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Miniaturized Wirelessly Powered and Controlled Implants for 
Multisite Stimulation

Iman Habibagahi [Student Member, IEEE],
Jaeeun Jang [Member IEEE],

Aydin Babakhani [Member, IEEE]

Department of Electrical Engineering, University of California, Los Angeles, CA 90095 USA.

Abstract

This paper presents a miniaturized implant with a diameter of only 14 mm, which houses a novel 

System on Chip (SoC) enabling two voltage level stimulation of up to 16 implants using a single 

Tx coil. Each implant can operate at a distance of 80 mm in the air through the inductive resonant 

link. The SoC consumes only 27 μW static power and enables two channels with stimulation 

amplitudes of 1.8 V and 3.3 V and timing resolution of 100 μs. The SoC is implemented in 

the standard 180 nm complementary metal oxide semiconductor (CMOS) technology and has an 

area of 0.75 mm × 1.6 mm. The SoC comprises an RF rectifier, low drop-out regulator (LDO), 

error detection block, clock data recovery, finite state machine (FSM), and output stage. Each 

implant has a PCB-defined passcode, which enables the individual addressability of the implants 

for synchronized therapies. The implantable device weighs only 80 mg and sizes 20.1 mm3. 

Tolerance of up to 70° to angular misalignment was measured at a distance of 50 mm. The efficacy 

of bilateral stimulation was further verified by implanting two devices on two sides of a pig’s neck 

and performing bilateral vagus nerve stimulation (VNS), while monitoring the heart rate.

Keywords

biological effects and medical applications; data recovery; low power RFIC design; optimization; 
power transmission; RF system-on-chip (SOC) integration; CMOS RF design

I. INTRODUCTION

Multisite stimulation has proven helpful for different medical indications. In [1], the authors 

showed that specific stimulation patterns in the spinal cord could lead to unique muscle 

activation in mice. In [2], it was shown that multisite spinal cord stimulation enables faster 

recovery of motor functions. The efficacy of multisite stimulation has been proven for 

enhanced cardiac resynchronization therapy as well [3], [4], [5]. Both unilateral and bilateral 

VNS have proven to be useful for cardiac therapy [6], [7], epilepsy treatment [8], and weight 

control [9]. From the point of care perspective, miniaturized and battery-free implants are 

preferred since natural movements are maintained, and chances of infections or reoperation 

are minimized [10], [11], [12], [13].
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There have been multiple approaches to implementing multisite stimulation. As shown 

in Fig. 1(a), for spinal cord stimulation, authors have used electrode arrays to stimulate 

different nerves [10], [2], [1]. However, this approach is not easily scalable as the implant 

size and length of electrodes increase significantly with the number of stimulation sites. 

As presented in Fig. 1(b), in [3], the authors presented biventricular heart pacing with two 

implants operating with two carrier frequencies. The main drawback of this approach is 

that interference and unwanted couplings between Tx coils limit the operation distance. 

Furthermore, the number of Tx coils scales linearly with the number of implants, which 

shows the undesired scaling of the system. Fig. 1(c) presents a recent solution proposed 

in [14] to perform multisite stimulation. Physical unclonable function (PUF) IDs were 

implemented to address each implant individually. This approach benefits from good 

scalability; however, PUFs have inherent instability and sensitivity to process voltage and 

temperature variations (PVT) [15], [16]. Complex circuitry based on temporal majority 

voting (TMV) needs to be adopted to improve stability [17], [14], [15]. Furthermore, 

additional mask layers must be used in the fabrication process to implement Native NMOS 

transistors for PUFs which leads to higher fabrication costs [17], [14]. Double-tuned coil 

structures can also be used to control multiple implants in different frequency bands using 

a single Tx coil. However, their radiation efficiency is reduced, and the number of implants 

they can control is limited due to matching network complexity[18], [19].

To circumvent the abovementioned problems, we propose passcode-enabled miniaturized 

implants controlled by a single Tx coil, as shown in Fig. 1 (d). The 4-bit passcodes are 

defined on the chip’s pads. Depending on the printed circuit board (PCB) connections, they 

are connected to VDD or VSS. This approach proposes a robust passcode for individual 

addressability. Tx coil powers all the implants simultaneously, and by using Pulse-width 

modulated amplitude-shift keying (PWM-ASK), implants are synchronized. Since each 

implant is deployed at a different site, there is no longer a need for long leads or electrode 

arrays. Furthermore, by optimizing link efficiency, a distance of 80 mm in air and 60 mm 

in phosphate-buffered saline (PBS) is achieved by using 2 W of peak power for the Tx coil. 

