs. (3.15) and (3.17) for z(x) and W(x),

. 2mif R 21mx R LT
0 1 —1Ak2207 - x =ilcos . —1ARZZO -Lg Y,
= e dx e € = e
a 0

Saes) = e Jg

and
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_ 2mig 27x 21x

-idk Z. g X -ilcos X
Asg = z[%—AkZZ <q22> e z 0 ]-dx @ a a a 1+ 3“ COS"i 5
0 (1+2u” cos :Zﬁ)

Assuming Y to be small (at constant surface amplitude, ha), one then
expands the quotient above in a Taylor series and integrates term by
term to obtain
m
-iAk_2Z -i =2
- 2

Asg =We 2’0 e 2 [JEO‘) + 1'(21_1-4\1“).%(}\)]
to order U2.

Thus, to this order in p, Eq. (B.1) may be evaluated as
02 - W
L

5512 2 3,02 7 X

This same approximation procedure is then wused for the calculation of
the integrals in Eq. (3.18), still retaining only the terms through uz.
By this method, the integrals Sl and Cl in Eq. (3.19) are found to be of

the form

n .
S, = L fde sintf sin 2 et 080
A 2
0
m .
C, = L d8 cosi9 cos-g eLA cosf .
L m b 2

An expansion of the exponential followed by term-by-term integration yields

the series solutions given in Section C.
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IV. Selective Adsorption on a Solid Surface.

The previous chapter has treated two of the three possible physical
events which may occur when a gas atom collides with a solid surface,
namely elastic diffraction and inelastic enmergy transfer. In the present
section the remaining phenomenon, the adsorption of the gas atom, shall be
considered, with particular attention being given to the identification of
those situations for which adsorption is most probable. Of course, interest

in the theory of such a process has for many years stimulated considerable

activity in this field. Even as early as 1936, Lennard-Jones and Devonshire44

coined the term "selective adsorption"” to describe the event whereby an
atom in an unbound continuum state undergoes a transition into a surface
state which is bound in the direction perpendicular to the plane of the
surface. Such a transition has more recently been viewed in terms of
conventional resonance modelszs’as_so-—it is such a view which shall be
adopted here.

An Important difference between this study and the bulk of previous
work is that herein the emphasis shall be placed not upon the identification
of resonance structure in the gas-surface scattering intensity but rather
upon the dynamics of the adsorption process. Since the primary goal of
this work is the clarification of the physical picture of the adsorption
event, one seems likely to benefit from an investigation of the lifetime
of the adsorbed state and of the dependence of that lifetime upon the
way in which the energy of the state is partitioned between motion parallel
and motion perpendicular to the surface plame. Furthermore, inasmuch as

one would wish to be able eventually tn relate the results of this study

to experimental findings, the corrections to the zeroth-order model
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arising from a consideration of the inherent dynamic nature of the surface
contour also warrant examination. In any case the present research shall be
predicated upon the assumptions that the positions of the resonances are
already known and that the potential function which gives. rise to these
observed resonances is sufficiently well characterized.

It must be admitted, however, that selective adsorption is quite
difficult to treat in complete generality due to the multitude of processes
which can lead to the atom being bound to the surface. An easy way to over-
come this difficulty involves the neglect of any scattering into a
resonant state via an inelastic event. As a matter of fact, the extent to
which elastic coupled-channel calculations have successfully reproduced
the general features of the resonance structure has been citedso as being
indicative of the presence of only rather minor inelastic contributions to
the overall scattering. By making such a restriction, one need therefore
only consider transitions from elastically scattered (i.e., diffractive)
states into the bound surface energy levels; presumably this limitation will
not be severe if the system parameters are such that elastic effects dominate
the scattering intensity. In the present work this zeroth order static
approximation [recall that the absence of inelastic scattering events is
characteristic of a motionless surface contour (see Chapter III, Section
C)] shall be used in order to obtain approximate values for the resonance
widths. Since, however, there may certainly be a non-negligible inelastic
perturbation of these calculated elastic widths. in Section C a correctioun
factor shall be derived which within the impulsive collision model of
Chapter III yields the first-order etfect of the motion of the surface

atoms.
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As a means of characterizing the resonant continuum-bound transition
(or conversely but equivalently, the decay of the metastable adsorbed
state), use shall be made of the paticularly convenient "golden rule"
formalism described previously by Miller.51'52 Inasmuch as this mechod
has already been shown to yield quite reasonable results for other resonance
processes such as, for example, atomic52 and molecular53 autoionization,
one would anticipate that such an approach should at least provide a semi-
quantitative picture of the resonance effects expected for the gas-surface
scattering model. Indeed, this particular methodology has been employed
in a recent paper by Wolfe aund Weare,,49 who were concerned with analyzing
the He-Li(00l) data obtained by Frankl.54 Whereas that work was primarily
interested in confirming peak positions and in determining whether intensity
minima or maxima are to be observed for a given resonance, here the main
goal will be an investigation of surface residence lifetimes. Consequently,
the straightforward calculations using the golden rule formula may be seen
to provide a distinctly advantageous means of obtaining the desired widths
in that they may be performed quite easily and rapidly for a variety of

initial parameters.

A. Review of the Theory
Because the expressions yiélding resonance energies and widths have
. . . ., 51,55 .
been previously reported in considerable detail, ounly the essential
features of the derivation need be indicated here. This derivation, which
is based ou Feshbach's more general prescription for characterizing scatter-

ing resonances, employs the projection operators P and Q, defined such

that
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fim QY = 0
R—POO
P=1-0Q

where ¥ is the total wavefunction for the scattering system and R is some
general separation coordinate (in the present case R + = simply means that
the incident particle is sufficiently far from the surface that there is
effectively no interaction).