The proposed implant has the following features: (1) Reliable two-channel stimulation (1.8V 

or 3.3V); (2) Wirelessly powering and controlling up to 80 mm in air through an inductive 

40.68 MHz link; (3) 4-bit passcode which enables up to 16 implants to operate at the same 

time; (4) Up to 70° angular misalignment can be tolerated; (5) Implants fabricated using 

standard FR4 substrate technology weigh only 80mg and have a volume of 20.1 mm3; (6) 

Error detection block verifies if the implant has harvested enough power before stimulation. 

Fig. 2 shows a conceptual presentation of wirelessly powered and controlled implants for 

bilateral VNS with two implants.

This paper is an extended version of [20] with a detailed quantitative and qualitative 

discussion of the wireless power transfer (WPT) link co-design and circuit implementation. 

Additional experimental results for circuit validation and In-Vivo validation are provided. 

The rest of the paper is organized as follows: Section II describes coil design and wireless 

link parameters. Section III provides a detailed description of chip design, including 

rectifier, LDO, power-on reset (POR), clock data recovery (CDR), and output stage. 

Section IV presents measurement results, including circuit verification, in vivo, and in vitro 
validation. Section V concludes the paper.
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II. WIRELESS LINK DESIGN

Magnetic resonance power transfer has been deployed in this work. Capacitive WPT is 

very sensitive to wireless link parameters [21], [22]. Ultrasound WPT relies on physical 

vibrations for power transfer. The main limitation of ultrasound is that it requires direct 

physical contact by applied gel and suffers from attenuation in muscle and bone mediums.

The main drawback of Magnetic resonance WPT is the large physical dimensions of the 

coil and tuning of the carrier frequency (fc)[7], [23], [24]. The carrier frequency choice 

should be based on the application, safety, bandwidth, and minimum required distance [25], 

[26], [27]. In the next step, coil parameters can be optimized in a fixed distance and carrier 

frequency. Details of coil design are included in the following section. Furthermore, wireless 

link variations and rectifier non-linearity are investigated as pivotal factors for frequency 

tuning.

A. Coil Design

In this work, a matched series resonant Tx coil and parallel resonant Rx coil are chosen due 

to significantly lower power consumption on the implant side. This structure has superior 

efficiency in low-power applications [28]. Most of the design approaches involve an iterative 

process for coil design [23], [24], [29]. In our design, a similar approach for coil design is 

followed. The link efficiency is calculated from the equation below:

ηlink ≈ K2QTxQL

1 + K2QTxQL

× QL
QL + QRx

(1)

In equation (1), K is the distance-dependent coupling factor, QTx is the Tx coil quality factor 

QTx = ωLTx/RTx , QRx is the Rx coil quality factor QRx = ωLRx/RRx , and QL is the loaded Rx 

coil quality factor which can be calculated from the following equation:

QL = 1
RRx

ωLRx
+ ωLRx

RL

(2)

In our design, a circular coil shape for Rx is chosen due to its higher quality factor [28]. 

The schematic of the inductively coupled coils is presented in Fig. 3(a). The quality (Q) and 

the coupling factor (K) can be calculated from the number of turns (N), spacing between 

turns (S), trace width (W), and distance between coil (d) [30]. The following steps are taken 

to design the Rx and Tx coil at a distance of 50 mm. For an initial design of the Tx coil, 

guidelines from [29], [31], [32] are taken into account, such as equal width and spacing 

(W ≈ S), and the dimension of the optimal Tx coil (D) is less than the distance (d) from the 

following equation:

D ≤ 2.288 × d

Habibagahi et al. Page 3

IEEE Trans Microw Theory Tech. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

Step1: Apply constraints on the Rx and Tx coil size.

Step2: Initialize N, W, S for Tx coil based on[29].

Step3: Optimize Rx coil parameters for best ηlink.

Step4: Optimize Tx coil Parameters for best ηlink.

Step5: Repeat until there is no improvement.

The simulated link efficiency in HFSS before matching is 2.17% at a distance of 50 mm 

with an unmatched coil and RL = 100kΩ. The physical dimensions of the simulated coils 

are shown in HFSS. Details of coil stand-alone parameters such as quality factor (Q), 

inductance (L), self-resonance-frequency (SRF), width (W), and spacing (S) of turns are 

presented in table I. The Tx coil is connected to the N5230C network analyzer directly for 

characterization. The Rx coil, due to its small size and high parasitics of the probes, is not 

measured directly, and HFSS simulation results are shown in the table I.

B. Wireless link Characterization

1) Biological Medium effects: Wireless link parameters such as power and medium 

variations can cause a change in the implant’s resonant frequency[28], [31], [32]. The 

intervening biological medium can be approximated as the low-loss complex dielectric 

material. The real and imaginary part of the dielectric constant corresponds to electrical 

permittivity and conductivity, respectively. The equation below expresses the frequency-

dependent dielectric constant:

ϵ(f) = ϵ0ϵ1(f) + iϵ2(f) = ϵ′(f) + iσ(f)
2πf

(4)

In frequencies of a few MHz and above, the dielectric conductivity increase and permittivity 

decrease can no longer be ignored. The database of dielectric properties of different 

biological tissues is available at [33]. The dielectric properties are imported into HFSS to 

investigate the shift in resonance frequency after adding the material. Electrical permittivity 

and conductivity of skin, fat, and muscle are plotted in Fig. 4 (a) and (b), respectively. 

Depending on the application and animal size, the biological medium can vary. In our 

experiments, the implant is placed inside a pig’s neck for VNS. The tissue is modeled with 

3 mm of skin, 3 mm of fat, and 15mm of muscle on top of the implant, while the bottom of 

the implant is modeled as an infinite muscle due to the large size of the animal. Due to high 

electrical permittivity and conductivity, the effective capacitance of the coil increases, and 

the quality factor reduces after adding the biological tissue. The simulated implant inside the 

muscle and 3 MHz shift in resonance point is presented in Fig. 5 (a) and (b), respectively. 

It is possible to bring the resonance frequency back to 40.68 MHz by reducing Cp. Power 

transfer is done at 40.68 MHz to operate within the industrial, scientific, and medical (ISM) 
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band. The implant should work inside air and muscle properly. Therefore, the system’s 

bandwidth (next section) should be high enough to cover the frequency shift.

2) Specific Absorption Rate: The specific absorption rate (SAR) is an essential figure 

of merit in determining how safe the wireless power transfer is to biological tissue. SAR can 

be calculated by the electric field inside the homogeneous tissue and can be calculated from 

the following equation:

SAR = σ Erms
2

ρ

(5)

σ is the electrical conductivity, and ρ is the density of the tissue. As stated earlier, 

conductivity increases with frequency, which results in a higher absorption rate. Federal 

Communication Commission (FCC) recognizes the limit of 1.6 W/kg for the human head. 

The simulated specific absorption rate is 2mW/kg in HFSS, which is three orders of 

magnitude less than the 10 W/kg safety limit according to IEEE Std C95.1–2005 and FCC 

regulation. The SAR is simulated over the human model with a port power of 1 W at 

40.68 MHz when the Tx coil is placed 3 cm away. Fig. 6 shows simulated SAR in HFSS 

averaged on the human body. Based on the calculated SAR and link efficiency calculated 

link efficiency it is crucial to limit the average power consumption of the chip to hundreds of 

micro-watts to ensure safety.

III. CHIP DESIGN

To ensure batteryless and wireless operation of the implantable device, a power harvesting 

chip should extract the passcode and control the stimulation. The chip is interfaced with 

the Rx coil to harvest the power and extract the clock and data. Tx sends data at the rate 

of 10 kbps with PWM-ASK modulation. Based on the pulse width, the clock and data 

can be extracted. Passcode detection is realized using a finite state machine (FSM) with 

received data, and stimuli voltage, amplitude, and duration are decided. At last, the output 

stage buffers the control signals and drives the tissue using standard cuff-electrodes. On-chip 

error detection block ensures that the harvested voltage is not lower than 2.6 V during 

stimulations. The overall view of the implant block diagram is presented in Fig. 7.

A. Power management unit

Power management is crucial for the implantable device to operate reliably. The rectifier 

harvests power from the Rx coil and stores them on an off-chip capacitor CStr . The LDO 

and reference generation are also essential for reliable and efficient operation. Each block is 

discussed in detail in the following sections.