One then adopts Miller's51 particular choice for Q

Q = |¢><¢] (4.1)

where f¢¥ is the particular eigenstate, normalized to unity, which
describes the metastable resonant state (in this case, the adsorbed
atom state) in the absence of an interaction. 1In short, Q projects
out the specific state which is responsible for the observed resonance,
while P projects onto all other possible quantum states, namely the
continuum stares within which the quasibound state is embedded.
Substituting these projection operators, Eq. (4.1), into the
formal results given by 0'Malley and Geltman,55 one may obtain an

exact expression for the resonance width (in atomic units)
2 .
Iy = 2npl<¢|u—ES|x>j , (4.2)

where the resconance energy Es Ls given, save for a presumably negligible
shift, by

E, = <¢|n| o> : (4.3)

and furthermore where the continuum function X is dafined via the
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eigenequation
P(H-Eg)PY = 0 (4.4)

and is characterized by a density of states p. {Note that Eqs. (4.3) and
(4.4) explicltly indicate the energy degeneracy of the bound and continuum
states.] Eq. (4.2) may be seen to be formally analogous to the conventional
"golden rule" from time-dependent perturbation theory;57 consequently, one
is lead to interpret the matrix element <¢[H—Es|x> as just being a term
which expresses the coupling between the bound and continuum states via some
interaction. To show this interpretation explicitly, Eq. (4.2) may be

rewritten as

intlx>|2

-
i

2mp|<p|v

'LntIZ

2‘rrg:>|VE*_i

(4.5)

where Vint is the interaction potential which produces transitions from the
initial to the final states. Hence, if one is able to characterize to a
good approximation the bound and continuum states and the interaction, it
is then a relatively simple matter to obtain reliable estimates58 of the

resonance widths with the above formalism.

B. Elastic Gas-Surfaée Resonances

In this section the general resonance formalism which was outlined in
Section A is applied to the specific problem of the adsorption of a gas
atom on a rigid solid surface. Actually, however, the process of interest

is the desorption of the atom from the surface rather than the reverse
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transition. If the resonance width Is very large, then the residence time
of the atom on the surface is quite short, which implies‘that desorption
occurs almost spontaneously with adsorption. On the other hand, a very
narrow resonance shape corresponds to a long-lived metastable adsorbed
state. One should note, of course, that there is no absolute definition
of "long" or "short" times, but roughly one may say that if the metastable
state does not survive longer than a time equal to the vibrational period
of the gas~surface bound species, then for all practical purposes no
adsorption has occurred. Conversely, if the predicted residence time does
exceed this characteristic vibrational period, and in particular if the
state lifetime is an order of magnitude or so in excess of the period of
oscillation, one may confidently expect that surface adsorption will
produce a significant effect on the overall scattering behavior at certain
energies.

1. Potential Energy

Prior to construction of the expressions for the initial and final
quantum states, it is necessary to examine the potential function which
describes both the surface potential energy in the absence of colliding
gas atoms and the gas-surface interaction [the gas atom is assumed to move
as a free particle when outside the effective range of the surface potentiall.
A particularly convenient choice, albeit not necessarily the most accurate
one.54 for the total potential is that form which was proposed by Leunnard-
Jones and Devonshire44 and which has been frequently used by other wnrkers,46‘59

namely

V(x,2) = V(z) + vitt(x

»Z)

D[e-Zaz - 2e-mz] - 2f3uDe—20‘z cos 21 (4.6)
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(here, as in Chapter III, x #nd z are respectively the coordinates parallel
and perpendicular to the surface plane). 1n the above equation the paramcters
D and o are the usual Morse parameters.60  is a measure of the strength of
the atom-surface interaction (an adjustable parameter), and a is the surface
unit cell dimension. The "non-interacting" part of the total potential, VO’
is just a conventional Morse oscillator potential and is a function of only
the radial coordinate, i.e., the coordinate expressing the atom-surface
separation, while the interaction term, Vint, is a simple exponential
repulsion, the magnitude of which varies periodically along the surface.
(Note that again as in the preceding chapter the problem has been reduced
to one of scattering from a line of atoms; however, the formalism may be
trivially extended to a two-dimensiomal surface in the wevent that transla-
tions along the two orthogonal surface directions are not coupled.)

Before passing to the consideration of the wavefunctions, one should
recognize that Eq. (4.6) defines a potential well which can support bound
levels in the z-direction but does not allow for the possibility that the
surface contour impedes essentially free-particle motion parallel to the
surface. llowever, for a surface which is not "too rough', it is likely
that this omission will not be significant. For the canonical example of
helium impinging on the (00l) plane of lithium fluoride, the prototype
system described in the calculations of Section D, there appears to be no
reason for suggesting that such free motion is not appropriate. One might
certainly envision, though, a system for which diffusive motion parallel
to the surface could represent a superior characterization and hence for
which the Lennard-Jones and Devonshire potential form would be seriously

deficient.
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2. Wavefunctions

Since the unperturbed (i.e.. non-interacting) part of V is a Morse
potential, one is lead to the selection of a bound Morse wavefunction
as a description of the z-component of the initial metastable quantum
state, ¢(x,z), of the adsorbed species. Such a description in fact
represents the only reasonable choilce inasmuch as the experimentally
determined potential parameters appearing in Eq. (4.6) are actually
obtained by;fitting the observed resonance energies to the potential
form. Thus, within the ability of a Morse potential function to model
the true surface potential, this wavefunction will exactly mimic che
behavior of the metastable state in the z-direction.