1) Rectifier: Passive rectifiers have the advantage of efficient cold start-up [34], [35], 

[36]. Cross-coupled (CC) full-wave rectifier topology has been chosen due to its excellent 

power transfer efficiency and dynamic threshold voltage V tℎ  compensation [34]. The 

proposed rectifier is shown in Fig. 8 (a). The limiter sets the maximum harvested voltage 
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to be 3.8 V, and LDO provides a stable 1.8 V when the rectifier voltage reaches 1.8 V. A 

single stage of the CC rectifier is shown in Fig. 8 (b). The current in the positive cycle 

flows through Mp1 and Mn2, and during the negative cycle, they flow through Mp2 and Mn1. 

The NMOS and PMOS are scaled with a constant ratio according to their mobility. The 

compensation capacitor is set to 0.5 pF to compensate for the mismatches between the 

transistors [34]. The coupling capacitor enables dynamic gate biasing of the CC rectifier 

needs to be large enough Cc = 6 pF  so that no voltage drop across the capacitor. One of 

the challenging parts of the rectifier design is choosing the number of stages and sizing of 

the transistors. The higher number of stages and transistor widths leads to higher bandwidth 

(BW) while the sensitivity of the rectifier is reduced [37], [32]. As shown in Fig. 8, the 

rectifier impedance can be presented with parallel resistance Rin  and capacitance Cin .

The quality factor can be expressed based on (2), and for a properly designed Rx coil, the 

power going to the rectifier is much larger than the power wasted in the coil, therefore:

QRect < < QRx = LRxω
RRx

(6)

QL ≈ QRect = Rin
LRxω

(7)

And therefore, its bandwidth can be calculated from the following equation:

BW = f0
QRect

(8)

The inherent efficiency of the rectifier is another important parameter which is defined as:

ηRect = PDC
PRF

(9)

According to [32], the sensitivity of the rectifier can be calculated as QηRect.

The simulated results of rectifier BW and QηRect when the rectifier is loaded by 10 μA of 

current are shown in Fig. 9 (a) and (b), respectively. It should be noted that while scaling the 

width of the transistors, the constant ratio is preserved. In this work, four stages of the CC 

rectifier with W/L= 4μm/180nm are chosen for the NMOS transistors. This choice results in 

BW of 5.377 MHz and QηRect of 0.486.

The resonance frequency of the Rx coil can be calculated using the equation below:
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fRes = 1
2π Cin + Ctune LRx

(10)

The rectifier is a non-linear block, and its input impedance varies with power and 

loading[38]. As shown in Fig. 10 (a) and (b), the input resistance varies with load and 

input power, but more importantly, input capacitance Cin  varies considerably with input 

power. Variation of input power for a wirelessly powered implant is inevitable, leading to the 

variation of the resonance frequency fRes  based on (10). Fig. 10 (c) shows the 1.6 MHz shift 

in fRes due to non-linear input capacitance.

In [39], the authors propose a complex mechanism to adaptively change the tuning capacitor 

to maintain a constant resonant frequency. In this work, BW is chosen wide enough, so 

resonance resistance does not drop more than 15% of its nominal value.

The procedure of co-designing the Rx coil and rectifier is shown in Fig. 11. Unlike [32], in 

this work, the Tx frequency is constant, and the goal is to design an Rx coil and rectifier 

such as it can work at different mediums and power levels. The initial design of the Rx 

coil is discussed in the previous section. It has to be verified that the coil satisfies (6). In 

the next step, a reasonable value for the rectifier’s efficiency (50%) and BW (3 MHz) is 

chosen. In the third step, possible variations, including adding biological tissue (discussed 

in the previous section) and rectifier non-linearity, are simulated. Lastly, it is verified that 

the rectifier can tolerate these variations without losing more than 50 % of its performance. 

The Rx coil must be redesigned for a higher BW if the variations cannot be tolerated. The 

high available BW at the same Q is the advantage of choosing 40.68 MHz compared to the 

lower frequency bands (ex: 13.56 MHz). However, it is more challenging to satisfy SAR 

regulations due to higher tissue absorption, as shown in Fig. 4.

2) LDO: Low drop-out regulator is essential to the chip as it provide a stable 1.8 supply 

for other blocks. The schematic of LDO is shown in Fig. 12. V ref1 and V ref2 are set to 

2.64 V and 0.33 V, respectively; the architecture of the reference generator is the same 

as the one presented in the [31]. The two-stage LDO consists of an error amplifier and 

the pass transistor as a controlled current source. This structure benefits from higher loop 

gain, and a lower voltage drop-out than the source follower pass transistor [40], [41]. The 

main drawback of this structure is the low phase margin which can cause ringing issues. 

The trade-off between BW and phase margin is established depending on the LDO output 

capacitance. Miller compensation capacitance Cc  of 3 pF has been added to improve the 

phase margin. The proposed LDO has a loop gain of 34.1 dB and a phase margin of 89.94 

at 62.3 Hz while loaded with a 1 μF off-chip capacitor. The most important features of the 

LDO are summarized in table II. The quiescent power consumption of the LDO IQ  is the 

amount of current the LDO takes at no-load conditions. Line regulation is another important 

figure of merit for LDO, defined as:
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LineRegulation = ΔV LDO
ΔV Rect

× 100%

(11)

Line regulation identifies the ratio between regulated voltage and supply voltage variations. 

Load Regulation is also defined as the amount of the LDO voltage drop concerning a change 

in the loading current [40]. The output resistance of the LDO is also tightly related to the 

load regulation in a small signal domain by the following equation:

Ron = δV LDO
δIload

(12)

3) POR: It is crucial for a wirelessly powered device to reset the digital blocks every 

time the chip is powered up. The cross-coupled inverter chain similar to [42] is used for 

POR. A fraction of rectifier voltage α = 0.75  is used for a weak current source to charge 

the capacitor in cross-coupled inverters. The inverters are sized for opposite pull-up and 

pull-down to prevent metastability. As shown in Fig. 13, the generated pulse is further 

extended by capacitively loaded inverter chain to 50 ns. The digital blocks are reset every 

time the harvested voltage reaches 0.9 V.

B. Clock and data recovery

Clock and data recovery are essential to determine the stimulation’s passcode, duration, and 

voltage level. Unlike power-hungry phase detectors [43], the difference between the pulse 

width of bit ’1’ and ’0’ can be utilized to recover the clock and data [44], [45]. In this work, 

bits ’1’ and ’0’ have pulse widths of 75% and 25% respectively, and the duration of each 

bit is set to be 100 μs. The signal’s envelope can be used as the clock for the system. Fig. 

14 shows that one stage of the cross-coupled rectifier can operate as a self-mixer [43]. The 

signal at the antenna side V ANT  is passed through a self-mixer (V 1) and low pass filtered (V 2)
with a corner frequency of 2.1 kHz. The 10 pF capacitor at the output of the mixer is to 

filter out the 2fRF frequency. The comparator is needed in the next stage to remove the DC 

components [46]. Self-mixing action can be expressed using the equations below:

V ANT = A[1 − mx(t)]cos 2πfRFt

(13)

V 1 ≈ A[1 − mx(t)]cos 2πfRFt × 2
πcos 2πfRFt

(14)

V 1, LPF = A
π [1 − mx(t)]
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(15)

In Fig. 14, the simulation for OOK (m = 100%) is presented. However, to save power and 

maintain a good power transfer efficiency (PTE) during data transfer, the modulation index 

m  can reduce to 5%. To increase stability and noise robustness, a Schmitt trigger is added 

[46]. The circuit schematic of the comparator and Schmitt trigger are presented in Fig. 15. 

The comparator has a gain of 51 dB with 4 MHz bandwidth, and the Schmitt trigger has a 

hysteresis window of 0.35 V to 0.95 V. The reference generator introduced in [47] is used 

due to fast start-up and temperature stability.

Monte Carlo over 204 post-layout simulations is performed. As shown in Fig. 16, The 

standard deviation σ  of the recovered signal frequency is 0.154 Hz which shows accurate 

clock recovery with process variations.

The clock is integrated by a 40 nA current source on a 1.8 pF capacitor. Bit ’1’ and ’0’ reach 

values of 1.65 V and 0.375 V after integration V int . After comparing with the reference 

voltage of 1.25 V, a pulse of 18 μs is generated if the bit is ’1’. In order to avoid glitches, a 

delay of 6 μs is applied for the detected pulses; then they are passed through a shift register 

to generate the data (D0) for passcode detection and stimulation.

Each chip has a specific 4-bit passcode based on the PCB connections. After sending 8 

bits, including flag and voltage level, if the passcode and flag are matched, the stimulation 

activates. Fig. 17 (a) shows the timing diagram of the proposed chip and how independent 

channels stimulate. Fig. 17 (b) shows the FSM for stimulation. The error signal generated 

for the output stage verifies if enough voltage is harvested on the storage capacitor. 