One then completes the comnstruction of the adsorbed state wavefunction
by assuming that the composite function is merely a product of x and z
component terms. Since the x-component may, as indicated above, be
described by a plane wave factor which exhibits the periodicity of the
lattice, the total wavefunction may be written as

. 2mm,
1(kx+ a )x Morse

Pa,miXe2) = A e Y

(2) , (4.7)

where n and m are quantum nmbars which take on only integral values,
wﬁorse(z) is the bound-state Morse eigenfunct:ion60 described above, kx
is the projection of the momentum vector of the gas atrm onto the surtace
plane. and Am is an appropriate normalization factor (the determination
of which is presented in the Appendix at the end of this chapter).

The generation of the continuum final state x(x,z) proceeds along

similar lines. Again, motion in the x-direction is described by a plane

wave factor [note that the lattice periodicity restricts changes in the
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momentum parallel to the surface as a resulF of the bound-continuum
transition to a reciprocal lattice vector|. However, now the "radial"
function in the z-direction must be such that the correct srattering
boundary conditions are satisfied for large atom-surface separations.
i.e., the z-component of ¥(x,2) must asymptotically (z + @) go as

sin(kzz + ne)’ where kZ is the projection of the momentum vector
perpendicular to the surface and ne is a phase shift which is dependent,
in general, upon the energy. OCbviously, the usual bound Morse oscillator
eigenfunctiouns cannot satisfy this normalization criterion; still, it is
possible to generate the corresponding continuum functions via only a
simple modification of the bound-state functions. Recognizing that the
solution of the Schrodinger equation for the Morse oscillator involves

the solution of a confluent hypergeometric differential equation, one can
easily show thalL by choosing the independent solution denoted by U (which
is related to Lhe generalized hypergeometric function ZFO’ see Reference 6l
for details on notation) rather than the M-function (which is also written
lFl). the resulting function does indeed have the requisite asymprotic

form. Thus, the total continuum wavefunction may be expressed as

. 27n’
1(kx + )x Morse

Xor (X22) =By e T @ (4.8)

where n' is sone integer, v(e) is an energy-dependent complex quantity
which plays the same role as does the quantum number for a bound system,

Morse

and wv(e) (z) is the continuum Morse function. The normalization constant

Bv(E) mAay be determined by matching Xy v(x.z) to the boundarv conditions,

the details of that matching being given in the Appendix.
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3. Construction of the Widths

One now substitutes Eq. (4.6), (4.7), and (4.8) into (4.5) and in
doing so ohbtains the expression to be solved for the widths. [Nothing
has been said as yet about the density of final continuum states, but
it is not too difficult to show that for the radial asymptotic form
indiecated above, p = 2u/1Tkz in atomic units (here | is the atom mass).]
However, before continuing on to the actual solution, one should note
the similarity between the formalism thusfar described and that which was
proposed by Strachan62 many years ago. That early work also involved the
calculation of bound-continuum interaction matrix elements, but there do
exist definite differences between the two approaches. Specifically,
Strachan's treatment did not include a ccnsideration cf the effects on
desorption arising as a consequence of lattice periodicity. As shall
be secn below, such periodicity imposes additional constraints on the
energy redistribution which accompanies the transition to an unbound
state. Neglect of the nature of the surface contour thus constitutes a
rather severe limitation on the accuracy of the overall method.

Inasmuch as the actual calculation of the widths is straightforward,
vnly the important features of the method used herein shall be indicated.
First, the expression for the matrix element appearing in Eq. (4.5) may

be written explicitly as

) —Lk X Jik +2 n'
yne -2£D A *B d/é& dx e
n',v(e)+0,m v(e)

)x

M se M .
N O R SO cos ZTX , (4.9)

where the quantum number n has been set to zero (only a single bound




level is considered). The x-integral is then easily done analytically
by transforming the integral (-»,») to a sum nf Integrals over unit cells

of length a, with the vesult belng

2min'x/a 2mx _ . a
J{hx e cos == =M3 8. . (4.10)

where M is the number of unit cells within the experimentally defined
region of interest. Note that the lattice periodicity has linked
desorption to a first-order diffractive scattering event, [The formal
solution of the integral in Eq. (4.10) also permits the 'ransition whereby

n' = +1, however it is clear that such a process does not conserve total

energy.}
In the remaining z-integral it is convenient to make the change of

variables defined by the equation

_ D oz
£ = o e .

Thus one finds that Eq. (4.9) may be reduced to

int - _ aBaM  * *Morse Morse
v-l,V(E)“O,m = BIJ Am B\)(E) ‘ng E le (E.') lP\)(E) (F,) »

this integral being easily calculated via Gaussian quadrature.
4. FEnergy Conservation
In order that there be no net energy loss or gain accompanying
desorption, one finds that at resonance
2 Ty 2
)

k24, -2
Z

2
x 2 = 2usm + kx = E . (4.1
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(h = 1) where the momentum vectors are those for the unbound atom, €n
th

is the energy of the m  bound surface state, and the transition {s

such that n' = -1 (see above). Rearranging and solving the quadratic

equation, one obtains equivalently

- oy (2T 2m,2.1/2 ‘ .
k, = [zuem+ 2kx(a) - (a) ]

-
Furthermore, if one defines the angle from the surface normal to k

to e 0, then

2ue
o aig] Pa o
® = sin~ [V1 - 7 ka] ' (4.12)
k
k = |K|. These last two expressions make clearer the fact that there

are infinitely many ways in which the resonance condition, Eq. (4.11),

may be satisfied. Physically these different resonant states correspond

to having varying amounts of energy placed into the motion in the x-direction.
Since each of these situations corresponds to a unique energy configuration,
each should also be characterized by a particular resonance width and hence

a particular lifetime, Thus the calculations described 1n Section D are
performed for a wide range of initial conditions.

From Eq. (4.11) one may also determine energy "cutoff" values below
which desorption cannot occur. In such cases the total energy of the system
is such that when the bound-continuum transition is made, the energy
appearing as motion perpendicular to the surface is less than zero and
consequently the atom cannot escape. These cutoffs are obtained by
serting kz to zero in the resonance condition and solving for the total

energy in terms of the bound state energy, with the result being (in a.u.)
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cutoff _ 1 2w, 2

a 2
Em o [(—a—) * o (ZUEm)l . (4.13)

No transitions are possible for a system in the mth bound level with a
cutoff .

total energy less than Em unless by chance a higher bound level

exists (say, m') which exactly differs in energy from the mth level

by

1 2n, 2 27
£ -5 =4/ = — [(=)" - 2(=) v2u(E~
ley e | = 88 = 55 1T - 26 Vau (- )
Since in general such specific level spacings are very unlikely to be
encountered, any desorption from these low energy states must proceed
via an inelastic mechanism which cannot be treated within the present

model.

C. 1Inclusion of Inelastic Effects

The inherent difficulty faced when one attempts to incorporate atom-
sur.ace energy transfer processes into the static-surface framework
thus far proposed arises as a result of the sheer size of the problem.
For example, the longer a particle is bound to the surface, the more
likely it is that collisions with phonons will impart enough energy so that
desorption may occur. Furthermore, it is also possible that ‘adsorption
of energy will kick the atom inte a higher (but still bound) energy level,
which may then decay cither via the "elastic" transition of Section B or
by some inelastic process. Not only would such a complex situation clearly
be cumbersome to handle exactly, but alsc one could by no means he sure that

the rustomary simplifications,e.g., the one-phonon approximation, have any
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relevance tao the actual dynamics. Still, it is desirable to obtain in
some way a rough estimate of the effect of inelasticity on the pradicted
static~surface widths. To this end, some of the same methods used in
Chapter III for inelastiec surface scattering have been applied to the
problem at hand in order that a first-order correction to the results of
the previous section might be constructed.

It shall be assumed that the resonant state may be characterized by

a simple product state, namely

[r> = [k sk T n"
b4 z 'L
where Ikx> and ]kz> are respectively the parallel and perpendicular
momentum states and ]n> is the product of individual solid phonon states
. . s r r . . .
(note that in the static-surface limit, |r> = Ikx >|kzr>, which is just

Eq. (4.7)). Similarly, the final continuum states may be written as
|£> = |k f>Ik f>lnf>
X z .

the result being that for a particular resonant state |r>, the width is

Just the sum of partial widths

= 3om|<elvi®e]? (4.14)

o

each partial width corresponding to decay into a particular distribution
. . : : r

of phonon modes., However, since the mode distribution In > cannot be

experimentally identified, a more useful quantity is an average width

defined as follows:
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n_ ~r
~T
_ int 2
RECLIED DD DI S PY | ey , (4.15)
e B T

where here a sum is performed over the various resonant phonon states and
is weighted by some normalized mode distribution function P,

0f course, the interaction potential appearing in Eqs.~€4.l4) and
(4.15) is no longer that given by Eq. (4.6), but rather is properly a
generalization of the static interaction to the case of a moving surface
contour. In determining that generalized potential, one is guided by the
respulsive model proposed in Section C of the preceding chapter.
Specifically, by subtracting from Eq. (3.12) the overall radial repulsion
and by using the surface displacement coordinates defined by Eq. (3.13)
(that is to say, by adopting the modified Einstein model for the - urface),
one finds that

z . x.2
int —vu~H> -Mmﬂwﬂf

-y (z-q>)
]
v =V, Le e -V, 0 z:e

2
“Y(z-q%) -A(x-ja-q )
=V e J J

0 (e - a) s {4.106)

where ¥, A and 0 are parameters which must be fit to the particular surface

of interest.

It is possible, though, to describc Y and o in terms of the "known"

parameters of Section B. Consider the statie limit of LEq. (4.16),
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int -YZ =A( —‘a)2
v =V0 ZeY R - 0)
]
- M x-ja)?
= o Y2 VO (JZe *=] - oM) s

there being M terms in the summation over the unit cells within the
experimentally defined region of interest. Then by using the Poisson
sum rule and keeping only the first harmonic terms (again, see the

manipulations appearing in Chapter III, Section C),

int ~Yz m -ﬂz/Aaz 2mx
Vq= =e V0 [jé;-(l + 2e cos —Efd - oM] ,

which is transformed into the canonical Lenunard-Jones and Devoushire

form“ (sce Eq. (4.6)) with the identifications

L
MaJ/k

2 2
a n/Aa
- _)‘/ETTBD e

<
it

20 . (4.17)

=2
n

Therefore, the present work adopts the mode-dependent interaction potential

which is found by substituting Eqs. (4.17) into (4.16), namely

X, 2
. 2,, 2 —20L(z—q".z) -A{x-ja-q,)
nt _ 8D el /Aa Ze J (.!: El'/ﬁ_ o h|

TR

v ) .