Stimulation happens only when the error signal is zero.

C. Output stage

Fig. 18 shows the output stage of the stimulator. An error detection block will stop the 

stimulation if the harvested voltage drops below 2.6 V. A conventional differential cascode 

voltage switch (DCVS) is chosen due to its low static power consumption and fast switching 

[48]. DCVS shifts the control signal from 1.8 V to 3.3 V domain. NMOS transistors are 

scaled up to ensure a strong pull-down network. The signal after buffering has a 1 ns delay. 

The static and dynamic power (f=10 KHz) consumption of the output stage with buffers is 

30 pW and 155 nW, respectively.

The minimum tolerable load resistance for the storage capacitor can be defined as:

Rload, min = V Stim, Avg × tStim
Cstr × ΔV stim

(20)

Where V Stim, Avg is the average stimulation voltage, tStim is the stimulation pulse time, Cstr is the 

storage capacitance, and ΔV stim is the maximum allowable voltage change during stimulation. 

For a conventional stimulation of tStim = 1 ms, V Stim, Avg = 3.3 V and ΔV stim = 0.3 V, the Rload, min
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is 271Ω. The maximum load for stable stimulation must be verified to be within operating 

range.

IV. MEASUREMENT RESULTS

A. Chips measurments

The proposed SoC is fabricated in TSMC 180-nm technology. The chip has an area of 

1.2mm2, as shown in Fig. 19. The performance of the Rectifier and LDO in a stand-alone 

setup is measured. Fig. 20 (a) shows the harvested voltage V Rect  and regulated voltage V LDO

when the RF voltage source is driving the chip. As expected, the harvested voltage is limited 

to 3.8 V, and the output of LDO stays at 1.8 V. The total simulated power consumption of 

the chip is 27μW, where LDO takes the largest portion of the power consumption (See Fig. 

20 (b)). In the next measurement, demodulated passcode was observed while changing the 

carrier frequency fc  and modulation index (m). As presented in Fig. 21, the chip can work 

at frequencies up to 1080 MHz. However, the optimum results are achieved when a carrier 

frequency of 40.68 MHz is chosen. This choice allows the modulation index to reduce as 

low as 10% to have a negligible power drop during data transfer.

B. Implant measurements

The chip, storage capacitors, and cuff electrodes are assembled on the miniaturized 

circular PCB. Additional filtering capacitors (Cfilt = 10μF) are added in series for charge 

balancing[7], [3]. Due to the small form factor of the implant coil, its inductance cannot be 

measured accurately by a network analyzer. Therefore, for the frequency tuning, a wideband 

unmatched transmitter coil can be used to power the implant, and harvested voltage is 

measured at different frequencies[7]. A tuning capacitor is tuned in steps of 0.1 pF, and the 

optimized value of 8 pF yields the harvested voltage of 3.5 V. The end-to-end efficiency is 

calculated using the equation below:

PTE = Pcℎip + Pstim × Dstim
PTx × DTx

× 100%

(17)

Where P cℎip, Pstim and PTx are chip power consumption, stimulation power, and transmitted 

power and Dstim and DTx are duty cycles for stimulation and transmitters. In this equation, 

since stimulation is only on 100μs every 1s (Dstim = 0.01%), the stimulation term can be 

neglected from the equation. The transmitter is tuned on for 5ms every 1s (DTx = 0.5%) with 

PTx = 2W. The overall calculated efficiency for this distance of 50 mm is 0.27%.

As presented in Fig. 22 (a) and (b), the implant’s cuff electrodes are connected to 

an oscilloscope for monitoring. RF signal generator (E4428C, Hewlett Packard Inc.) is 

connected to a power amplifier (ZHL-20 W-13 +, Mini-Circuits Inc.) to generate a peak 

power of 2 W. An arbitrary waveform generator (AWG-Agilent 33522A) modulates the 

RF generator for power and data transmission. The implant is loaded with 1kΩ and 1μF 

capacitor to mimic tissue impedance [3]. The sphere-shaped receiver coils offer more 

resilience to misalignments [49]. However, in this work, we have used a planar coil to reduce 
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volume and improve ease of fabrication and assembly. Fig. 23 (a) shows the harvested 

voltage vs. distance. The minimum harvested voltage for the implant before the error 

signal activation is 2.6 V. Two protractors for Tx and Rx coils are installed to measure 

misalignment. Fig. 23 (b) shows angular misalignment tolerance of up to 70° at a distance 

of 50 mm. Due to the symmetrical nature of the coils, there is no sensitivity for Z-axis 

misalignment, and there is similar sensitivity for X and Y-axis misalignment (axis shown in 

Fig. 22 (a)). At a vertical distance of 50 mm, the maximum allowable lateral misalignment 

before the voltage reaches 2.6 V is 30 mm.

In another setup, different passcodes are sent to different implants with passcodes. It was 

observed the stimulation only happens when transmitted passcodes match with the PCB-

defined passcodes. Examples of both 3.3 V and 1.8 V stimulation are shown in Fig. 24 while 

the oscilloscope loaded the implant.

C. In-Vivo validation

The implants were encapsulated with biocompatible epoxy (EPO-TEK MED-301-2FL) 

for isolation and portability. Two implants are put inside the anesthetized Yorkshire pig’s 

left and right side of the neck for bilateral VNS. In the first step using a PalmSens4 

Electrochemical Impedance Spectroscopy (EIS) device [7], the impedance across cuff 

electrodes is measured to verify that they satisfy minimum load conditions as introduced 

in (16). The EIS measures the tissue’s frequency response (1 Hz −10 kHz, V AC = 10 mV) 

and records its magnitude and phase. The results are presented in Fig. 25. The fitted circuits 

using the PalmSense circuit fitting tool are shown on the bottom left of each picture. As 

shown in Fig. 25, the worst case impedance for the right and left vagus nerve is 1.81 kΩ 
and 2.55 kΩ, respectively. These impedances satisfy the minimum resistance requirement 

introduced in (16) for HV (3.3 V) stimulation.

The In-Vivo validation is performed by delivering two different passcodes to the left and 

right implants using a single Tx coil, as shown in Fig. 26 (a) and (b). The stimulation 

duration was set to 10 s, the voltage set to 3.3 V, and the pulse duration was set to 1 ms, 

similar to [6], [7]. Cardiac control, based on the principle of the optimized VNS, can be 

elicited from either of the vagus nerves [6], [50]. In this work, the RF signal generator was 

connected to the power amplifier to provide a stable power of 2 W at 40.68 MHz. The 

modulation is done using an external AWG. Tx coil is placed 54 mm above the implants 

(including 10mm implantation depth), and different passcodes are transmitted for unilateral 

(right side only) and bilateral (both sides) VNS. The pig’s heart rate (HR) was monitored 

using standard electrocardiogram (EKG) electrodes. Fig. 26 shows conceptual and actual 

pictures of in-vivo setup. It was observed that the drop in HR was proportional to stimulation 

frequency and bilateral stimulation induced a stronger response. Fig. 27 shows HR change 

for bilateral and unilateral stimulation. HR drop concerning baseline for unilateral VNS was 

24.4% and 12.6% at 10 Hz and 20 Hz, respectively. For bilateral 10 Hz stimulation, HR 

drop was measured to be 22.5%, which is similar to unilateral stimulation with double the 

frequency. The results indicate successful passcode detection and efficacy of bilateral VNS.
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D. Performance summary

The performance of the proposed implant is compared to the state-of-the-art wireless 

implant introduced in [14], [3], [51], [11], [10]. The proposed implants in [14], operate 

based on PUF, which needs additional native layers for fabrication, and complex circuitry 

is needed to ensure PVT stability. In this work, only two bits are used as the preamble. 

However, a larger number of preamble bits can improve the security of the device. The 

implants proposed in [3] can operate independently without data transfer. However, the 

main drawback is the higher number of Tx coils and interference between coils. Similarly, 

approaches in [51], [10] suffer from scalability issues. Magneto-electric (ME) and ultrasonic 

[17], [14], [11] power transfer still need to show their performance in big animals. 

Compared to commercial VNS therapy implants [52], our proposed implant is about 1000 

times smaller in size, and batteryless operation improves safety. The device weighs only 

80 mg without cuff electrodes and has two channel constant voltage capability similar to 

state-of-the-art technologies.