]
(Note that the parameter ) is as yet undetermined; but because further
manipulations will reveal that A does not enter into the lowest-order

correction term, one need not worry about its evaluation.)
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It is now possible to construct the dynamical analogue of the matrix

element of Eq. (4.Y) using the above poténtial,

2 2
int * m™/ha f Imin'x/a  *Morse Morse
vr‘f AmBu(E)BD e -/;z./;x dq e b (=) wv(c) (z)

2 x 2
2aq -\(x-ja~q.)
* = &
" % (a) (bn (a) e 2uz Le ] (';l'_ *%e 1) s
~T ~f i

where tbn(q) = <qln>. The x-integral may be done analytically (the details

shall not be given here), thereby permitting simplification of the matrix

element to

2 2
int _ | * 7" /Aa * . ~20z  *Morse
vr,f = AmB\)(E)BD e afdg (I)Er(g) bnf(g) dz e lpm (2)

L4 X
—TTZn'Z/)\az 2min qj/a
‘ e

)

. leorse(z) Ze?.aqj (6 - e
v(e) 7 n',0

. . . int .,
Now, if n' = 0 one sees immediately that V[_ £ vanishes. Thus, even for

the non-static surface, the desorption process must be accompanied by

diffraction. One therefore may write the non-vanishing contribution as

int % 'rrz(l-n'z)/)\a2 * 20Lq;."
v - - AT (BD e a-/::ls o (D0, (@) Te
~T £ 3
2ﬂin'qx/a
. 3 ~20z , #Morse Morse
e j:iz e v (z) va(E) (z)

2 2., 2 20q”
_ T (1-n'")/)a L1 * R
=€ Vn',\)(l-:)+0,m M ﬁﬂ (bgr(g) QEE(S) %L

Zﬂin'qfla
s 2 J
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where V_, ) is a static-surface matrix element as defined in

n .U(E)“Ud“
Scction B. At this point, n' will be taken to have the value -1 inasmuch
as the primary goal of this work [s to obtain a correction for the static
results,  Also, it is useful to examine more closelv che remaining wummiat ion
over j. First, recogrize that by assumption q?/u << 1 (i.e., the surface

J

distortiuns are small compared with a unit cell dimension). Thercefore,
one may Lo a very good approximation lLinearize the second exponential and

obtain

X

X
-2niq’/a q
oz -oami A

e
In tact, it is not unreasonable to drop the imaginary term altogecher
sinve when the square modulus of the matrix clement is taken that term

will contribute only to order (q?/a)z. Hence,

209> -2wiq/a - 209"
z:e J e ] A-z:e
i ]
z 2 z2
=Z(1 + 2aq, + 207q,] + ...)
3 1 J

M+ 0+ 20°M <qzz> + ...

2 2
M (1 + 20 “q, >)

. . 2 . .
through first order in <qz > (note that <qz> = (0 for harmonic displacemcnrs).
The above simplifications lead to a particularly simple form tor thoe
matrix element, specifically

int

9 2
= - < )< N .
Vr,f(n'=-l) V—l,v(u)+0.m 1+ 2a q, )’Trlfr
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With this expression one is finally in a position to calculate an average

resonance width as given by Eq. (4.15).

= . 2 2 2.2 2
= 2w 2: 2:;%] Dflv-l w(E)+0 m! (1 + 2 <q7 >) ]<nr[nf>'
n. n_ ~r ' ! ’ -
~r ~f
2 S 2 2.2 N
® 2"pflv-l,v(6)+0,m| 1+ 2 4, ?) 2: Pa nelngs
O ~F
2 2 2 .2
= 2mp |V-1,v(a)+0,m| (1 + 207 <q"»)
. 2 2.2
= Is(l + 200 <qz >) (4.18)

(here FS is the static-surface width). So, within the present model it
is possible to obtain an extremely simplc modification of the computed
static widths which affords some first estimate of the effect of inelasticity

on the gas-surface resonance process.

D. Results and Observations

Calculations have becen performed using parameters corresponding to
the prototype He-LiF(001) system as given by Goodman.63 Both widths and
lifetimes were obtained (the lifetime in atomic units being just the
reciprocal of the width) for each of the three bound Morse states at a
range of total energies extending from just above the energy cutoff to
30 meV. Some of these results, along with the corresponding angles glveu
by Eq. (4.12), are displayed in Table 5. Also listed there are values of

a lifetime factor, Tr’ which is defined via the expression
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=
1]

T
= log TO (4.19)

where 1 is the calculated liferime and TO is the period of oscillation
for a particle in the Morse potential. Thus, for example, a value of
Tr = 2 represents an adsorbed atom remaining on the surface for 100
vibrations, In Figure 4 curves showing the variations in '1‘r with total
energy (and hence with the amount of energy parallel to the surface) are
plotted in order that one might get a better feeling for how the energy
partitioning affects the adsorption lifetime. [The displayed results are
for the case 8 = 0.1. 1f, say, one takes § = 0,04, then the calculated
Tr—values are increased uniformly by roughly 0.8, i.e., the lifetime ig
lengthened by nearly an order of magnitude.]

Two obvious trends may be seen in the curves of Figure 4. First, at
a given total energy, the lower the bound energy level from which desorption
occurs, the longer the lifetime of the adsorbed metastable state. Such
a result is, of course, to be expected~-when a state which is just barely
bound undergoes a diffractive transition to an energetically degenerate
continuum state, the continuum level which is produced has more transla-
tional energy in the z-direction than would be found in an unbound state
derived from a transition from a deeply bound level. This extra velocity
of the departing atom perpendicular to the surface decreases rhe time
spent by the particle in the vicinity of the surface and thereby leads
to the smaller calculated lifetime values.

The second general trend which is discernible is that the lifetimes
increase with increasing translational energy parallel to the surface.
Note here the particular limit in which the total energy of the adsorbed

atom is allowed to become very large. If the resonance condition, Eq. (4.11),



is wufll to be satinficd, one finds from Eq. (A.1¢) that the angle at whien
the desorbed atom leaves the surface mudt approach 90°,  But clearly such
a Limfting case correnponds to motion only along the surface and not awas
trom it and therefore to a MHfetime which approaches infinfty. On the
other hond, If the total energy {4 such that the transition to the
cont invum feaves very little energy in the x-directlon, the atom departs
quickly trom the surface interactlon region, and conscequently the lifetine
of the metastable state appears short. The monotonic increase in Tr with
total energy which La geen in Figure 4 bears out this expected behavior.
[For total energies less than the cutoff values, which are displayed in
Table 6, the lifetimes are again inflnite inasmuch as there is insufficient
eneryy to excite the bound atom to the continuum; however, the present
analysis breaks down for such a case since a desurptive transition s
not possible.] Physically, then, one expects a very sharp onset of
desorption at the cutoff energy, with the shortest lifetimes (and hence
the largest widths) belng obtained for total energies just slightly
greater than the cutoff.

llaving thus obtained a description of the basic phenomenulogy, one
needs to see whether or not the first order inelastic correction to the
static widths which was derived in Section C significantly alters the
quantitative results calculated above. A useful estimate of the inelastic
ef fect may be constructed by considering various values of the root-mean-
square displacement of a surface atom, those values being expressed as
percentages of a unit cell dimension. Table 7 lists representative values
of the width correction factor for a variety of r.m.s. displacements. Onc
can easily conclude from those computed factors that inelasticity has a

strong effect on the adsorption lifetimes even within the low order of
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approsimation cont cyered herein.  For example, tie lifetime of the
metastange tevel is nearly cut in nalt 0t the romeg. surface displace-
Sentnoare equal to ten percent otoa o cell deneth, doe,, ahout 0,3 ,r‘:,

e ot ol Caorse . Uil even oty soae oo 'hn-!.mt Te atechioi g i
proediv e thar cne widets may be tade ebitraciiv Larpe by simply

e re taanye The savtace temperatare Gand henve the vomes, diaplaceneniny,
tnis imrless inercase in the resonance widths does not corresaond o
aophivnically realizable objeetive sipce meiting or the selid must arel
acenr at osome point. Nevertheless, ineluastizity can make a non-nepiiygibie
coutrabutson fo Lhe wadlns ot temperatures below Che mecting point,

Beiore going tarther, one should recognize tnat any inferences drawn
from the aforemencioned formalism muse be qualified somewhat due to the
1act that certain very real effects bave been omittad entirely., One or
these omiasions concerns the means by which the interaction ol the
adsorbed state with soilid phonens has been introduced into the theory.

The present work gceounts rfor the distortions of the surlface resulting
from random thermal vibrations but gives ne  divect prescription tor che
inclusion of purelv inelastic transitions. Certainly the longer che atom
remains in the proximity of the surface, the more likely it is that poonon
annihilation (or creation) will excite (or de-excite) the atom into
another bound state or into the continuum. Although beyond the scope of
the prosent work, the consideration of a more detailed energy transfer
mechanism is probably necessary if one is to derive reliable information
aboul lonp—-tLerm adsuvrption effects.

The second caveat is in regard to the trausferability of any

conclusions obtained herein to the adsorption of an arbitrary species
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on a crystal face. In particular, one must realfze that the abuve
treatment. han concerned only physlcal adsorption=-no mention has been
made of Lthe porentially more fnteresting and certainly more complicated
contributfon or chemlcorption. I{ some sort of chemical interaction,
however weak Lt might be, in posuible tor the particular system of
intercvst, theo that interaction could be expected to lengthen dramatical Ly
the residence times. However, Lt may also be true that the analysis
pursued here will be of gome utility even In this more complicated
situation {f the chemical forces are of shurter range than is the
attractive part of the gas-surface potential and the number of binding
sltes is small. Under that circumstance the initial intceraction may
result in a bound state being formed which may be treated via the proposed
model, with the adsorbed species undergoing free translation along the
crystal face. until at some point a chemisorption site is encountered.
There the present analysis breaks down,of course, but note that prior to
some average time for the attainment of the chemically bound state, one may
still employ the formalism of Section A. Nonetheless, any long-time
physical adsorption results must be viewed somewhat sceptically if the
system being studied affords the possibility of chemical binding to the
solid.

At this juncture one would like to be able to compare the calculated
resonance widths with experimentally measured ones, but unfortunately
such a comparision is not in general possible. The ovbvious reason for
this difficulty is to be seen in the results presented in Table 5; in
short, the widths are so very narrow that they are experimentally unresolvable.
An experimental study by Meyers and Franklsa of the He-LiF(U0l) system indeed

indicates that any lifetime broadening of thc observed resonance peak
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structure {s completeldy negligible as compared with the unavoidable helium
beam widths, The computations pertormed here suggest that 1f resolvable
widths are to be obtained at all, then they would be seen at conditions
under which not only are the tetal cnergies just above the energy cutoff
values but also surface cemperatures are suificiently high that appreciable
inclastic broadening of the widths would be anticipated., Certainly such
exacting conditlons are at best very difficult to produce.

Prior Lo concluding, {t is useful o note in more detail the
structure ot the inelastic correction factor which was constructed in the
previous section. For example, by usinpg the definition of the space-

; . . 6
independent phenomenological Debve-~Waller factor, 4

(note that this W differs {rom the “effective" Debye-Waller factor defined
in Eq. (3.20) by a multiplicative constant, a/a/2m), Eq. (4.18) may be

written as

2
F=r 1+ ﬁg—-‘%’)"‘ , (4.20)
8 Ak,

where here Akz is the change in the perpendicular component of the momentum
vector [thevre are conflicting opinions in the literature as to how Akz
should be defined--see Reference 64 for a discussion of this controversvj.
Presumably, if one were able to create the specific conditions required in
order that a width might be experimentally measured, then by taking data

at various surface temperatures it would be possible for someone to

calculate Debye~Waller factors to reasonable accuracy (in principle such
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a procedure would yleld more accuracy than the conventional Intensity
comparidion methodsa). [t {s alse interesting to note that the truncated
series in Eq. (4,20) may be approximately resummed (the same trick used

in Appendix B of Chapter [11) to glve

2 2
- 8u W/Akw

which is of the canonical form, namely the static surface result multiplied
by an exponential which involves a Debye-YWaller factor.