V. CONCLUSION

The proposed implantable system enables WPT and synchronized control of up to 16 sites 

using a single Tx coil. The proposed SoC, implemented in 180 nm technology, consumes 

only 27 μW of static power, and simulated SAR is 3 orders of magnitude lower than 

the safety limit (IEEE Std C95.1-2005). The Rx coil resonant frequency can vary based 

on the presence of biological tissue and Tx power level. An optimization algorithm for 

co-designing the rectifier and Rx coil is proposed in the paper to ensure that the implant 

can work reliably in different mediums and power levels. Each implant can deliver 1.8 V 

or 3.3 V pulses with 100 μs accuracy. A criterion for maximum loading of the implants is 

defined, and tissue impedances are verified to be within the range. Angular misalignment 

of up to 70° is tolerable at a distance of 50 mm. Bilateral and unilateral VNS is verified in 

pigs at a distance of 54 mm. The features mentioned above bring the potential for future 

clinical applications. The optimization algorithms can also be used as a platform for future 

wirelessly powered devices.
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Fig. 1. 
Different multisite stimulation strategies. (a) Electrode array multisite stimulation proposed 

in [10]. (b) The double carrier frequency for cardiac pacing presented in [3]. (c) PUF 

enabled IDs presented in [14]. (d) Proposed miniaturized implants based on PCB-defined 

passcodes.
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Fig. 2. 
Conceptual presentation of proposed batteryless implant for bilateral VNS with a 

miniaturized circular coil.
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Fig. 3. 
Inductive wireless power transfer link model. (a) Schematics (b) Physical size of the 

designed coils.
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Fig. 4. 
Dielectric characteristics of different biological tissues: (a) electrical permittivity (b) 

electrical conductivity
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Fig. 5. 
Effect of biological tissue on Rx coil resonance. (a) Modeled implant inside the neck in 

HFSS. (b) Drift in resonance frequency shift after adding biological tissue.

Habibagahi et al. Page 22

IEEE Trans Microw Theory Tech. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Simulated SAR over the human body in ANSYS HFSS with 1-W Tx coil
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Fig. 7. 
Block diagram of the proposed implant
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Fig. 8. 
Proposed rectifier: (a) 4-stage rectifier with voltage limiter (b) One stage of CC rectifier
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Fig. 9. 
Variation of the rectifier with respect to scaling and number of stages: (a) BW (b) Qηrect
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Fig. 10. 
Variation of the rectifier with respect to input power and loading: (a) Rin (b) Cin (c) fRes
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Fig. 11. 
Procedure for co-designing rectifier and Rx coil for reliable operation
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Fig. 12. 
Circuit schematic of the LDO
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Fig. 13. 
Scehmatics of POR for digital blocks
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Fig. 14. 
Block diagram for clock and data recovery: (a) Clock recovery chain (b) Data recovery chain
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Fig. 15. 
Schematic of Reference generator, comparator, and Schmitt trigger
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Fig. 16. 
Monte Carlo simulation of the recovered clock frequency
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Fig. 17. 
Timing diagram of the stimulator chip: (a) Conceptual presentation and (b) FSM.
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Fig. 18. 
Output and control stage of the stimulator
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Fig. 19. 
Micrograph of the Implant’s SoC
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Fig. 20. 
Chip power performance: (a) Measured rectified and regulated voltage and (b) Simulated 

power break-down

Habibagahi et al. Page 37

IEEE Trans Microw Theory Tech. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 21. 
Performance of the chip at different carrier frequencies and modulation indexes.
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Fig. 22. 
Implant validation experiment: (a) Schematic and (b) Picture of the test set up, (c) Harvested 

voltage Vs. distance and (d) Harvested voltage Vs.angular misalignment.
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Fig. 23. 
Implant validation experiment: (a) Harvested voltage Vs. distance and (b) Harvested voltage 

Vs.angular misalignment.
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Fig. 24. 
Different passcodes sent to the implant for verification
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Fig. 25. 
EIS and fitted circuits for a) Right VNS and b) Left VNS.
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Fig. 26. 
In-Vivo validation of bilateral VNS: (a) conceptual presentation of the setup (b) Implants 

after surgery.
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Fig. 27. 
Heart response to unilateral and bilateral VNS.
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TABLE I

TX AND RX COIL PARAMETERS

Coil parameters Tx (Measured) Rx (HFSS)

Dimensions 35 mm × 35 mm 14 mm diameter

No. Turns and No. Layers 6 and 2 12 and 2

Q@fc 40.34 66.2

L@fc 1.96 μH 1.91 μH

SRF 58.82 MHz 90.44 MHz

W and S 1.1 mm 0.18 mm
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TABLE II

LDO SPECIFICATIONS

LDO

IQ 7.6μA

Ron 30 Ω

Line Reg 1.8%

Load Reg 60mV @ 1 mA
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