“Overall, the application of the golden rule resonance width
formalism to the problem of the adsorption of a gas atom onto a solid
surface (or equivalently, the desorption of the atom f[rom the surface)
seems to provide a useful method for analyzing the various dynamical
features of that process. Even more important is the effect which the
normally neglected motion‘of the surface contour has on the preliminary
results obtained from a static surface model. It has been shown that
the inclusion of just lowest-order inelastic contributions can easily
decrease adsorption lifetimes by 20-50%. Although the present work
cannot claim to have considered all possible energy transfer processes,

it does strongly suggest that in general such mechanisms should not be

ignored.
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Appendix:  Waverunction Normalization

A Free~Partictie States

foth the bound and continuum functions exhibit {ree-particle motion
parallel to the surface (the x-direction), i.e., each has a tactor of the
form

21

ik + Ix
X i

u (%) =c e
n X

[t

cy being the normalization constant. Such functions are box-normalized

over a unit cell:

le |2 ]dx u®, (%) u (%)
X . n n

2 3
|Cx| }l;./o‘dx u:,(x+ma) uq(x-{-ma)

a
i(n-n' 2 -n'
e |2 5 [ ax G2mi(n-n")x/a 2mi(n-n')m
* m 0

a

e _
lcxlz M ﬁdx e2'nl(n n')x/a

L]
n

where M 1s the number of unit cells within some experimentally defined

region. Thus,
-1/2
Cx = [aM]

B. Bound Morse state
A bound state must, of course, be normalized to unity. Conventional

6
Morse functions,0 are of the form

Morse -£(z)/2 s
=c e

Y {(z)

m o F(-m,2s5+1.§(2)) ’

5(2)




where

£z L‘zﬂ Q-f.l( .
a

o ik

cT a o !

¥ is the appropriate confluent hypergeometric function
(denoted M in Reference 61), and
Cn Is the normallzation constant (which is dependent on

the quantum number m).

Since when m is a positive integer F is just an mth degree polynomial,
. : . Morse

it is a simple matter to obtain ¢m for the first few values of m

and to calculate the corresponding cm's analytically. For example, if

m= 0, F(0,2s+1,&)= 1; thus

_ xMorse Morse
1= _'Z.dz lbm (2) l!)m (z)
= le l? 2 7 ag & g7

0" o
0
21
= lcol 5 [ (9)

_ o ,1/2
% ~ [F(Zs)]

. , . 65 . ..
where here I' is an ordinary gamma function. One may similarly construct

the other functions and normalization constants:

1. wi _ & .o ((2s+l).1/2
m=1l: F(-1,2s+1,£) =1 - TotL . <y [ l,(25)]
] 4
25 F2 2(25+1)(25+._
m= 2: F(-2,25+L,E) =1

~Jer1 T (25+2)’(25+l)’ €y T [ ['(2s)

) 172
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\ - . th
Therefore, the overall normajization constine for the m hound state is

C
n
Am = ;ﬁﬁ? .
c. Continuum Morse State
As Indicated In Sectlon B, since the z-component of the continuum
functions must go asymptotically as sin(kzz + nc), the complete funccion

s taken to have the [orm

Morse

-E(z2)/2
uv(c) e

(=) = ¢ £(z) U(-v,2s+1,5(2)) ,

v{e)

where, in addition to the parameters previously defined (note that for

this case 3 is imaginary),

v(e) = ™ 278 ,
and
U is the independent solution of the confluent hypergeometric
equation described within the text.
In the limit z +® it can be s that

,Morse im 2V2uD -0z, ik/o 1
Vote) B Moy Tk (G o ¢ ) F=9) T (Z5+D)
sinh o
_ (Zfﬁﬁﬁ’e—az)—ik/a 1 } ]

a F(-WT(2s+1)*

Then, by defining nC such that

ing r"(-v)*r(zs+1)]1/z 2/ED -ik/a

= P T s * e ) :



one finds that

" . g i AN
W@ v ey~ U Piresay) e e e e .
sinh
“v(e) —2er (1w I @2s+) | 2172 sin(ka)
sinh —

" ogin (kz+nE)

if

sinh o
un |F(-\))HF(ZS+J.)! .

i

cv(c)

So, the full normalization constant for this unbound state is just

sinh ZEE

(¢}
Boey = T vaw TV T @s+D |

Fa11 quantities discussed herein are expressed in atomic units (h =

90

ikz

n.

in
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Table 1: BEigenvalues for V(x) = 0O a

Quantum Number WKBb Modified WKB® Ratio
0 0.125 .5 4.00

1 1.125 2.0 1.78

2 3.125 4.5 1.44

3 6.125 8.0 1.31

4 10.125 12.5 1.23

5 15,125 18.0 1.19

10 55.125 60.5 1.10

15 120.125 128.0 1.07

20 210.125 220.5 1.05

8parameters as defined in Chapter I, Sectiom C(l).
bOrdinary WKB eigenvalues given by Eq. (1.13).

cModified WKB eigenvalues from Eq. (1.10) (same as quantum mechanical

values).



Table 2: Eigeanvalues for a Harmonic Oscillator in a Box.?

Quantum Number L/V?2 WKED Quantum® Modified WKBY
0 0.5 2.47 9.87 9.88
0 1 0.64 2.48 2.48
0 2 0.25 0.65 0.67
0 3 0.25 0.34 0.38
0 4 0.25 0.27 0.30
1 0.5 22.21 39.48 '39.55
1 L 5.57 9.89 9.90
1 2 1.47 2.54 2.54
1 3 0.82 1.25 1.26
1 4 0.75 0.88 0.90

%potential parameters as defined in Chapter I, Sectiomn C{(2).

bResults of the ordinary (i.e., un-modified) WKB quantum condition,

Eq. (1.3) with AV = 0.
cResults of Reference 10.

dResults of the modified WKB quantum condition, Eqs. (1.3) and (1.l4).



Table 3: Open-Channel Reaction Probabilities for Collinear H + uz

(inner projection expansion of Vex)'

Number of Width parameter,b 82

b

expansion functions® 24.0 20.0 16,0 12.0 7.0 4.0 1.0

2 .0001 .0000 .0008 .0130 .0938 .l1736 .0006
4 .0082 .0441 .1407 .7078 .1294 .1139 .1134
6 .2613 .1501 .1163 .1064 .1082 .1124 .1138
8 <1055 .1026 .1029 .1043 .1147 ,1137 .1154
10 .1010 .1016 .0958 .1159 .1137 .1137_ .1l171
12 .0966 .1365 .1149 .1138 .1137 .1137 .1120
14 1176 .1143 .1138 .1137 .1137 .1144 .0790
16 .1140 .1137 .1137 .1140 .1137 .1137 .1266
18 1137 .1137 .1137 .1137 .1137 .1141 .0818
20 .1137 .1137 .1137 .1137 .1137 .1139 .1033

a . . . . . .
The number of functions {ui} used in the Inner projection expansion of

Eq. (2.10).

bThe functions {ui(R)} are given by ui(R) = /§'¢i[B(R—RO)], with R, = 2.

0

ags where ¢i(x) are the standard harmonic oscillator eigenfunctions of

Reference 18 (for h = m=w = 1).
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Table 5: Open-Channel Reaction Probabilities for Collinear H + H

2
(outer projection expansion of Vex).
EEEEEE;Qi. Width parameter.b Bz
expansion functions™*® 24.0 7.0
10 .0511 .0500.
12 .0773 .1074
14 L0942 .0735
16 .1039 .0761
18 .1090 .0935
20 .1115 .1067
22 1127 .1125
24 .1133 1134
26 .1135 .1128
28 .1137 1122
30 .1137 L1124
32 .1137 .1128
34 .1137 L1134

3The number of functions {ui} used in the outer projection expansion of

Eq. (2.9).

0

ag» where ¢i(x) are the standard harmonic oscillator eigenfunctions of

bThe functions {ui(R)} are given by ui(R) = /§¢i[B(R-R0)], with R_ = 2.1

Reference 18 (for h =m=uw = 1).



Table 5:

Calculated Resonance Widths

and Lifetimes for He-Li(001).

E (meV) © (dep) I 10 % mev) T (nsec) TLa
1.0 75.7 25.8 .0936  2.00
2.0 54.9 14.3 .169 2.25
5.0 47.3 6.57 .368 2.59

10.0 48.0 2,43 .995 3.02
15.0 49.4 1.11 2.18 3.37
20.0 50.7 .573 4,22 3.65
25.0 51.9 .323 7.48 3.90
30.0 52.9 .194 12.5 4,12
1.0 15.2 141. 0172 1.26
2.0 21.3 103. 0234 1.39
5.0 30.5 49.9 L0485 1.71
10.0 37.7 20.4 .118 2.10
15.0 41.3 10.2 .237 2.40
20.0 45 .6 5.74 421 2.65
25.0 46.8 3.48 .694 2.87
30.0 48.4 2.23 1.08 3.06
1.0 19.5 281. .00860  .960
2.0 .565 216. 0112 1.07
5.0 20.1 117. 0207 1.34
10.0 31.6 55.6 0435 1.66
15.0 37.4 31.1 .0778  1.92
20.0 41.1 19.1 .127 2.13
25.0 43.8 12.5 .194 2.31
30.0 45.9 8.54 .283 2.48

100



101

Reference for Table 5:

aTr is calculated from Eq. (4.19), where TO = 9,42 x 10—4 nsec,



Table 6: Energy Cutoff Values.

a Ecutorf (mev)b
m_ m

0 0.9018

1 8.151 x 107%

2 0.3739

a
Quantum number of bound Morse state.

bCutoff energy calculated from Eq. (4.13).
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Table 7: Inelasticity Correction Factors.

<qu>l/2/a F/Fsa
.01 1.00
.02 1.02
.05 ~1.10
.07 1,16
.10 1.43
.12 1.52
.15 1.86

aAverage width calculated from Eq. (4.18).
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Figure Captions

Figure 1. Particle-in-a-box eipgenvalues for the parameters of Chapter [,
Section C(1). The open points are the ordinary uvmndificd WKE
results, while the solid points are those obtuained trom the
modified WKB formalism (and which are identical with the exact

quantum eigcenvalues).

Figurc 2. Ligenvalues of the ground (n = 0) and first excited state
{n = 1) for a harmonic oscillator of frequency w = % in a box
of length L. The points represent the exact quantum mechanical
values of Reference 10, the solid curves the values calculated
via the modified WKB quantum condition, Egqs. (1.3) and (l1.14),
and the dashed lines the results given by the ordinary unmodified

WKB quantcum condition.

Figure 3. Contour plot of the non-local exchange kernel V x(R.R') for a
e
total energy E = 0.4898 eV. R and R' are expressed in atomic

units (ao).

Figure 4. Lifetime factors, Tr’ predicted by Eq. (4.19) for the three
metastable states of the He-LiF(00l) adsorption at various
total energies (B = 0.1). Higher values of E correspond to

more energy appearing in translation parallel to the surface.
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